Formalising the Bitcoin protocol
Making it a bit better

W.J.B. Beukema

University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

w.j.b.beukema@student.utwente.nl

ABSTRACT

Bitcoin is a new, popular currency which is based on math-
ematical and cryptographic principles. The system relies
on a decentralized peer-to-peer network of participants in
which a majority decides on the validity of transactions.
In this paper, the communication protocol used by Bitcoin
to communicate between participants is investigated. We
formally describe the protocol by specifying it in mCRL2.
Using scenario-based verification, we verify that the Bit-
coin protocol satisfies a number of requirements under var-
ious scenarios.

Keywords

Bitcoin, Cryptocurrency, Formalisation, mCRL2, Scenario-
based verification

1. INTRODUCTION

With over 19,000,000 transactions in 2013 and a still-
rising daily average of transactions [6], the Bitcoin can
be described as an upcoming currency. After 2008, the
year in which the initial design paper was published by
Nakamoto [14], the Bitcoin has rapidly gained popularity
amongst people all over the world.

The design of the Bitcoin as a currency is fundamentally
different from traditional currencies. Whereas traditional
currencies depend on central authorities, the Bitcoin sys-
tem relies on a decentralised network of volunteers in or-
der to transfer money. As there is no single point of trust,
a majority of the participants decide on the validity of a
transaction. Because this is achieved by using mathemati-
cal models and cryptographic proof, the entire Bitcoin sys-
tem is based on mathematical proof instead of trust [14].

As a result of its popularity, cyber criminals have also
found their way to Bitcoin. Recently, Bitcoin has been in
the news frequently because of failing Bitcoin exchanges,
fraud, theft and unstable exchange rates as a result [2].
The question arises whether the design of Bitcoin can be
blamed for this current situation.

In this work, it is analysed from a network perspective
how the information is communicated through the Bitcoin
network. A formal specification of the protocol has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

21 th Twente Student Conference on IT June 23th, 2014, Enschede, The
Netherlands.

Copyright 2014, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

created and verified using a set of requirements. Subse-
quently, it is analysed to what extent Bitcoin is a usable
currency compared to traditional currencies.

1.1 Our contribution

‘We present an mCRL2 model of the Bitcoin protocol based
on the current protocol description [4]. With this model of
the real Bitcoin protocol, the Bitcoin network can be simu-
lated and verified. The former can be useful for analysing
certain network situations, such as double-spending at-
tacks. The latter can be useful to determine the robust-
ness of the protocol, i.e. if Bitcoin is able to detect and
handles protocol deviations correctly.

Based on our findings, we also briefly discuss the Bitcoin
protocol and the implications it has for Bitcoin as a cur-
rency. Using scenario-based verification, we were able to
verify that the Bitcoin protocol satisfies our requirements
under various circumstances.

1.2 Outline

Before discussing the model, the relevant aspects of the
Bitcoin protocol and the general structure of Bitcoin will
be explained in section 2.

Subsequently, the model of the Bitcoin protocol will be in-
troduced in section 3. Then we will specify the requirents
in section 4, followed by a verification of these require-
ments (under various conditions) in section 5.

Based on this, we will then discuss the design of Bitcoin
in section 7, followed by a conclusion (section 8). An
overview of related literature is discussed in section 6.

2. BITCOIN

We distinguish to different contexts in which the term "Bit-
coin’ may be used:

e Bitcoin refers to the system as described by
Nakamoto [14];

e bitcoin(s) or BTC refers to the currency unit (like
euro and €, respectively);

In order to participate in the Bitcoin network, one needs
a Bitcoin wallet and a Bitcoin account. A Bitcoin wallet
is a software client that enables one to send and receive
bitcoins, such as BitcoinQT [5]. A Bitcoin account is ba-
sically a public-private key pair, which as we will see is
needed to sign the various messages. An account is identi-
fied with its public key. Bitcoin wallets can generate new
accounts.

