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Introduction

Cryptographers need computational assumptions

Cryptography is like a religion.

Minimum faith required:

symmetric-key crypto One-way functions (OWF)

public-key crypto OWF over algebraic structure, e.g. RSA, discrete logarithm (DLOG), SIS, LWE

(Relatively) unstructured assumptions
e.g. RSA, DLOG, SIS, LWE

⇓
Basic cryptographic primitives

e.g. encryption, signatures, etc.

Structured and/or hinted assumptions
e.g. Strong RSA, One-More DLOG,

Vanishing SIS, Evasive LWE
⇓

Advanced properties
e.g. succinctness, quasi-linear time, etc.
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Introduction

(Euclidean) Lattices

For basis B ∈ Rn×k with k ≤ n, the lattice spanned by B is

L(B) :=
{

Bz : z ∈ Zk
}
⊆ Rn

An n = 2 dimensional example An n = 3 dimensional example

General believe: Arithmetic problems = easy, Geometric problems = hard
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Introduction

Lattice-based cryptography

Lattice-based crypto = crypto based on hardness of lattice problems

Why lattice-based crypto?

† Conjectured post-quantum security
† Security (of most constructions) based on hardness of worst-case lattice problems

i.e. there exist worst-case to average-case reductions between hard problems
† Enabling unique functionalities, e.g. fully homomorphic encryption
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Introduction

Goal of this talk

† Overview of old and new lattice-based assumptions
† Highlight gaps from foundational perspective
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Standard Assumptions

Basics: Successive minima

Successive minima λ1(L), . . . , λn(L)

λi(L) = Radius of smallest n-dim ball containing i linearly independent lattice vectors.
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Standard Assumptions

Worst-case problems: SIVP, GapSVP

SIVPγ : Shortest Independent Vector Problem

Given L ⊆ Rn, find linearly independent {z1, . . . , zn} ⊆ L such that maxi∥zi∥ ≤ γ · λn(L).

GapSVPγ : Decision Shortest Vector Problem

Given lattice L ⊆ Rn and a real d > 0, decide whether λ1(L) ≤ d or λ1(L) > γ · d .

The function γ = γ(n) is the approximation factor. It plays a significant role in hardness.
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Standard Assumptions

Worst-case problems: Sliding scale of approximation factors

Known hardness results for GapSVPγ :

Figure from “The Complexity of the Shortest Vector Problem” by Huck Bennett, 2023.
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Standard Assumptions

Average-case problems: SIS, LWE

Let n ≤ m ≤ poly(n), β ≤ q ≤ 2O(n).

SISn,m,q,β : Short Integer Solution [Ajtai96]

Given uniformly random A←$ Zn×m
q , find x ∈ Zm with Ax = 0 mod q and 0 < ∥x∥ ≤ β.

LWEn,m,q,χ: Learning with Errors [Regev05]

Given uniformly random A←$ Zn×m
q and sample b ∈ Zm

q , decide whether b is uniformly random
or bT ≈ sTA mod q for uniformly random s←$ Zn

q .

† Without norm constraint or noise =⇒ linear algebra
† Geometry seems to make the problems much harder!
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Standard Assumptions

Reductions

Hardness of SIS and LWE are relatively well understood.

SIVP

GapSVP

SIS

LWE

† A→ B: Classical reduction from A to B (Dotted = Trivial)
† A 99K B: Quantum reduction from A to B
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Structured and Hinted Assumptions

Structured and/or hinted SIS and LWE

Recall: Stronger assumptions =⇒ Fancier functionalities (generally)

How to make stronger variants of SIS and LWE, i.e. add adjectives?

† Additional structure, e.g.:
‡ matrices and vectors over number ringsR instead of Z
‡ structured matrix A, e.g. Vandermonde

† Give hints, e.g. for given y, short vector x such that Ax = y mod q and ∥x∥ ≤ β, denoted

x←$ A−1
β (y)

We say “x is a preimage of y w.r.t. A”.

What to research about these assumptions?

† Applications to cryptographic constructions
† Cryptanalysis, i.e. find algorithms
† Reductions
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Structured and Hinted Assumptions

Ring/module SIS and LWE – “Structure from the inside”

Typical setting: LetR = Z[ζ] where ζ ∈ C is a root of unity.

