On the Expanding Zoo of Lattice Assumptions

Russell W. F. Lai

Aalto University

Helsinki Algorithms and Theory Days, 29-30.08.2024

Cryptographers need computational assumptions

Cryptography is like a religion.

Minimum faith required:

symmetric-key crypto One-way functions (OWF) public-key crypto OWF over algebraic structure, e.g. RSA, discrete logarithm (DLOG), SIS, LWE

(Relatively) unstructured assumptions e.g. RSA, DLOG, SIS, LWE

↓ Basic cryptographic primitives e.g. encryption, signatures, etc. Structured and/or hinted assumptions e.g. Strong RSA, One-More DLOG, Vanishing SIS, Evasive LWE ↓ Advanced properties

Cryptographers need computational assumptions

Cryptography is like a religion.

Minimum faith required:

symmetric-key crypto One-way functions (OWF) public-key crypto OWF over algebraic structure, e.g. RSA, discrete logarithm (DLOG), SIS, LWE

(Relatively) unstructured assumptions e.g. RSA, DLOG, SIS, LWE

Basic cryptographic primitives e.g. encryption, signatures, etc. Structured and/or hinted assumptions e.g. Strong RSA, One-More DLOG, Vanishing SIS, Evasive LWE ↓ Advanced properties e.g. succinctness, guasi-linear time, etc.

(Euclidean) Lattices

For basis $\mathbf{B} \in \mathbb{R}^{n \times k}$ with $k \le n$, the lattice spanned by **B** is

$$\mathcal{L}(\mathsf{B}) \coloneqq \left\{\mathsf{B}\mathsf{z}: \mathsf{z} \in \mathbb{Z}^k
ight\} \subseteq \mathbb{R}^n$$

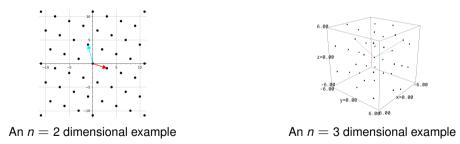


General believe: Arithmetic problems = easy, Geometric problems = hard

(Euclidean) Lattices

For basis $\mathbf{B} \in \mathbb{R}^{n \times k}$ with $k \le n$, the lattice spanned by **B** is

$$\mathcal{L}(\mathsf{B}) \coloneqq ig\{\mathsf{Bz}: \mathsf{z} \in \mathbb{Z}^kig\} \subseteq \mathbb{R}^n$$



General believe: Arithmetic problems = easy, Geometric problems = hard

Lattice-based cryptography

Lattice-based crypto = crypto based on hardness of lattice problems

Why lattice-based crypto?

- † Conjectured post-quantum security
- † Security (of most constructions) based on hardness of worst-case lattice problems i.e. there exist worst-case to average-case reductions between hard problems
- † Enabling unique functionalities, e.g. fully homomorphic encryption

Goal of this talk

- † Overview of old and new lattice-based assumptions
- † Highlight gaps from foundational perspective

Basics: Successive minima

Successive minima $\lambda_1(\mathcal{L}), \ldots, \lambda_n(\mathcal{L})$

 $\lambda_i(\mathcal{L})$ = Radius of smallest *n*-dim ball containing *i* linearly independent lattice vectors.

Worst-case problems: SIVP, GapSVP

SIVP $_{\gamma}$: Shortest Independent Vector Problem

Given $\mathcal{L} \subseteq \mathbb{R}^n$, find linearly independent $\{\mathbf{z}_1, \ldots, \mathbf{z}_n\} \subseteq \mathcal{L}$ such that $\max_i ||\mathbf{z}_i|| \leq \gamma \cdot \lambda_n(\mathcal{L})$.

GapSVP₂: Decision Shortest Vector Problem

Given lattice $\mathcal{L} \subseteq \mathbb{R}^n$ and a real d > 0, decide whether $\lambda_1(\mathcal{L}) \leq d$ or $\lambda_1(\mathcal{L}) > \gamma \cdot d$.

The function $\gamma = \gamma(n)$ is the **approximation factor**. It plays a significant role in hardness.

Worst-case problems: SIVP, GapSVP

SIVP $_{\gamma}$: Shortest Independent Vector Problem

Given $\mathcal{L} \subseteq \mathbb{R}^n$, find linearly independent $\{\mathbf{z}_1, \ldots, \mathbf{z}_n\} \subseteq \mathcal{L}$ such that $\max_i ||\mathbf{z}_i|| \leq \gamma \cdot \lambda_n(\mathcal{L})$.

