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Abstract 

Background  Given a sequencing read, the broad goal of read mapping is to find the location(s) in the reference 
genome that have a “similar sequence”. Traditionally, “similar sequence” was defined as having a high alignment score 
and read mappers were viewed as heuristic solutions to this well-defined problem. For sketch-based mappers, how-
ever, there has not been a problem formulation to capture what problem an exact sketch-based mapping algorithm 
should solve. Moreover, there is no sketch-based method that can find all possible mapping positions for a read 
above a certain score threshold.

Results  In this paper, we formulate the problem of read mapping at the level of sequence sketches. We give an exact 
dynamic programming algorithm that finds all hits above a given similarity threshold. It runs in O(|t| + |p| + ℓ2) 
time and O(ℓ log ℓ) space, where |t| is the number of k-mers inside the sketch of the reference, |p| is the number of k
-mers inside the read’s sketch and ℓ is the number of times that k-mers from the pattern sketch occur in the sketch 
of the text. We evaluate our algorithm’s performance in mapping long reads to the T2T assembly of human chromo-
some Y, where ampliconic regions make it desirable to find all good mapping positions. For an equivalent level of pre-
cision as minimap2, the recall of our algorithm is 0.88, compared to only 0.76 of minimap2.

Keywords  Sequence sketching, Long-read mapping, Exact algorithm, Dynamic programming

Introduction
Read mapping continues to be one of the most 
fundamental problems in bioinformatics. Given a read, 
the broad goal is to find the location(s) in the reference 
genome that have a “similar sequence”. Traditionally, 
“similar sequence” was defined as having a high alignment 
score and read mappers were viewed as heuristic 
solutions to this well-defined problem. However, the last 
few years has seen the community embrace sketch-based 
mapping methods, best exemplified by minimap2  [1] 
(see  [2] for a survey). These read mappers work not on 
the original sequences themselves but on their sketches, 
e.g. the minimizer sketch. As a result, it is no longer 
clear which exact problem they are trying to solve, as the 
definition using an alignment score is no longer directly 
relevant. To the best of our knowledge, there has not 
been a problem formulation to capture what problem an 
exact sketch-based mapping algorithm should solve.

In this work, we provide a problem formulation 
(Section "Problem definition") and an exact algorithm to 
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find all hits above a given score (Section  "Algorithm for 
the Sketch Read Mapping Problem"). More formally, we 
consider the problem of taking a sketch t of a text T and 
a sketch p of a query P and identifying all sub-sequences 
of t that match p with a score above some threshold. A 
score function could for example be the weighted Jaccard 
index, though we explore several others in this paper 
(Section "Score function"). We provide both a simulation-
based and an analytical-based method for setting the 
score threshold (Section "Choosing a threshold") 1.

Other sketch-based mappers are heuristic: they 
typically find matching elements between the reference 
and the read sketches (i.e. anchors) and extend these 
into maps using chaining  [2]. Our algorithm is more 
resource intensive than these heuristics, as is typical for 
exact algorithms. However, a problem formulation and 
an exact algorithm gives several long-term benefits. First, 
the exact algorithm could be used in place of a greedy 
heuristic when the input size is not too large. Second, the 
formulation can spur development of exact algorithms 
that are optimized for speed and could thus become 
competitive with heuristics. Third, the formulation could 
be used to find the most effective score functions, which 
can then guide the design of better heuristics. Finally, our 
exact algorithm can return all hits with a score above a 
threshold, rather than just the best mapping(s). This is 
important for tasks such as the detection of copy number 
variation  [3] or detecting variation in multi-copy gene 
families [4].

We evaluate our algorithm (called eskemap), 
using simulated long reads from the T2T human Y 
chromosome (Section  "Results"). For the same level 
of precision, the recall of eskemap is 0.88, compared 
to 0.76 of minimap2. This illustrates the power of 
eskemap as a method to recover more of the correct 
hits than a heuristic method. We also compare against 
Winnowmap2  [5] and edlib  [6], which give lower recall 
but higher precision than eskemap.

Preliminaries
Sequences.  Let t be a sequence of elements (e.g. k-
mers) that may contain duplicates. We let |t| denote 
the length of the sequence, and we let t[i] refer to the 
i-th element in t, with t[0] being the first element. For 
0 ≤ i ≤ j < |t| , let t[i,  j] represent the subsequence 
(t[i], t[i + 1], . . . , t[j]) . The set of elements in t is denoted 
by t , e.g. if t = (ACG,TTT,ACG) then t = {ACG,TTT} . We 
let occ(x, t) represent the number of occurrences of an 
element x in t, e.g. occ(ACG, t) = 2.

Sketch. Let T be a string and let t be the sequence of k
-mers appearing in T. Note that t is a sequence of DNA 
sequences. For example, if T = ACGAC and k = 2 , then 
t = (AC,CG,GA,AC) . For the purposes of this paper, 
a sketch of T is simply a subsequence of t, e.g. (AC,GA) . 
This type of sketch could for example be a minimizer 
sketch  [7, 8], a syncmer sketch  [9], or a FracMinHash 
sketch [10, 11].
Scoring Scheme.  A scoring scheme (sc, thr) is a pair of 
functions: the score function and the threshold func-
tion. The score function sc is a function that takes as 
input a pair of non-empty sketches and outputs a real 
number, intuitively representing the degree of similarity. 
We assume it is symmetric, i.e. sc(p, s) = sc(s, p) for all 
sketches p and s. If the score function has a parameter, 
then we write sc(s, p; θ) , where θ is a vector of parame-
ter values. The threshold function thr takes the length of 
a sketch and returns a score cutoff threshold, i.e. scores 
below this threshold are not considered similar. Note 
that the scoring scheme is not allowed to depend on the 
underlying nucleotide sequences besides what is cap-
tured in the sketch.
Miscellenous. We use Uk to denote the universe of all k-
mers. Given two sequences p and s, the weighted Jaccard 

is defined as 
∑

x∈Uk
min(occ(x,p),occ(x,s))

∑

x∈Uk
max(occ(x,p),occ(x,s))

 . It is 0 when s and p 

do not share any elements, 1 when s is a permutation of 
p, and strictly between 0 and 1 otherwise. The weighted 
Jaccard is a natural extension of Jaccard similarity that 
accounts for multi-occurring elements.

