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Overview

• Intro: Curvature, the hyperbolic plane,
and Independent Set in disk graphs

• Voronoi, Delaunay

• Outerplanarity of Delaunay in H2

• (Musings on hyperbolic surfaces)

• Plan of attack: DP on noose hierarchy
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Intersection graphs
P ⊂ X, connect points if within distance 2r.

⇔ connect if disks of radius r intersect.

Independent Set: are there k pairwise disjoint disks?

Theorem (Marx and Pilipczuk)
Independent Set in DG can be solved in nO(

√
k) time in R2.

Theorem (Chan)
Independent Set in DG (1− ε)-approxiamted in nO(1/ε) time in R2.

Both are conditionally optimal, even for r ≡ 1.

UDG (unit disk graph): r=1
DG (disk graph): not necessarily equal radii.

Theorem (Koebe, Andreev, Thurston)
Every planar graph can be realized as a DG where the disks are interior-disjoint.
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Curvature: surfaces made of wood or paper

wrinkle

tear

Curvature: 1 0 −1

R2S2 H2
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Poincaré disk model: open unit disk in R2

lines
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Disk graph conversions

R2

S2
Stereographic projection: disks on the
sphere become disks in the plane

p

f(p)

H2

R2

Sphere of radius R (curvature κ = 1/R2),
with disks of radius 1

Sphere of radius 1 (curvature 1),
with disks of radius r = 1/R.

⇔

Same in H2.
Fix κ = +1 for S2 and κ = −1 for H2,
but vary r = r(n).

DG

SUDG(r)

HUDG(r)

⊆

⊆
UDG ⊆
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The impact of radius on HUDG(r)

r = 1/
√
n

almost-Euclidean

r = log n
very hyperbolic,

tree-like
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Results on Independent Set in H2

Theorem (NEW)
Let G ∈ HUDG(r) and let k ≥ 0. Then we can decide if there is an
independent set of size k in G in nO(1+ 1

r log k) time.

r = 1/
√
k r = 1 r = log k

≃ Euclidean result.
Nearly cond. opt.

nO(log k)

Conditionally optimal!
poly(n)

"Very hyperbolic"
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Let G ∈ HUDG(r) and let k ≥ 0. Then we can decide if there is an
independent set of size k in G in nO(1+ 1

r log k) time.

r = 1/
√
k r = 1 r = log k

≃ Euclidean result.
Nearly cond. opt.

nO(log k)

Conditionally optimal!
poly(n)

"Very hyperbolic"

Theorem (NEW)
Let ε ∈ (0, 1) and let G ∈ HUDG(r) have ply ℓ. Then a (1− ε)-approximate
maximum independent set of G can be found in

O
(
n4 log n

)
+ n ·

(
ℓ
ε

)O(1+ 1
r log ℓ

ε ) time.

Ply of disks: maximum # of overlapping disks at any point of H2.

• ε = 1/n, ℓ = n extends exact algo.
• quasi-polynomial in 1/ε
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Plan of attack: DP on noose hierarchy
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DP on solution separators

Guess separators for the (unkown) solution!

Closed curve ("noose") with o(k) vertices,
chosen from poly(n) possible curves.

Theorem (NEW), oversimplified
G has indep. set of size k

⇔ there is a "well-spaced" hierarchy of O(1 + log k
r ) complexity nooses.
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Voronoi, Delaunay
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Delaunay triangulations

Definition A Delaunay triangulation of P is a triangulation where the
circumcircle of any triangle has no points of P in its interior.

Triangulation of P :
subdivision of conv(P ) into triangles whose vertex set is P

In R2 the Delaunay triangulation:
• is a triangulation (planar graph)
• can be comptued in O(n log n)
• can approximate distances on P
• dual of Voronoi diagram

In H2 the Delaunay triangulation:
• is a triangulation (planar graph)
• can be comptued in O(n log n)
• can approximate distances on P
• dual of Voronoi diagram

or S2
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Outerplanarity

1-outerplanar: all vertices on outer face
k-outerplanar: removing vertices of outer face gives (k − 1)-outerplanar

Outerplanarity ≃ # of "vertex layers"

Theorem (Bodlaender)
The treewidth of a k-outerplanar graph is at most 3k − 1.