GapSVP $_{\gamma}$: Decision Shortest Vector Problem

Given lattice $\mathcal{L} \subseteq \mathbb{R}^n$ and a real d > 0, decide whether $\lambda_1(\mathcal{L}) \leq d$ or $\lambda_1(\mathcal{L}) > \gamma \cdot d$.

The function $\gamma = \gamma(n)$ is the **approximation factor**. It plays a significant role in hardness.

Worst-case problems: SIVP, GapSVP

SIVP $_{\gamma}$: Shortest Independent Vector Problem

Given $\mathcal{L} \subseteq \mathbb{R}^n$, find linearly independent $\{\mathbf{z}_1, \ldots, \mathbf{z}_n\} \subseteq \mathcal{L}$ such that $\max_i \|\mathbf{z}_i\| \leq \gamma \cdot \lambda_n(\mathcal{L})$.

GapSVP $_{\gamma}$: Decision Shortest Vector Problem

Given lattice $\mathcal{L} \subseteq \mathbb{R}^n$ and a real d > 0, decide whether $\lambda_1(\mathcal{L}) \leq d$ or $\lambda_1(\mathcal{L}) > \gamma \cdot d$.

The function $\gamma = \gamma(n)$ is the **approximation factor**. It plays a significant role in hardness.

Worst-case problems: Sliding scale of approximation factors

Known hardness results for GapSVP $_{\gamma}$:

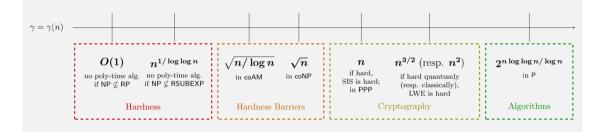


Figure from "The Complexity of the Shortest Vector Problem" by Huck Bennett, 2023.

Average-case problems: SIS, LWE

Let $n \leq m \leq \text{poly}(n)$, $\beta \leq q \leq 2^{O(n)}$.

 $SIS_{n,m,q,\beta}$: Short Integer Solution [Ajtai96]

Given uniformly random $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$, find $\mathbf{x} \in \mathbb{Z}^{m}$ with $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ and $\mathbf{0} < \|\mathbf{x}\| \leq \beta$.

LWE_{*n*,*m*,*q*, χ : Learning with Errors [Regev05]}

Given uniformly random $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and sample $\mathbf{b} \in \mathbb{Z}_q^m$, decide whether \mathbf{b} is uniformly random or $\mathbf{b}^{\mathsf{T}} \approx \mathbf{s}^{\mathsf{T}} \mathbf{A} \mod q$ for uniformly random $\mathbf{s} \leftarrow \mathbb{Z}_q^n$.

 $^{\scriptscriptstyle \dagger}$ Without norm constraint or noise \implies linear algebra

Geometry seems to make the problems much harder!

Average-case problems: SIS, LWE

Let $n \leq m \leq \text{poly}(n)$, $\beta \leq q \leq 2^{O(n)}$.

 $SIS_{n,m,q,\beta}$: Short Integer Solution [Ajtai96]

Given uniformly random $\mathbf{A} \leftarrow \mathbb{Z}_{a}^{n \times m}$, find $\mathbf{x} \in \mathbb{Z}^{m}$ with $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ and $\mathbf{0} < \|\mathbf{x}\| \leq \beta$.

LWE_{*n*,*m*,*q*, χ : Learning with Errors [Regev05]}

Given uniformly random $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and sample $\mathbf{b} \in \mathbb{Z}_q^m$, decide whether \mathbf{b} is uniformly random or $\mathbf{b}^{\mathsf{T}} \approx \mathbf{s}^{\mathsf{T}} \mathbf{A} \mod q$ for uniformly random $\mathbf{s} \leftarrow \mathbb{Z}_q^n$.

 $^{\scriptscriptstyle +}$ Without norm constraint or noise \implies linear algebra

Geometry seems to make the problems much harder!

Average-case problems: SIS, LWE

Let $n \leq m \leq \text{poly}(n)$, $\beta \leq q \leq 2^{O(n)}$.

 $SIS_{n,m,q,\beta}$: Short Integer Solution [Ajtai96]

Given uniformly random $\mathbf{A} \leftarrow \mathbb{Z}_{a}^{n \times m}$, find $\mathbf{x} \in \mathbb{Z}^{m}$ with $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ and $\mathbf{0} < \|\mathbf{x}\| \le \beta$.