The Bitcoin system consists of several parts in which peer-
to-peer communication is involved. Two core elements
of the system, transactions and block generation, involve

0,

5.0 BTC, — sign
sign(8F334)

Transaction 150C25E Transaction 30BB581
IN ouT IN
150C25E,
0.5
Transaction A149295 A | Ten
ATATIE 1.5BTC,
ouT '

[|

| |

| |

| I

| 50 BTC | sign(E44D1)
| |

| |

| |

| |

Transaction 876E120

IN
150C25E,
1,sign

3.5BTC,
sign(CAFB6)

W

Figure 1. An example of a Bitcoin transaction. In transaction 150C25E, the input transaction is worth
5.0 BTC, and split into output transactions of 1.5 BTC and 3.5 BTC. In new transactions 30BB81 and
876E12, these transactions are refered to as input transactions.

communication of significant importance. The following
subsections describe on communication level how these el-
ements work and how they relate to each other.

2.1 Transactions

In order to transfer bitcoins, one has to create a message
containing the transaction details. In essence, the message
should contain three components: a source, a destination
and the amount of bitcoins to transfer. The Bitcoin pro-
tocol does not include this information directly into the
transmitted messages, but instead uses inputs and out-
puts, which we will introduce now.

First of all, the transaction message contains one or more
outputs, a list that indicates what amounts should be trans-
ferred to what accounts. Thus, it is possible to address
multiple receivers in only one transaction. An output is
basically a tuple with a numeric value of bitcoins and a
condition to claim the output.

Because it is hard for other nodes in the network to deter-
mine whether or not the sender has the amount of money
it claims to have, the sender has to prove that it is in the
possession of the bitcoins by referring to previous Bitcoin
transactions that were made to him. In order to refer to
another transaction, the hash of the textual representation
of a transaction (called a tz message) is used. Together
with the reference, a proof of ownership is included. The
references and the proofs together are called the inputs of
the newly created transaction.

In order to start the transaction, the sender should create
the tx message and inform its connected peers about it.
It does so by advertising the hash of the tx message; this
message is called an inv message. The connected peers
will check whether the advertised hash is new to them. If
so, they will request the complete tz message by sending
a getdata message containing the hash of the tx message.
Subsequently, the original sender will send the tz message.
To summarise, the elements of a tx message are the inputs
(list of references to previous transactions and ownership
proof) and the outputs (list of receivers and the amount
of bitcoins they receive).

Once a peer receives a tr message from another peer, it
will check its validity by analysing its content. For a trans-
action to be valid, at least all of these criteria must be
fulfilled:

e All inputs should refer to valid transactions;

e None of the inputs may have been used in other
transactions;

e The sum of the values of the inputs should not be

smaller than the total amount of bitcoins in the out-
puts;

If a peer considers a received transaction to be valid, it will
add the transaction to its pool. The peer will advertise all
transactions in his pool to the connected peers. Hence, the
transaction will eventually spread through the network.

Nevertheless, inconsistencies may occur while broadcast-
ing this information through the network. For instance,
a malicious node might try to spend the same coins more
then once. It might submit two nearly the same trans-
actions into the network: using the same (valid) inputs,
but with different outputs. Since there is no guarantee
that the transactions will arrive in the same order at ev-
ery peer, there will be confusion in the network about what
should be considered the "real” transaction. This attack
is called a double-spending attack. This problem is char-
acteristic for distributed currencies as Bitcoin: in the case
of a traditional currency, the central transaction authority
would recognise such an attempt in an earlier stage and
prevent it from happening.

2.2 Blocks

As mentioned before, synchronising the order in which
transactions occur is a fundamental problem for decen-
tralised transaction systems. Bitcoin’s solution to create
agreement on transaction order amongst all peers in the
network is achieved through blocks. A block is basically
a set of transactions. Every participant is able to create
a block: it contains all the transactions the participant
has received after the previous block that the participant
considers to be valid (thus, all transactions in his pool).
If a block is generated, all transactions it contains are re-
moved from the pool. The block is then transmitted into
the network; other peers will verify that all transactions
are valid indeed. If so, they will remove the transactions
from their pool too and safe the block.

