1704.04299v1 [cs.CR] 13 Apr 2017

arxXiv

An Empirical Analysis of Linkability in the Monero Blockchain

Andrew Miller * T ¥ Malte Moser §

Abstract

Monero is a privacy-centric cryptocurrency that allows
users to obscure their transaction graph by including chaff
coins, called “mixins,” along with the actual coins they
spend. In this report, we empirically evaluate two weak-
nesses in Monero’s mixin sampling strategy. First, about
62% of transaction inputs with one or more mixins are
vulnerable to “chain-reaction” analysis — that is, the real
input can be deduced by elimination, e.g. because the
mixins they include are spent by 0-mixin transactions. Sec-
ond, Monero mixins are sampled in such a way that the
mixins can be easily distinguished from the real coins by
their age distribution; in short, the real input is usually
the “newest” input. We estimate that this heuristic can
be used to guess the real input with 80% accuracy over
all transactions with 1 or more mixins. Our analysis uses
only public blockchain data, in contrast to earlier attacks
requiring active participation in the network [10,[7]. While
the first weakness primarily affects Monero transactions
made by older software versions (i.e., prior to RingCT),
the second weakness is applicable to the newest versions
as well. We propose and evaluate a countermeasure de-
rived from blockchain data that can improve the privacy of
future transactions.

Working paper disclaimer: This is a draft of work-in-
progress. It has not yet been peer-reviewed, and contains
preliminary results that may be subject to further revision.
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Figure 1: Transactions and linkage in different cryptocur-
rencies. Consider a new transaction (the star) which spends
an available coin (the second circle from the right). In Bit-
coin (a), each transaction input explicitly identifies the coin
being spent, thus forming a linkage graph. In Zcash (c),
each transaction (c) also spends a unique coin, however
a zero-knowledge proof conceals any information about
which coin is spent [1]. The Cryptonote protocol (b) offers
a middle ground, where each transaction input identifies
a set of coins, including the real coin along with several
chaff coins called “mixins.” However, due to a weaknesses
in how mixins are sampled by client software, many mix-
ins can ruled out by deduction (Section @); furthermore,
the real input is usually the “newest” one (Section E[)

1 Introduction

Monero is a leading privacy-centric cryptocurrency based
on the Cryptonote protocol. As of April 2017 it is the sixth
largest cryptocurrency by market capitalization. Whereas
Bitcoin, the first and currently largest cryptocurrency, ex-
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(a) Age distribution among all inputs (mixins (b) Age distribution among all ruled-out mixins (c) Estimated age distribution of real inputs

and real) from blocks 0.9M-1.2M.

from blocks 0.9M-1.2M.

(recovered from deducible transactions, among
blocks 0.9M-1.2M).

Figure 2: Age distributions of Monero mixins. In each graph, the Y-axis is the number of TXOs, and the X-axis
represents the time difference between input and referenced output in days. The left graph (a) shows the distribution
of all transaction inputs from blocks 0.9M to 1.2M where at least 1000 possible TXOs are available to choose from.
Graph (b) shows the age distribution among mixins that can be ruled out. Graph (c) shows that real TXOs (based on
deducible transactions, see Section [3)) typically conform to a highly-skewed distribution. The disparity between these
distributions makes it possible to guess the real input with an estimated 80% accuracy.

plicitly identifies which coin in the transaction graph is
being spent, Cryptonote allows users to obscure the trans-
action graph by including chaff transaction inputs called
“mixins.”

In this report, we evaluate the impact of two weaknesses
of Monero’s mixin sampling strategy, which substantially
undermine its privacy guarantees. Neither of these weak-
nesses is entirely new, having been discussed (but not
addressed) by Monero developers since as early as 2015.
Our work provides the first quantitative assessment of the
severity of these weaknesses.

Weakness 1. Many Monero transaction inputs con-
tain deducible mixins, and can be linked to prior trans-
actions via “chain-reaction’ analysis.

The Monero software allows users to configure the de-
fault number of mixins to include in each transaction. Most
Monero transaction inputs (66.09% of all transaction in-
puts so far) do not contain any mixins at all, but instead
explicitly identify the prior TXO they spend, much like
ordinary Bitcoin transactions.

Not only do 0-mixin transactions provide no privacy
to the users that created them, but also, more worryingly,
they present a privacy hazard if other users include these
provably-spent transaction outputs as mixins in other trans-
actions too. When the Monero client chooses mixins, it

does not take into account whether the potential mixins
have already been spent. We find that among Monero
transaction inputs with one or more mixins, 62% of these
are deducible, i.e. they can be incontrovertibly linked to
the prior TXO they spend.

Weakness 2. Monero mixins are sampled from a dis-
tribution that does not resemble real transaction inputs,
and thus the real inputs can usually be identified. When
the Monero client spends a coin, it samples mixins to in-
clude by choosing randomly from a triangular distribution
over the ordered set of available TXOs with the same de-
nomination as the coin being spent. However, when users
spend coins, the coins they spend are not chosen randomly
from the blockchain, but instead appear (based on our
empirical observations) as though drawn from a highly
skewed (e.g., exponential) distribution.

A prescient 2015 post from Monero forum user
EhVedadoOAnonimato describes this problem quite
clearly [4]:

Actual usage is not random: the age of the
outputs change the likelihood of it being used.
Newer outputs tend to be used more frequently.
You can check that in Bitcoin and probably on
other coins.