LWE_{*n*,*m*,*q*, χ : Learning with Errors [Regev05]}

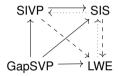
Given uniformly random $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and sample $\mathbf{b} \in \mathbb{Z}_q^m$, decide whether \mathbf{b} is uniformly random or $\mathbf{b}^{\mathsf{T}} \approx \mathbf{s}^{\mathsf{T}} \mathbf{A} \mod q$ for uniformly random $\mathbf{s} \leftarrow \mathbb{Z}_q^n$.

 \dagger Without norm constraint or noise \implies linear algebra

Geometry seems to make the problems much harder!

Reductions

Hardness of SIS and LWE are relatively well understood.



- $\dagger A \rightarrow B$: Classical reduction from A to B (Dotted = Trivial)
- † $A \rightarrow B$: Quantum reduction from A to B

Structured and/or hinted SIS and LWE

Recall: Stronger assumptions \implies Fancier functionalities (generally)

How to make stronger variants of SIS and LWE, i.e. add adjectives?

† Additional structure, e.g.:

- \ddagger matrices and vectors over number rings ${\mathcal R}$ instead of ${\mathbb Z}$
- ‡ structured matrix **A**, e.g. Vandermonde

 \dagger Give hints, e.g. for given y, short vector x such that $Ax = y \mod q$ and $\|x\| \le eta$, denoted

$$\mathbf{x} \leftarrow \mathbf{s} \mathbf{A}_{eta}^{-1}(\mathbf{y})$$

We say "**x** is a preimage of **y** w.r.t. **A**".

What to research about these assumptions?

- † Applications to cryptographic constructions
- † Cryptanalysis, i.e. find algorithms
- † Reductions

Structured and/or hinted SIS and LWE

Recall: Stronger assumptions \implies Fancier functionalities (generally)

How to make stronger variants of SIS and LWE, i.e. add adjectives?

† Additional structure, e.g.:

- \ddagger matrices and vectors over number rings ${\mathcal R}$ instead of ${\mathbb Z}$
- ‡ structured matrix **A**, e.g. Vandermonde

† Give hints, e.g. for given y, short vector x such that $Ax = y \mod q$ and $||x|| \le \beta$, denoted

$$\mathbf{x} \leftarrow \mathbf{s} \mathbf{A}_{eta}^{-1}(\mathbf{y})$$

We say "**x** is a preimage of **y** w.r.t. **A**".

What to research about these assumptions?

- † Applications to cryptographic constructions
- † Cryptanalysis, i.e. find algorithms
- † Reductions

Structured and/or hinted SIS and LWE

Recall: Stronger assumptions \implies Fancier functionalities (generally)

How to make stronger variants of SIS and LWE, i.e. add adjectives?

† Additional structure, e.g.:

- \ddagger matrices and vectors over number rings ${\mathcal R}$ instead of ${\mathbb Z}$
- ‡ structured matrix **A**, e.g. Vandermonde

† Give hints, e.g. for given y, short vector x such that $Ax = y \mod q$ and $||x|| \le \beta$, denoted

$$\mathbf{x} \leftarrow \mathbf{s} \mathbf{A}_{eta}^{-1}(\mathbf{y})$$

We say "**x** is a preimage of **y** w.r.t. **A**".

What to research about these assumptions?

- † Applications to cryptographic constructions
- † Cryptanalysis, i.e. find algorithms
- † Reductions

Typical setting: Let $\mathcal{R} = \mathbb{Z}[\zeta]$ where $\zeta \in \mathbb{C}$ is a root of unity.

SIS_{*R.n.m.a.,B*}: Ring/Module Short Integer Solution [Peikert-Rosen06, Lyubashevsky-Micciancio06]

Given uniformly random $\mathbf{A} \leftarrow \mathcal{R}_{a}^{n \times m}$, find $\mathbf{x} \in \mathcal{R}^{m}$ with $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ and $0 < \|\mathbf{x}\| \le \beta$.

 $WE_{\mathcal{R},n,m,q,\chi}$: Ring/Module Learning with Errors [Lyubashevsky-Peikert-Regev10]

- † If $\mathcal{R}=\mathbb{Z}\implies$ Standard SIS and LWE
- + n = 1: "ring" setting
- + n > 1: "module" setting

Typical setting: Let $\mathcal{R} = \mathbb{Z}[\zeta]$ where $\zeta \in \mathbb{C}$ is a root of unity.

