
Schulz and Medvedev ﻿
Algorithms for Molecular Biology (2024) 19:19
https://doi.org/10.1186/s13015-024-00261-7

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

ESKEMAP: exact sketch‑based read mapping
Tizian Schulz1,2,3* and Paul Medvedev4,5,6* 

Abstract 

Background  Given a sequencing read, the broad goal of read mapping is to find the location(s) in the reference
genome that have a “similar sequence”. Traditionally, “similar sequence” was defined as having a high alignment score
and read mappers were viewed as heuristic solutions to this well-defined problem. For sketch-based mappers, how-
ever, there has not been a problem formulation to capture what problem an exact sketch-based mapping algorithm
should solve. Moreover, there is no sketch-based method that can find all possible mapping positions for a read
above a certain score threshold.

Results  In this paper, we formulate the problem of read mapping at the level of sequence sketches. We give an exact
dynamic programming algorithm that finds all hits above a given similarity threshold. It runs in O(|t| + |p| + ℓ2)
time and O(ℓ log ℓ) space, where |t| is the number of k-mers inside the sketch of the reference, |p| is the number of k
-mers inside the read’s sketch and ℓ is the number of times that k-mers from the pattern sketch occur in the sketch
of the text. We evaluate our algorithm’s performance in mapping long reads to the T2T assembly of human chromo-
some Y, where ampliconic regions make it desirable to find all good mapping positions. For an equivalent level of pre-
cision as minimap2, the recall of our algorithm is 0.88, compared to only 0.76 of minimap2.

Keywords  Sequence sketching, Long-read mapping, Exact algorithm, Dynamic programming

Introduction
Read mapping continues to be one of the most
fundamental problems in bioinformatics. Given a read,
the broad goal is to find the location(s) in the reference
genome that have a “similar sequence”. Traditionally,
“similar sequence” was defined as having a high alignment
score and read mappers were viewed as heuristic
solutions to this well-defined problem. However, the last
few years has seen the community embrace sketch-based
mapping methods, best exemplified by minimap2 [1]
(see [2] for a survey). These read mappers work not on
the original sequences themselves but on their sketches,
e.g. the minimizer sketch. As a result, it is no longer
clear which exact problem they are trying to solve, as the
definition using an alignment score is no longer directly
relevant. To the best of our knowledge, there has not
been a problem formulation to capture what problem an
exact sketch-based mapping algorithm should solve.

In this work, we provide a problem formulation
(Section "Problem definition") and an exact algorithm to

*Correspondence:
Tizian Schulz
tizian.schulz@uni-bielefeld.de
Paul Medvedev
pzm11@psu.edu
1 Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld
University, Bielefeld, Germany
2 Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld
University, Bielefeld, Germany
3 Graduate School “Digital Infrastructure for the Life Sciences” (DILS),
Bielefeld University, Bielefeld, Germany
4 Department of Computer Science and Engineering, The Pennsylvania
State University, University Park, USA
5 Department of Biochemistry and Molecular Biology, The Pennsylvania
State University, University Park, USA
6 Huck Institutes of the Life Sciences, The Pennsylvania State University,
University Park, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-024-00261-7&domain=pdf

Page 2 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19

find all hits above a given score (Section "Algorithm for
the Sketch Read Mapping Problem"). More formally, we
consider the problem of taking a sketch t of a text T and
a sketch p of a query P and identifying all sub-sequences
of t that match p with a score above some threshold. A
score function could for example be the weighted Jaccard
index, though we explore several others in this paper
(Section "Score function"). We provide both a simulation-
based and an analytical-based method for setting the
score threshold (Section "Choosing a threshold") 1.

Other sketch-based mappers are heuristic: they
typically find matching elements between the reference
and the read sketches (i.e. anchors) and extend these
into maps using chaining [2]. Our algorithm is more
resource intensive than these heuristics, as is typical for
exact algorithms. However, a problem formulation and
an exact algorithm gives several long-term benefits. First,
the exact algorithm could be used in place of a greedy
heuristic when the input size is not too large. Second, the
formulation can spur development of exact algorithms
that are optimized for speed and could thus become
competitive with heuristics. Third, the formulation could
be used to find the most effective score functions, which
can then guide the design of better heuristics. Finally, our
exact algorithm can return all hits with a score above a
threshold, rather than just the best mapping(s). This is
important for tasks such as the detection of copy number
variation [3] or detecting variation in multi-copy gene
families [4].

We evaluate our algorithm (called eskemap),
using simulated long reads from the T2T human Y
chromosome (Section "Results"). For the same level
of precision, the recall of eskemap is 0.88, compared
to 0.76 of minimap2. This illustrates the power of
eskemap as a method to recover more of the correct
hits than a heuristic method. We also compare against
Winnowmap2 [5] and edlib [6], which give lower recall
but higher precision than eskemap.

Preliminaries
Sequences. Let t be a sequence of elements (e.g. k-
mers) that may contain duplicates. We let |t| denote
the length of the sequence, and we let t[i] refer to the
i-th element in t, with t[0] being the first element. For
0 ≤ i ≤ j < |t| , let t[i, j] represent the subsequence
(t[i], t[i + 1], . . . , t[j]) . The set of elements in t is denoted
by t , e.g. if t = (ACG,TTT,ACG) then t = {ACG,TTT} . We
let occ(x, t) represent the number of occurrences of an
element x in t, e.g. occ(ACG, t) = 2.

