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Chain Interoperability  
 

Whereas in the first few years of the blockchain industry one may be forgiven for thinking that there 

would be only "one blockchain to rule them all", in recent times such a possibility has been receding 

further and further from reality. Within the public blockchain space, different projects have been staking 

out different regions of the tradeoff space between security, privacy, efficiency, flexibility, platform 

complexity, developer ease of use and even what could only be described as political values. In the 

private and consortium chain space, the notion that there exist different chains for different industries - 

and even different chains within the same industry - is even less controversial and arguably universally 

understood as obvious. In such a world, one natural question that emerges is: how do these chains 

interoperate? One of the advantages of using platforms where cryptographic authentication is naturally 

baked into every single operation is that we can actually provide much tighter and more secure coupling 

between platforms than is possible with previously existing systems. We can go far beyond the approach 

most common in centralized systems of simply having an API from one chain to the other, and in some 

cases even go so far as to have smart contract code on one chain verify the consensus finality of events 

on other chains directly, requiring no trust in intermediaries at all. 

 

Interoperable chains open up a world where moving assets from one platform to another, or payment-

versus-payment and payment-versus-delivery schemes, or accessing information from one chain inside 

another (eg. "identity chains" and payment systems may be a plausible link) becomes easy and even 

implementable by third parties without any additional effort required from the operators of the base 

blockchain protocols. So far the notion of chain interoperability has seen much theory and little practice, 

primarily because a live example of successful chain interoperability requires not one, but two, already 

existing, stable and sufficiently powerful blockchains to build off of, but this is slowly starting to change. 

 

Research in chain interoperability, up until this point, has largely been undertaken in a public blockchain 

context, and as this document is to some extent a “literature review” of work done so far it does reflect 

this. Although many of these techniques are just as applicable to private and consortium chain settings, 

such settings will also have their own unique challenges that are outside the scope of this document. For 

example, there has not yet been a single permissioned chain that has seen substantial use or adoption, 

and so it is not fully clear to what extent the consensus algorithms and other features of current 

experiments will translate. Additionally, a large part of “interoperability” will necessarily entail 

interoperating with traditional systems and protocols (SWIFT, SEPA, FIX, etc); this research is 

unfortunately not dual-purposeable for public blockchains because it seems very unlikely that public 

chains will be connected to such systems directly in the near or medium-term future. 

Types of Interoperability  
 

From a technical perspective, there are three primary categories of strategies for chain interoperation: 
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● Centralized or multisig notary schemes, where a party or a group of parties agree to 

carry out an action on chain B when some event on chain A takes place. 

● Sidechains/relays (systems inside of one blockchain that can validate and read events 

and/or state in other blockchains) 

● Hash-locking (setting up operations on chain A and chain B that have the same trigger, 

usually the revelation of the preimage of a particular hash) 

 

There are also several potential use cases that interoperability can achieve: 

 

● Portable assets - for example, being able to take one unit of Fedcoin (a hypothetical 

government-issued digital asset)1 from its “home ledger” that is ultimately authoritative on its 

ownership, securely move it to another chain, trade it, use it as collateral or otherwise take 

advantage of it on that chain, and be confident that the option to move the Fedcoin back to its 

home ledger is always available if desired (ie. trust-minimized 1-for-1 backing). 

● Payment-versus-payment or payment-versus-delivery - in technical circles, this concept 

is also often called "atomic swap", where "atomic" is used in the word's original Greek meaning 

of "uncuttable", ie. there is a guarantee that either both transfers happen or neither transfer 

does. Essentially, the goal is to allow user X to transfer digital asset bundle A to user Y in 

exchange for Y transferring digital asset bundle B to user X (where A and B are on different 

chains, and X and Y have accounts on each chain), in a way that is guaranteed to be atomic and 

secure. 

● Cross-chain oracles - for example, one might imagine a smart contract on one chain that 

performs some action with some address only when it receives proof that an identity oracle on 

another chain specifies that the address is a particular unique identity. Note that the chain that 

is being read does not change over the course of this kind of interoperation event. 

● Asset encumbrance - lock up asset bundle A on chain X and have locking conditions be 

dependent on activity on chain Y. Use cases include liens, collateral in financial derivatives, 

bankruptcy clawbacks, court orders and various use cases involving security deposits. 

● General cross-chain contracts - for example, paying dividends on chain X to holders of 

an asset whose ownership is registered on chain Y. 

 

Out of these use cases, the two that have received the most attention are cross-chain digital assets and 

cross-chain exchange (ie. payment-versus-payment and payment-versus-delivery); however, later 

                                                           
1 The word “Fedcoin” is shorthand for a number of different schemes that revolve around the concept of “fiat 
currency issues and secured using (some) cryptocurrency technology”; some proposals include David Andolfatto’s 
Fedcoin proposal (http://andolfatto.blogspot.ca/2015/02/fedcoin-on-desirability-of-government.html) with cash-
like privacy properties, as well as central bank-based digital currency (CBDC) schemes run on top of permissioned 
ledgers that would present an interface to consumers more similar to the traditional banking system; see the 
recent Bank of England papers for explanations of such a scheme’s possible benefits. The concept of Fedcoin itself 
implies little about the details; it could be run on a public chain or a consortium chain, have varying levels of access 
restriction or KYC, etc. 

http://andolfatto.blogspot.ca/2015/02/fedcoin-on-desirability-of-government.html
http://www.bankofengland.co.uk/research/Documents/workingpapers/2016/swp605.pdf
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sections will describe solutions to the problems of interoperability in generic terms that are applicable 

to all applications and then zero in on security and other concerns related to cross-chain portable digital 

assets and cross-chain asset exchange specifically. However, it’s worth noting that cross-chain asset 

portability is only one way to accomplish its desired objectives; in the world of unbacked cryptographic-

only assets such as BTC and ETH, it is indeed the only way to achieve the desired objective, but if we are 

dealing with issuer-backed assets then alternative approaches (eg. separately issuing assets on multiple 

chains, and having the implied convertibility be at the legal layer rather than the blockchain layer) are 

also possible. 

 

The word “sidechain” is often used in reference to cross-chain portable digital assets, although much of 

the use of this language is misleading and confusing in several ways. First of all, Blockstream’s formal 

definition of a “sidechain” is that “a sidechain is a blockchain that validates data from other 

blockchains.”2 However, this language is very expansive; under this definition, thanks to BTCRelay 

(described in a later section), Ethereum is a sidechain to Bitcoin already3. In normal discourse, the term 

“sidechain” is more frequently used to refer to what Blockstream calls a “pegged sidechain”, where the 

functionality of a blockchain reading data from other blockchains is used to facilitate cross-chain asset 

portability. This is a more advanced step; it requires either both chains to be sidechains of each other or 

the existence of a trustworthy federation (see the later section on notary schemes), as well as a scheme 

layered on top of such a cross-chain communication mechanism that actually implements the cross-

chain asset portability logic. 

 

Second, the phrase “chain A is a sidechain of chain B” implies a relationship of subservience that in many 

cases cannot be reasonably said to exist; to re-use an example from above, Ethereum is technically now 

“a sidechain to” Bitcoin, but Ethereum is clearly not subservient to Bitcoin in any meaningful way. The 

phrases “sidechain” and “pegged sidechain” originally came about in a context where a blockchain is 

home to a single dominant asset, and so it was natural to view a chain containing a pegged token as 

being a “pegged sidechain”. In reality, however, “pegged sidechaining” is a property of individual assets 

on top of blockchains much more than it is a property of blockchains themselves. 