Problem definition
In this section, we first motivate and then define the 
Sketch Read Mapping Problem. Fix a scoring scheme 
(sc, thr) . Let p and t be two sketches, which we refer to 
as the pattern and the text, respectively. Define a candi-
date mapping as a subinterval t[a, b] of t. A naive prob-
lem definition would ask to return all candidate mappings 
with sc(p, t[a, b]) ≥ thr(|p|).2 However, a lower-scoring 
candidate mapping could contain a higher-scoring can-
didate mapping as a subinterval, with both scores above 
the threshold. This may arise due to a large candidate 
mapping containing a more conserved small candidate 
mapping, in which case both candidate mappings are of 
interest. But it may also arise spuriously, as a candidate 
mapping with a score sufficiently higher than thr(|p|) can 

1  Our algorithm runs in time O(|t| + |p| + ℓ2) and space O(ℓ log ℓ) , 
where ℓ is the number of times that k-mers from p occur in t

2  Notice that in this framing, the threshold is not a single parameter but can 
vary depending on the read’s (sequence or sketch) length. This gives flexibil-
ity to the scoring function, since the scores of candidate mappings of reads 
of different lengths do not need to be comparable to each other. Moreover, 
computing the threshold value is not a challenge since it needs to be com-
puted just once for each read.
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be extended with non-shared k-mers that decrease the 
score but not below the threshold.

To eliminate most of these spurious cases, we say 
that a candidate mapping t[a,  b] is left-reasonable if 
and only if occ(t[a], t[a, b]) ≤ occ(t[a], p) . Similarly, 
a candidate mapping t[a,  b] is right-reasonable if and 
only if occ(t[b], t[a, b]) ≤ occ(t[b], p) . A candidate map-
ping is reasonable if it is both left- and right-reasona-
ble. In other words, a reasonable candidate mapping 
must start and end with a k-mer that has a match in 
the pattern. We also naturally do not wish to report a 
candidate mapping that is a subinterval of a longer can-
didate mapping with a larger score. Formally, we call 
a candidate mapping t[a, b] maximal if there does not 
exist a candidate mapping t[a′, b′] , with a′ ≤ a ≤ b ≤ b′ 
and sc(t[a′, b′], p) > sc(t[a, b], p) . We can now formally 
define t[a, b] to be a final mapping if it is both maximal 
and reasonable and sc(t[a, b], p) ≥ thr(|p|) . The Sketch 
Read Mapping Problem is then to report all final map-
pings. An example is given in Fig. 1. We now restate the 
problem in a succinct manner:

Definition 1  (Sketch Read Mapping Problem). Given a 
pattern sketch p, a text sketch t, a score function sc, and 
a threshold function thr, the Sketch Read Mapping Prob-
lem is to find all 0 ≤ a ≤ b < |t| such that

•	 sc(p, t[a, b]) ≥ thr(|p|),
•	 occ(t[a], t[a, b]) ≤ occ(t[a], p),
•	 occ(t[b], t[a, b]) ≤ occ(t[b], p),
•	 there does not exist a′ ≤ a ≤ b ≤ b′ such that 

sc(t[a′, b′], p) > sc(t[a, b], p) , i.e. t[a, b] is maximal.

Score function
In this section, we explore the design space of score 
functions and fix two score functions for the rest of 
the paper. Let p be the sketch of the pattern and let 
s be a continuous subsequence of the sketch of the 
text t, i.e. s = t[a, b] for some a ≤ b . For example if 
p = (ACT,GTA,TAC) and t = (AAC,ACT,CCT,GTA) , we 
could have s = t[1, 3] = (ACT,CCT,GTA) . In the context of 
the Sketch Read Mapping Problem, p is fixed and s varies. 
Therefore, while the score function is symmetric, the 
threshold function sets the score threshold as a function of 
|p|. Since p is fixed, the threshold is a single number in the 
context of a single problem instance.

In the following, we exclusively consider score functions 
that calculate the similarity of s and p by ignoring the order 
of k-mers inside the sketches. Taking k-mer order into 
account would likely make it more complex to compute 
scores, while not necessarily giving better results on real 
data. However, score functions that do take order into 
account are possible and could provide better accuracy in 
some cases.

A good score function should reflect the number of k
-mers shared between s and p. For a given k-mer x, we 
define

Intuitively, x occurs a certain number of times in p and 
a certain number of times in s; we let xmin be the smaller 
of these two numbers and xmax be the larger of these 
two numbers. Similarly, xdiff is the absolute difference 
between how often x occurs in p and s. We say that the 

xmin := min(occ(x, p), occ(x, s))

xmax := max(occ(x, p), occ(x, s))

xdiff := xmax − xmin

Fig. 1  An example of the Sketch Read Mapping Problem. We show all candidate mappings t[a, b] for a given pattern p and a text t. Each candidate 
mapping is represented by its score calculated using scℓ(p, t[a, b]; 1) (see Section "Score Function"). Reasonable candidate mappings are shown 
in black (rather than gray) and final mappings are further bolded
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number of shared occurrences is 2xmin and the number of 
non-shared occurrences is xdiff . These quantities are gov-
erned by the relationships

A good score function should be (1) increasing with 
respect to the number of shared occurrences and (2) 
decreasing with respect to the number of non-shared 
occurrences. There are many candidate score functions 
within this space. The first score function we consider is 
the weighted Jaccard. Formally,

The above formula includes first the definition but then 
two algebraically equivalent versions of it, derived using 
Eq. 1. The weighted Jaccard has the two desired proper-
ties of a score function and is a well-known similarity 
score. However, it has two limitations. First, the use of a 
ratio makes it challenging to analyze probabilistically, as 
is the case with the non-weighted Jaccard  [12]. Second, 
it does not offer a tuning parameter which would control 
the relative benefit of a shared occurrence to the cost of 
a non-shared occurrence. We therefore consider another 
score function, parameterized by a real-valued tuning 
parameter w > 0:

It is sometimes more useful to use an equivalent 
formulation, obtained using Eq. 1:

As with the weighted Jaccard, scℓ has the two desired 
properties of a score function. But, unlike the weighted 
Jaccard, it is linear and contains a tuning parameter w.