Sketch. Let T be a string and let t be the sequence of k
-mers appearing in T. Note that t is a sequence of DNA
sequences. For example, if T = ACGAC and k = 2 , then
t = (AC,CG,GA,AC) . For the purposes of this paper,
a sketch of T is simply a subsequence of t, e.g. (AC,GA) .
This type of sketch could for example be a minimizer
sketch [7, 8], a syncmer sketch [9], or a FracMinHash
sketch [10, 11].
Scoring Scheme. A scoring scheme (sc, thr) is a pair of
functions: the score function and the threshold func-
tion. The score function sc is a function that takes as
input a pair of non-empty sketches and outputs a real
number, intuitively representing the degree of similarity.
We assume it is symmetric, i.e. sc(p, s) = sc(s, p) for all
sketches p and s. If the score function has a parameter,
then we write sc(s, p; θ) , where θ is a vector of parame-
ter values. The threshold function thr takes the length of
a sketch and returns a score cutoff threshold, i.e. scores
below this threshold are not considered similar. Note
that the scoring scheme is not allowed to depend on the
underlying nucleotide sequences besides what is cap-
tured in the sketch.
Miscellenous. We use Uk to denote the universe of all k-
mers. Given two sequences p and s, the weighted Jaccard

is defined as
∑

x∈Uk
min(occ(x,p),occ(x,s))

∑

x∈Uk
max(occ(x,p),occ(x,s))

 . It is 0 when s and p

do not share any elements, 1 when s is a permutation of
p, and strictly between 0 and 1 otherwise. The weighted
Jaccard is a natural extension of Jaccard similarity that
accounts for multi-occurring elements.

Problem definition
In this section, we first motivate and then define the
Sketch Read Mapping Problem. Fix a scoring scheme
(sc, thr) . Let p and t be two sketches, which we refer to
as the pattern and the text, respectively. Define a candi-
date mapping as a subinterval t[a, b] of t. A naive prob-
lem definition would ask to return all candidate mappings
with sc(p, t[a, b]) ≥ thr(|p|).2 However, a lower-scoring
candidate mapping could contain a higher-scoring can-
didate mapping as a subinterval, with both scores above
the threshold. This may arise due to a large candidate
mapping containing a more conserved small candidate
mapping, in which case both candidate mappings are of
interest. But it may also arise spuriously, as a candidate
mapping with a score sufficiently higher than thr(|p|) can

1  Our algorithm runs in time O(|t| + |p| + ℓ2) and space O(ℓ log ℓ) ,
where ℓ is the number of times that k-mers from p occur in t

2  Notice that in this framing, the threshold is not a single parameter but can
vary depending on the read’s (sequence or sketch) length. This gives flexibil-
ity to the scoring function, since the scores of candidate mappings of reads
of different lengths do not need to be comparable to each other. Moreover,
computing the threshold value is not a challenge since it needs to be com-
puted just once for each read.

Page 3 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19 	

be extended with non-shared k-mers that decrease the
score but not below the threshold.

To eliminate most of these spurious cases, we say
that a candidate mapping t[a, b] is left-reasonable if
and only if occ(t[a], t[a, b]) ≤ occ(t[a], p) . Similarly,
a candidate mapping t[a, b] is right-reasonable if and
only if occ(t[b], t[a, b]) ≤ occ(t[b], p) . A candidate map-
ping is reasonable if it is both left- and right-reasona-
ble. In other words, a reasonable candidate mapping
must start and end with a k-mer that has a match in
the pattern. We also naturally do not wish to report a
candidate mapping that is a subinterval of a longer can-
didate mapping with a larger score. Formally, we call
a candidate mapping t[a, b] maximal if there does not
exist a candidate mapping t[a′, b′] , with a′ ≤ a ≤ b ≤ b′
and sc(t[a′, b′], p) > sc(t[a, b], p) . We can now formally
define t[a, b] to be a final mapping if it is both maximal
and reasonable and sc(t[a, b], p) ≥ thr(|p|) . The Sketch
Read Mapping Problem is then to report all final map-
pings. An example is given in Fig. 1. We now restate the
problem in a succinct manner:

Definition 1  (Sketch Read Mapping Problem). Given a
pattern sketch p, a text sketch t, a score function sc, and
a threshold function thr, the Sketch Read Mapping Prob-
lem is to find all 0 ≤ a ≤ b < |t| such that

•	 sc(p, t[a, b]) ≥ thr(|p|),
•	 occ(t[a], t[a, b]) ≤ occ(t[a], p),
•	 occ(t[b], t[a, b]) ≤ occ(t[b], p),
•	 there does not exist a′ ≤ a ≤ b ≤ b′ such that

sc(t[a′, b′], p) > sc(t[a, b], p) , i.e. t[a, b] is maximal.