The transactions included in the block can be seen as con-
firmed: now the block forms a base for new transactions.
New transactions that conflict with the transactions com-
mitted in the block, will be considered as invalid. Thus,
in general, the creator of the block decides which transac-
tions will be confirmed and which will not.

This may again cause problems, as it could be possible for
a group of block creators to exclude transactions from a
certain sender or to a certain receiver. To limit the power
of individual block creators, the Bitcoin system requires
that every block should include a solution to a proof-of-
work: a piece of data that is difficult to produce. Ev-
ery block message should contain a byte string, called a

nonce’. The block creator should find a nonce such that
the hash of the textual representation of the block message
is lower than a predefined value. In practice, this means
that this hash should start with a number of zero-bits.
Since hash functions are irreversible and can thus not be
predicted, generating such a hash can be only achieved by
repeatedly trying different nonces. If one finds a nonce
that satisfies this condition, the block is considered to be
valid. If other participants receive this block, they can
easily verify the solution by calculating the hash of the
block. The predefined hash minimum? is set in such a
way that every 10 minutes (on average), someone in the
Bitcoin network will find a new block.

Through this mechanism, every participant should have
an equal chance to create a block, as finding a nonce that
results in a block whose hash is small enough is decided by
chance. However, in reality this means that participants
with higher computational power can find blocks easier
than those with less computational power.

Nodes that create blocks and try to find a solution to the
proof-of-work are called miners. In order to stimulate par-
ticipants to create blocks, the participant that found a
valid block gets an incentive for its effort: newly created
bitcoins. The miner is allowed to include a special transac-
tion in his block, containing no input transaction and just
one output transaction. This is the only way new bitcoins
can be introduced into the Bitcoin system.

Concluding, a block can be found valid only if it satisfies
at least the following criteria:

e All transactions should be valid;

e No transaction should have been included in previous
blocks;

e A block should contain exactly one mining reward;

e The hash of the block message (including the nonce)
should be lower than the predefined value;

2.3 Blockchain

Finally, in order to create a chronological transaction or-
der, the blocks are chained together. Every block refer-
ences to a previous block, called the parent. Blocks that
refer to a parent, are called ancestors. The first block ever
generated is called the genesis block. The longest path
from any block to the genesis block is called the blockchain.
The blockchain determines the chronological order of Bit-
coin transactions.

Because mining rewards are only valid if the related block
is part of the blockchain, miners will try to find blocks that
builds on the newest block in the blockchain. Building on
an older block would be inefficient, because it would create
a new, shorter branch. Since rewards are only valid if the
blocks are part of the blockchain, the shorter branch has
to become longer than the currently longest branch, which
requires more effort.

It is also possible that two different participants find a
block at the same time, having the same parent. This may
again cause confusion in the network about what block to
build on afterwards. In this case, participants generally try
to generate blocks that build on the block they received
first. This phenomena, blockchain forking, is not covered
in depth in this paper.

In this context, a nonce is a unique, random byte string.

2How this hash value exactly is determined and commu-
nicated, is not covered in this paper.

3. MODEL

The Bitcoin protocol, as described in the previous sec-
tion, is specified in mCRL2 [12]. The mCRL2 language
is a formal definition language based on process algebra.
The associated toolset contains tools for simulation, vi-
sualisation and verification of modelled protocols. The
created mCRL2 specification of the Bitcoin protocol is an
abstracted version of the actual Bitcoin system, and will
be used to analyse the behaviour of the protocol under
several conditions.

3.1 mCRL2

micro Common Representation Language 2 [12] is based on
the process algebra ACP. Fundamentally, the mCRL2 lan-
guage focusses on processes extended with abstract data
types, which enables the specification of both data and
process behaviour.

Processes contain actions representing events that can be
performed. The most important operators that are sup-
ported in mCRL2 are sequential composition (.), non-
deterministic choice (+), communication (|) and parallel-
lism (|]). When processes are put parallel in mCRL2,
they communicate through synchronised actions. Besides
this, mCRL2 supports conditional steps ((Expression)
-> Action) and logical quantors (such as forall V .
(Boolean) -> Action) to create more advanced pro-
cesses. Data types in mCRL2 include inter alia integers,
booleans, maps, lists and sets. Processes can use these
data types for their actions and conditions.