To understand how score functions relate to each other, 
we introduce the notion of domination and equivalence. 
Informally, a score function sc1 dominates another score 
function sc2 when sc1 can always recover the separation 
between good and bad scores that sc2 can. In this case, 
the solution obtained using sc2 can always be obtained by 
using sc1 instead. Formally, let sc1 and sc2 be two score 
functions, parameterized by θ1 and θ2 , respectively. We 
say that sc1 dominates sc2 if and only if for any param-
eterization θ2 , threshold function thr2 , and pattern sketch 

(1)|s| + |p| =
∑

x∈Uk

occ(x, p)+ occ(x, s) =
∑

x∈Uk

xmin + xmax =
∑

x∈Uk

2xmin + xdiff .

(2)

scj(s, p) :=

∑

x∈Uk
xmin

∑

x∈Uk
xmax

=

∑

x xmin

|s| + |p| −
∑

x xmin
=

∑

x xmin
∑

x(xmin + xdiff )

scℓ(s, p;w) :=
∑

x∈Uk

xmin − wxdiff .

(3)scℓ(s, s
′;w) =

∑

x∈Uk

(1+ 2w)xmin − w(|s| + |s′|).

p there exist a θ1 and thr1 such that, for all sequences 
s, we have that sc2(s, p; θ2) ≥ thr2(|p|) if and only if 
sc1(s, p; θ1) ≥ thr1(|p|) . Furthermore, sc1 dominates sc2 

strictly if and only if the opposite does not hold, i.e. sc2 
does not dominate sc1 . Otherwise, sc1 and sc2 are said to 
be equivalent, i.e. if and only if each one dominates the 
other.

We can now precisely state the relationship between scℓ 
and scj , i.e. that scℓ strictly dominates scj . In other words, 
any solution to the Sketch Read Mapping Problem that is 
obtained by scj can also be obtained by scℓ , but not vice-
versa. Formally,

Theorem 1  scℓ strictly dominates the weighted Jaccard 
score function scj.

Proof  We start by proving that scℓ dominates scj . Let 
p be a pattern sketch and let thrj be the threshold func-
tion associated with scj . We will use the shorthand 
t = thrj(|p|) . First, consider the case that t < 1 . Let 
w = t

1−t and let thrℓ evaluate to zero for all inputs. Let 
s be any sketch. The following is a series of equivalent 
transformations that proves domination.

Next, consider the case t > 1 . In this case, for all s, 
scj(s, p) < t , since the weighted Jaccard can never exceed 
one. Observe that scℓ(s, p;w) ≤ |p| for any non-negative 
w. Therefore, we can set thrℓ(|p|) = |p| + 1 and let w be 
any non-negative number, guaranteeing that for all s, 
scℓ(s, p;w) < thrℓ(|p|).

Finally consider the case that t = 1 . Then, scj(s, p) ≥ t 
if and only if s and p are permutations of each other, 
i.e. xdiff = 0 for all x. Setting thrℓ(|p|) = |p| and 

scj(s, p) ≥ t
∑

x xmin
∑

x xmin + xdiff
≥ t

∑

x

xmin ≥
∑

x

txmin + txdiff

∑

x

(1− t)xmin − txdiff ≥ 0

∑

x

xmin −
t

1− t
xdiff ≥ 0

scℓ(s, p;w) ≥ thrℓ(|p|)
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letting w be any strictly positive number guarantees that 
scℓ(s, p;w) ≥ thrℓ(|p|) if and only if s and p are permuta-
tions of each other.

To prove that scℓ is not dominated by scj , we fix w = 1 
(though any value could be used) and give a counterex-
ample family to show that scj cannot recover the sepa-
ration that scℓ can. Pick an integer i ≥ 1 to control the 
size of the counterexample. Let p be a pattern sketch 
of length 4i consisting of arbitrary k-mers. We con-
struct two sketches, s1 and s2 . The sequence s1 is an 
arbitrary subsequence of p of length i. Observe that 
∑

x∈p∪s1
xmin =

∑

x occ(x, s1) = i . The sequence s2 is 
p appended with arbitrary k-mers to get a length 12i. 
Observe that 

∑

x∈p∪s2
xmin =

∑

x occ(x, p) = 4i . Using 
Eq. 3 for scℓ and Eq. 2 for scj,

Under scℓ , s1 has a higher score, while under scj , s2 has 
a higher score. If thrℓ is set to accept s1 but not s2 (e.g. 
thrℓ = −3i ), then it is impossible to set thrj to achieve the 
same effect. In other words, since scj(s2) > scj(s1) , any 
threshold that accepts s1 must also accept s2 . 	�  �

Next, we show that many other natural score functions 
are equivalent to scℓ . Consider the following score 
functions:

The conditions on the parameters are there to enforce 
the two desired properties of a score function. Each of 
these score functions is natural in its own way, e.g. scA 
is similar to scℓ but places the weight on xmin rather than 
on xdiff . One could also have two separate weights, as in 
the score scB . One could then replace xdiff with xmax , as 
in scC , which is the straightforward reformulation of the 
weighted Jaccard score as a difference instead of a ratio. 
Or one could replace xdiff with the length of s, as in scD . 
The following theorem shows that the versions turn out 
to be equivalent to scℓ and to each other. The proof is a 
straightforward algebraic manipulation and is left for the 
appendix.

scℓ(s1, p) = −2i

scℓ(s2, p) = −4i

scj(s1, p) = 1/4

scj(s2, p) = 1/3

scA(s, p; a1) :=
∑

x∈Uk

(a1xmin − xdiff ) with a1 > 0

scB(s, p; b1, b2) :=
∑

x∈Uk

(b1xmin − b2xdiff ) with b1 > 0 and b2 > 0

scC(s, p; c1, c2) :=
∑

x∈Uk

(c1xmin − c2xmax) with c1 > c2 > 0

scD(s, p; d1, d2) :=
∑

x∈Uk

(d1xmin)− d2|s| with d1 > 2d2 and d2 > 0

Theorem  2  The score functions scℓ , scA , scB , scC , and 
scD are pairwise equivalent.

Choosing a threshold
In this section, we propose two ways to set the score 
threshold. The first is analytical (Section  "Analytical 
analysis") and the second is with simulations 
(Section  "Simulation-based analysis"). The analytical 
approach gives a closed form formula for the expected 
value of the score under a mutation model. However, 
it only applies to the FracMinHash sketch, assumes a 
read has little internal homology, and does not give a 
confidence interval. The simulation approach can apply 
to any sketch but does not offer any analytical insight 
into the behavior of the score. The choice of approach 
ultimately depends on the use case.