Score function
In this section, we explore the design space of score
functions and fix two score functions for the rest of
the paper. Let p be the sketch of the pattern and let
s be a continuous subsequence of the sketch of the
text t, i.e. s = t[a, b] for some a ≤ b . For example if
p = (ACT,GTA,TAC) and t = (AAC,ACT,CCT,GTA) , we
could have s = t[1, 3] = (ACT,CCT,GTA) . In the context of
the Sketch Read Mapping Problem, p is fixed and s varies.
Therefore, while the score function is symmetric, the
threshold function sets the score threshold as a function of
|p|. Since p is fixed, the threshold is a single number in the
context of a single problem instance.

In the following, we exclusively consider score functions
that calculate the similarity of s and p by ignoring the order
of k-mers inside the sketches. Taking k-mer order into
account would likely make it more complex to compute
scores, while not necessarily giving better results on real
data. However, score functions that do take order into
account are possible and could provide better accuracy in
some cases.

A good score function should reflect the number of k
-mers shared between s and p. For a given k-mer x, we
define

Intuitively, x occurs a certain number of times in p and
a certain number of times in s; we let xmin be the smaller
of these two numbers and xmax be the larger of these
two numbers. Similarly, xdiff is the absolute difference
between how often x occurs in p and s. We say that the

xmin := min(occ(x, p), occ(x, s))

xmax := max(occ(x, p), occ(x, s))

xdiff := xmax − xmin

Fig. 1  An example of the Sketch Read Mapping Problem. We show all candidate mappings t[a, b] for a given pattern p and a text t. Each candidate
mapping is represented by its score calculated using scℓ(p, t[a, b]; 1) (see Section "Score Function"). Reasonable candidate mappings are shown
in black (rather than gray) and final mappings are further bolded

Page 4 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19

number of shared occurrences is 2xmin and the number of
non-shared occurrences is xdiff . These quantities are gov-
erned by the relationships

A good score function should be (1) increasing with
respect to the number of shared occurrences and (2)
decreasing with respect to the number of non-shared
occurrences. There are many candidate score functions
within this space. The first score function we consider is
the weighted Jaccard. Formally,

The above formula includes first the definition but then
two algebraically equivalent versions of it, derived using
Eq. 1. The weighted Jaccard has the two desired proper-
ties of a score function and is a well-known similarity
score. However, it has two limitations. First, the use of a
ratio makes it challenging to analyze probabilistically, as
is the case with the non-weighted Jaccard [12]. Second,
it does not offer a tuning parameter which would control
the relative benefit of a shared occurrence to the cost of
a non-shared occurrence. We therefore consider another
score function, parameterized by a real-valued tuning
parameter w > 0:

It is sometimes more useful to use an equivalent
formulation, obtained using Eq. 1:

As with the weighted Jaccard, scℓ has the two desired
properties of a score function. But, unlike the weighted
Jaccard, it is linear and contains a tuning parameter w.

To understand how score functions relate to each other,
we introduce the notion of domination and equivalence.
Informally, a score function sc1 dominates another score
function sc2 when sc1 can always recover the separation
between good and bad scores that sc2 can. In this case,
the solution obtained using sc2 can always be obtained by
using sc1 instead. Formally, let sc1 and sc2 be two score
functions, parameterized by θ1 and θ2 , respectively. We
say that sc1 dominates sc2 if and only if for any param-
eterization θ2 , threshold function thr2 , and pattern sketch

(1)|s| + |p| =
∑

x∈Uk

occ(x, p)+ occ(x, s) =
∑

x∈Uk

xmin + xmax =
∑

x∈Uk

2xmin + xdiff .

(2)

scj(s, p) :=

∑

x∈Uk
xmin

∑

x∈Uk
xmax

=

∑

x xmin

|s| + |p| −
∑

x xmin
=

∑

x xmin
∑

x(xmin + xdiff)

scℓ(s, p;w) :=
∑

x∈Uk

xmin − wxdiff .

(3)scℓ(s, s
′;w) =

∑

x∈Uk

(1+ 2w)xmin − w(|s| + |s′|).

p there exist a θ1 and thr1 such that, for all sequences
s, we have that sc2(s, p; θ2) ≥ thr2(|p|) if and only if
sc1(s, p; θ1) ≥ thr1(|p|) . Furthermore, sc1 dominates sc2

strictly if and only if the opposite does not hold, i.e. sc2
does not dominate sc1 . Otherwise, sc1 and sc2 are said to
be equivalent, i.e. if and only if each one dominates the
other.

We can now precisely state the relationship between scℓ
and scj , i.e. that scℓ strictly dominates scj . In other words,
any solution to the Sketch Read Mapping Problem that is
obtained by scj can also be obtained by scℓ , but not vice-
versa. Formally,

Theorem 1  scℓ strictly dominates the weighted Jaccard
score function scj.

Proof  We start by proving that scℓ dominates scj . Let
p be a pattern sketch and let thrj be the threshold func-
tion associated with scj . We will use the shorthand
t = thrj(|p|) . First, consider the case that t < 1 . Let
w = t

1−t and let thrℓ evaluate to zero for all inputs. Let
s be any sketch. The following is a series of equivalent
transformations that proves domination.