 

For example, the Ethereum blockchain contains ether, an asset native to Ethereum itself, but if other 

blockchains implement the appropriate required protocol changes (or if a trustworthy federation 

emerges), then Ethereum may well end up containing an asset “e-BTC”, backed 1-for-1 by BTC on the 

Bitcoin blockchain, e-DOGE backed 1-for-1 by DOGE on the Dogecoin blockchain, etc; hence, Ethereum 

would be a “sidechain” to all of these blockchains simultaneously. However, it is clear that the Ethereum 

blockchain itself is not “pegged” to anything in any meaningful sense as a result of these applications 

existing. Hence, it is arguably better to use phrases such as “chain B can read chain A”, “a relay of chain 

                                                           
2 http://blockstream.com/sidechains.pdf  

3 Even more trivially, a sofa is also a sidechain: 
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/bitcoin/posts/2015-06-10-my-sofa-is-a-sidechain/main.html 

http://blockstream.com/sidechains.pdf
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/bitcoin/posts/2015-06-10-my-sofa-is-a-sidechain/main.html
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A exists on chain B” or “D is a cross-chain portable digital asset with home ledger A that can also be used 

on chain B“ rather than talking about whether or not a given chain is a “sidechain”.4 

Notary schemes  
 

The technologically simplest way to facilitate most cross-chain operations is through the use of notary 

mechanisms. In a notary mechanism, a trusted entity or set of entities that is trusted as a group is used 

in order to claim to chain X that a given event on chain Y took place, or that a particular claim about 

chain Y is true. Such entities may be active, listening and automatically acting based on events in some 

chain, or reactive, issuing signed messages only when asked. The most advanced effort that has taken 

steps in this direction is the Interledger project5 developed by Ripple. Interledger, at least in what it 

describes as “atomic mode”, uses a Byzantine-fault-tolerant consensus algorithm in order to achieve 

consensus among a set of notaries on whether or not a given event took place, and then issues a 

signature that can be used to finalize payments conditional on this consensus6. 

 

Interledger also envisions the notion of a payment chain where this notary mechanism can be 

composed. If parties X and Y desire to make an exchange of digital asset bundles, but these bundles exist 

on chains A and F, where A and F have no direct link, then one can find intermediaries on intermediate 

ledgers B, C, D, and E, where each pair of adjacent intermediate ledgers does have a direct link (ie. there 

exist notaries and exchange opportunities between A and B, B and C, etc), then one can determine a 

bundle of exchanges that will satisfy A and F's preferences while at the same time earning small 

arbitrage revenues for the intermediaries, and then use a single consensus process for the entire 

exchange, ensuring that either all transfers happen or none do. 

 

Note that this is not the only way to accomplish such atomicity; hash locking (described in a later 

section) also accomplishes this function, and is used for that role for cross-chain transfers in the 

Lightning Network7. However, it is relatively technologically simple, and accomplishes its desired goal 

under its trust model (namely, that less than some fraction of chosen notaries are Byzantine). The set of 

                                                           
4 A further concept that often gets confused with sidechains is merge-mining, where one chain leverages another 
chain’s consensus. This is arguably a relationship of subservience, but is completely independent from the 
discussion about cross-chain digital asset portability. Chains A and B can be merge-mined but have no cross-chain 
portable assets between each other, or they may share many cross-chain portable assets, perhaps even some 
home-based on A and some home-based on B, without any kind of merge-mining relationship. 

5 Note: many statements on Interledger come from old/outdated information; Interledger’s latest protocols are 
based entirely on the hash-lockcing trust model rather than M-of-N oracles. 
6 Similarly to BTCRelay with Ethereum (see later sections), the Interledger team is looking at implementing Ripple-
Bitcoin cross-chain trade as an initial test case; More recent developments in the Interledger project have favored 
a direction more similar to what is described in this document as “hash locking”. 

7 http://lightning.network 

https://interledger.org/interledger.pdf
https://interledger.org/interledger.pdf
https://interledger.org/interledger.pdf
http://lightning.network/
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notaries could be determined individually for a particular exchange; one can imagine a negotiation 

protocol where all participants submit their trust list and the intersection of all parties’ trust lists is 

agreed upon as the notary set for that exchange8. One can also imagine notaries being used in 

combination with schemes described below, creating an inter-chain exchange protocol where the 

security of the exchange tries to achieve the highest security level possible, but falls back to notary 

schemes if the underlying chain does not yet support a more trustless relay mechanism. 

 

Another related scheme is the notion of a federated pegged sidechain. The intention here is to have a 

cross-chain-movable asset, where pegging in one or both directions is accomplished by means of a 

multisig scheme. This has been implemented in Liquid, a BTC-backed sidechain created by Blockstream9, 

where one can move BTC into a multisig address controlled by a federation of participants and then 

receive a token which we can call “L-BTC”, conjured into existence on the Liquid chain once the Liquid 

chain consensus sees that the BTC transaction has taken place. L-BTC can then be freely traded on 

Liquid, and one can also destroy L-BTC, at which point the federation that controls the multisig will send 

an equivalent amount of BTC from the multisig to the party that destroyed the L-BTC (ie. 1-for-1 

backing). 

 

Note that one can have a federated peg between two public chains, or between a public chain and a 

consortium chain. In the latter case, it is arguably simplest to have the entities that make up the 

consortium also be the entities that control the multisig. In the former case, the scheme arguably only 

has value if the “sidechain” is also home to applications independent of that particular pegged asset; 

otherwise, the use of public chain consensus only adds expense with no corresponding improvement to 

the system’s actual security properties, which inherently rely on the honesty of the federation as part of 

the trust model. 

 

Relays  
 

Relays are a more “direct” method for facilitating interoperability10, where instead of relying on trusted 

intermediaries to provide information about one chain to another, the chains effectively take on the 

task of doing that themselves. The general approach is as follows. Suppose that a smart contract 

executing on chain B wants to learn that either a particular event took place on chain A, or that some 

                                                           
8 There are subtleties in designing such protocols; for example, one may want to require the intersection of the 
trust lists to make up a majority of each individual trust list, as otherwise an adversary that knows a small portion 
of corrupt notaries within their counterparty’s trust list could issue a small trust list and thereby try to trick their 
counterparty into accepting an exchange that is adjudicated by only those notaries. 

9 https://blockstream.com/2015/11/02/liquid-recap-and-faq/ 

10 See http://btcrelay.org/ for the first live running example of a relay, between Bitcoin and Ethereum. 

https://blockstream.com/2015/11/02/liquid-recap-and-faq/
http://btcrelay.org/
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particular object in the state of chain A contained some value at some particular time. Suppose also that 

chain A is designed similarly to Bitcoin or Ethereum in that it has a notion of “blocks” and “block 

headers”, where a “block header” is a compact piece of information that “represents” the block (and 

possibly state data) in some cryptographically authenticated way, most likely using Merkle trees11. 

 

We can create a contract on chain B that takes one of these block headers of chain A, and uses the 

standard verification procedure for chain A's consensus algorithm to verify this block header - in proof of 

work, this would involve verifying that a sufficiently greater amount of proof of work has been 

generated for the given header than for any conflicting header12, and in traditional Byzantine-fault-

tolerant consensus algorithms that are popular in consortium chains it would consist of verifying that 

2/3 of validators' signatures have signed the block header. Once the relay has verified that the block 

header has been finalized, the relay can then verify any desired transaction, or account/state entry, 

separately by verifying a single branch of the Merkle tree against the block header.13 

 

This use of this so-called “light client verification” technology is ideal for relays because of how 

fundamentally resource constrained a blockchain is. In fact, it is impossible for a mechanism inside chain 

A to fully validate chain B and a mechanism inside chain B to fully validate chain A at the same time, for 

the same simple mathematical reason why two boxes cannot simultaneously contain each other: A 

would need to re-run the part of B that re-runs A, including the part of A that re-runs B, and so forth. 