SIS_{*R.n.m.a,g*}: Ring/Module Short Integer Solution [Peikert-Rosen06, Lyubashevsky-Micciancio06]

Given uniformly random $\mathbf{A} \leftarrow \mathcal{R}_{a}^{n \times m}$, find $\mathbf{x} \in \mathcal{R}^{m}$ with $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ and $\mathbf{0} < \|\mathbf{x}\| \le \beta$.

 $_WE_{\mathcal{R},n,m,q,\gamma}$: Ring/Module Learning with Errors [Lyubashevsky-Peikert-Regev10]

- † If $\mathcal{R}=\mathbb{Z}\implies$ Standard SIS and LWE
- + n = 1: "ring" setting
- + n > 1: "module" setting

Typical setting: Let $\mathcal{R} = \mathbb{Z}[\zeta]$ where $\zeta \in \mathbb{C}$ is a root of unity.

SIS_{*R.n.m.g.g*}: Ring/Module Short Integer Solution [Peikert-Rosen06, Lyubashevsky-Micciancio06]

Given uniformly random $\mathbf{A} \leftarrow \mathcal{R}_{a}^{n \times m}$, find $\mathbf{x} \in \mathcal{R}^{m}$ with $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ and $\mathbf{0} < \|\mathbf{x}\| \leq \beta$.

LWE_{\mathcal{R},n,m,q,χ}: Ring/Module Learning with Errors [Lyubashevsky-Peikert-Regev10]

- † If $\mathcal{R}=\mathbb{Z}\implies$ Standard SIS and LWE
- + n = 1: "ring" setting
- + n > 1: "module" setting

Typical setting: Let $\mathcal{R} = \mathbb{Z}[\zeta]$ where $\zeta \in \mathbb{C}$ is a root of unity.

SIS_{*R.n.m.g.g*}: Ring/Module Short Integer Solution [Peikert-Rosen06, Lyubashevsky-Micciancio06]

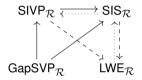
Given uniformly random $\mathbf{A} \leftarrow \mathcal{R}_{a}^{n \times m}$, find $\mathbf{x} \in \mathcal{R}^{m}$ with $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ and $\mathbf{0} < \|\mathbf{x}\| \leq \beta$.

LWE_{\mathcal{R},n,m,q,χ}: Ring/Module Learning with Errors [Lyubashevsky-Peikert-Regev10]

- $\dagger \hspace{0.1 cm}$ If $\mathcal{R}=\mathbb{Z} \implies$ Standard SIS and LWE
- † n = 1: "ring" setting
- $\dagger n > 1$: "module" setting

Reductions over rings and modules

Most existing reductions over $\mathbb Z$ generalise to ring/module settings.



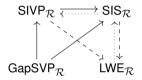
- $\dagger \ A \rightarrow B$: Classical reduction from A to B (Dotted = Trivial)
- † $A \rightarrow B$: Quantum reduction from A to B

lssues:

† Classical reduction from GapSVP_R to LWE_R missing (literature: restricted parameters, omitted) † GapSVP_R easy in ring setting, i.e. n = 1

Reductions over rings and modules

Most existing reductions over $\mathbb Z$ generalise to ring/module settings.



- $\dagger A \rightarrow B$: Classical reduction from A to B (Dotted = Trivial)
- $\dagger A \dashrightarrow B$: Quantum reduction from A to B

Issues:

- \dagger Classical reduction from GapSVP_R to LWE_R missing (literature: restricted parameters, omitted)
- [†] GapSVP_{\mathcal{R}} easy in ring setting, i.e. n = 1

Polynomials and rational functions - "Structure from the outside"

Vanishing SIS [Cini-L-Malavolta23]

SIS but matrix A consists of rational functions evaluations at random points, e.g. Vandermonde

$$\mathbf{A} = \begin{pmatrix} 1 & a_1 & \dots & a_1^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \dots & a_n^{m-1} \end{pmatrix}$$

In other words, given random points a_1, \ldots, a_n , find degree-*m* polynomial with short coefficients which vanish at these points.

Current hardness status:

- † Worst-to-average reduction for constant degree polynomials [Preprint, L-Jykinen]
- † (Speculation) Worst-to-average reduction for constant individual-degree polynomials

Polynomials and rational functions - "Structure from the outside"

Vanishing SIS [Cini-L-Malavolta23]

SIS but matrix A consists of rational functions evaluations at random points, e.g. Vandermonde

$$\mathbf{A} = \begin{pmatrix} 1 & a_1 & \dots & a_1^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \dots & a_n^{m-1} \end{pmatrix}$$

In other words, given random points a_1, \ldots, a_n , find degree-*m* polynomial with short coefficients which vanish at these points.