Next, consider the case t > 1 . In this case, for all s,
scj(s, p) < t , since the weighted Jaccard can never exceed
one. Observe that scℓ(s, p;w) ≤ |p| for any non-negative
w. Therefore, we can set thrℓ(|p|) = |p| + 1 and let w be
any non-negative number, guaranteeing that for all s,
scℓ(s, p;w) < thrℓ(|p|).

Finally consider the case that t = 1 . Then, scj(s, p) ≥ t
if and only if s and p are permutations of each other,
i.e. xdiff = 0 for all x. Setting thrℓ(|p|) = |p| and

scj(s, p) ≥ t
∑

x xmin
∑

x xmin + xdiff
≥ t

∑

x

xmin ≥
∑

x

txmin + txdiff

∑

x

(1− t)xmin − txdiff ≥ 0

∑

x

xmin −
t

1− t
xdiff ≥ 0

scℓ(s, p;w) ≥ thrℓ(|p|)

Page 5 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19 	

letting w be any strictly positive number guarantees that
scℓ(s, p;w) ≥ thrℓ(|p|) if and only if s and p are permuta-
tions of each other.

To prove that scℓ is not dominated by scj , we fix w = 1
(though any value could be used) and give a counterex-
ample family to show that scj cannot recover the sepa-
ration that scℓ can. Pick an integer i ≥ 1 to control the
size of the counterexample. Let p be a pattern sketch
of length 4i consisting of arbitrary k-mers. We con-
struct two sketches, s1 and s2 . The sequence s1 is an
arbitrary subsequence of p of length i. Observe that
∑

x∈p∪s1
xmin =

∑

x occ(x, s1) = i . The sequence s2 is
p appended with arbitrary k-mers to get a length 12i.
Observe that

∑

x∈p∪s2
xmin =

∑

x occ(x, p) = 4i . Using
Eq. 3 for scℓ and Eq. 2 for scj,

Under scℓ , s1 has a higher score, while under scj , s2 has
a higher score. If thrℓ is set to accept s1 but not s2 (e.g.
thrℓ = −3i ), then it is impossible to set thrj to achieve the
same effect. In other words, since scj(s2) > scj(s1) , any
threshold that accepts s1 must also accept s2 . 	� �

Next, we show that many other natural score functions
are equivalent to scℓ . Consider the following score
functions:

The conditions on the parameters are there to enforce
the two desired properties of a score function. Each of
these score functions is natural in its own way, e.g. scA
is similar to scℓ but places the weight on xmin rather than
on xdiff . One could also have two separate weights, as in
the score scB . One could then replace xdiff with xmax , as
in scC , which is the straightforward reformulation of the
weighted Jaccard score as a difference instead of a ratio.
Or one could replace xdiff with the length of s, as in scD .
The following theorem shows that the versions turn out
to be equivalent to scℓ and to each other. The proof is a
straightforward algebraic manipulation and is left for the
appendix.

scℓ(s1, p) = −2i

scℓ(s2, p) = −4i

scj(s1, p) = 1/4

scj(s2, p) = 1/3

scA(s, p; a1) :=
∑

x∈Uk

(a1xmin − xdiff) with a1 > 0

scB(s, p; b1, b2) :=
∑

x∈Uk

(b1xmin − b2xdiff) with b1 > 0 and b2 > 0

scC(s, p; c1, c2) :=
∑

x∈Uk

(c1xmin − c2xmax) with c1 > c2 > 0

scD(s, p; d1, d2) :=
∑

x∈Uk

(d1xmin)− d2|s| with d1 > 2d2 and d2 > 0

Theorem 2  The score functions scℓ , scA , scB , scC , and
scD are pairwise equivalent.

Choosing a threshold
In this section, we propose two ways to set the score
threshold. The first is analytical (Section "Analytical
analysis") and the second is with simulations
(Section "Simulation-based analysis"). The analytical
approach gives a closed form formula for the expected
value of the score under a mutation model. However,
it only applies to the FracMinHash sketch, assumes a
read has little internal homology, and does not give a
confidence interval. The simulation approach can apply
to any sketch but does not offer any analytical insight
into the behavior of the score. The choice of approach
ultimately depends on the use case.

We first need to define a generative mutation model to
capture both the sequencing and evolutionary divergence
process:

Definition 2  (Mutation model). Let S be a circular
string3 with n characters. The mutation model produces
a new string S′ by first setting S′ = S and then taking the
following steps:

1.	 For every 0 ≤ i < n , draw an action
ai ∈ {sub, del,unchanged} with probability of psub for
sub, pdel for del, and 1− psub − pdel for unchanged.
Also, draw an insertion length bi from a geometric
distribution with mean pins.4

2.	 Let track be a function mapping from a position
in S to its corresponding position in S′ . Initially,

3  We assume the string is circular to avoid edge cases in the analysis but, for
long enough strings, this assumption is unlikely to affect the accuracy of the
results.
4  Here, a geometric distribution is the number of failures before the first
success of a Bernoulli trial. This geometric distribution has parameter 1

pins+1
.

Page 6 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19

track(i) = i , but as we delete and add characters to
S′ , we assume that track is updated to keep track of
the position of S[i] in S′.

3.	 For every i such that ai = sub , replace S′[i] with one
of the three nucleotides not equal to S[i], chosen uni-
formly at random.