With light client verification, however, a protocol where chain A contains small pieces of chain B and 

chain B contains small pieces of chain A that are pulled on-demand is entirely feasible. A smart contract 

on a relay on chain B that wants to verify a particular transaction, event or state information on chain A 

would, much like a traditional light client, verify a branch of the cryptographic hash tree of chain A, then 

verify the block header that the root of this branch is inside, and if both checks pass it would accept that 

the transaction, event or state information is correct (note that because blockchains are fully self-

contained environments and have no natural access to the outside world, the relevant bits of chain A 

would need to be fed into chain B by a user; however, because the data is in a cryptographic sense "self-

verifying", this user that feeds this information in need not be trusted)14. 

                                                           
11 See https://github.com/ethereum/wiki/wiki/Patricia-Tree, 
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/, 
https://wiki.ripple.com/Hash_Tree  and https://en.bitcoin.it/wiki/Protocol_documentation#Merkle_Trees for 
more information on Merkle trees as used in Bitcoin, Ripple and Ethereum. 

12 A “conflicting header” in this context means a header B which is not an ancestor or a descendant of header A; 
this implies that A and B are on different forks, and so in a proof of work model, the process of verifying A involves 
verifying that forks containing A have a much higher “total difficulty” than any forks not containing A. 

13 This use of Merkle tree technology was originally pioneered by Satoshi Nakamoto in the Bitcoin protocol design, 
the original use-case being facilitating rapid validation of transactions by resource-constrained clients; see the 
section on “simplified payment verification” in https://bitcoin.org/bitcoin.pdf for details. 

14 The security of “light client verification” is not absolute; see later sections. 

https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/
https://wiki.ripple.com/Hash_Tree
https://en.bitcoin.it/wiki/Protocol_documentation#Merkle_Trees
https://bitcoin.org/bitcoin.pdf
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Relays are very powerful; they can be used for asset portability, atomic swaps or any other more 

complex use case essentially without restriction. An asset-portability system on top of a relay would look 

as follows: 

 

 
 

Note that in general, the complicated cryptographic verifications behind relays can easily be abstracted 

and made invisible to developers. Event verification itself can be made into a smart contract that other 

contracts can call as an event verification oracle. Event reading can be abstracted into an asynchronous 

operation: one can imagine a cross-chain smart contract programming language containing a primitive 

createEvent(destinationChain, params), which registers an event and assigns it a unique ID, and a 

function onReceiveEvent(senderChain, params) { ... }, which can be called only if a cryptographic proof 

of the event is passed in, and when such a proof is provided it saves a record in storage preventing the 

function from being called with the same event again. 

 

One may note that this asynchronous event reading model can be viewed as a hybrid of an Ethereum 

1.0-style stateful blockchain scheme and an "unspent transaction output" model similar to Bitcoin, 

where the equivalent of a UTXO is an unconsumed event record; the above asynchronous event 

architecture assumes that events are consumed quickly, but one can also imagine programming 

languages where events are not consumed until needed, and unconsumed events become a very 

meaningful part of long-term state. 



 

8 
 

 

A sketch of the cross-chain portable “Fedcoin” code might look as follows: 

 

function sendCrossChain(destChain, to, value) { 

if (balances[msg.sender] < value) throw; 

createEvent(destChain, {name: SEND, to: to, value: value}); 

balances[msg.sender] -= value; 

crossChainBalances[destChain] += value; 

} 

 

function onReceiveEvent(senderChain, params) { 

if (params.name == SEND) { 

if (crossChainBalances[senderChain] < params.value) throw; 

balances[params.to] += params.value; 

crossChainBalances[senderChain] -= params.value; 

} 

... 

} 

 

This contract would be initialized on both the main Fedcoin chain and on secondary chains. The logic of 

the code is simple. The sendCrossChain function first checks if the sender has enough Fedcoin to send; if 

they do not then it exits with an error. If the sender does have sufficient funds, it creates an event 

stipulating that the coins should be created on the destination chain, subtracts the sender's balance, and 

increases the destination chain's balance. The part of the code that manages the destination chain’s 

balance is a safety feature: even if the consensus of the destination chain is in some way broken, the 

destination chain can only send back to the main chain as much Fedcoin as the main chain sent it, 

preventing errors in potentially untrusted sub-chains from allowing attackers to create unbounded 

quantities of assets on chains that are still intact. 

 

The onReceiveEvent function makes sure that the sender chain can send the given amount of FedCoin, 

and if so it increments the balance of the recipient and decrements the balance of the sender chain. 

Note that on each secondary chain, crossChainBalances[mainChain] (where mainChain is an identifier 

for the main Fedcoin chain) would be initialized to essentially infinity; this signifies that the secondary 

chains accept the main chain as the authoritative issuer of Fedcoin. 

 

A relay contract has successfully been implemented between Bitcoin and Ethereum in the form of 

BTCRelay, a smart contract on Ethereum that can read the Bitcoin chain. However, note that the 

interoperability is one-way: Bitcoin cannot read the Ethereum chain, as its scripting language is not 

sophisticated enough to do so. BTCRelay is already seeing a small amount of usage; at the time of this 

writing there is an application called EthereumLottery.io where the lottery smart contract logic itself 

http://btcrelay.com/
http://btcrelay.com/
http://btcrelay.com/
https://ethereumlottery.io/
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lives on the Ethereum public chain, but it uses Bitcoin block headers as a source of randomness because 

each Bitcoin block header has a larger reward and so is more expensive to manipulate.15 This is a 

primitive, albeit technologically excellent, example of what can be described as a “cross-chain oracle” 

application, and the use of a relay plays an important role in increasing the application’s security. 

Relays for Cross-Chain Atomic Swaps  
 

Going beyond asset portability and cross-chain oracles, the next natural use case for relays is cross-chain 

atomic swaps, ie. exchanging asset M on chain A for asset N on chain B. In the case of BTCRelay and 

Ethereum, the MakerDAO team is working on implementing this already; however, any such system 

unfortunately will necessarily have weaknesses of its own due to fundamental limitations of the Bitcoin 

protocol itself. One particular concern is race condition attacks. For example, suppose that party A 

wants to sell 50 ETH for 1 BTC, and deposits the 50 ETH into a contract that essentially says “whoever 

provides a proof that they sent 1 BTC to address X gets 50 ETH”. Party B comes along and sends the 1 

BTC. Party A can now themselves send 1 BTC into their own contract, and try to claim the ETH from 

themselves before party B can; with some probability they will succeed, leaving party A with 2 BTC and 

50 ETH and party B with nothing. 

 

If the Bitcoin blockchain had Ethereum-like smart contract capabilities, this would not be a problem: the 

target address on Bitcoin could simply be a contract that auto-refunds all incoming transfers except for 

the first one. Without such a capability, the best that we can do is to use semaphores on the Ethereum 

side: allow the buyer to reserve the exclusive rights to make a trade for some time, and then safely 

make the claim within that window; this is indeed the solution that the MakerDAO is using. However, 

the semaphores themselves may become a denial-of-service vector, as someone may try to repeatedly 

reserve trading rights and never claim them. Making reservations costly resolves this problem, but it 

does lead to the user-experience issue that one must already have ether in order to purchase more 

ether through this scheme (there are ways to use untrusted third parties to resolve this, but they are 

complex and require complex 2-of-2 escrow and locktime techniques on the bitcoin side). Regardless of 

interpretation details, however, the broader point is that race conditions are a legitimate security 

concern for applications that are based on relays, and developers should be mindful of them similarly to 