In Figure |2, we show data from the Monero blockchain



Not deducible Deducible Total
Real input is not newest 15.07% |Est.] 286799 (4.60%) 19.67% |Est.]
Real input is newest 22.61% [Est.] 3597933 (57.72%) 80.33% |Est.]
Total 2349224 (37.68%) | 3884732 (62.32%) | 6233956 (100%)

Table 1: Linkability of Monero transaction inputs with 1+ mixins (up to block 1236195). Deducible transaction inputs
can be linked with complete certainty to the transaction output they spend (see Section[3). Among deducible transaction
inputs, the real input is usually the “newest” one, i.e., the one with the smallest offset (see Section E]) Entries marked
[Est.] are estimated by extrapolating from deducible transaction inputs, under the assumption that the spend-time
distribution of deducible transactions is representative of the distribution overall.

that supports EhVedadoOAnonimato’s concern. Fig-
ure [2fc) shows the real age of inputs in a representative
subset of Monero transactions for which the real input
is known (i.e., among deducible transaction inputs as de-
scribed above). Figure [2(b) shows the age distribution
of mixins for which we know that they are not real in-
puts. When looking at the overall distribution of all inputs,
shown in Figure Eka), the overall distribution can clearly
be seen as a mixture of these two distributions. Among
transactions for which we have ground truth (i.e., the de-
ducible transaction shown in (c)), we find that the real
input is usually the “newest” input, 92.62% of the time;
based on simulation (Section [)), we estimate this holds
for 80% of all transactions. Our results are summarized in
Table [Tl

Proposed countermeasures. We propose an improved
mixin-sampling strategy that can mitigate this weakness
for future transactions. Our solution is based on sampling
mixins according to a model derived from the blockchain
data. We provide evidence that the “spend-time” distribu-
tion of real transaction inputs is robust (i.e., changes little
over time and across different software versions), and can
be well approximated with a simple two-parameter model.

2 Background

Since the inception of Bitcoin in 2009 [9]], a broad ecosys-
tem of cryptocurrencies (including Monero) have grown
in usage.

A cryptocurrency is a peer-to-peer network that keeps
track of a shared append-only data structure, called a
blockchain, which represents a ledger of user account bal-

ances (i.e., mappings between quantities of currency and
public keys held by their current owner). To spend a por-
tion of cryptocurrency, users broadcast digitally-signed
messages called transactions, which are then validated and
appended to the blockchain.

In slightly more detail, each cryptocurrency transaction
contains some number of inputs and outputs; inputs con-
sume coins, and outputs create new coins, conserving the
total balance. Each input spends an unspent transaction
output (TXO) created in a prior transaction. Together,
these form a transaction graph.

The public nature of the blockchain data structure poses
a potential privacy hazard to users. Since each transaction
is publicly broadcast and widely replicated, any potentially-
identifying information can be data-mined for even years
after a transaction is committed. Several prior works have
developed and evaluated techniques for transaction graph
analysis in Bitcoin [[11} [12} |8]. Our present work shows
that the Monero blockchain also contains a significant
amount of linkable data as well.

The function of the peer-to-peer network and consensus
mechanism is not relevant to our current work, which
focuses only on blockchain analysis; readers unfamiliar
with cryptocurrencies can find a comprehensive overview
in [3]]. Network-based forensic attacks are also known to
threaten privacy in Bitcoin [6, 2], but applying this is left
for future work.

Cryptonote: Non-interactive Mixing with Ring Signa-
tures. The Cryptonote protocol [[13] introduces a novel
construction that enables users to obscure their transac-
tion graph, in principle preventing transaction linkability.
Instead of explicitly identifying the TXO being spent, a
Cryptonote transaction input identifies a set of possible



TXOs, including both the real TXO along with several
chaff TXOs, called mixins. Instead of an ordinary digi-
tal signature, each Cryptonote transaction comes with a
ring signature (a form of zero-knowledge proof) that is
valid for one of the indicated TXOs, but that does not re-
veal any information about which one is real. To prevent
double-spending, every input must provide a key image
that is unique to the output being spent, and the network
must check whether this key image has ever been revealed
before.

Several cryptocurrencies are based on the Cryptonote
protocol, including Monero, Boolberry, Dashcoin, Byte-
coin, and more. [ﬂ We focus our empirical analysis on
Monero, since it is currenty the largest and most popular,
e.g. it has the fifth largest market cap of all cryptocurren-
cies, of over $200M. However, we believe our results are
applicable to other Cryptonote-based currencies as well.

Choosing Mixin Values. The Cryptonote protocol does
not provide an explicit recommendation on how the “mix-
ins” should be chosen. However, the original Cryptonote
reference implementation included a “uniform” selection
policy, which has been adopted (at least initially) by most
implementations, including Monero. Since all the TXOs
referenced in a transaction input must have the same de-
nomination, the client software maintains a database of
available TXOs, indexed by denomination. Mixins are
sampled from this ordered list of available TXOs, disre-
garding any temporal information except for their relative
order in the blockchain.