4.	 For every 0 ≤ i < n , insert bi nucleotides (chosen
uniformly at random) before S′[track(i)].

5.	 For every i such that ai = del , remove S′[track(i)]
from S′.

Analytical analysis
To derive an expected score under the mutation
model, we need to specify a sketch. We will use the
FracMinHash sketch [10], due to its simpliticy of
analysis [11].

Definition 3  (FracMinHash). Let h be a hash function
that maps a k-mer to a real number between 0 and 1,
inclusive. Let 0 < q ≤ 1 be a real-valued number called
the sampling rate. Let S be a string. Then the FracMin-
Hash sketch of S, denoted by s, is the sequence of all k
-mers x of S, ordered as they appear in S, such that
h(x) ≤ q.

Consider an example with k = 2 , S = CGGACGGT ,
and the only k-mers hashing to a value ≤ q being CG
and GG. Then, s = (CG,GG,CG,GG).

We make an assumption, which we refer to as the
mutation-distinctness assumption, that the mutations
on S never create a k-mer that is originally in S. Based
on previous work [13], we find this necessary to make
the analysis mathematically tractable (for us). The
results under this assumption become increasingly
inaccurate as the read sequence contains increasingly
more internal similarity. For example, reads coming
from centromeres might violate this assumption. In
such cases, it may be better to choose a threshold using
the technique in Section "Simulation-based Analysis".

We can now derive the expected value of the score
under the mutation model and FracMinHash.

Theorem 3  Let S be a circular string and let S′ be gen-
erated from S under the mutation model with the muta-
tion-distinctness assumption and with parameters psub ,
pdel , and pins . Let s and s′ be the FracMinHash sketches of
S and S′ , respectively, with sampling rate q. Then, for all
real-valued tuning parameters w > 0,

where α =
(1−pdel−psub)

k

(pins+1)k−1 .

Proof  Observe that under mutation-distinctness
assumption, the number of occurrences of a k-mer that is
in s can only decrease after mutation, and a k-mer that is
newly created after mutation has an xmin of 0. Therefore,
applying Eq. 3,

(Recall that s is the set of all k-mers in s.) We will first
compute the score conditioned on the hash function of
the sketch being fixed. Note that when h is fixed, then the
sketch s becomes fixed and s′ becomes only a function of
S′ . By linearity of expectation,

It remains to compute E[|s′| | h] and E[occ(x, s′) | h] .
Observe that the number of elements in s′ is the num-
ber of elements in s minus the number of deletions
plus the sum of all the insertion lengths. By linearity of
expectation,

Next, consider a k-mer x ∈ s and E[occ(x, s′)] . Recall
by our mutation model that no new occurrenes of x are
introduced during the mutation process. So occ(x, s′) is
equal to the number of occurrences of x in S that remain
unaffected by mutations. Consider an occurrence of x in
s. The probability that it remains is the probability that all
actions on the k nucleotides of x were “unchanged” and
the length of all insertions in-between the nucleotides
was 0. Therefore,

E[scℓ(s, s
′;w)] = |s|q(α + w(2α − 2+ pdel − pins)),

scℓ(s, s
′;w) =

∑

x∈s

(1+ 2w)occ(x, s′)− w(|s| + |s′|)

(4)
E[scℓ(s, s

′;w) | h] =
∑

x∈s

(1+ 2w)E[occ(x, s′) | h] − w(|s| + E[|s′| | h])

E[|s′| | h] = |s| − pdel|s| + pins|s| = |s|(1− pdel + pins)

E[occ(x, s′) | h] = occ(x, s)(1− pdel − psub)
k

(

1

pins + 1

)k−1

= αocc(x, s)

Page 7 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19 	

Putting it all together,

To add the sketching step, we know from [11] that the
expected size of a sketch is the size of the original text
times q. Then,

	� �

Simulation‑based analysis
First, we choose the parameters of the mutation model
according to the target sequence divergence between
the reads and the reference caused by sequencing errors,
but also due to the evolutionary distance between the
reference and the organism sequenced. If one is also
interested in mapping reads to homologous regions
within the reference that are related more distantly, e.g.
if there exist multiple copies of a gene, the mutation
parameters can be increased further.

To generate a threshold for a given read length, we gen-
erate sequence pairs (S, S′) , where S is a uniformly ran-
dom DNA sequence of the given length and S′ is mutated
from S under the above model. We then calculate the
sketch of S and S′ , which we call s and s′ , respectively. The
sketch can for example be a minimizer sketch, a syncmer
sketch, or a FracMinHash sketch. We can then use the
desired score function to calculate a score for each pair
(s, s′) . For a sufficiently large number of pairs, their scores
will form an estimate of the underlying score distribution
for sequences that evolved according to the used model.
It is then possible to choose a threshold such that the
desired percentage of mappings would be reported by
our algorithm. For example, one could choose a thresh-
old to cover a one sided 95% confidence interval of the
score.