                                                           
15 The cost of manipulating a lottery that is based on block header randomness is much smaller than the cost of 
51% attacking a blockchain (see https://blog.ethereum.org/2016/07/27/inflation-transaction-fees-cryptocurrency-
monetary-policy/ for some estimates for 51% attacking bitcoin: $50-150m USD now, $1.2-4m in a transaction fee-
only model assuming the Bitcoin ecosystem stays constant). To manipulate a block header-based lottery, all that is 
required is for the miner who created a block that influences the randomness to refuse to publish the block if they 
see that the result is unfavorable, sacrificing a single block reward (~$7300 for Bitcoin, ~$60 for Ethereum as of the 
time of this writing; unfortunately Ethereum’s fast block time makes its block headers very insecure as a source of 
randomness for secondary use cases). Bentov et al provide techniques to increase the expected cost of 
manipulating block header-based randomness to ~O(sqrt(n) * r) where r is the block reward and the system is 
allowed to sample n blocks. 

https://www.reddit.com/r/ethereum/comments/4rf03b/why_ethereumlotteryio_uses_bitcoin_blocks_as_a/d51518k?context=3
https://www.reddit.com/r/ethereum/comments/4rf03b/why_ethereumlotteryio_uses_bitcoin_blocks_as_a/d51518k?context=3
https://github.com/makerdao/btc-market
http://stackoverflow.com/questions/34519/what-is-a-semaphore
https://blog.ethereum.org/2016/07/27/inflation-transaction-fees-cryptocurrency-monetary-policy/
https://blog.ethereum.org/2016/07/27/inflation-transaction-fees-cryptocurrency-monetary-policy/
https://arxiv.org/abs/1605.04559
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how developers should be mindful of re-entrancy when writing single-chain Ethereum applications or 

SQL injection attacks when writing web apps. 

 

A related weakness of relays is their asynchrony itself; especially if one or both chains are using a 

consensus algorithm that finalizes slowly, it takes a long time for one chain to verify that the other chain 

has consensus on some operation, and this limits the speed of cross-chain operations. This is a 

particularly unfortunate weakness for cross-chain atomic asset exchange, as the market exchange rate 

may well change over the course of an atomic swap operation. Hence, relays can work very well on 

chains that have rapid finality, but in those cases where they are too slow the approach may be 

problematic (although the use of deposits on a third chain with very fast block times may be one way to 

overcome any issues16). 

Hash-locking  
 

There is another well-known technique for achieving cross-chain atomic operations, one that requires 

the blockchains to know much less about each other: hash-locking. Hash locking is often associated with 

the Bitcoin forum user TierNolan1718 and is more recently being actively explored by the Interledger 

protocol as a means of removing the trust requirement of notaries. The simplest description for this 

mechanism, in the case of cross-chain digital asset exchange, is as follows: 

 

1. A generates a random secret s, and computes the hash of the secret, hash(s) = h. A 

sends h to B. 

2. A and B both lock their asset into a smart contract with the following rules (A locks first, 

B locks after seeing A's asset successfully locked). On A's side, if the secret is provided within 2X 

seconds, then the asset is transferred to B, otherwise it is sent back to A. On B's side, if the 

correct secret (ie. the value whose hash is h) is provided within X seconds, then the asset is 

transferred to A, otherwise it is sent back to B. 

3. A reveals the secret within X seconds in order to claim the asset from B's contract. 

However, this also ensures that B learns the secret allowing B to claim the asset from A's 

contract. 

 

                                                           
16 “Fast block time” in this context is relative; Ethereum is fast relative to Bitcoin and Dogecoin, but slow relative to 
well-implemented consortium chains. If sub-250ms finality times are required, the chain can even be a fidelity-
bonded centralized server 

17 https://en.bitcoin.it/w/index.php?title=Atomic_cross-chain_trading&oldid=60657 

18 The Lightning Network team is designing their technology in a cross-chain fashion, so cross-chain hash lock 
trading may well be one of the use cases 

http://hackingdistributed.com/2016/07/13/reentrancy-woes/
https://bitcointalk.org/index.php?topic=146307.0
https://bitcointalk.org/index.php?topic=146307.0
https://en.bitcoin.it/w/index.php?title=Atomic_cross-chain_trading&oldid=60657
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Note that this is provably atomic. If A reveals s within X seconds, then this provides at least an X second 

window within which B can claim their asset. A could make a mistake and reveal s too late, preventing 

them from recovering their own asset, but this would be their own fault and is easily avoidable. If A 

reveals s between X seconds and 2X seconds, then A would not get their asset but B does, but once 

again this would be A's fault. If A reveals s after 2X seconds (or never), then both sides recover their own 

asset. If A never locks their asset, B doesn't lock their asset either. If B doesn't lock their asset (or locks it 

incorrectly, eg. with the wrong deadline for s), A can simply never reveal s, and thereby recover their 

asset. 

 

Note that in a world with exchange rate fluctuations, the financial safety guarantee is imperfect, as a 

malicious A can wait for X/2 seconds and only publish s if the exchange rate after that time moved in a 

favorable direction; by participating in this hash lock, B is effectively giving A a free option. One could 

argue that in equilibrium, we may expect B to simply expect A to act in such a way, and expect a fair 

premium in exchange for this option (a public chain decentralized swap exchange would be a great 

opportunity to test this hypothesis), though even this scenario is imperfect as it effectively means that 

much of the time someone wishing to exchange their assets will have to either try several times or pay a 

sufficiently high premium to reliably entice honest behavior from their partners (or be the offeror 
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without claiming an option premium, once again an economic loss), and this weakens market 

participants' ability to efficiently hedge their exposure. 

 

Cross-chain hash locking can also be combined with state channel techniques in order to create faster 

exchanges that mitigate this problem by taking advantage of state channels' greater speed compared to 

the base blockchain layer; this is still an active area of research and development. 

Note that hash locking is only useful for atomic operations; it is not useful for asset portability or cross-

chain oracle use cases. The reason why it is not useful for cross-chain oracle use cases is simple: 

accessing a cross-chain oracle is inherently a passive operation with respect to the chain that is being 

read, and hash-locking is an inherently active operation on both sides. The reason why it is not useful for 

asset portability is somewhat more subtle: the hash-lock atomic swap protocol preserves the invariant 

that the total supply of each asset on each chain remains the same, and hence it cannot actually move 

assets from one chain to another. However, hash-locking can be combined with relays as an efficiency 

improvement: the possibility of using relays to move assets from one chain to another ensures that 

exchange rates of one asset for the same asset on a different chain remain very close to 1:1 as any other 

rate would create an arbitrage opportunity, but ordinary users simply use hash-locking mechanisms to 

move their coins from one chain to the other by trading with someone who wants to move in the 

opposite direction.19 

Theory and implementation  
 

As described earlier, there are many different situations in which interoperability is desirable. From a 

high-level application standpoint, the use cases range from finance to identity verification to potentially 

any application that is deemed blockchain-worthy. From a computer-science-theoretic statement, 

however, we can create a much simpler classification of interoperability types. We can define these as 

cause-effect graphs, and refer to them as forward causation, backward causation and dependency; we 

can view them as follows: 

 

                                                           
19 This technique was proposed by Blockstream as a way to overcome the inefficiencies of the claim process in 
their model for Bitcoin sidechains: “Fortunately, they are not necessary for most transfers: holders of coins on 
each chain may exchange them directly using atomic swap” https://blockstream.com/sidechains.pdf 

http://www.jeffcoleman.ca/state-channels/
http://www.jeffcoleman.ca/state-channels/
https://blockstream.com/sidechains.pdf
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Those with a basic statistics background may recognize this chart as representing the three possible 

categories of causes of correlation, not including coincidence, and this is for good reason: 

interoperability is, to some extent, fundamentally about (reliable) correlation. Forward causation is 

simple: chain A can cause an event on chain B (this can also be expressed as "chain B can read chain A"). 