SISR,n,m,q,β : Ring/Module Short Integer Solution [Peikert-Rosen06, Lyubashevsky-Micciancio06]

Given uniformly random A←$Rn×m
q , find x ∈ Rm with Ax = 0 mod q and 0 < ∥x∥ ≤ β.

LWER,n,m,q,χ: Ring/Module Learning with Errors [Lyubashevsky-Peikert-Regev10]

Given uniformly random A←$Rn×m
q and sample b ∈ Rm

q , decide whether b is uniformly random
or bT ≈ sTA mod q for uniformly random s←$Rn

q .

† IfR = Z =⇒ Standard SIS and LWE
† n = 1: “ring” setting
† n > 1: “module” setting
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Structured and Hinted Assumptions

Reductions over rings and modules

Most existing reductions over Z generalise to ring/module settings.

SIVPR

GapSVPR

SISR

LWER

† A→ B: Classical reduction from A to B (Dotted = Trivial)
† A 99K B: Quantum reduction from A to B

Issues:

† Classical reduction from GapSVPR to LWER missing (literature: restricted parameters, omitted)
† GapSVPR easy in ring setting, i.e. n = 1
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Structured and Hinted Assumptions

Polynomials and rational functions – “Structure from the outside”

Vanishing SIS [Cini-L-Malavolta23]

SIS but matrix A consists of rational functions evaluations at random points, e.g. Vandermonde

A =

1 a1 . . . am−1
1

...
...

. . .
...

1 an . . . am−1
n

 .

In other words, given random points a1, . . . , an, find degree-m polynomial with short coefficients
which vanish at these points.

Current hardness status:
† Worst-to-average reduction for constant degree polynomials [Preprint, L-Jykinen]
† (Speculation) Worst-to-average reduction for constant individual-degree polynomials
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Structured and Hinted Assumptions

SIS and LWE with hints

Some (oversimplified) examples:

Evasive LWE [Wee22]

If LWE w.r.t. matrix (A∥P) is hard, then LWE w.r.t. matrix A given A−1
β (P) as hints is hard.

One-More Inhomogeneous SIS (OM-ISIS) [Agrawal-Kirshanova-Stehlé-Yadav22]

Given A←$ Zn×m
q , k -time oracle access to A−1

β (·), find A−1
O(β)(yi) for random y1, . . . , yk+1.

Current hardness status:
No result
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Structured and Hinted Assumptions

New source of hardness?

k -Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A←$ Zn×m
q , k independent samples x1, . . . , xk ←$ A−1

β (0), find A−1
O(β)(y) for random y.

Current hardness status:
Assuming sub-exponential-secure OWF, as hard as SIS in 2O(m) time and mO(1) memory
[Preprint, Albrecht-L-Postlethwaite]

† Current best attack against SIS takes either
‡ enumeration: 2O(m log m) time and mO(1) memory, or
‡ sieving: 2O(m) time and 2O(m) memory, or
‡ interpolation of above

† Basing security on exponential-time-hardness or memory-hardness is rare.
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Structured and Hinted Assumptions

Reduction Template

k -Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given A←$ Zn×m
q , k independent samples x1, . . . , xk ←$ A−1

β (0), find A−1
O(β)(y) for random y.

† Reduction from $kHSIS to kHISIS
$kHSIS: Given A←$ Zn×m

q and x1, . . . , xk ←$ A−1
β (0), output highly entropic sample of A−1

O(β)(0).

† Run $kHSIS algorithm 2O(m) times to produce a list of 2O(m) samples of A−1
O(β)(0).

† Argue existence of close pairs in list, close = ∥u− v∥ < β.
† Take differences of close pairs to get improved hints.

† Caution: Need to generate lists pseudorandomly, otherwise need 2O(m) memory.
† Feed improved hints back to the $kHSIS algorithm. Repeat.
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Summary

Summary

† How hard are structured and hinted variants of SIS and LWE?
† Attacks? (Even sub-exponential attacks are interesting)
† Reductions from standard SIS and LWE?
† Worst-case to average-case reductions?
† More foundational work needed!

Russell W. F. Lai

Aalto University, Finland

# russell.lai@aalto.fi

� russell-lai.hk

� research.cs.aalto.fi/crypto Thank You!
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