In order to be able to adjust thresholds according to
the variable length of reads produced from a sequencing

E[scℓ(s, s
′;w) | h] =

∑

x∈s

(1+ 2w)E[occ(x, s′) | h] − w(|s| + E[|s′| | h])

= α(1+ 2w)
∑

x∈s

occ(x, s)− w(|s| + |s|(1− pdel + pins))

= α(1+ 2w)|s| − w(|s| + |s|(1− pdel + pins))

= |s|(α(1+ 2w)− w(2− pdel + pins))

= |s|(α + w(2α − 2+ pdel − pins))

E[scℓ(s, s
′;w)] = E[E[scℓ(s, s

′;w) | h]]

= E[|s|(α + w(2α − 2+ pdel − pins))]

= E[|s|](α + w(2α − 2+ pdel − pins))

= |s|q(α + w(2α − 2+ pdel − pins))

run, the whole process may be repeated several times
for different lengths of S. Thresholds can then be

interpolated dynamically for dataset reads whose lengths
were not part of the simulation.

Algorithm for the Sketch Read Mapping Problem
In this section,5 we describe a dynamic programming
algorithm for the Sketch Read Mapping Problem under
both the weighted Jaccard and the linear scores ( scj and
scℓ , respectively). Let t be the sketch of the text, let p be
the sketch of the pattern, let L be the sequence of posi-
tions in t that have a k-mer that is in p , in increasing
order, and let ℓ = |L| . Our algorithm takes advantage of
the fact that p is typically much shorter than t and hence
the number of elements of t that are shared with p is
much smaller than |t| (i.e. ℓ ≪ |t| ). In particular, it suf-
fices to consider only candidate mappings that begin and
end in positions listed in L, since by definition, if t[a, b]
is a reasonable candidate mapping, then t[a] ∈ p and
t[b] ∈ p.

We present our algorithm as two parts. In
the first part (Section "Computing S"), we com-
pute a matrix S with ℓ rows and ℓ columns so that
S(i, j) =

∑

x min(occ(x, p), occ(x, t[L[i], L[j]]) . S is only
defined for j ≥ i . We also store an index i∗ for each column
j indicating the smallest index for which t[L[i∗], L[j]] is a
right-reasonable candidate mapping. In the second part
(Section "Computing maximality"), we scan through S and
output the candidate mapping t[i, j] if and only if it is rea-
sonable, maximal and has a score above the threshold.

The reason that S(i, j) is not defined to store the score of
the candidate mapping t[L[i], L[j]] is that the score can be
computed from S(i, j) in constant time, for both scj and scℓ .
To see this, let xmin := min(occ(x, p), occ(x, t[L[i], L[j]]) .
Recall that Eq. 2 allows us to express scj(t[i, j], p) as a
function of

∑

xmin , |p|, and the length of the candidate
mapping, i.e. j − i + 1 . Similarly, we can apply Eq. 1 to
express scℓ as

5  This section has been substantially updated in comparison to the confer-
ence version of this paper [14]. In particular, Algorithm 1 has been modified
so that it computes S in a right-to-left scan, rather than left-to-right. In this
way, S does not need to be stored in memory, eliminating the �(ℓ2) space
requirement.

Page 8 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19

Thus, once
∑

x xmin is computed, either of the scores can
be computed trivially.

Computing S
We compute S using dynamic programming. We will
give a recurrence for S so that it can be filled in from
right-to-left. For the base case of the last column, we
start by setting S(ℓ− 1, ℓ− 1) = 1 . This is trivially
correct since L[ℓ− 1] ∈ p by definition. We then fill in
the last column, starting from i = ℓ− 2 and going down
to i = 0 . If occ(t[L[i]], t[L[i], L[ℓ− 1]]) ≤ occ(t[L[i]], p) ,
then we set S(i, ℓ− 1) = S(i + 1, ℓ− 1)+ 1 . Otherwise,
we set S(i, ℓ− 1) = S(i + 1, ℓ− 1) . For the remaining
cells of S, i.e. for all i and j such that 0 ≤ i ≤ j < ℓ− 1 ,
we use the recursive formula:

To see the correctness of this formula, observe that all
the elements of t[L[j] + 1, L[j + 1] − 1] are, by definition,
not in p and hence their minimum occurrence value
is 0. If the element x = t[L[j + 1]] helps to increase
min(occ(x, t[L[i], L[j + 1]]), occ(x, p)) , then excluding
it decreases the minimum count by one, otherwise the
minimum occurrence does not change. To maintain the
smallest value of i for which S(i, j + 1) is right-reasonable,
it is enough to observe that S(i, j + 1) is right-reasonable
if and only if the top case is used.

To design an efficient algorithm based on Eq. 5,
we need two auxiliary data structures. The first is
a hash table Pcnt that stores, for every k-mer in p ,
how often it occurs in p. A second hash table Tcnt
is used to store a count for every k-mer in p . Tcnt

scℓ(t[i, j], p;w) :=
∑

x

(xmin − wxdiff) =

(

∑

x

xmin

)

− w(|s| + |p| −
∑

x

2xmin)

= (1+ 2w)
∑

x

xmin − w(j − i + 1+ |p|)

(5)S(i, j) = S(i, j + 1)−

{

1 if occ(t[L[j + 1]], t[L[i], L[j + 1]]) ≤ occ(t[L[j + 1]], p)
0 otherwise.

maintains the invariant that at the start of process-
ing column j, Tcnt[x] = occ(x, t[L[0], L[j + 1]]) . This
invariant can be maintained by 1) initializing Tcnt[x]
to occ(x, t[L[0], L[ℓ− 1]]) for every k-mer x ∈ p , and
2) when starting to process column j, decrementing
Tcnt[L[j + 1]] by 1.