3.2 Bitcoin model

The created model [3] is an abstract view of the Bitcoin
Protocol. Within the model, the behaviour of participants
in the Bitcoin network is specified. This section discusses
several aspects of the model.

The model focuses on making transactions, generating blocks
and exchanging information about generated blocks and
transactions. Blockchaining is implemented only to a lim-
ited extent: blockchain forking is not implemented in the
model. Finally, in order to keep the model as compact
as possible, only strictly necessary information fields are
included. For instance, checksum and message size fields
are omitted.

3.2.1 Actions

The Peer process is the most important process in the cre-
ated model, as it is specified to behave like a participating
node in the Bitcoin network. It has the following external
actions on network level:

inv (n1:NodeID, h:Hash, n2:NodeID)
Represents an actual inv message from node n1 to
node n2 with inner message hash h. In other words,
this is the trigger action to start information ex-
change.

getdata (nl:NodeID, h:Hash, n2:NodeID)
Indicates that node n1 is interested in hash h. The
action request the full transaction or block with hash
h from node n2.

tx (nl1:NodeID, h:Hash, n2:NodeID, t:Transaction)
This action is a result of the getdata action, as it
transfers transaction t corresponding with hash h
from node n1 to node n2.

block (n1:NodeID, h:Hash, n2:NodeID, bl:Block)
In a similar fashion, this action communicates block

Peer 101

notify about transaction 150C25E

Peer 102

inv(1e1, 150c25e, 102)

getdata(102, 150c25e, 101)

send details of transaction 150C25E

tx (101, 15@c25e, 102, transaction(...))

T
|
|
|
|
|
H request details of transaction 150C25E
|
|
|
|
|
|
|

L]

validate transaction 150C25E
l validate_tx(102, 150c25e, true)

<

Figure 2. A typical use-case scenario of the Bitcoin protocol: a peer informs a connected peer about a
transaction. This diagram also shows the corresponding protocol message types, which are used in the

mCRL2 model as well.

bl corresponding with hash h from node n1 to node
n2 as a response to a getdata request.

The process also contains a number of external actions
that are not visible on network level, but only locally:

generate_block (n1:NodeID, tx_list:List(TX))
This action represents the event that node n1 solved
a block, containing all unconfirmed tx messages it
gathered. As a result of this action, the block is
added to its own blockchain.

transfer_btc (nl:NodeID, a:BTC, n2:NodeID)
This action represents the event that node n1 trans-
fers an amount of a bitcoins to node n2. Internally,
a new transaction will be generated, using previous
transactions as inputs and a new transaction to n2
as output. Subsequently, the transaction is added to
the user’s pool.

validate_tx (nl1:NodeID, h:Hash, b:Bool)
Represents the verification of a transaction with hash
h by node n1. If boolean b is true, the correspond-
ing transaction will be added to its own pool; if b is
false, the corresponding transaction will be disre-
garded.

validate_block (nl1:NodeID, h:Hash, b:Bool)
In the same way, node n1 verifies whether a block is
valid or not. If boolean b is true, the correspond-
ing block will be added to its own blockchain, while
false means the corresponding block will be disre-
garded.

3.2.2 Data types

The specification contains a small number of special data
types that are necessary to store and transfer information
in a proper way.

Transaction
A transaction contains a list of input transactions
(List (RefTransaction)) and output transactions
(List (OutTransaction)).

RefTransaction
A reference transaction (or input) consists of a Hash
and an Offset.

OutTransaction
Either contains a sending NodeID, an amount of bit-
coins, and a receiving NodeID, or (in case of a mining
transaction) an amount of bitcoins and a receiving
NodeID.

TX & TXList
A TX contains a Hash and the corresponding Trans-
action. A TXList is a list of TXs.

Block & BlockList
A Block contains its own Hash, a reference to the
previous block (represented by the previous block’s
Hash) and a TXList. A BlockList is a list of Blocks.