In principle, it is up to an individual user to decide on
a policy for how to choose the mixins that are included
along with a transaction. Since it is not a “consensus rule,”
meaning that miners do not validate that any particular dis-
tribution is used, clients can individually tune their policies
while using the same blockchain. The Monero command-
line interface allows users to specify the number of mixins,
with a default of 4.

Over the past several years, Monero’s mixin selection
policy has undergone several changes, the major ones of
which we describe below (the block heights reported cor-
respond to the cutoffs we use in our subsequent analysis):

e Prior to version 0.9.0. (January 1, 2016, Block 892866)

ISee https://cryptonote.org/coins|for a list of Crypotnote-
based currencies.

Prior to the Monero version 0.9.0 release (Hydrogen
Helix), mixins were selected uniformly from among the
set of all prior TXOs having the same denomination as
the coin being spent. As a consequence, earlier outputs
would be chosen more often than newer ones.

After version 0.9.0. (January 1, 2016, Block 892866)
The Monero version 0.9.0 release (Hydrogen Helix) in-
troduced a new policy for selecting mixins, based on a
triangular distribution. In contrast with a uniform dis-
tribution, the triangular distribution selection is skewed
so as to favor using newer coins rather than old coins as
mixins. Based on forum posts from the developers [4],
we believe this choice was made under the cognizance
that the actual inputs are also likely to be new. However,
as can be clearly seen from the blockchain data, the
triangular distribution is not adequately skewed enough,
significantly less than the real distribution.

This version also introduced a mandatory minimum
number of 2 mixins per transaction input, as recom-
mended by MRL-0001 [10]. This mandatory minimum
was enforced after a “hard fork” flag day, which oc-
curred at block 1009827 on March 23, 2016.

After version 0.10.0. (September 19, 2016)

The Monero version 0.10.0 release (Wolfram Warptan-
gent) introduced a new RingCT feature, which allows
users to conceal the denomination of their coins, avoid-
ing the need to partition the available coins into dif-
ferent denominations. RingCT transactions were not
considered valid until after a “hardfork” flag day, which
occurred at block 1220516 on January 5, 2017.

The RingCT feature does not inherently address the link-
ability concern. However, since RingCT transactions
can only include other RingCT transaction outputs as
mixins, and since RingCT was deployed after the 2-
mixin minimum was established (in verion 0.9.0), there
are no 0-mixin RingCT inputs to cause a hazard.

After version 0.10.1 (December 13, 2016, Block
1201528) The Monero version 0.10.1 release includes a
change to the mixin selection policy: now, some mixins
are chosen from among the “recent” TXOs (i.e., those
created within the last 5 days, called the “recent zone”).
Roughly, the policy is to ensure 25 % of the inputs in a
transaction are sampled from the recent zone.
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Figure 3: Data considered in our experiment.

In summary, the timeline of data we consider in our
analysis is shown in Figure 3]

Transaction Notation. We briefly introduce some no-
tation for describing transaction graphs. For a transac-
tion tx, tx.in denotes the vector of tx’s transaction in-
puts, and tx.out denotes the vector of tx’s transaction
outputs. We use subscripts to indicate the elements of
input/output vectors, e.g. tx.in; denotes the first input of
tx. Each Cryptonote transaction input contains a reference
to one or more prior transaction outputs. We use array
notation to denote the individual references of an input.
We used a dashed arrow, «--, to denote this relationship,
e.g. txa.out; «-- txp.in;[m] means that m’th reference of
the j’th input of transaction txp is a reference to the i’th
output of txp. Although a Cryptonote transaction input
may contain more than one reference, only one input is the
real reference (known only to the sender), indicated by a
solid arrow. Thus tx4 < txp indicates that tx, contain
an output that is spent by one of the inputs in txp.

Transactions included in the blockchain are processed
in sequential order; we use txy < txp to indicate that
tx4 occurs before txp. Other properties of a transaction
are defined as functions, and introduced as needed. For
example, time(tx) refers to the timestamp of the block in
which tx is committed.

Blockchain Analysis Infrastructure. We extracted rel-
evant information from the Monero blockchain, up to block
1236196 (January 31, 2017) and stored it for further analy-
sis in a graph database (9.7GB of data in total).

More specifically, we use the RPC interface of a Monero
node (running v0.10.2.1) to extract all relevant data into

BT

Figure 4: 0-mixins effectively reduce the unlinkability of
other transactions: the dashed reference can be ruled out
since tx4.out must have been spent in txp.in.

CSV files, and then pass these files a Neo4j batch importer
to import the blockchain data into a Neo4j graph database.
We chose Neo4; for its stability and expressive SQL-like
query language Cypher. In the near future we will provide
a reproducibility kit that includes the source code we used
for data collection and analysis.

3 Deducible Monero Transactions

A significant number of Monero transactions do not con-
tain any mixins at all, but instead explicitly identify the real
TXO being spent (i.e., resembling Bitcoin transactions).
Critically, at the beginning of Monero’s history, users were
allowed to create zero-mixin transactions that do not con-
tain any mixins at all. Figure [5|shows the fraction of
transactions containing zero-mixin inputs over time. As
of block 1236196, a total of 12148622 transaction inputs
do not contain any mixins, accounting for 66.09% of all
transaction inputs overall.