To compute S, the Pcnt hash table is constructed
via a scan through p and Tcnt[x] is set to 0 for every k
-mer x ∈ p . Next, we simultaneously compute the
last column of S and initialize Tcnt so that it holds the
counts of all k-mers from p in t[L[0], L[ℓ− 1] , as fol-
lows. We trivially initialize S(ℓ− 1, ℓ− 1) and then
compute S(i, ℓ− 1) starting from i = ℓ− 2 down to
i = 0 . Before computing S(i, ℓ− 1) , we increment the

count stored at Tcnt[t[L[i]]] by 1. After this increment,
Tcnt[L[i]] = occ(L[i], t[L[i], L[ℓ− 1]]) and can be used to
distinguish between the two cases necessary for comput-
ing S(i, ℓ− 1).

Algorithm 1 details the rest of the algorithm for comput-
ing S, column-by-column using Eq. 5. The non-trivial part
is to determine which case of Eq. 5 to use in constant-time
(i.e. to compute occ(t[L[j + 1]], t[L[i], L[j + 1]]) ). We let
c1 = occ(x, t[0, L[i − 1]]) and let c2 = occ(x, t[0, L[j + 1]])
and observe that occ(x, t[L[i], L[j + 1]]) = c2 − c1 . Notice
that c2 = Tcnt[x] , so it only remains to compute c1 . When
computing a column j < ℓ− 1 , we are processing all the
rows starting from 0 up to ℓ− 1 . Thus we can update c1
by initially setting c1 = 0 (Line 8) and then, for each new
row i, incrementing c1 if t[L[i]] = x (Line 18).

Page 9 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19 	

Algorithm 1  Part 1 of eskemap algorithm

Computing maximality
In the second step, we identify which of the candidate
mappings in S are final. Our algorithm is shown in Algo-
rithm 2. We traverse S column-by-column starting with
the last column and then row-by-row, starting from the
first row. While traversing S, we maintain a list M of all
maximal, reasonable candidate mappings above the
threshold found so far and their scores. M has the invari-
ant that the candidate mappings are increasingly ordered
by their start positions.

To maintain the invariant that M is sorted by start
position, we maintain a pointer cur to a location in M
(Lines 7-11). At the start of a new column traversal, when
the row i = 0 , cur points to the start of M. As the row is
increased, we move cur forward until it hits the first value
in M with a start larger than i. When a new final mapping
is added to M, we do so at cur, which guarantees the
order invariant of M (Lines 16-20).

Due to the order cells in S are processed during our
traversal, a candidate mapping t[L[i], L[j]] is maximal if
and only if its score is larger than the score of all other
final mappings in M with position i′ ≤ i . For a given
column, since we are processing the candidate mappings
in increasing order of i, we can simultenously maintain
a running variable maxSoFar that holds the maximum

value in M up to cur (Line 8). We can then determine if
a candidate mapping is maximal by simply checking its
score against maxSoFar (Line 14). Note that as long as
we have not yet seen any final mapping at some position
i′ ≤ i , a candidate mapping is already maximal if its score
equals thr(|p|) . This is ensured via a flag supMpFnd and
an additional satisfiable subclause (Line 14). As soon as
maxSoFar is updated, supMpFnd is set (Line 10).

To check for the reasonability of a candidate mapping
corresponding to S(i, j), we need to verify that i ≥ i∗
and S(i, j) = S(i + 1, j)+ 1 , for 0 ≤ i < j . To see that
this is correct, first observe that i∗ is the smallest index
of a cell in column j of S belonging to a right-reasonable
candidate mapping that could be found during the
execution of Algorithm 1. Thus, there is no candidate
mapping belonging to a cell S(i, j) with i < i∗ . Vice versa,
every candidate mapping t[L[i], L[j]] with i > i∗ has to be
right-reasonable, because it is a substring of t[L[i∗], L[j]]
and occ(t[L[j]], t[L[i], L[j]]) ≤ occ(t[L[j]], t[L[i∗], L[j]])
must hold. The requirement of the second condition
( S(i, j) = S(i + 1, j)+ 1 , for 0 ≤ i < j ) to ensure left-
reasonability can be justified by a similar argument as
given for the correctness of Eq. 5. All candidate mappings
of cells S(i, j) where i = j are always reasonable, because
they contain only 1 k-mer x ∈ p.

Page 10 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19

Algorithm 2  Part 2 of eskemap algorithm

Runtime and memory analysis
The runtime for Algorithm 1 is �(ℓ2 + |t| + |p|) . Note
that this time bound refers to an expected time if
assuming a hash table with constant time for insertion
and lookup. The Pcnt table can be constructed in a
straightforward manner in O(|p|) time, the L array
is constructed in O(|t|) . Algorithm 2 runs two for
loops with constant time internal operations, with
the exception of the while loop to fast forward the
cur pointer. The total time for the loop is amortized
to O(ℓ) for each column. Therefore, the total time for
Algorithm 2 is �(ℓ2) . This gives the total running time
for our algorithm as O(|t| + |p| + ℓ2).