3.2.3 Data expressions

To be able to analyse the different data objects used in
the processes, a number of supporting data expressions
are defined in the model. These expressions behave like
functions: for a number of parameters, the expression will
return an object of a certain data type. For example,
the data expression contains_hash(h:Hash, tzl: TXList) will
return a boolean that indicates whether or not the given
TXList txl contains a transaction that corresponds with
hash h. This data expression is used in Peer after an inv
message is received, to check whether the receiver peer
already has the advertised transaction in its pool. If the
data expression returns true, the process will allow to
do an getdata action, wheras if the result is false, the
process will ignore the advertisement.

3.2.4 Process

The state of the Peer process is determined by five pa-
rameters: an id (NodeID), a pool (TXList), a blockchain
(BlockList), the current balance (Btc) and a list of trans-
actions of which this peer is the receiver that have not been
used as an input yet (List (RefTransactions)). These pa-
rameters are necessary for the process to determine which
actions are allowed. For instance, the action transfer_btc
should only be allowed if the current balance of the peer
is greater than zero. While the id of a Peer never changes,
the other four parameters might change if one or more of
the previously mentioned actions are executed.

3.2.5 |Intialising the model

Finally, the model is initialised by creating a number of
peers in parallel composition. By doing this, the peers will
be able to communicate with each other and thus represent
a Bitcoin network.

4. REQUIREMENTS

Because cryptocurrencies are a replacement for traditional
currencies, cryptocurrencies inherit some properties of them.
Even more, one can make additional requirements to make
it a stronger type of currency. Together, these form five
powerful requirements a cryptocurrency should satisfy:

1. Money is always in the possession of one party and
one party only;

2. Money can only be spend by the owning party;

3. Once money has been spent, it cannot be spent again;
4. One should be able to spend its money at all times;
5

. Money can be generated by mining and mining only;

We will further investigate whether the Bitcoin protocol
satisfies these requirements.

5. VERIFICATION
5.1 Approach

One of the main obstacles in verifying the Bitcoin proto-
col specification in mCRL2 is that the number of possible
states becomes too large. Because every new transaction
creates a unique, new state, and the number of possible
transactions is infinite, the model also has an infinite num-
ber of possible states. This prevents us from verifying
whether a condition, as defined in the previous section,
will not occur under any circumstance.

In order to still be able to analyse the Bitcoin system,
scenario-based verification will be used [9]. With scenario-
based verification, we define a couple of (realistic) sce-
narios in which we will verify the requirements. By this
means, we will be able to analyse the behaviour of the
Bitcoin protocol in a certain scenario. To achieve this, we
make use of parallel composition and error actions.

Parallel composition can be applied by expressing charac-
teristics of the scenario as a separate process in mCRL2,
defining what actions can occur in what sequence(s). Sub-
sequently, the scenario process and the actual model are
put in parallel composition. Finally, by using communi-
cation, the two processes are synchronised. In our model,
we use the process Force for this.

In addition, we introduce new actions into the processes:
error actions. We define conditions in the processes that
should be true at all times. If the condition somehow is
not satisfied, the process will allow an error action to
occur. As we will see shortly, the mCRL2 toolset can
detect the occurrence of such actions when linearising a
model, and report the shortest trace to the occurrence.
Thus, if the model of a scenario can be linearised without
error actions to occur, the model satisfies all conditions
specified in that model. All requirements from section 4
have been translated into error actions that will occur if
a requirement is not satisfied.

An important advantage of scenario-based verification is
that the created scenario models have significantly less
states compared to the full model. Thus, the specified sce-
nario can be analysed for anomalies, whereas that cannot
be achieved with the complete model. However, as men-
tioned before, a scenario-based approach does not allow
us to draw conclusions on the Bitcoin protocol as a whole,
since a scenario is only a subset of all possible situations.

As described before, the mCRL2 toolkit contains a number
of powerful tools that are useful in the verification process.