One might think at first that O-mixin transactions are
benign. Transactions with fewer mixins are smaller, and
hence cost less in fees; they thus represent an economical
choice for an individual who does not explicitly desire
privacy for a particular transaction. However, it turns
out that the presence of 0-mixin transactions is a haz-
ard that reduces the unlinkability of other transactions,
even those that include one or more mixins. For exam-
ple, suppose a transaction output txa.out; is spent by
a 0-mixin transaction input txpg.in; (i.e. txg.out; <—-
txp.inj where |txp.in;| = 1, from which we can conclude
tx4.out; < txp.inj). Now, suppose tx,.out; is also in-
cluded as a mixin in a second transaction with one mixin,
tx4.0uf; ¢-- txc.ing[m|, where |txc.ing| = 2. Since we
know that the given output was actually spent in txp, we
can deduce it is not spent by tx¢ (i.e., tx4.out; ¥ txc),
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MATCH (i:Input)-[:REFERENCES]->(o:UnknownSpend)
WITH i, COUNT(o) as cnt WHERE cnt = 1

MATCH (i)-[:REFERENCES]->(o:UnknownSpend)
REMOVE o:UnknownSpend

CREATE (i)-[:SPENDS]->(o0)

Figure 6: A Neo4J Cypher Query for deducing Monero
transaction inputs.

and hence the remaining input of txc.in; is the real one
(cf. Figure[d).

Notice that in this example, it does not matter if the
real spend txp occurs after the 0-mixin transaction txc
that renders it deducible, i.e., if tx¢ < txg. Thus at the
time txc is created, it is impossible to know whether a
future transaction will render that mixin useless. However,
the problem has been exacerbated by the behavior of the
Monero client software, which does not keep track of
whether a potential mixin has already been clearly spent,
and naively includes degenerate mixins anyway.

We apply the insight above to build an iterative algo-
rithm, where in each iteration we mark all of the mixin
references that cannot be the real spend since we have
already deduced that the corresponding output has already
been spent in a different transaction. With each iteration,
we further deduce the real inputs among additional trans-
action input sets.

Implementation in Neodj. In Figure[6lwe show a Neo4J
Cypher query that implements this algorithm. Initially, we
import the Monero blockchain as a graph comprising two
types of nodes, Inputs and Outputs, with directed edges
of type REFERENCES between them. To each Output node
we initially add an UnknownSpend label, indicating that
we have not (yet) deduced whether this has been spent.
The query proceeds by identifying each Input node i that
references only a single UnknownSpend Output node o;
for each such output, we create a SPENDS relation between
i and o, and remove the UnknownSpend label for 0. We
then iteratively repeat this query until no new SPEND edges
are created.

Results. In Table 2| we show the results from applying
the query described above to Monero blockchain data. As
it turns out, approximately 62% of Monero transaction
inputs (with 1+ mixins) so far can be linked in this way.

In Figure[7] we show how the vulnerability of Monero
transactions to deduction analysis varies with the num-
ber of mixins chosen, and in Figure E] we show how this
has evolved over time. We make two observations: first,
transactions with more mixins are (as one would hope)
significantly less likely to be deducible; and second, even
among transactions with the same number of mixins, trans-
actions made with later versions of the software are less
vulnerable. This is because at later dates, the 0-mixin
transaction outputs accounted for a smaller number of the
available mixins to choose from. Surprisingly, we founds
tens of thousands of transactions with a large number (10+)
of mixins (presumably indicating a high level of desired
privacy) that are vulnerable under this analysis.

Comparison with related work on Monero linkability.
We note that earlier reports from Monero Research Labs
(MRL-0001 [10] and MRL-0004 [7]]) have previously dis-
cussed concerns about such deduction, called a “chain-
reaction,” based on similar insights as described above.
However, our results paint a strikingly different picture
than these.

First, the MRL reports suggested that the vulnerability
would require the participation of an attacker, who must

2In our actual implementation, we use an optimized (but equivalent)
variation of this query that runs in batches and takes advantage of multiple
CPU cores.



Table 2: Monero transaction inputs (with 1 or more mixins) where the real input can be deduced.

Prior to 0.9.0 After 0.9.0, prior to 0.10.1 After 0.10.1, prior to Feb 1, 2017
Total Deducible (%) Total Deducible (%) Total Deducible (%)

1 mixins 662011 566800 (85.62) 45777 39979  (87.33) 0 - -
2 mixins 231855 189438  (81.71) | 1925778 1216993  (63.19) | 713616 294702  (41.30)
3 mixins 487121 368010 (75.55) 714907 484706  (67.80) | 107695 52942  (49.16)
4 mixins 191667 138555  (72.29) 403259 209658 (51.99) | 106829 24980  (23.38)
5 mixins 61068 25688  (42.06) 76588 44833  (58.54) 3883 817  (21.04)
6 mixins 53820 32245  (59.91) 285833 152044  (53.19) 24695 6942  (28.11)
7 mixins 3191 1529  (47.92) 5010 2190 (43.71) 1351 171 (12.66)
8 mixins 2001 948  (47.38) 5314 2253 (42.40) 1206 204  (16.92)
9 mixins 1388 662 (47.69) 3728 1284 (34.44) 246 43 (17.48)
10+ mixins 54126 10251  (18.94) 52332 14463  (27.64) 7661 1402 (18.30)
Total | 1748248 1334126  (76.31) | 3518526 2168403  (61.63) | 967182 382203  (39.52)

Overall (62.32)

at least must have owned some coins used in previous
transactions (in their terms, even a “passive” attacker is one
that owns prior coins and creates subsequent transactions):

a malicious party with a large number of
transaction outputs can cause a chain reaction in
traceability by sacrificing their own anonymity.