We first need to define a generative mutation model to 
capture both the sequencing and evolutionary divergence 
process:

Definition 2  (Mutation model). Let S be a circular 
string3 with n characters. The mutation model produces 
a new string S′ by first setting S′ = S and then taking the 
following steps: 

1.	 For every 0 ≤ i < n , draw an action 
ai ∈ {sub, del,unchanged} with probability of psub for 
sub, pdel for del, and 1− psub − pdel for unchanged. 
Also, draw an insertion length bi from a geometric 
distribution with mean pins.4

2.	 Let track be a function mapping from a position 
in S to its corresponding position in S′ . Initially, 

3  We assume the string is circular to avoid edge cases in the analysis but, for 
long enough strings, this assumption is unlikely to affect the accuracy of the 
results.
4  Here, a geometric distribution is the number of failures before the first 
success of a Bernoulli trial. This geometric distribution has parameter 1

pins+1
.
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track(i) = i , but as we delete and add characters to 
S′ , we assume that track is updated to keep track of 
the position of S[i] in S′.

3.	 For every i such that ai = sub , replace S′[i] with one 
of the three nucleotides not equal to S[i], chosen uni-
formly at random.

4.	 For every 0 ≤ i < n , insert bi nucleotides (chosen 
uniformly at random) before S′[track(i)].

5.	 For every i such that ai = del , remove S′[track(i)] 
from S′.

Analytical analysis
To derive an expected score under the mutation 
model, we need to specify a sketch. We will use the 
FracMinHash sketch  [10], due to its simpliticy of 
analysis [11].

Definition 3  (FracMinHash). Let h be a hash function 
that maps a k-mer to a real number between 0 and 1, 
inclusive. Let 0 < q ≤ 1 be a real-valued number called 
the sampling rate. Let S be a string. Then the FracMin-
Hash sketch of S, denoted by s, is the sequence of all k
-mers x of S, ordered as they appear in S, such that 
h(x) ≤ q.

Consider an example with k = 2 , S = CGGACGGT , 
and the only k-mers hashing to a value ≤ q being CG 
and GG. Then, s = (CG,GG,CG,GG).

We make an assumption, which we refer to as the 
mutation-distinctness assumption, that the mutations 
on S never create a k-mer that is originally in S. Based 
on previous work [13], we find this necessary to make 
the analysis mathematically tractable (for us). The 
results under this assumption become increasingly 
inaccurate as the read sequence contains increasingly 
more internal similarity. For example, reads coming 
from centromeres might violate this assumption. In 
such cases, it may be better to choose a threshold using 
the technique in Section "Simulation-based Analysis".

We can now derive the expected value of the score 
under the mutation model and FracMinHash.

Theorem 3  Let S be a circular string and let S′ be gen-
erated from S under the mutation model with the muta-
tion-distinctness assumption and with parameters psub , 
pdel , and pins . Let s and s′ be the FracMinHash sketches of 
S and S′ , respectively, with sampling rate q. Then, for all 
real-valued tuning parameters w > 0,

where α =
(1−pdel−psub)

k

(pins+1)k−1 .

Proof  Observe that under mutation-distinctness 
assumption, the number of occurrences of a k-mer that is 
in s can only decrease after mutation, and a k-mer that is 
newly created after mutation has an xmin of 0. Therefore, 
applying Eq. 3,

(Recall that s is the set of all k-mers in s.) We will first 
compute the score conditioned on the hash function of 
the sketch being fixed. Note that when h is fixed, then the 
sketch s becomes fixed and s′ becomes only a function of 
S′ . By linearity of expectation,

It remains to compute E[|s′| | h] and E[occ(x, s′) | h] . 
Observe that the number of elements in s′ is the num-
ber of elements in s minus the number of deletions 
plus the sum of all the insertion lengths. By linearity of 
expectation,

Next, consider a k-mer x ∈ s and E[occ(x, s′)] . Recall 
by our mutation model that no new occurrenes of x are 
introduced during the mutation process. So occ(x, s′) is 
equal to the number of occurrences of x in S that remain 
unaffected by mutations. Consider an occurrence of x in 
s. The probability that it remains is the probability that all 
actions on the k nucleotides of x were “unchanged” and 
the length of all insertions in-between the nucleotides 
was 0. Therefore,

E[scℓ(s, s
′;w)] = |s|q(α + w(2α − 2+ pdel − pins)),

scℓ(s, s
′;w) =

∑

x∈s

(1+ 2w)occ(x, s′)− w(|s| + |s′|)

(4)
E[scℓ(s, s

′;w) | h] =
∑

x∈s

(1+ 2w)E[occ(x, s′) | h] − w(|s| + E[|s′| | h])

E[|s′| | h] = |s| − pdel|s| + pins|s| = |s|(1− pdel + pins)

E[occ(x, s′) | h] = occ(x, s)(1− pdel − psub)
k

(

1

pins + 1

)k−1

= αocc(x, s)
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Putting it all together,

To add the sketching step, we know from  [11] that the 
expected size of a sketch is the size of the original text 
times q. Then,

	�  �

Simulation‑based analysis
First, we choose the parameters of the mutation model 
according to the target sequence divergence between 
the reads and the reference caused by sequencing errors, 
but also due to the evolutionary distance between the 
reference and the organism sequenced. If one is also 
interested in mapping reads to homologous regions 
within the reference that are related more distantly, e.g. 
if there exist multiple copies of a gene, the mutation 
parameters can be increased further.

To generate a threshold for a given read length, we gen-
erate sequence pairs (S, S′) , where S is a uniformly ran-
dom DNA sequence of the given length and S′ is mutated 
from S under the above model. We then calculate the 
sketch of S and S′ , which we call s and s′ , respectively. The 
sketch can for example be a minimizer sketch, a syncmer 
sketch, or a FracMinHash sketch. We can then use the 
desired score function to calculate a score for each pair 
(s, s′) . For a sufficiently large number of pairs, their scores 
will form an estimate of the underlying score distribution 
for sequences that evolved according to the used model. 
It is then possible to choose a threshold such that the 
desired percentage of mappings would be reported by 
our algorithm. For example, one could choose a thresh-
old to cover a one sided 95% confidence interval of the 
score.