The tool mcr1221ps checks the mCRL2 syntax and trans-
forms it into a linearised process specification (LPS) [11].
With this LPS, we can manually simulate the model using
the tool 1pssim. Even more, we can transform it into a
labelled transition system (LTS) using the 1ps2lts tool.
By generating an LTS, the state space of the input model
can be determined. Besides that, the tool can detect the
occurrence of one or more actions, as well as the short-
est trace to the occurrence. Therefore, we can use this
to detect error actions. If we can generate an LTS with-
out warnings about the occurrence of error actions, we
can conclude that the model satisfies the requirements as
defined in the model.

5.2 Setup

We have a few assumptions about the scenarios we analyse.
First of all, we assume that all peers have the genesis block
in their blockchain. Secondly, the first peer in the model
is the receiver of the mining reward of the genesis block.
Finally, we assume that all peers know about each others
existence, i.e. have set up connections with each other and
are able to communicate with each other. Using this as
a basis, we have analysed situations in which peers could
transfer bitcoins and generate blocks in random order.

5.2.1 Normal circumstances

The first step is to investigate whether the Bitcoin sys-
tem satisfies the requirements in a perfect situation, i.e. a
situation in which peers exactly behave as they are sup-
posed to behave. We configured this scenario with a small
number of peers (2, 3 and 4). In this scenario, a maxi-
mum number of allowed transactions is set. The process
Force limits the number of transfer_btc actions all peers
together perform to the set maximum.

As can be seen from Table 1, a higher number of peers and
a higher number of allowed transactions result in a rapid
increase of the state space.

Table 1. Generated number of states, level-depth
and number of traces after linearising the scenario
of normal circumstances.

No. of | No. of allowed || No. of No. of
. Depth

peers transactions states traces
2 1 68 14 98

2 2 857 26 1223

2 3 8611 38 12154
2 4 77992 | 50 109091
3 1 1839 22 2828

3 2 280567 | 40 411394
4 1 35419 | 28 55248

5.2.2 Corrupt peers

Having analysed situations in which every peer behaves
exactly as originally designed, the question arises what
happens if peers in the Bitcoin network deviate from this
pattern. Since the the complete Bitcoin system is based on
a peer-to-peer network, it is naive to suppose that every
node will adhere to these specifications. Messages trans-
mitted over a network might get lost or arrive delayed.
Even more, since bitcoins have real value in the real world,
people will try to tamper with the communication in or-
der to steal money from others, or spend money they own
multiple times. Besides that, it is even conceivable that
people will try to hinder the flow of transactions by con-
fusing the network with conflicting messages.

Therefore, it is interesting to analyse scenarios in which
corrupt peers are part of the network. We have analysed
the following situations:

1. A peer produces incorrect messages

(a) Invalid amount of money
(b) Invalid output transactions
)

(c¢) Invalid input transactions
2. Contradicting messages

(a) tz messages with the same inputs, but different
outputs

3. A peer only sends messages of a particular type
(a) inv messages

(b) tz messages

(c) block messages

a

4. A peer ignores/refuses messages
(a) From a certain peer
(

)
b) tz messages with a certain receiver
)

(c

(d) Blocks containing a certain transaction

5.3 Results

Scenarios for these situations have been created, based on
the complete model, and have been verified against the
requirements using error action detection on linearising.

tr messages with a certain sender

Regarding the ideal scenario, we were able to determine
that with up to four peers and up to four transactions,
all conditions are satisfied. When it comes to the other
scenarios, we were able to determine that for all these sce-
narios, using three to five peers, all requirements are sat-
isfied. Generally speaking, we can conclude the following:
as long as a simple majority (thus, more than 50%) of the
peers behaves according to the protocol, the network will
recover from the scenarios we analysed in a correct way
because the majority will create a correct blockchain. If
more than half of the peers deviate from the protocol defi-
nitions, it is likely that the corrupt messages will dominate
the network. This conclusion is consistent with the work
of Nakamoto [14], in which it is stated that the majority
makes decisions within a Bitcoin network.