(Mackenzie et al. [7]])

Our results show this vulnerability is not hypothetical and
does not require an active attack, but in fact leads to the
linkability of most existing transactions to date.

Second, MRL-0001 [7] provided a simulation analysis
predicting that the mandatory 2-mixin minimum (imple-
mented in version 0.9) would “allow the system to recover
from a passive attack quite quickly.” Our results (Figure[5)
show that indeed the fraction of deducible inputs drops
steadily after instituting the 2-mixin minimum (from 95%
in March 2016 down to 20% in January 2017). However,
a significant fraction still remain vulnerable.

In summary, while the MRL reports model a hypothet-
ical “attack’ scenario, our results show that this scenario
has in fact occurred and we quantify the vulnerability of
actual transactions. The earlier MRL reports did not con-
tain an analysis of the blockchain data, and as a result their
simulation results are based on unrealistically conserva-
tive estimates. For example, while MRL-0001 considered
scenarios where the attacker owns up to 50% of the transac-
tions, even at the time of its publication (September 2014,
around block 250000) it could have been seen that around

80% of transaction inputs had zero-mixins.

Applicability to current and future transactions using
RingCT. The weakness studied in this section is pri-
marily a concern for transactions made in the past, as
transactions using the new RingCT transaction option are
generally immune. RingCT has been available to users
since February 2017, and at the time of writing has al-
ready been widely deployed. RingCT transactions are now
used by default for the vast majority of new transactions.
The reason why these new transactions are immune is not
beause of the RingCT mechanism itself, but rather because
RingCT was only deployed after the mandatory 2-mixin
minimum was enforced. Therefore, RingCT transaction
outputs cannot be spent by 0-mixin inputs.

4 Linking With Temporal Analysis

In the previous section, we showed that a majority of Mon-
ero transactions inputs can be linked with certainty through
logical deduction. In this section, we investigate an en-
tirely unrelated complementary weakness that allows to be
linked statically.

4.1 The Guess-Newest Heuristic

Among all the prior outputs referenced by a Monero trans-
action input, the real one is usually the newest one (the
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Figure 7: Transaction inputs are less likely to be deducible
if they have more mixins and if they are found among later
blocks in the Monero blockchain.

one that was committed most recently in the blockchain).

Mixin Offset Distribution. In Cryptonote-based curren-
cies, each transaction input reference is represented as an
“offset” into the history of available transaction outputs.
Each transaction input can only refer to transaction outputs
with a matching denomination (i.e., a 0.01 XMR input can
only refer to an 0.01 XMR output). The set of available
mixins for a transaction input, avail(txp.in;) is defined
as the set of outputs with match denomination occurring
earlier in the chain.

We define the normalized mixin offset of an input refer-
ence as a fraction of the available outputs,

norm(tx.inj[m]) = M
lavail(tx.in;)|

Figure[2|c) shows the distribution of (normalized) mixin
offsets for deducible transaction inputs (i.e., zero-mixin
inputs and inputs for which the real TXO can be deduced
using the technique from Section [3). As can be seen,
this distribution is highly left-skewed; in general users
spend coins soon after receiving them (e.g., a user might
withdraw a coin from an exchange, and then spend it an
hour later). In contrast, the distribution from which (most)
mixins are sampled (either a uniform distribution or a

triangular distribution, for the most part) includes much
older coins with much greater probability.

Cross-validation with Deducible Transactions. In or-
der to quantify the effect of these mismatched distributions,
we examine the rank order of the transactions with 1 or
more mixins for which we have ground truth (i.e., the de-
ducible transactions from Section [3)). Table [3] shows the
percentages of deducible transaction inputs for which the
real (deduced) reference is also the “newest” reference. It
turns out that overall, 92% of the deducible inputs could
also be guessed correctly this way.

We note that transactions with more mixins are only
slightly less vulnerable to this analysis: even among trans-
action inputs with 4 mixins (which is currently the default,
and planned to become the required minimum in Septem-
ber 2017) the Guess-Newest heuristic still applies to 81%
of these transactions.

4.2 Monte Carlo Simulation

The weakness in Monero that leads to input deduction
(Section [3) is not directly related to the weakness leading
to the Guess-Newest heuristic. However, the effects are
partially correlated, i.e., transactions where the real input
is the “newest” are also more likely to be “deducible.”

To extrapolate from our deducible transactions dataset,
we developed a Monte Carlo simulation based on the Mon-
ero client code and the blockchain dataset. For each iter-
ation, we first sample a real output (as described below),
and then follow the mixin sampling procedure.

Initially, we create a dataset of “spend time” distribu-
tions, i.e. the block timestamp difference between when a
transaction output is created and when it is spent, i.e.

spendtime(th.inj) = time(th) —time(txA) where txy <+ txp.

This dataset consists of all spend times of 0-mixin transac-
tion inputs as well as deducible inputs.