Reverse causation is when chain B can cause an event on chain A - a similar relationship, but one that is 

worth considering as separate (intuitively, think of this as causation that goes in the opposite direction 

from the direction you want causation to be possible). Dependency is when actions on both chains can 

arise dependent on some additional outside event. Relays can provide forward and reverse causation, 

depending on the capabilities of the chains. Notaries can provide any kind of causation. Hash locking, 

however, can only provide cross-dependency, using the revelation of a hash value as a “common cause”; 

this is another way of understanding why hash locking is fundamentally weaker than relay techniques. 

 

If we have some of these forms of causality and not others, we could ask the question: is there perhaps 

some way to convert any one of the three into something equivalent to the others? As it turns out there 

is one approach, relying on one or more parties that are incentivized by an on-chain security deposit (or 

possibly, in a consortium chain setting, the strength of a binding legal contract20), but its capabilities are 

limited and it carries important caveats. The argument is that if chain A can read chain B, then one can 

create a smart contract on chain A containing a deposit that pays that deposit back only if an event is 

created on chain B every time a corresponding trigger is created on chain A. One possible example use 

case of this is a kind of “ghetto two-way peg”, where there exists a multisig that stores BTC on the 

                                                           
20 Legal contracts are not absolute; they depend on both the reliability of the underlying legal system and the 
solvency of the participants, and so some approach will be required for evaluating their reliability. Arguably, a large 
part of the value proposition of “collateralized smart contracts” in general is that while purely economic 
guarantees are in some ways less powerful than legal ones, it is much easier to see and formally evaluate exactly 
how strong they are, so techniques that rely purely on the “wet code” of law should be used carefully. Combining 
legal agreements with decentralization (requiring multiple parties to act in some way and relying on only a 
majority of them to be honest) is another possible middle road.  
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bitcoin blockchain where the participants also hold their own ETH collateral on ethereum, and the 

participants are required to send transactions from this multisig as needed in order to allow conversion 

from an “e-BTC” IOU token on ethereum back into BTC on the bitcoin chain (conversion from BTC into e-

BTC is easier: just use BTCRelay)21. Note that such a scheme does have high ETH collateral requirements 

to be “cryptoeconomically safe”, as if ETH/BTC rate falls too much there may not be enough collateral to 

disincentivize the multisig from stealing the BTC22. 

 

Hash locking can also be to some extent converted into direct causality, although the possibilities are 

much more limited and difficult to implement. A simple scheme involves a series of hashes being placed 

both on chain A and chain B, where on chain A the preimages for the hashes are needed to claim a 

security deposit when a cross-chain message is triggered, and on chain B the preimages trigger the 

receiving side of the cross-chain message. When a cross-chain message is triggered on chain A, the party 

with the deposit has no choice but to reveal the preimage, thereby also triggering the event on chain B. 

However, note that this requires the specific event data to be pre-arranged. An approach that has better 

properties involves switching from hash-locking to signature-locking: mechanisms on chain B treat 

messages from some oracle as cross-chain messages, but then these messages can be re-imported by 

third parties into a mechanism on chain A, which checks that the correct message and only the correct 

message was signed, destroying the oracle’s security deposit in the event of nonfeasance or 

malfeasance. But even still, the complexities involved in the above discussion only serve to show that 

these approaches are inferior substitutes at best, and optimum interoperability can be achieved by 

having all forms of causality be available between all chains directly. 

 

If we want to satisfy the maximum possible set of use cases with these primitives, we may want to come 

up with a high-level cross-chain programming language that expresses these concerns. Causation can be 

expressed through event creation and event listener primitives; cross-dependency can also be expressed 

through the use of events, though these events would be triggered by a hash commitment being 

revealed rather than an event on a chain. The ideal would be for a programmer to write an application 

with components on chain A and chain B, where both contain a line of code that says, for example, 

onPreimageReveal(0x172db5b4...), and the programmer can then be confident that if the preimage is 

revealed, then the code triggered by the event will be run; the compiled version of this code would 

output not just smart contract code but also a daemon (or a plugin for a daemon) that would check both 

                                                           
21 Much more discussion on the economic safety and limits of such “ghetto two-way peg” schemes in general can 
be found in the discussions around “stablecoins”. See https://github.com/rmsams/stablecoins, 
https://makerdao.com/, https://blog.ethereum.org/2014/11/11/search-stable-cryptocurrency/ and 
https://bitshares.org/technology/price-stable-cryptocurrencies/ for examples. 

22 One way of addressing this is via a “hybrid trust model”, where the parties involved are selected to be maximally 
trustworthy as well as economically incentivized. This is similar to the approach taken by Rootstock for its 
blockchain security, where the chain is secured by a trusted federation if less than 50% of Bitcoin miners are 
participating, and control slowly turns over to Bitcoin miners as enough of them become involved for a merge-
mining model to be secure. 

https://github.com/rmsams/stablecoins
https://makerdao.com/
https://blog.ethereum.org/2014/11/11/search-stable-cryptocurrency/
https://bitshares.org/technology/price-stable-cryptocurrencies/
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blockchains and cross-post the event if it is published to one chain. The daemon can be run by anyone 

and does not need to be trusted; a copy could be run by the parties that are beneficiaries to the 

contract, or may also be organized by the users or developers or a given chain as a public service. 

Formal modeling and Security  
 

Formal verification of these cross-chain scripts could be done using a model that assumes that some 

notion of timestamp on chain A is correct to within some error margin δ1, a timestamp on chain B is 

correct to within δ2, and that message-passing latency between the chains is less than δ3 (these deltas 

would incorporate block times, risk of short-range 51% attacks, short-range censorship, etc), and 

thereby reason that, for example, an onPreimageReveal event will happen on chain A and chain B with 

maximum time discrepancy δ1 + δ2 + δ3, or that an event created by a contract on chain A will be read by 

chain B with some other maximum time discrepancy. This would then allow for, say, a cross-chain 

payment-versus-delivery contract to have a formal proof of atomicity given those assumptions23. 

 

Note that in a cross-chain context, incorporation of such assumptions into a formal model is required. In 

a single-chain context, modelling the protocol that the application is running on is much less necessary, 

with the possible exception of a censorship-resistance assumption ("if A really wants to get transaction X 

into the chain, they will be able to do so within 10 minutes"). This is because, from the point of view 

inside the decentralized computer, the decentralized computer is perfectly secure: every single 

operation is 100% guaranteed to work as planned. In a multi-chain context, however, chain A and chain 

B's security models are separate, cross-chain information transmission needs to be modelled, 

verification of chain A inside of chain B needs to be modelled, etc. Hence, complexities arise, and these 

complexities become more interesting once we get into the discussion on failure modes in the next 

section. 

 

Additionally, in the case of public blockchains particularly, it is impossible to avoid discussing economics. 

For example, 51% attacks, transaction spam attacks, and other similar measures. Such attacks are 

always a possibility, but they also have a cost, and so a richer formal model may even produce claims of 

the form "this algorithm with these parameters is safe for up to $200,000, but not more, because at 

those scales attacks become economically feasible and you need to increase the time windows"24. 

                                                           
23 To see why these timing assumptions are necessary, consider the case of hash-locked atomic swaps described in 
a previous section. In that protocol, A can recover their asset if the secret is revealed and pushed into A’s chain 
within X seconds, and B can recover theirs if the secret can be pushed into B’s chain within 2X seconds. However, if 
there are ways to attack the chains to create a time lag greater than X, then A may be able to claim their asset, and 
prevent B from claiming theirs long enough for A to be able to withdraw it. 