The Bitcoin protocol was updated a couple of times in
its relatively short existence in order to limit the effects
of the scenarios as given above [13]. For instance, sce-
nario 2a is better known as a double-spending attack, in
which a person tries to spent the money it has multiple
times by creating multiple different, but valid tx messages
while sending them to different peers. It might take a long
time before someone in the network receives two conflict-
ing transactions and will refuse one of them. As we have
seen now, the Bitcoin protocol will eventually acknowl-
edge only one of the transactions to be valid as long as a
majority adheres to the Bitcoin protocol.

6. RELATED WORK

As a result of the increasing popularity of Bitcoin, sev-
eral researchers have published articles about the system.
Clark and Essex [8], Barber et al. [1] and Karame et al. [13]
published about the cryptographic aspect of the Bitcoin,
including suggestions for improvement. For instance, G.O.
Karame et al. present a study on the security side of

the double-spending problem with Bitcoin, in which they
show that double-spending attacks are possible at low cost
and high success probability. Double-spending attacks and
their probabilities are, compared to our work, analysed in
more detail by G.O. Karame et al.

Decker and Wattenhofer [10] studied the network perfor-
mance of the Bitcoin and explain how blockchain forks are
created. In contrast to our work, this research focuses on
the blockchain forking aspect of the Bitcoin system.

Cederquist and Dashti [7] have formally specified a general
payment protocol and, under some assumptions, verified
properties which prove that the protocol specified is ’fair’.
It was also proven that even with a Dolev-Yao intruder, the
properties are held. In this research, u-CRL, the prede-
cessor of mCRL2 was used. Our work verifies the Bitcoin
protocol in a similar way.

7. DISCUSSION

Based on what we have found, we can conclude that in
the scenarios investigated, the Bitcoin protocol behaves
as expected. Although the scenarios investigated can be
considered as frequently occurring scenarios, the results
cannot be regarded as a proof that the Bitcoin protocol
is a perfect mechanism. After all, Bitcoin is a peer-to-
peer network whose behaviour cannot be predicted. There
are many scenarios that might occur in the real Bitcoin
environment that we have not verified.

Therefore, the verification of the Bitcoin protocol is only
to a limited extent proven by this research. Nevertheless,
by creating the model, we were able to draw conclusions
about a number of realistic scenarios that prove that the
Bitcoin protocol satisfy a number of strong requirements.

In addition, the model focuses on information exchange re-
garding transaction and block data. Other aspects, such
as blockchaining, are not investigated thoroughly. Besides
that, the model has limitations that are introduced to
bound the number of states generated when linearising,
as mentioned in section 5.2. Thus, the model as presented
is not complete and could be improved in further works.

8. CONCLUSION

We have presented a model for the Bitcoin protocol, which
can be used for analysis of the Bitcoin network. Addition-
ally, we have verified the model against a list of require-
ments which the Bitcoin should satisfy to be a reliable
currency. By using scenario-based analysis, we were able
to determine that in a number of common scenarios the
Bitcoin protocol behaves as described in our requirements:
both under a ideal scenario as in more realist scenarios, in
which not all peers adhere to the protocol.

These findings contribute to the position of Bitcoin as a
(crypto)currency, as we have to some extent proven that
Bitcoin satisfies properties it should at least have in order
to be safe to be used as currency. Even more, we have
proven the robustness of Bitcoin, i.e. that Bitcoin handles
scenarios with malicious peers well.

9. ACKNOWLEDGMENTS

The author would like to thank Jaco van de Pol for the
helpful comments and discussions throughout the research
process.

10. REFERENCES
[1] S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to
better - how to make Bitcoin a better currency.

Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 7397 LNCS:
399-414, 2012. doi: 10.1007/978-3-642-32946-3.
BBC. BBC: Bitcoin news January 2013-March 2014,
Accessed 28 March 2014. URL
http://www.bbc.co.uk/search/news/?q=bitcoin+
mtgox&video=on&audio=on&text=on&sort=date&
start_day=01&start_year=2013&%end_day=28&end_
month=04&end_year=2014.