For each trial in the simulation, we begin by sampling a
spend time at random, weighted according to the relative
frequency of denominations. Next, for the given denomi-
nation, we choose a spend time at random from the dataset,
and then choose the offset. Note that while the spend
time dataset is based on historic transactions, the resulting
“offset” is relative to the head of the chain at our time of



Table 3: Percentage of deducible transaction inputs where the real input is the “newest” input.

Prior to 0.9.0 After 0.9.0, prior to 0.10.1 After 0.10.1, prior to Feb 1, 2017
Deducible Newest (%) Deducible Newest (%) Deducible  Newest (%)
1 mixins 566800 550145  (97.06) 39979 33999  (85.04) 0 NA (NA)
2 mixins 189438 177995  (93.96) 1216993 1131586  (92.98) 294702 283978  (96.36)
3 mixins 368010 358330 (97.37) 484706 451565 (93.16) 52942 49668  (93.82)
4 mixins 138555 123905  (89.43) 209658 165006  (78.70) 24980 16136  (64.60)
5 mixins 25688 22881  (89.07) 44833 42687 (95.21) 817 442 (54.10)
6 mixins 32245 28635 (88.80) 152044 124862  (82.12) 6942 5842 (84.15)
7 mixins 1529 1375 (89.93) 2190 1417  (64.70) 171 96  (56.14)
8 mixins 948 850  (89.66) 2253 1593 (70.71) 204 154 (75.49)
9 mixins 662 598  (90.33) 1284 495  (38.55) 43 37 (86.05)
10 mixins 10251 9395  (91.65) 14463 12957  (89.59) 1402 1304  (93.01)
Total 1334126 1274109  (95.50) 2168403 1966167  (90.67) 382203 357657  (93.58)
Overall (92.62)
tions using the sampling rules from the three main Mon-
6= meos] ero versions (pre 0.9, 0.9, and 0.10.1), as applied to the
09 blockchain at height 1236196 (Jan 31, 2017). We report
145 - l‘;igl our results in the form of the “effective linkability set,”
Ty which we define as the inverse of the probability of guess-
‘f; ing the correct input reference. In the ideal case (i.e., when
= 10 . .
3 all input references are equally likely to be the real one),
§ 8 the linkability set for an input with M mixins is M + 1.
E 6F For versions 0.9.0 and prior, even up to 4 mixins, our
B al simulation suggests that the newest input can be guessed
correctly 75% of the time. Across all versions, including
e — more mixins does reduce the effectiveness of this heuristic,
0 ‘

0 2 4 6 8 10 12 14

Number of Mixins
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Figure 8: Estimated vulnerability to the Guess-First heuris-
tic for varying sampling policies in Monero, based on
Monte Carlo simulations (100k trials each).

writing. After sampling an output to be “spent,” we then
simulate the Monero mixin-choosing procedure. In the
Appendix, we provide the pseudocode for the sampling
procedures used in our simulation. We note that our sam-
pling procedures are simplified models, and in particular
elide the handling of edge cases such as avoiding “locked”
coins that have been recently mined, i.e. “coinbase out-
puts.”

In Figure [8| we show the results of simulating transac-

although the benefit of each additional mixin is signifi-
cantly less than the ideal.

Each subsequent update to Monero’s mixin sampling
procedure has improved the resistance of transactions to
the Guess-First heuristic. We note that from developer
discussions [ it appears that this concern has indeed been
the motivation for such changes. In particular, the trian-
gular distribution was adopted in place of the uniform
distribution in Monero version 0.9 specifically because
it chooses new mixins with higher probability than “old”
mixins, and version 0.10.1 explicitly introduces a policy
that often includes additional “recent” (within 5 days) mix-
ins. However, we believe the magnitude of the problem
has so far been underestimated, and even the most recent
version only partially mitigates the problem. Under the
current default behavior, i.e. 4 mixins and using the 0.10.1
sampling procedure, we estimate that the correct input ref-
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Figure 9: Mixin offset distribution among RingCT transac-
tions (Blocks 1220516 to 1236195).

erence can be guessed with 45% probability (rather than
the 20% ideal if all input references were equally likely).
Excluding all of the “deducible” inputs, the average
number of mixins among the remaining inputs is 3.53. We
therefore estimate that as a lower bound, based on the
“0.10.1” line in Figure 8] that at least 60%. Extrapolating
from this figure, we estimate that in total the Guess-Newest
heurisic correctly identifies 80% of all Monero inputs (Ta-

ble[T).

4.2.1 Extrapolation to Future Transactions (using
RingCT)

As mentioned in Secti0n|Z|, anew transaction format, called
RingCT, has been available since January 5 2017. RingCT
transaction inputs can only reference other RingCT trans-
action outputs. In Figure[9] we show the offset-distribution
of all RingCT transactions inputs to date (up to block
1236195, approximately Jan 31, 2017). The characteris-
tic pattern of a triangular distribution mixed with a more
heavily left-skewed distribution is plainly visible, though
not as pronounced.

Unlike the deducibility weakness, which appears to im-
prove over time (see Figure [7), we hypothesize that the
problem of sampling from the wrong distribution becomes
worse over time, since the set of “old” mixins to choose
from grows larger and larger as time goes on.