Current hardness status:

- † Worst-to-average reduction for constant degree polynomials [Preprint, L-Jykinen]
- † (Speculation) Worst-to-average reduction for constant individual-degree polynomials

SIS and LWE with hints

Some (oversimplified) examples:

Evasive LWE [Wee22]

If LWE w.r.t. matrix $(\mathbf{A} \| \mathbf{P})$ is hard, then LWE w.r.t. matrix **A** given $\mathbf{A}_{\beta}^{-1}(\mathbf{P})$ as hints is hard.

One-More Inhomogeneous SIS (OM-ISIS) [Agrawal-Kirshanova-Stehlé-Yadav22]

Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$, k-time oracle access to $\mathbf{A}_{\beta}^{-1}(\cdot)$, find $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{y}_i)$ for random $\mathbf{y}_1, \ldots, \mathbf{y}_{k+1}$.

Current hardness status: No result

SIS and LWE with hints

Some (oversimplified) examples:

Evasive LWE [Wee22]

If LWE w.r.t. matrix $(\mathbf{A} \| \mathbf{P})$ is hard, then LWE w.r.t. matrix **A** given $\mathbf{A}_{\beta}^{-1}(\mathbf{P})$ as hints is hard.

One-More Inhomogeneous SIS (OM-ISIS) [Agrawal-Kirshanova-Stehlé-Yadav22]

Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$, *k*-time oracle access to $\mathbf{A}_{\beta}^{-1}(\cdot)$, find $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{y}_i)$ for random $\mathbf{y}_1, \ldots, \mathbf{y}_{k+1}$.

Current hardness status: No result

New source of hardness?

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$, *k* independent samples $\mathbf{x}_1, \ldots, \mathbf{x}_k \leftarrow \mathbb{A}_{\beta}^{-1}(\mathbf{0})$, find $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{y})$ for random **y**.

Current hardness status:

Assuming sub-exponential-secure OWF, as hard as SIS in $2^{O(m)}$ time and $m^{O(1)}$ memory [Preprint, Albrecht-L-Postlethwaite]

† Current best attack against SIS takes either

- ‡ enumeration: $2^{O(m \log m)}$ time and $m^{O(1)}$ memory, or
- \ddagger sieving: 2^{O(m)} time and 2^{O(m)} memory, or
- ‡ interpolation of above

† Basing security on exponential-time-hardness or memory-hardness is rare.

New source of hardness?

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$, *k* independent samples $\mathbf{x}_1, \ldots, \mathbf{x}_k \leftarrow \mathbb{A}_{\beta}^{-1}(\mathbf{0})$, find $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{y})$ for random **y**.

Current hardness status:

Assuming sub-exponential-secure OWF, as hard as SIS in $2^{O(m)}$ time and $m^{O(1)}$ memory [Preprint, Albrecht-L-Postlethwaite]

† Current best attack against SIS takes either

- a enumeration: 2^{$O(m \log m)$} time and $m^{O(1)}$ memory, or
- \ddagger sieving: 2^{O(m)} time and 2^{O(m)} memory, or
- ‡ interpolation of above

† Basing security on exponential-time-hardness or memory-hardness is rare.

New source of hardness?

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$, *k* independent samples $\mathbf{x}_1, \ldots, \mathbf{x}_k \leftarrow \mathbb{A}_{\beta}^{-1}(\mathbf{0})$, find $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{y})$ for random **y**.

Current hardness status:

Assuming sub-exponential-secure OWF, as hard as SIS in $2^{O(m)}$ time and $m^{O(1)}$ memory [Preprint, Albrecht-L-Postlethwaite]

- † Current best attack against SIS takes either
 - ‡ enumeration: $2^{O(m \log m)}$ time and $m^{O(1)}$ memory, or
 - ‡ sieving: $2^{O(m)}$ time and $2^{O(m)}$ memory, or
 - ‡ interpolation of above
- † Basing security on exponential-time-hardness or memory-hardness is rare.

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

- † Reduction from \$kHSIS to kHISIS \$kHSIS: Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and $\mathbf{x}_1, \ldots, \mathbf{x}_k \leftarrow \mathbb{A}_{\beta}^{-1}(\mathbf{0})$, output highly entropic sample of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Run \$kHSIS algorithm $2^{O(m)}$ times to produce a list of $2^{O(m)}$ samples of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Argue existence of close pairs in list, close = $\|\mathbf{u} \mathbf{v}\| < \beta$.
- † Take differences of close pairs to get improved hints.
- [†] Caution: Need to generate lists pseudorandomly, otherwise need 2^{O(m)} memory.
- † Feed improved hints back to the \$kHSIS algorithm. Repeat.