⇒ k-outeprlanar has separator of size O(k).

Theorem (NEW)
Let S be a set of k points in H2 with pairwise distance at least 2r. Then the
Delaunay triangulation of S is 1 +O

(
log k
r

)
-outerplanar.
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Outerplanarity when r > 1 (sketch)

Theorem (NEW)
Let S be a set of k points in H2 with pairwise distance at least 2r. Then the
Delaunay triangulation of S is 1 +O

(
log k
r

)
-outerplanar.

Proof idea. Since r > 1, the sudden expansion of H2 means that it is harder to
"surround" a disk with disks.

r
r

r r

Inner vertex of Delaunay ⇔ bounded face of Voronoi.
Each Voronoi cell contains a radius r disk.

Delaunay is a planar graph where inner vertices have degree ≥ er!

But planar ⇒ average degree < 6 ⇒ at most 6k/er inner vertices.
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Conclusion

• As curvature goes from κ = 0 to κ = − log2 n,
Delaunay triangulation outerplanarity decreases,

HUDGκ becomes separable with shorter nooses

• Problem complexity can change when curvature changes.

Theorem (NEW)
Let G ∈ HUDG(r) and let k ≥ 0. Then we can decide if there is an
independent set of size k in G in nO(1+ 1

r log k) time.

Disk graphs on hyperbolic surfaces?

Varying curvature (and genus) for spanners? visibility graphs??
Solving other hard problems in poly time?

Thanks!
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Musings on hyperbolic surfaces
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Riemann coverings

= a a

Flat torus, curvature = 0

Bolza surface, curvature = −1

Regular hyperbolic 12-gon with
angles π/6.

Uniformization theorem ⇒: when g > 1, then "natural" cover is hyperbolic!
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The musing
• Take graph G of genus g.

• Embed into hyperbolic surface of genus g.

• Circle-packing theorem: it is realized as intersection graph of interior-disjoint
disks on the surface

planar graph

• G is periodic disk graph in H2 with interior-disjoint disks

disk graph

genus g graph

H2 disk graph with
period Schläfli (4g, 4g)

algorithm?

H2 periodic disk graph

minor-free graph?

?
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Line separator, simple divide and conquer
Strategy:
• find a point p s.t. any line through p has ≤ 2n/3 disks on each side
• take a random line ℓ through p
• show that r-neighborhood of ℓ intersects small number of cliques
• guess OPT ∩N(ℓ, r), at most 1 disk from each clique near ℓ
• delete V ∩N(ℓ, r), recurse on both sides.
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Line separator, simple divide and conquer
Strategy:
• find a point p s.t. any line through p has ≤ 2n/3 disks on each side
• take a random line ℓ through p
• show that r-neighborhood of ℓ intersects small number of cliques
• guess OPT ∩N(ℓ, r), at most 1 disk from each clique near ℓ
• delete V ∩N(ℓ, r), recurse on both sides.

p

ℓ

Theorem (NEW)
Let G ∈ HUDG(r). Then G has a separator S that can be covered with
O
(
log n ·

(
1 + 1

r

))
cliques, such that all conn. components of G− S have at

most 2
3n vertices.

when r = Ω(log n), this yields quasi-polynomial algo. for Independent Set.

Nice, but not good enough!
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Spanners, planar and Steiner spanners

A t-spanner for P ⊂ X is a geometric graph G
• P are the vertices
• Edge pq has weight distX(p, q)
• distG(p, q) ≤ t · distX(p, q)

A geometric graph (spanner) is planar if no pair of edges cross
in its realization.

Non-planar
realization!

Theorem (Xia)
Del(P) is a planar 1.998-spanner of P for any P ⊂ R2.

A Steiner spanner adds Steiner points S ⊂ X
• P ∪ S are the vertices
• Only approximates distances among P