To validate this hypothesis, we used our simulation strat-

egy to extrapolate the behavior of Monero version 0.10
with RingCT, out to six and twelve months. Our extrapo-
lation is based on an assumption that the transaction rate
of Monero remains constant; since RingCT’s activation,
there have been an average of 8.29 RingCT transaction
outputs per block. The results of our experiment (along
with a comparison of the countermeasures proposed in the
next section) are shown in Figure [T}

S Improved Mixin Sampling

In this section we discuss a way to improve the sampling
procedure. At a high level, the idea is to estimate the actual
spend-time distribution, and then sample mixins according
to this distribution.

Estimating the spend-time distribution. Monero core
developer smooth justified the choice of the triangular
distribution by the heuristic that this is the “lack of knowl-
edge” distribution [4]. As we are now equipped with data
from the Monero blockchain, we thus set about fitting a
model to this data.

In Figure[I0] we show the spend-time distributions from
the Monero blockchain as well as the Bitcoin blockchain.
For the Monero data, we split the data by 0-mixin trans-
action inputs as well as the 1+ mixin inputs, and divide
between for which we can deduce the real input.

From this graph, we make the following qualitative ob-
servations:

e Observation 1: The spend-time distribution appears in-
variant with respect to time.

e Observation 2: The spend-time distribution appears the
same for O-mixin as well as 1+ mixin transactions.

e Observation 3: The spend-time distribution has a similar
shape in Monero and in Bitcoin, although the spend time
is different.

We heuristically determined that the spend time distri-
butions, when plot on a log scale, are closely matched
by the shape of a gamma distribution. We used R’s fit-
distr function to fit a gamma distribution to the com-
bined Monero data from deducible transaction inputs (in
log seconds). The resulting best-fit distribution has shape
parameter 19.28, and rate parameter 1.61. By inspection
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Figure 10: Spend-time distributions in Bitcoin and in Mon-
ero (deducible transaction inputs), over multiple time in-
tervals. A gamma distribution (black line) is fitted to the
combined Monero data (shape=19.28, rate=1.61).

(Figure[I0), this appears to accurately fit the overall Mon-
ero spend-time distribution.

Sampling mixins according to the spend-time distri-
bution. To make use of the spend-time distribution de-
scribed above, we next need to identify a way of sampling
transaction output indices that matches the ideal spend-
time distribution as closely s possible. Our proposed mech-
anism is to first sample a target timestamp directly from
the distribution, and then find the nearest block containing
at least one RingCT output. From this block, we sam-
ple uniformly among the transaction outputs in that block.
This procedure is defined Algorithm [T}

Evaluating our improved sampling strategy. To quan-
tify the effectiveness of our new sampling scheme, we turn
again to the Monte Carlo simulation described in the pre-
vious section. Figure [[T]shows the effective linkability set
under our proposed mixin sampling routine, extrapolated
out six and twelve months.

Our scheme performs very close to ideal when applied
to actual blockchain data, even for large numbers of mix-
ins. At the default setting of 4 mixins, our method nearly
doubles the effective linkability set; for large numbers of
mixins, our improvement is nearly four times better. In our
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Algorithm 1: Our proposed mixin sampling scheme.
SAMPLEMIXINS(RealOut, NumMixins)
MixinVector := [J;
while |MixinVector| < BaseRegMixCount do
t < Exp(GammaSample (shape=19.28,
rate=1.61));
if t > CurrentTime then
| continue;

Let B be the block containing at least one RingCT
output, with timestamp closest to CurrentTime-t;
i < uniformly sampled output among the RingCT
outputs in B if i ¢ MixinVector and i #
RealOut.idx then
| MixinVector.append(i);

return sorted(MixinVector 4 [RealOut.idx]);

extrapolated dataset, our method performs slightly worse
than ideal at 6 months and 12 months out, although still
much better than the current method, and staying within
75% of the ideal.

Daemon privacy. In the Monero implementation, the
wallet software runs as a separate process that commu-
nicates with the monerod full node. Only the wallet has
access to the user’s keys, but it does not have access to
the entire blockchain dataset. We note that the current
Monero mixin sampling routines are designed in part to
protect against eavesdropping from the Monero daemon:
the wallet generates a list of output indices in sorted or-
der (including the index of the actual output being spent)
and requests all the corresponding public keys from the
daemon. Our proposed solution requires searching the
blockchain database for the nearest block matching a tar-
get timestamp. Thus to implement our proposal would
require expanding the wallet so that it maintains a dataset
of each block header, along with the number of RingCT
outputs included in each block. In future work we plan
to evaluate the overhead this would impose on the wallet
software.
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Figure 11: Projection of Guess-First vulnerability, and the
improvement due to our proposed scheme.

6 Discussion and Recommendations

We have identified two weaknesses in Monero’s mixin
selection policy, and shown that they pose a significant risk
of linkability to early Monero transactions. In light of these
findings, we make the following three recommendations
to the Monero developer community:

Recommendation 1. The mixing sampling distribution
should be modified to closer match the real distribu-
tion. We have provided evidence that the strategy by
which Monero mixins are sampled results in a different
time distribution than real spends, significantly undermin-
ing the unlinkability mechanism. To correct this problem,
the mixins should ideally be sampled in such a way that
the resulting time distributions match.