24 See http://www.ofnumbers.com/2015/11/02/integrating-mining-and-attacking-analyzing-the-colored-coin-
game/ for an example of an attempt at modeling security concerns of applications on top of a public blockchains in 
the asset issuance (“colored coin”) use case. 

http://www.ofnumbers.com/2015/11/02/integrating-mining-and-attacking-analyzing-the-colored-coin-game/
http://www.ofnumbers.com/2015/11/02/integrating-mining-and-attacking-analyzing-the-colored-coin-game/
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However, this is not always that easy to model, one particular reason being the possibility of attacks that 

affect multiple applications at the same time. For example, censorship through transaction spam is 

generally ineffective for stealing funds from high-value applications, as the legitimate sender only needs 

to get one transaction in in order to be safe whereas the attacker needs to fill every block, and in a 

public chain context the sender can just add to their transaction a very high fee that would only set 

them back slightly but would require an attacker to potentially burn through hundreds of thousands of 

dollars per hour in order to block them. However, such an attack harms all applications on the chain 

simultaneously, and so if a chain has near-full usage under normal circumstances, and if these 

operations are time-sensitive (eg. state channel settlements), then a transaction spam attack may well 

cause enough of those operations to fail simultaneously to be worth the cost25. 51% attacks have a 

similar property; even if every single application is designed in such a way that losses from a 51% attack 

never exceed $50,000, if there are a thousand such applications at the same time then a 51% attack at a 

cost of $5 million that attacks all of these applications in parallel may well be profitable. Hence, a form 

of risk modeling similar to that used for financial collateral and risk exposure management may be 

appropriate in public chain settings. 

Governance and Failure Modes  
 

The above discussions make sense in a context when both chains involved in an interoperating 

application are working normally. However, what happens when one or both of those chains either fails 

or experiences an irregular governance event? 

 

A quick listing of possible irregularities, both positive and negative, that may happen to a chain is as 

follows: 

 

1. 51% attacks leading to reversion of transactions 

2. 51% attacks leading to successful (total or partial) censorship 

3. 51% attacks leading to the creation of an invalid chain that is not accepted by “full 

nodes” on the chain, but that is accepted by “light nodes” and relays. This invalid chain may 

contain invalid state transitions (eg. you do not need to actually have 10 trillion Fedcoins in 

order to trick a relay into thinking you do you have the ability to conduct 51% attacks). 

4. "Soft forks" changing functionality (if undesirable, this is arguably equivalent to (2)) 

5. "Hard forks" where all or nearly all of the user base of a chain effectively agrees to 

switch to using a new chain with either a rule change or an irregular state transition, and the 

                                                           
25 This is one argument against the combined philosophy of “full blocks” being a default state, a fixed vertical 
supply curve for transaction space in blocks and the use of the lightning network as an exclusive scaling paradigm 
in the context of public blockchains: the three factors together may create a “perfect storm” of incentives for 
attackers to steal funds by manipulating channel settlement. 
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level of coordination is sufficient that the name, brand and community of the old chain is 

essentially entirely moved over to the new chain. 

6. Network splits leading to a chain "splitting" into two and the split persisting for some 

time.26 

7. A chain using a consistency-favoring consensus algorithm losing so many nodes that no 

new blocks can be produced and the chain "fail-stops" (this can be viewed as equivalent to (2), 

but also would in almost all circumstances lead to (4)). 

 

How would a cross-chain application deal with one of these kinds of events happening on one or both of 

the chains that it "lives" on? If no failure mode handling exists, then the effects differ by situation. For 

example: 

 

● A transaction reversion event can lead to loss of atomicity for otherwise atomic cross-

chain operations, as one part of a trade may be reversed but not the other. 

● A replay spoofing event can lead to loss of atomicity for otherwise atomic cross-chain 

operations, as one part of a trade may not actually happen. 

● A censorship event can sometimes lead to loss of atomicity for atomic cross-chain 

operations, as it could prevent withdrawal transactions long enough for a counterparty to 

withdraw from an agreement. However, the ability to do this depends on each application, and 

it is not always the case that such problems exist. 

● A hard fork of one chain can potentially lead to "relays" tracking that chain breaking, 

although this is not nearly always the case, and in fact depends heavily on the specifics of both 

the fork and the implementation of the relay mechanism. 

● A network split is a complicated case, because depending on the details of the 

consensus algorithm and the relay it may resemble either a reversion event or a fail-stop event. 

Proof of work network splits lead to reversions; network splits on traditional byzantine fault 

tolerant consensus algorithms lead to fail-stops; Ethereum’s Casper proof of stake model is a 

hybrid, allowing the relay design to choose which "degree of confirmation" it waits for and 

thereby choose between the two fault modes on a per-application basis. 

 

In general, one can make the observation that consistency-favoring consensus algorithms27 lead to 

"safer" consequences for cross-chain operations. To see why, consider the example of "Fedcoin" from 

                                                           
26 Aside from accidental splits caused by network failures, in a consortium-chain context splits may also happen for 
geopolitical reasons (eg. sanctions against Iran, Brexit); see below for more details. 

27 “Consistency-favoring consensus algorithms” is a term used by Ethereum researcher Vlad Zamfir to differentiate 
between some properties of traditional Byzantine-fault-tolerant consensus and Bitcoin-style consensus (which he 
calls “availability-favoring”). Consistency-favoring algorithms tend to require a supermajority of validators (eg. ⅔ + 
1) to finalize a transaction, and so require ⅓ Byzantine failures to experience a fail-stop event or ⅔ Byzantine 
failures to experience a reversion event or a light-client/relay-spoofing event. Note that these probabilities can be 
adjusted; for example, we can achieve ¾ robustness against reversion or spoofing failures at the cost of reducing 
robustness against fail-stops events to ¼. Availability-favoring algorithms can tolerate any number of crash faults 
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above, which is based on some home ledger and which has M extant coins on some external chain A. 

Suppose that chain A suffers a repeated reversion or spoofing attack. Then, chain A can send an 

arbitrary number of SEND messages to the home chain by sending a SEND message, waiting for the 

message to be confirmed in the relay on the home ledger, reverting to a block before the message was 

sent, and repeating. The home chain would accept M coins' worth of such messages from chain A, and 

credit M coins to the attacker, but then it would stop; the home chain's accounting of child chain 

balances protects it from suffering undue losses, though the loss of M coins is unavoidable. Note that a 

converse attack also applies: if the home chain can suffer reversion attacks, then an attacker can fill all 

child chains with an arbitrary number of coins, effectively making them worthless. 

 

Now, suppose that chain A suffers either a censorship attack or a fail-stop - the failure mode that would 

be more likely if chain A was consistency-favoring rather than availability-favoring. Actors on chain A 

may now be prevented from moving their Fedcoins to the home chain, but an attacker cannot steal 

anything - hence, the failure mode is less harmful and there is no gain to the attacker in making the 

attack28. 

 

Another important consideration is the type of ledger environment in question. If the home ledger is a 

consortium chain, then taking emergency action (eg. a remedial hard fork, freezing the attacker’s assets) 

to mitigate the damage would be easier, and so the total damage may be much less. If a public chain is 

used, then the damages may depend on other considerations, including the degree of 

“permissionlessness” of the asset itself. However, no technology can prevent attackers from profiting 

entirely, as they may be able to exchange the funds into assets based in other jurisdictions or even 

permissionless cryptocurrencies more quickly than any administrators can detect and stop a theft.  

 

Note that going from a single chain to a model with cross-chain portable assets, under normal 

assumptions, changes little about a process except for adding asynchrony, but under failure modes it 

weakens the security model in a subtle way: reversion attacks become theft vulnerabilities. This is 

similar to the way that the security model is changed by state channel technologies, although the claim 

in that case is subtly different: censorship attacks become theft vulnerabilities. This has particular 

relevance in a public chain context: a common argument for why miners do not collude to 51% attack 

their own chain is that they do not benefit from destroying the ecosystem that supports them; however, 

in the case of a cross-chain movable asset, it is entirely possible to come up with excuses for why 

                                                           
among validators, but at the cost of not having such a strong notion of finality; they are vulnerable to reversion or 
spoofing failures at the ½ Byzantine failure level. 