In order to be able to adjust thresholds according to 
the variable length of reads produced from a sequencing 

E[scℓ(s, s
′;w) | h] =

∑

x∈s

(1+ 2w)E[occ(x, s′) | h] − w(|s| + E[|s′| | h])

= α(1+ 2w)
∑

x∈s

occ(x, s)− w(|s| + |s|(1− pdel + pins))

= α(1+ 2w)|s| − w(|s| + |s|(1− pdel + pins))

= |s|(α(1+ 2w)− w(2− pdel + pins))

= |s|(α + w(2α − 2+ pdel − pins))

E[scℓ(s, s
′;w)] = E[E[scℓ(s, s

′;w) | h]]

= E[|s|(α + w(2α − 2+ pdel − pins))]

= E[|s|](α + w(2α − 2+ pdel − pins))

= |s|q(α + w(2α − 2+ pdel − pins))

run, the whole process may be repeated several times 
for different lengths of S. Thresholds can then be 

interpolated dynamically for dataset reads whose lengths 
were not part of the simulation.

Algorithm for the Sketch Read Mapping Problem
In this section,5 we describe a dynamic programming 
algorithm for the Sketch Read Mapping Problem under 
both the weighted Jaccard and the linear scores ( scj and 
scℓ , respectively). Let t be the sketch of the text, let p be 
the sketch of the pattern, let L be the sequence of posi-
tions in t that have a k-mer that is in p , in increasing 
order, and let ℓ = |L| . Our algorithm takes advantage of 
the fact that p is typically much shorter than t and hence 
the number of elements of t that are shared with p is 
much smaller than |t| (i.e. ℓ ≪ |t| ). In particular, it suf-
fices to consider only candidate mappings that begin and 
end in positions listed in L, since by definition, if t[a, b] 
is a reasonable candidate mapping, then t[a] ∈ p and 
t[b] ∈ p.

We present our algorithm as two parts. In 
the first part (Section  "Computing S"), we com-
pute a matrix S with ℓ rows and ℓ columns so that 
S(i, j) =

∑

x min(occ(x, p), occ(x, t[L[i], L[j]]) . S is only 
defined for j ≥ i . We also store an index i∗ for each column 
j indicating the smallest index for which t[L[i∗], L[j]] is a 
right-reasonable candidate mapping. In the second part 
(Section "Computing maximality"), we scan through S and 
output the candidate mapping t[i, j] if and only if it is rea-
sonable, maximal and has a score above the threshold.

The reason that S(i, j) is not defined to store the score of 
the candidate mapping t[L[i], L[j]] is that the score can be 
computed from S(i, j) in constant time, for both scj and scℓ . 
To see this, let xmin := min(occ(x, p), occ(x, t[L[i], L[j]]) . 
Recall that Eq.  2 allows us to express scj(t[i, j], p) as a 
function of 

∑

xmin , |p|, and the length of the candidate 
mapping, i.e. j − i + 1 . Similarly, we can apply Eq.  1 to 
express scℓ as

5  This section has been substantially updated in comparison to the confer-
ence version of this paper [14]. In particular, Algorithm 1 has been modified 
so that it computes S in a right-to-left scan, rather than left-to-right. In this 
way, S does not need to be stored in memory, eliminating the �(ℓ2) space 
requirement.
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Thus, once 
∑

x xmin is computed, either of the scores can 
be computed trivially.

Computing S
We compute S using dynamic programming. We will 
give a recurrence for S so that it can be filled in from 
right-to-left. For the base case of the last column, we 
start by setting S(ℓ− 1, ℓ− 1) = 1 . This is trivially 
correct since L[ℓ− 1] ∈ p by definition. We then fill in 
the last column, starting from i = ℓ− 2 and going down 
to i = 0 . If occ(t[L[i]], t[L[i], L[ℓ− 1]]) ≤ occ(t[L[i]], p) , 
then we set S(i, ℓ− 1) = S(i + 1, ℓ− 1)+ 1 . Otherwise, 
we set S(i, ℓ− 1) = S(i + 1, ℓ− 1) . For the remaining 
cells of S, i.e. for all i and j such that 0 ≤ i ≤ j < ℓ− 1 , 
we use the recursive formula:

To see the correctness of this formula, observe that all 
the elements of t[L[j] + 1, L[j + 1] − 1] are, by definition, 
not in p and hence their minimum occurrence value 
is 0. If the element x = t[L[j + 1]] helps to increase 
min(occ(x, t[L[i], L[j + 1]]), occ(x, p)) , then excluding 
it decreases the minimum count by one, otherwise the 
minimum occurrence does not change. To maintain the 
smallest value of i for which S(i, j + 1) is right-reasonable, 
it is enough to observe that S(i, j + 1) is right-reasonable 
if and only if the top case is used.

To design an efficient algorithm based on Eq.  5, 
we need two auxiliary data structures. The first is 
a hash table Pcnt that stores, for every k-mer in p , 
how often it occurs in p. A second hash table Tcnt 
is used to store a count for every k-mer in p . Tcnt 

scℓ(t[i, j], p;w) :=
∑

x

(xmin − wxdiff ) =

(

∑

x

xmin

)

− w(|s| + |p| −
∑

x

2xmin)

= (1+ 2w)
∑

x

xmin − w(j − i + 1+ |p|)

(5)S(i, j) = S(i, j + 1)−

{

1 if occ(t[L[j + 1]], t[L[i], L[j + 1]]) ≤ occ(t[L[j + 1]], p)
0 otherwise.

maintains the invariant that at the start of process-
ing column j, Tcnt[x] = occ(x, t[L[0], L[j + 1]]) . This 
invariant can be maintained by 1) initializing Tcnt[x] 
to occ(x, t[L[0], L[ℓ− 1]]) for every k-mer x ∈ p , and 
2) when starting to process column j, decrementing 
Tcnt[L[j + 1]] by 1.

To compute S, the Pcnt hash table is constructed 
via a scan through p and Tcnt[x] is set to 0 for every k
-mer x ∈ p . Next, we simultaneously compute the 
last column of S and initialize Tcnt so that it holds the 
counts of all k-mers from p in t[L[0], L[ℓ− 1] , as fol-
lows. We trivially initialize S(ℓ− 1, ℓ− 1) and then 
compute S(i, ℓ− 1) starting from i = ℓ− 2 down to 
i = 0 . Before computing S(i, ℓ− 1) , we increment the 

count stored at Tcnt[t[L[i]]] by 1. After this increment, 
Tcnt[L[i]] = occ(L[i], t[L[i], L[ℓ− 1]]) and can be used to 
distinguish between the two cases necessary for comput-
ing S(i, ℓ− 1).