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

- † Reduction from \$kHSIS to kHISIS \$kHSIS: Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and $\mathbf{x}_1, \ldots, \mathbf{x}_k \leftarrow \mathbb{A}_{\beta}^{-1}(\mathbf{0})$, output highly entropic sample of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Run \$kHSIS algorithm $2^{O(m)}$ times to produce a list of $2^{O(m)}$ samples of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Argue existence of close pairs in list, close = $\|\mathbf{u} \mathbf{v}\| < \beta$.
- † Take differences of close pairs to get improved hints.
- [†] Caution: Need to generate lists pseudorandomly, otherwise need 2^{O(m)} memory.
- † Feed improved hints back to the \$kHSIS algorithm. Repeat.

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

- † Reduction from \$kHSIS to kHISIS \$kHSIS: Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and $\mathbf{x}_1, \ldots, \mathbf{x}_k \leftarrow \mathbb{A}_{\beta}^{-1}(\mathbf{0})$, output highly entropic sample of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Run \$kHSIS algorithm $2^{O(m)}$ times to produce a list of $2^{O(m)}$ samples of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Argue existence of close pairs in list, close = $\|\mathbf{u} \mathbf{v}\| < \beta$.
- † Take differences of close pairs to get improved hints.
- [†] Caution: Need to generate lists pseudorandomly, otherwise need 2^{O(m)} memory.
- † Feed improved hints back to the \$kHSIS algorithm. Repeat.

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

- † Reduction from \$kHSIS to kHISIS \$kHSIS: Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and $\mathbf{x}_1, \ldots, \mathbf{x}_k \leftarrow \mathbb{A}_{\beta}^{-1}(\mathbf{0})$, output highly entropic sample of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Run \$kHSIS algorithm $2^{O(m)}$ times to produce a list of $2^{O(m)}$ samples of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Argue existence of close pairs in list, close = $\|\mathbf{u} \mathbf{v}\| < \beta$.
- † Take differences of close pairs to get improved hints.
- [†] Caution: Need to generate lists pseudorandomly, otherwise need 2^{O(m)} memory.
- † Feed improved hints back to the \$kHSIS algorithm. Repeat.

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

- † Reduction from \$kHSIS to kHISIS \$kHSIS: Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and $\mathbf{x}_1, \ldots, \mathbf{x}_k \leftarrow \mathbb{A}_{\beta}^{-1}(\mathbf{0})$, output highly entropic sample of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Run \$kHSIS algorithm $2^{O(m)}$ times to produce a list of $2^{O(m)}$ samples of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Argue existence of close pairs in list, close = $\|\mathbf{u} \mathbf{v}\| < \beta$.
- † Take differences of close pairs to get improved hints.
- [†] Caution: Need to generate lists pseudorandomly, otherwise need $2^{O(m)}$ memory.
- † Feed improved hints back to the \$kHSIS algorithm. Repeat.

k-Hint Inhomogeneous SIS (kHISIS, i.e. selective OM-ISIS) [Preprint, Albrecht-L-Postlethwaite]

- † Reduction from \$kHSIS to kHISIS \$kHSIS: Given $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and $\mathbf{x}_1, \ldots, \mathbf{x}_k \leftarrow \mathbb{A}_{\beta}^{-1}(\mathbf{0})$, output highly entropic sample of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Run \$kHSIS algorithm $2^{O(m)}$ times to produce a list of $2^{O(m)}$ samples of $\mathbf{A}_{O(\beta)}^{-1}(\mathbf{0})$.
- † Argue existence of close pairs in list, close = $\|\mathbf{u} \mathbf{v}\| < \beta$.
- † Take differences of close pairs to get improved hints.
- [†] Caution: Need to generate lists pseudorandomly, otherwise need $2^{O(m)}$ memory.
- † Feed improved hints back to the \$kHSIS algorithm. Repeat.

Summary

- † How hard are structured and hinted variants of SIS and LWE?
- † Attacks? (Even sub-exponential attacks are interesting)
- † Reductions from standard SIS and LWE?
- † Worst-case to average-case reductions?
- † More foundational work needed!

Russell W. F. Lai Aalto University, Finland ■ russell.lai@aalto.fi russell-lai.hk research.cs.aalto.fi/crypto

Thank You!