28 This is true in the case of movable assets, but in other cases such as financial derivatives there are ways for 
attackers to gain by triggering consistency failures; however, (i) those gains are much smaller than the gains from 
literally being able to steal all assets from chain A, and (ii) this is why the bias toward favoring consistency is a 
general observation and not an absolute rule. 
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attacking one particular “sidechain” actually helps the main chain29, and so sidechains find themselves in 

an uneasy political relationship with the miners of the home chain that their asset lives on. 

Interoperability and Lifecycle Events  
 

One class of event that is particularly interesting to analyze particularly in a consortium chain setting is 

lifecycle events. This includes: 

 

● Change of economic boundaries (eg. Brexit) 

● Implementation and removal of sanctions (eg. as against Russia and Iran) 

● Currencies ceasing to exist (eg. introduction of the Euro in 1999) 

● Currencies “forking” (eg. the Iraqi Swiss dinar) 

 

This may lead to several kinds of events: 

 

● A chain winding down because it’s raison d’etre (one particular currency) ceases to 

exist. 

● A chain starting up ex nihilo to accommodate a new asset 

● A chain literally forking, in a similar style to the ETH / ETC fork (literally splitting an asset 

into two in this way has precedent mainstream finance only in the fork of spinoffs, as in the case 

of Ebay and Paypal, but it may well end up being used for currencies in secession scenarios) 

● Certain kinds of interoperability between two chains being blocked because of a 

sanction. There is also the possibility of “de-facto soft sanctions” where a particular kind of 

interoperation event suddenly carries a much higher compliance burden due to legal changes30. 

 

Special care should be taken in scenarios similar to the 1999 Euro introduction: a scenario that is best 

avoided is one where a new asset is created that has no single home ledger but instead has multiple 

chains that are all authoritative over a subset of balances. It is arguably a large part of the whole 

advantage of blockchain technology that the complexities associated with such scenarios can be 

prevented. One possible introduction path is for the home ledgers of the old currencies to remain, but 

become subordinate to a new home ledger (ie. equal status to “chain A” in our previous Fedcoin 

examples), and for balances to be simply multiplied by the exchange rate in-place31. 

                                                           
29 See Paul Sztorc for an example argument: “Peter Todd emphasizes a key sidechain characteristic: miners can 
destroy/steal-from any sidechain that they merged-mine …at no direct cost. But with the bad comes the good: 
miners (as a group) can and should censor any sidechain which threatens the value of the “sidechain portfolio” (or 
affects it superfluously)” http://www.truthcoin.info/blog/contracts-oracles-sidechains/ 

30 See FATCA and Swiss banks’ response to the law for an instructive example 

31 Technically, this multiplication-in-place does not even require a hard fork: the balances could remain exactly the 
same, but different fixed exchange rates with the home ledger would be introduced for each chain; however, in 

https://en.wikipedia.org/wiki/Iraqi_Swiss_dinar
http://www.truthcoin.info/blog/contracts-oracles-sidechains/
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Preventing interoperation for regulatory reasons is in some ways more difficult; the reason is that 

anyone can create a verifier for one chain inside another chain, and hash locking is even easier; it may 

well even be possible to hide a hash lock inside of something that looks like a mathematically complex 

financial derivative. However, there are still obvious actions that can be taken: for example, if the 

central bank of country A wishes to freeze access to its currency for country B, it can simply freeze the 

balances associated with any chains in that country. Softer measures like restricting cross-chain claims 

to $X per person per year are also possible. In general, nearly arbitrary controls on movement of assets 

from one chain to another may be implemented; however, preventing exchange between assets on the 

same chain is much more challenging and would likely be dealt with only through heuristic pattern-

detection techniques similar to those employed today to deal with fraud32 and structuring33. 

 

One highly desirable goal in all of these scenarios is that regardless of what unexpected events occur, 

the transition for applications on the chain, including contracts on the chain, should be maximally 

smooth. This can happen through a combination of advance notice, use of maximally “clean” techniques 

for implementing the change, and the use of appropriate mitigation and recovery techniques within any 

financial or other contracts on the chain. Technically chaotic splits, freezes and other black swans should 

only happen during rare exigencies such as wars (or possibly lower-grade political retaliations, one 

possible example being a government disrupting financial access to a region during a rapidly unfolding 

secession scenario), in which case damage prevention and recovery techniques at contract level are 

likely the only form of mitigation. 

Mitigation and Recovery from Failure Modes  
 

From experience we know that the concept of everlasting, unchanging and immutable protocols that 

never experience either attacks or governance events is an unrealistic fantasy. Needs change, priorities 

change, the unexpected happens, and implementations themselves often end up containing bugs. If the 

notion, held by many in the Bitcoin community34, that the Bitcoin Core C++ code literally is the 

specification of the Bitcoin protocol was true, then the attacker who created 93 billion BTC out of thin 

                                                           
the user interface this could still be presented as a single currency. This is in fact a cleaner and better way to do it, 
as it ensures that balances stored inside applications on the chain are also converted correctly (eg. if a conversion 
is done through protocol-level multiplication-in-place, then one possible risk is that a financial contract that 
contains some formula dealing with asset quantities or prices would see the formula not get converted along with 
the rest of the currency, leading to unexpected results). 

32 http://www.ibmbigdatahub.com/blog/how-improve-bank-fraud-detection-data-analytics 

33 http://www.prnewswire.com/news-releases/what-is-structuring-and-how-do-banks-detect-this-form-of-money-
laundering-56903762.html 

34 See Bitcoin’s own wiki page for an example: “The Bitcoin protocol is specified by the behavior of the reference 
client, not by this page” https://en.bitcoin.it/wiki/Protocol_documentation 

https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2010-5139
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2010-5139
http://www.ibmbigdatahub.com/blog/how-improve-bank-fraud-detection-data-analytics
http://www.prnewswire.com/news-releases/what-is-structuring-and-how-do-banks-detect-this-form-of-money-laundering-56903762.html
http://www.prnewswire.com/news-releases/what-is-structuring-and-how-do-banks-detect-this-form-of-money-laundering-56903762.html
https://en.bitcoin.it/wiki/Protocol_documentation
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air through an integer overflow attack should never have been denied his rightful gains through the 

coordinated soft fork that ended up reverting 12 hours of history and removing the vulnerability. Given 

these inevitable realities, how do we manage the risks? 

 

One possible response is to limit interaction to being between chains that have similar governance 

policies and consensus mechanisms, or at least governance policies and consensus mechanisms that 

trust each other. Some prefer to stay within the realm of private and consortium chains for this reason, 

seeing "anarchic" public chains as being the oil to traditional finance's water. But then, different 

consortium chain governance mechanisms may also end up disagreeing with each other, or even trying 

to actively attack each other; deliberate attempts to prevent interoperability have precedent in the form 

of financial sanctions, eg. those against Russia and Iran. A government of one country may try to 

commandeer a chain with the majority of its nodes based in that country, and conduct attacks against 

services of hostile countries that try to interface with that chain as a form of cyber-warfare. Hence, if we 

want to have a maximally globally applicable model, a model where each chain only trusts itself and 

assumes the possibility of arbitrary behavior from other chains, ie. where every chain is "anarchic" 

seems like a reasonable place to start; after all, describing geopolitics itself as literally anarchic is not at 

all inaccurate. Hence, we want to deal with the possibility that chains will fail. 

 

At this point, you may ask, if chains can fail then what is the difference between analyzing chain 

interoperability and analyzing interoperability between centralized systems? What is it that blockchain 

technology brings into the discussion that creates fundamentally new considerations that do not exist 

between, say, SWIFT and national banking systems? One argument is that what we call "blockchain 

technology", or "crypto 2.0", is in fact a package of related technologies and philosophies, including 

digital signatures, hashes, Merkle trees, peer-to-peer networking, and a general notion of "mistrust 

first" and "push, not pull", and a consequence of these philosophical choices taken together is that, even 

in the context of various forms of 51% attacks, the blockchain environment presents unique properties 

that we can take advantage of in order to design safer systems. 