Algorithm 1 details the rest of the algorithm for comput-
ing S, column-by-column using Eq. 5. The non-trivial part 
is to determine which case of Eq. 5 to use in constant-time 
(i.e. to compute occ(t[L[j + 1]], t[L[i], L[j + 1]]) ). We let 
c1 = occ(x, t[0, L[i − 1]]) and let c2 = occ(x, t[0, L[j + 1]]) 
and observe that occ(x, t[L[i], L[j + 1]]) = c2 − c1 . Notice 
that c2 = Tcnt[x] , so it only remains to compute c1 . When 
computing a column j < ℓ− 1 , we are processing all the 
rows starting from 0 up to ℓ− 1 . Thus we can update c1 
by initially setting c1 = 0 (Line 8) and then, for each new 
row i, incrementing c1 if t[L[i]] = x (Line 18).
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Algorithm 1  Part 1 of eskemap algorithm

Computing maximality
In the second step, we identify which of the candidate 
mappings in S are final. Our algorithm is shown in Algo-
rithm 2. We traverse S column-by-column starting with 
the last column and then row-by-row, starting from the 
first row. While traversing S, we maintain a list M of all 
maximal, reasonable candidate mappings above the 
threshold found so far and their scores. M has the invari-
ant that the candidate mappings are increasingly ordered 
by their start positions.

To maintain the invariant that M is sorted by start 
position, we maintain a pointer cur to a location in M 
(Lines 7-11). At the start of a new column traversal, when 
the row i = 0 , cur points to the start of M. As the row is 
increased, we move cur forward until it hits the first value 
in M with a start larger than i. When a new final mapping 
is added to M, we do so at cur, which guarantees the 
order invariant of M (Lines 16-20).

Due to the order cells in S are processed during our 
traversal, a candidate mapping t[L[i],  L[j]] is maximal if 
and only if its score is larger than the score of all other 
final mappings in M with position i′ ≤ i . For a given 
column, since we are processing the candidate mappings 
in increasing order of i, we can simultenously maintain 
a running variable maxSoFar that holds the maximum 

value in M up to cur (Line 8). We can then determine if 
a candidate mapping is maximal by simply checking its 
score against maxSoFar (Line  14). Note that as long as 
we have not yet seen any final mapping at some position 
i′ ≤ i , a candidate mapping is already maximal if its score 
equals thr(|p|) . This is ensured via a flag supMpFnd and 
an additional satisfiable subclause (Line  14). As soon as 
maxSoFar is updated, supMpFnd is set (Line 10).

To check for the reasonability of a candidate mapping 
corresponding to S(i,  j), we need to verify that i ≥ i∗ 
and S(i, j) = S(i + 1, j)+ 1 , for 0 ≤ i < j . To see that 
this is correct, first observe that i∗ is the smallest index 
of a cell in column j of S belonging to a right-reasonable 
candidate mapping that could be found during the 
execution of Algorithm  1. Thus, there is no candidate 
mapping belonging to a cell S(i, j) with i < i∗ . Vice versa, 
every candidate mapping t[L[i], L[j]] with i > i∗ has to be 
right-reasonable, because it is a substring of t[L[i∗], L[j]] 
and occ(t[L[j]], t[L[i], L[j]]) ≤ occ(t[L[j]], t[L[i∗], L[j]]) 
must hold. The requirement of the second condition 
( S(i, j) = S(i + 1, j)+ 1 , for 0 ≤ i < j ) to ensure left-
reasonability can be justified by a similar argument as 
given for the correctness of Eq. 5. All candidate mappings 
of cells S(i,  j) where i = j are always reasonable, because 
they contain only 1 k-mer x ∈ p.
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Algorithm 2  Part 2 of eskemap algorithm

Runtime and memory analysis
The runtime for Algorithm  1 is �(ℓ2 + |t| + |p|) . Note 
that this time bound refers to an expected time if 
assuming a hash table with constant time for insertion 
and lookup. The Pcnt table can be constructed in a 
straightforward manner in O(|p|) time, the L array 
is constructed in O(|t|) . Algorithm  2 runs two for 
loops with constant time internal operations, with 
the exception of the while loop to fast forward the 
cur pointer. The total time for the loop is amortized 
to O(ℓ) for each column. Therefore, the total time for 
Algorithm 2 is �(ℓ2) . This gives the total running time 
for our algorithm as O(|t| + |p| + ℓ2).

The total space used by the algorithm is the sum 
of the space used by Pcnt , Tcnt , L, S and M. The Pcnt 
table stores |p| integers with values up to |p|. How-
ever, notice that when |p| > ℓ , we can limit the table 
to only store k-mers that are in t  , i.e. only ℓ k-mers. 
We can also replace integer values greater than ℓ with 
ℓ , as it would not affect the algorithm. Therefore, the 
Pcnt table uses O(ℓ log ℓ) space. The Tcnt table stores at 
most ℓ entries with values at most ℓ and therefore takes 
O(ℓ log ℓ) space. To store S completely would require 

�(ℓ2) space. However, as S is filled column by column 
and since the recursion in Eq.  5 only depends on the 
previously computed column, we can dynamically com-
pute S by only storing two columns of S in memory. 
Further, we can apply Algorithm  2 separately on each 
column after it has been computed by Algorithm  1 as 
long as M is retained throughout the whole processing 
of S. Hence, we do not need to spend more than �(ℓ) 
space for storing S. To limit the space required for stor-
ing M to O(ℓ log ℓ) , we can observe that, in fact, it is 
not necessary to keep all final mappings stored in M to 
check for maximality during the execution of our algo-
rithm. Instead, it is enough to retain the last candidate 
mapping found for each start position. As soon as we 
find a final candidate mapping starting at the same 
position as a previously found one, we can output the 
latter and overwrite its entry in M with the newly found 
candidate mapping. Thus our algorithm uses a total of 
O(ℓ log ℓ) space.

Results
We implemented the eskemap algorithm described 
in "Algorithm for the Sketch Read Mapping Problem" 
section using scℓ as score function and compared it to 
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other methods in a read mapping scenario. For better 
comparability, we implemented it with the exact same 
minimizer sketching approach as used by minimap2. 
Source code of our implementation as well as a detailed 
documentation of our comparison described below 
including exact program calls is available from https://​
github.​com/​medve​devgr​oup/​eskem​ap.