W. J. B. Beukema. mCRL2 model of the Bitcoin
Protocol, May 2014. URL
https://github.com/wietze/bitcoin-protocol.
Bitcoin Foundation, The. Official Bitcoin
development repository, March 2014. URL
https://github.com/bitcoin/bitcoin/.

Bitcoin Foundation, The. Download page of Bitcoin
QT, May 2014. URL
https://bitcoin.org/en/download.
Blockchain.info. Number of Bitcoin transactions per
day, March 2014. URL
https://blockchain.info/charts/
n-transactions?timespan=2year&showDataPoints=
false&daysAverageString=1&scale=0&address=.

J. Cederquist and M. T. Dashti. Formal analysis of a
fair payment protocol. In Formal Aspects in Security
and Trust, pages 41-54, 2004.

J. Clark and A. Essex. Commitcoin: Carbon dating
commitments with Bitcoin. Lecture Notes in
Computer Science (including subseries Lecture Notes

[14]

in Artificial Intelligence and Lecture Notes in
Bioinformatics), 7397 LNCS:390-398, 2012. doi:
10.1007/978-3-642-32946-3.

P. Dechering and 1. V. Langevelde. On the
verification of coordination. In Proc. of
COORDINATION, LNCS 1906, pages 335-340.
Springer, 2000.

C. Decker and R. Wattenhofer. Information
propagation in the bitcoin network. In 15th IEEE
International Conference on Peer-to-Peer
Computing, IEEE P2P 2013 - Proceedings,
September 2013. doi: 10.1109/P2P.2013.6688704.
J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho.
Using on-the-fly verification techniques for the
generation of test suites. In R. Alur and T. A.
Henzinger, editors, CAV, volume 1102 of Lecture
Notes in Computer Science, pages 348-359.
Springer, 1996. ISBN 3-540-61474-5. doi:
10.1007/3-540-61474-5_82.

J. F. Groote et al. mCRL2, February 2014. URL
http://wuw.mcrl2.org/release/user_manual/
index.html.

G. O. Karame, E. Androulaki, and S. Capkun.
Double-spending fast payments in bitcoin. In
Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12,
pages 906-917, New York, NY, USA, 2012. ACM.
doi: 10.1145/2382196.2382292.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. May 2009. URL

http://www.bbc.co.uk/search/news/?q=bitcoin+ mtgox&video=on&audio=on&text=on&sort=date& start_day=01&start_year=2013&end_day=28&end_ month=04&end_year=2014
http://www.bbc.co.uk/search/news/?q=bitcoin+ mtgox&video=on&audio=on&text=on&sort=date& start_day=01&start_year=2013&end_day=28&end_ month=04&end_year=2014
http://www.bbc.co.uk/search/news/?q=bitcoin+ mtgox&video=on&audio=on&text=on&sort=date& start_day=01&start_year=2013&end_day=28&end_ month=04&end_year=2014
http://www.bbc.co.uk/search/news/?q=bitcoin+ mtgox&video=on&audio=on&text=on&sort=date& start_day=01&start_year=2013&end_day=28&end_ month=04&end_year=2014
https://github.com/wietze/bitcoin-protocol
https://github.com/bitcoin/bitcoin/
https://bitcoin.org/en/download
https://blockchain.info/charts/n-transactions?timespan=2year&showDataPoints= false&daysAverageString=1&scale=0&address=
https://blockchain.info/charts/n-transactions?timespan=2year&showDataPoints= false&daysAverageString=1&scale=0&address=
https://blockchain.info/charts/n-transactions?timespan=2year&showDataPoints= false&daysAverageString=1&scale=0&address=
http://www.mcrl2.org/release/user_manual/ index.html
http://www.mcrl2.org/release/user_manual/ index.html

	Introduction
	Our contribution
	Outline

	Bitcoin
	Transactions
	Blocks
	Blockchain

	Model
	mCRL2
	Bitcoin model
	Actions
	Data types
	Data expressions
	Process
	Intialising the model

	Requirements
	Verification
	Approach
	Setup
	Normal circumstances
	Corrupt peers

	Results

	Related work
	Discussion
	Conclusion
	Acknowledgments
	References