 

Technologically speaking, we can start the discussion with one particular property: a blockchain leaves a 

hash and signature-based cryptographically verifiable trail of every transaction that it processes and 

every state change that it makes. Even if a 51% attack takes place, the old chain still exists, and is 

cryptographically - not just cryptoeconomically or socially, but also cryptographically in the sense of 

being secured by hard math - immutable. The fact that the attack did take place can be seen by all, and 

if a given actor (or relay) viewing a blockchain has its own memory and its own block it can even see 

which branch came first. If no new blocks get created for some time, this can be seen too. 

 

Some of the consequences of this are fairly mundane and include what we have already discussed: it is 

only because of the heavy use of hashes and signatures in blockchains for cryptographic authentication 

that we can construct relay-style interoperability mechanisms as well as constructs like hash-locking. 

Neither of these techniques is remotely a possibility in the world of traditional centralized APIs. The 
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ability to detect failure modes, however, is even more interesting. For example, suppose that we 

wanted to have an event, onChainReverted(chainID, k). The event could automatically be triggered in a 

proof of work context if a relay sees that at some point, block M was the head of the chain, and then the 

head switches to block N, where N and M only share a common ancestor more than k generations 

behind each other - a k-block revert. 

 

Another example would be an onFailStop(chainID, s) event that triggers when a blockchain fails to 

create a new block in s seconds. A more complex one to implement would be a censorship detection 

oracle where anyone could submit a transaction and the oracle would reply yes if the transaction 

appears worthy of inclusion in a block but does not get included within, say, 30 blocks. A protocol hard 

fork event could be triggered in a way that voluntarily includes a state change to a “flag contract” 

signifying a fork, allowing an onFork event to be automatically triggered. A more centralized solution to 

all of the above is, of course, a multisignature notary oracle that signs a message when it detects a 

particular chain undergoing an irregularity. 

 

When an application receives one of these messages, what should it do? There is naturally a limit to how 

far you can go; it is fundamentally impossible to stop attackers from draining a sidechain by repeatedly 

reverting it, so attackers breaking our hypothetical "chain A" in the previous section would be able to 

steal M Fedcoins no matter what kind of programming-language computer science magic is done at the 

high level, although it is possible to use smart contracts together with reversion oracles to create a kind 

of low-trust “blockchain failure insurance”35. However, in other cases (eg. fail-stops), it is possible to 

achieve better properties where no one need bear any risk. 

 

One strategy is simple: have each contract appoint an "emergency curator", where the curator only 

gains powers over the contract in the event that a fork oracle claims that one of the chains that the 

contract in question is interacting with experienced an irregularity. This curator could then individually 

attempt to execute contracts to the best of its ability given their original intent. The curator could be a 

bank, a regulatory body, an NGO or even itself a consortium consisting of any combination of the three; 

even though the curator will not be leaned on often, it is a role requiring trust and so a trustworthy body 

is strongly preferred to fill the role. This strategy is easiest to code, simple for human beings to 

understand (including understanding why it introduces no additional centralization in the normal case), 

and so is most likely to be implemented in the short term. 

 

Another approach is to try to handle certain cases automatically; for example, if a given chain 

experiences a fail-stop event, timeouts can be extended until it recovers. Orderly hard forks can carry 

flags in the onFork event arguments that specify the level and type of intrusiveness, and actions can be 

                                                           
35 One side benefit of such an insurance market is that it may also serve as a decentralized way of preventing or 
mitigating combination attacks, as the existence of such a market encourages participants to effectively report 
their exposure to a fork at any particular time, allowing the total exposure to be estimated. 
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taken based on the type in question. In some cases, fallbacks may work: if identity information from 

chain A is sought by a contract on chain B, and chain A is unavailable, then it could try to get the same 

information from other sources, or appoint a “fallback KYC curator”. In some cases (eg. cross-chain 

interest coupon payments), one can simply register a payment as failed and try again some time later. 

 

Altogether, we can see that interoperability adds a whole new layer of complexity to applications. This 

complexity brings great promise, and in many cases even with this added complexity, cross-chain smart 

contracts may well still be far less complex, and far less vulnerable, than the processes that govern inter-

system transfers, contracts and exchanges today. However, it also brings its own unique challenges, its 

own unique risks, and a need to understand what these risks, and the mitigation strategies to resolve 

them, are. In the long term, we hope to see research in interoperability be designed around this notion 

of cross-chain programmable languages so that the challenges of implementing the basic building blocks 

of interoperability securely, and the challenges around taking advantage of such features and 

implementing them into real-world applications, can be handled separately; however, we are still in the 

early stages and there remains a long way to go. 

The Road to Interoperability in Practice  
 

 

 Notaries Relays Hash-locking 

Interoperability types All All (if relays exist on 
both chains; otherwise 
one-way causality only) 

Cross-dependency only 

Trust model Majority of notaries 
honest 

Chains do not fail or get 
“51% attacked” 

Chains do not fail or get 
“51% attacked” 

Usable for cross-chain 
exchange? 

Yes Yes Yes 

Usable for cross-chain 
asset portability? 

Yes (but requires 
universal long-term 
notary trust)36 

Yes No 

Usable for cross-chain 
oracles? 

Yes Yes Not directly 

Usable for cross-chain 
asset encumbrance? 

Yes (but requires long-
term notary trust) 

Yes In many cases, but with 
difficulty 

                                                           
36 “Universal” here means that every user of an asset must trust the same notaries; this is distinct from the asset 
encumbrance scenario where different users can still trust different notaries 
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Ease of implementation Medium Hard Easy 

 

 

Use cases involving chain interoperability are among the few that may take the longest to come to 

fruition, simply because the set of dependencies is so large. Such a use case requires (i) some chain A 

that is mature enough to build off of, (ii) some chain B that is mature enough to build off of, and (iii) 

some application or need that cannot be served by implementing it on a single blockchain. (iii) itself 

arguably can only be met if (i) and (ii) themselves both have reasonably mature applications on top of 

them that have a need to interoperate. 

 

Hence, short term interoperability use cases will likely have to do with public blockchain cryptocurrency 

exchange and possibly public blockchain cryptocurrency derivatives. Projects such as MakerDAO may be 

most interested in the cryptocurrency derivatives use case, as they deliberately intend to diversify their 

holdings across many assets based on many blockchains. Consortium chain use cases will take much 

longer, because Liquid is perhaps the only consortium chain that is seeing any significant usage, and 

even that has a primary use case that is entirely dependent on public blockchain cryptocurrencies; the 

use of consortium chains in mainstream finance is still very far away. Hence, public chain cryptocurrency 

financial systems will likely be the primary testbed for cross-chain interoperability mechanisms in the 

short term, giving ample time for the technology to become mature once it can be applied for other use 

cases. 

 

In the longer term, building interoperable applications is something that should be done on a basis of 

responding to actual need; while the underlying technology can certainly be developed in the abstract, it 

would likely be a waste of resources to try to build applications that “connect the chains together” 

without a clear underlying use-case-driven reason for why such a thing would be useful. In the 

meantime, it seems clear that notaries, relays and hash locking schemes are excellent building blocks to 

start building on top of, and a possible next step is to continue working on developing these tools while 

proving their applicability in some simple example test-cases, including payment-versus-payment, 

delivery-versus-payment, asset portability and cross-chain oracles. If the technology is built to be 

sufficiently generic, then its applicability in whatever applications end up being optimal will emerge 

naturally over time. 

 

http://makerdao.com/
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