Datasets
For our evaluation, we used the T2T reference 
assembly of human chromosome Y (T2T-CHM13v2.0; 
[GenBank:NC_060948.1])  [15]. The chromosome 
contains many ampliconic regions with duplicated genes 
from several gene families. Identifying a single best hit 
for reads from such regions is not helpful and instead it is 
necessary to find all good mappings [16]. Such a reference 
poses a challenge to heuristic algorithms and presents an 
opportunity for an all-hits mapper like eskemap to be 
worth the added compute.

We simulated a read dataset on this assembly imitating 
characteristics of a PacBio Hifi sequencing run [17]. For 
each read, we randomly determined its length r accord-
ing to a gamma distribution with a 9000bp mean and a 
standard deviation of 7000bp. Afterwards, a random 
integer i ∈ [1, n− r + 1] was drawn as the read’s start 
position, where n refers to the length of the chromosome. 
Sequencing errors were simulated by introducing muta-
tions into each read’s sequence using the mutation model 
described in Definition  2 and a total mutation rate of 
0.2% distributed with a ratio of 6:50:54 between substitu-
tion/insertion/deletion, as suggested in [18]. Aiming for a 
sequencing depth of 10x, we simulated 69401 reads.

The T2T assembly of the human chromosome Y con-
tains long centromeric and telomeric regions which con-
sist of short tandem and higher order repeats. Mapping 
reads in such regions results in thousands of hits that are 
meaningless for many downstream analyses and signifi-
cantly increases the runtime of mapping. Therefore, we 
excluded all reads from the initially simulated set which 
could be aligned to more than 20 different, non-overlap-
ping positions using edlib (see below). After filtering, a 
set of 32295 reads remained.

Tools
We compared eskemap to two other sketch-based 
approaches and an exact alignment approach. The 
sketch-based approaches were minimap2 (version 2.24-
r1122) and Winnowmap2 (version 2.03), run using 
default parameters. In order to be able to compare 
our results also to an exact, alignment-based mapping 
approach, we used the C/C++ library of Edlib  [6] (ver-
sion 1.2.7) to implement a small script that finds all non-
overlapping substrings of the reference sequence a read 

could be aligned to with an edit distance of at most T. We 
tried values T ∈ {0.01r, 0.02r, 0.03r} , where recall that r is 
the read length. We refer to this script as simply edlib.

For eskemap, we aimed to make the results as compa-
rable as possible to minimap2. We therefore used a mini-
mizer sketch with the same k-mer and window size as 
minimap2 ( k = 15 , w = 10 ). However, we excluded mini-
mizers that occurred > 100 times inside the reference 
sketch, to limit the O(ℓ2) memory use of eskemap, even 
as this exclusion may potentially hurt eskemap ’s accu-
racy. We used the default w = 1 as the tuning parameter 
in the linear score. To set the score threshold, we used 
the dynamic procedure described in  Section "Simula-
tion-based analysis". In particular, we used five different 
sequence lengths for simulations and used a divergence 
of 1%. We used the same sequencing error profile as for 
read simulation. Four thresholds were then chosen so at 
to cover the one-sided confidence interval of 70%, 80%, 
90%, and 95%, respectively.

Accuracy measure
We compared the reference substrings corresponding 
to each reported mapping location of any tool to the 
mapped read’s sequence using BLAST [19]. If a pairwise 
comparison of both sequences resulted either in a single 
BLAST hit with an E-value not exceeding 0.016 and cov-
ering at least 90% of the substring or the read sequence 
or if a set of non-overlapping BLAST hits was found of 
which none had an E-value above 0.01 and their lengths 
summed up to at least 90% of either the reference sub-
string’s or the read sequence’s length, we considered the 
reference mapping location as homologous.

For each read, we combine all the homologous ref-
erence substrings found across all tools into a ground 
truth set for that read. We then measure the accuracy of 
a mapping as follows. We determined for each k-mer of 
the reference sequence’s sketch whether it is either a true 
positive (TP), false positive (FP), true negative (TN) or 
false negative (FN). A k-mer was considered a TP if it was 
covered by both a mapping and a ground truth substring. 
It was considered a FP if it was covered by a mapping, 
but not by any ground truth substring. Conversely, it 
was considered a TN if it was covered by neither a map-
ping nor a ground truth substring and considered a FN if 
it was covered by a substring of the ground truth exclu-
sively. The determination was performed for each read 
independently and results were accumulated per tool to 
calculate precision and recall measures.

6  In order to ensure robustness of results, BLAST runs were also repeated 
for E-value thresholds of 0.005 and 0.001 causing only neglectable differ-
ences for subsequent analyses.

https://github.com/medvedevgroup/eskemap
https://github.com/medvedevgroup/eskemap
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Accuracy results
The precision and recall of the various tools is shown 
in Fig. 2. The most controlled comparison can be made 
with respect to minimap2, since the sketch used by 
eskemap is a subset of the one used by minimap2. At a 
score threshold corresponding to 70% recovery, eskemap 
achieves the same precision (0.999) as minimap2. 
However, the recall of eskemap is 0.88, compared 
to 0.76 of minimap2. We see that the extra effort of 
minimap2 to take k-mer order inside the sketches into 
account does not seem to pay off in this experiment 
compared to the approach of eskemap which avoids 
this. The increased recall of eskemap can be explained 
by the fact that eskemap is able to find all promising 
but slightly worse suboptimal mapping positions for a 
read originating, e.g., from the sequence of a duplicated 
gene on the chromosome. Many of these are not 
reported by minimap2 as it only reports a fixed number 
of suboptimal mappings per read. This illustrates the 
potential of eskemap as a method to recover more of 
the correct hits than a heuristic method. More generally, 
eskemap achieves a recall around 90%, while all other 
tools have a recall of at most 76%. However, both edlib 
and Winnowmap2 achieve a slightly higher precision (by 
0.001).