A report from Monero Research Labs cited the difficulty
of frequently tuning parameters based on data collection
(especially since the data collection mechanism itself be-
comes a potential target for an attacker hoping to alter the
parameters) [[7]].

Fortunately, we provide preliminary evidence that the
distribution of “spend-times” changes very little over time
(and in fact is similar even in different cryptocurrencies).
Hence we recommend a sampling procedure based on a
model of spending times derived from blockchain data, as
discussed in Section

Recommendation 2: The Monero community should
engage in further data-backed analysis of privacy
claims. We have examined the vulnerability of Monero’s
sampling strategies to simple linking techniques, using
data from the publicly available blockchain dataset, and
proposed a countermeasure that we show thwarts these
techniques. However, there remain many possible analysis
avenues, including network analysis, side channels, and
more sophisticated statistical methods. These have been
discussed informally within the community (7], but not yet
substantiated with data. We suggest that future changes to
the protocol should be validated with such analysis prior
to deployment.

Recommendation 3: Monero users should be warned
that their prior transactions are likely vulnerable to
linking analysis. A significant fraction (62%) of Mon-
ero transactions with one or more mixins are deducible
(i.e., contain only deducible mixins), and therefore can be
conclusively linked. Furthermore, we estimate that among
all transaction inputs so far, the “GuessNewest” heuris-
tic can be used to identify the correct mixin with 80%
accuracy.

Complementing this report, we have launched a block
explorer website, http://monerolink. comE] which dis-
plays the linkages between transactions inferred using our
techniques. We recommend additionally developing a wal-
let tool that users can run locally to determine whether
their previous transactions are vulnerable.

Ethics. We released an initial draft of this report to Mon-
ero core developers, and intend to support the development
and evaluation of countermeasures. However, we believe
it is in the best interests of Monero users that we publish
this report immediately, without waiting for countermea-
sures to be deployed. One reason for our decision is that
the data from the Monero blockchain is public and widely
replicated, and thus delaying this report would not mitigate
post-hoc analysis, which can be carried out at any future
time. Second, countermeasures built into future versions of
the Monero software would not affect the vulnerability of

3We do not plan to maintain this website for more than a year; we will
therefore update the online version of this article to point to a snapshot
on Internet Archive.
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transactions occurring between the time of our publication
and the deployment of such future versions.
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A Detailed Description of our Mod-
els of Monero Sampling Routines

In Algorithms we give pseudocode for the mixin se-
lection procedures used in our simulation (Section ). The
changes between each successive version are highlighted
in blue. We note that these are simplified models of the
mixin sampling behavior in the Monero client, in particu-
lar they elide over edge cases that avoid spending “locked”
coins that have recently been mined. The full code list-
ing of the Monero client can be found on the Monero git
repositoryE] E]

Algorithm 2: SAMPLEMIXINS(RealOut, NumMixins)

[vPre0.9.0]
Let TopGldx be the index of the most recent

transaction output with denomination
RealOut.amount;
BaseRegMixCount := | (NumMixins+1) x 1.5+1];
while |MixinVector| < BaseRegMixCount do
i+ UniformSelect (0, TopGldx);
if i ¢ MixinVector and i # RealOut.idx then
| MixinVector.append(i);

Let FinalVector be a uniform random choice of
NumMixins elements from MixinVector;
return sorted(FinalVector + [RealOut.idx]);

4https://github.com/monero-project/monero/blob/v0.
9.0/src/wallet/wallet2.h#L570

>https://github.com/monero-project/monero/blob/v0.
10.0/src/wallet/wallet2. cpp#L3605

Algorithm 3: SAMPLEMIXINS(RealOut, NumMixins)

[v0.9.0]
Let TopGldx be the index of the most recent

transaction output with denomination
RealOut.amount;
BaseRegMixCount := | (NumMixins+1) x 1.5+ 1];
MixinVector := [];
while |MixinVector| < BaseRegMixCount do
i < TriangleSelect (0, TopGldx);
if i ¢ MixinVector and i # RealOut.idx then
| MixinVector.append(i);

Let FinalVector be a uniform random choice of
NumMixins elements from MixinVector;
return sorted(FinalVector 4 [RealOut.idx]);

Algorithm 4: SAMPLEMIXINS(RealOut, NumMixins)

[v0.10.1]
Let TopGldx be the index of the most recent

transaction output with denomination
RealOut.amount;
BaseRegMixCount := | (NumMixins+1) x 1.5+ 1];
Let RecentGldx be the index of the most recent
transaction output prior to 5 days ago with
denomination RealOut.amount prior to 5 days ago;
BaseReqRecentCount := MAX(1, MIN(
TopGldx - RecentGldx + 1,
BaseRegMixCount x RecentRatio));
if RealOut.idx > RecentGldx then
| BaseRegRecentCount -= 1
MixinVector := [];
while |MixinVector| < BaseRegRecentCount do
i < UniformSelect (RecentGldx, TopGldx);
if i ¢ MixinVector and i # RealOut.idx then
| MixinVector.append(i);

while |MixinVector| < BaseRegMixCount do

i < TriangleSelect (0, TopGldx);

if i ¢ MixinVector and i # RealOut.idx then
| MixinVector.append(i);

Lgt FinalVector be a uniform random choice of
NumMixins elements from MixinVector;
return sorted(FinalVector + [RealOut.idx]);
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