Time and memory results
We compared the runtimes and memory usage of all 
sketch-based methods (Table  1). Calculations were per-
formed on a virtual machine with 28 cores and 256 GB of 

RAM. We did not include edlib in this alignment since, as 
an exact alignment-based method, it took much longer to 
complete (i.e. running highly parallelized for many days 
on a system with many cores). We see that both heu-
ristics are significantly faster than our exact algorithm. 
However, they also find many fewer mapping positions 
per read. E.g., only one mapping position is reported 
for 67% and 75% of all reads by minimap2 and Winnow-
map2, respectively. In comparison, eskemap finds more 
than one mapping position for almost every second read 
(49%). When the runtime is normalized per output map-
ping, eskemap is actually more than an order of magni-
tude faster than the other tools.

eskemap ’s memory usage was also found to be 
smaller than that of minimap2 and Winnowmap2 in our 
experiment.7

Conclusion
In this work, we formally defined the Sketch Read Map-
ping Problem, i.e. to find all positions inside a refer-
ence sketch with a certain minimum similarity to a 
read sketch under a given similarity score function. We 
also proposed an exact dynamic programming algo-
rithm called eskemap to solve the problem, running 
in O(|t| + |p| + ℓ2) time and �(ℓ2) space. We evalu-
ated eskemap ’s performance by mapping a simulated 
long read dataset to the T2T assembly of human chro-
mosome Y and found it to have a superior recall for a 
similar level of precision compared to minimap2, while 
offering precision/recall tradeoffs compared with edlib 
or Winnowmap2.

In order to further improve on eskemap ’s runtime, 
a strategy could be to develop filters that prune the 
result’s search space. This could be established, e.g., 
by terminating score calculations for a column once 
it is clear an optimal solution would not make use of 
the rest of that column. Our prototype implementa-
tion of eskemap would also benefit from additional 

Fig. 2  Mapping accuracies of all tools. For edlib, the color of the cross 
encodes the various edit distance thresholds (0.01, 0.02, 0.03). 
For eskemap, the color of the circles indicate the score threshold used, 
in terms of the target confidence interval used (0.7, 0.8, 0.9, 0.95). The 
ground truth is determined by combining the mappings from all 
tools and filtering out those with bad BLAST scores. The most lenient 
thresholds for edlib and eskemap were used

Table 1  Runtime and memory usage comparison of all sketch-
based methods

The tools were called to map 32295 simulated PacBio Hifi sequencing reads on 
the T2T assembly of human chromosome Y. Runtimes are shown both as total 
values and normalized by the number of reported mapping positions

Tool User time [s] Memory [GB]

Total Per mapping

eskemap 133,621 0.02 2

minimap2 26,232 0.55 4.5

Winnowmap2 9207 0.19 7

7  Note that eskemap ’s memory usage is significantly reduced relative to the 
conference version of the paper.
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engineering of the code base, potentially leading to 
substantial improvements of runtime and memory in 
practice.

Having an exact sketch-based mapping algorithm at 
hand also opens the door for the exploration of novel 
score functions to determine sequence similarity on 
the level of sketches. Using our algorithm, combina-
tions of different sketching approaches and score func-
tions may be easily tested. Eventually, this may lead to 
a better understanding of which sketching methods 
and similarity measures are most efficient considering 
sequences with certain properties like high repetitive-
ness or evolutionary distance.

Appendix A: Proofs
Proof of Theorem 2  Observe that domination is a tran-
sitive property, i.e. if sc1 dominates sc2 and sc2 domi-
nates sc3 , then sc1 dominates sc3 . To prove equivalence, 
we will prove the following circular chain of domination: 
scℓ ← scB ← scC ← scD ← scA ← scℓ.

First, observe that scB trivially dominates scℓ by keeping 
the threshold function the same and setting b1 = 1 and 
b2 = w.

Next, we prove that scC dominates scB . Let p be 
a pattern and let t = thrB(|p|) . Set thrC = thrB and 
c1 = b1 + b2 and c2 = b2 . Then, for all s, the following 
series of equivalent transformations proves that scC dom-
inates scB.

Next, we prove that scD dominates scC . Let p be a pat-
tern and let t = thrC(|p|) . Set d1 = c1 + c2 , d2 = c2 , and 
thrD(i) = thrC(i)+ ic2 . Then, for all s, the following 
series of equivalent transformations proves that scD dom-
inates scC.

scB(s, p; b1, b2) ≥ t
∑

x

b1xmin − b2xdiff ≥ t

∑

x

b1xmin − b2(xmax − xmin) ≥ t

∑

x

(b1 + b2)xmin − b2xmax ≥ t

scC(s, p; c1, c2) ≥ thrC(|p|)

Next, we prove that scA dominates scD . Let p be a 
pattern and let t = thrD(|p|) . Set a1 =

d1
d2

− 2 and 
thrA(i) =

thrD(i)
d2

− i . Then, for all s, the following series 
of equivalent transformations proves that scD dominates 
scC.

Finally, we prove that scℓ dominates scA . Let p be a pattern 
and let t = thrA(|p|) . Set w = 1

a1
 and thrℓ(i) = thrA(i)

a1
 . 

Then, for all s, the following series of equivalent 
transformations proves that scℓ dominates scA.

	�  �

scC(s, p; c1, c2) ≥ thrC(|p|)
∑

x

c1xmin − c2xmax ≥ t

∑

x

c1xmin − c2

(

|s| + |p| −
∑

x

xmin

)

≥ t

∑

x

(c1 + c2)xmin − c2|s| − c2|p| ≥ t

∑

x

(c1 + c2)xmin − c2|s| ≥ t + c2|p|

scD(s, p; d1, d2) ≥ thrD(|p|)

scD(s, p; d1, d2) ≥ thrD(|p|)
(

∑

x

d1xmin

)

− d2|s| ≥ t

(

∑

x

d1xmin

)

− d2

(

∑

x

2xmin +
∑

x

xdiff − |p|

)

≥ t

∑

x

((d1 − 2d2)xmin − d2xdiff )+ d2|p| ≥ t

∑

x

(

d1 − 2d2

d2
xmin − xdiff

)

+ |p| ≥
t

d2

∑

x

(

(
d1

d2
− 2)xmin − xdiff

)

≥
t

d2
− |p|

scA(s, p; a1) ≥ thrA(|p|)

scA(s, p; a1) ≥ thrA(|p|)
∑

x

(a1xmin − xdiff ) ≥ t

∑

x

(xmin −
1

a1
xdiff ) ≥

t

a1

scℓ(s, p;w) ≥ thrℓ(|p|)
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