The total space used by the algorithm is the sum
of the space used by Pcnt , Tcnt , L, S and M. The Pcnt
table stores |p| integers with values up to |p|. How-
ever, notice that when |p| > ℓ , we can limit the table
to only store k-mers that are in t  , i.e. only ℓ k-mers.
We can also replace integer values greater than ℓ with
ℓ , as it would not affect the algorithm. Therefore, the
Pcnt table uses O(ℓ log ℓ) space. The Tcnt table stores at
most ℓ entries with values at most ℓ and therefore takes
O(ℓ log ℓ) space. To store S completely would require

�(ℓ2) space. However, as S is filled column by column
and since the recursion in Eq. 5 only depends on the
previously computed column, we can dynamically com-
pute S by only storing two columns of S in memory.
Further, we can apply Algorithm 2 separately on each
column after it has been computed by Algorithm 1 as
long as M is retained throughout the whole processing
of S. Hence, we do not need to spend more than �(ℓ)
space for storing S. To limit the space required for stor-
ing M to O(ℓ log ℓ) , we can observe that, in fact, it is
not necessary to keep all final mappings stored in M to
check for maximality during the execution of our algo-
rithm. Instead, it is enough to retain the last candidate
mapping found for each start position. As soon as we
find a final candidate mapping starting at the same
position as a previously found one, we can output the
latter and overwrite its entry in M with the newly found
candidate mapping. Thus our algorithm uses a total of
O(ℓ log ℓ) space.

Results
We implemented the eskemap algorithm described
in "Algorithm for the Sketch Read Mapping Problem"
section using scℓ as score function and compared it to

Page 11 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19 	

other methods in a read mapping scenario. For better
comparability, we implemented it with the exact same
minimizer sketching approach as used by minimap2.
Source code of our implementation as well as a detailed
documentation of our comparison described below
including exact program calls is available from https://​
github.​com/​medve​devgr​oup/​eskem​ap.

Datasets
For our evaluation, we used the T2T reference
assembly of human chromosome Y (T2T-CHM13v2.0;
[GenBank:NC_060948.1]) [15]. The chromosome
contains many ampliconic regions with duplicated genes
from several gene families. Identifying a single best hit
for reads from such regions is not helpful and instead it is
necessary to find all good mappings [16]. Such a reference
poses a challenge to heuristic algorithms and presents an
opportunity for an all-hits mapper like eskemap to be
worth the added compute.

We simulated a read dataset on this assembly imitating
characteristics of a PacBio Hifi sequencing run [17]. For
each read, we randomly determined its length r accord-
ing to a gamma distribution with a 9000bp mean and a
standard deviation of 7000bp. Afterwards, a random
integer i ∈ [1, n− r + 1] was drawn as the read’s start
position, where n refers to the length of the chromosome.
Sequencing errors were simulated by introducing muta-
tions into each read’s sequence using the mutation model
described in Definition 2 and a total mutation rate of
0.2% distributed with a ratio of 6:50:54 between substitu-
tion/insertion/deletion, as suggested in [18]. Aiming for a
sequencing depth of 10x, we simulated 69401 reads.

The T2T assembly of the human chromosome Y con-
tains long centromeric and telomeric regions which con-
sist of short tandem and higher order repeats. Mapping
reads in such regions results in thousands of hits that are
meaningless for many downstream analyses and signifi-
cantly increases the runtime of mapping. Therefore, we
excluded all reads from the initially simulated set which
could be aligned to more than 20 different, non-overlap-
ping positions using edlib (see below). After filtering, a
set of 32295 reads remained.

Tools
We compared eskemap to two other sketch-based
approaches and an exact alignment approach. The
sketch-based approaches were minimap2 (version 2.24-
r1122) and Winnowmap2 (version 2.03), run using
default parameters. In order to be able to compare
our results also to an exact, alignment-based mapping
approach, we used the C/C++ library of Edlib [6] (ver-
sion 1.2.7) to implement a small script that finds all non-
overlapping substrings of the reference sequence a read

could be aligned to with an edit distance of at most T. We
tried values T ∈ {0.01r, 0.02r, 0.03r} , where recall that r is
the read length. We refer to this script as simply edlib.

For eskemap, we aimed to make the results as compa-
rable as possible to minimap2. We therefore used a mini-
mizer sketch with the same k-mer and window size as
minimap2 ( k = 15 , w = 10 ). However, we excluded mini-
mizers that occurred > 100 times inside the reference
sketch, to limit the O(ℓ2) memory use of eskemap, even
as this exclusion may potentially hurt eskemap ’s accu-
racy. We used the default w = 1 as the tuning parameter
in the linear score. To set the score threshold, we used
the dynamic procedure described in Section "Simula-
tion-based analysis". In particular, we used five different
sequence lengths for simulations and used a divergence
of 1%. We used the same sequencing error profile as for
read simulation. Four thresholds were then chosen so at
to cover the one-sided confidence interval of 70%, 80%,
90%, and 95%, respectively.

Accuracy measure
We compared the reference substrings corresponding
to each reported mapping location of any tool to the
mapped read’s sequence using BLAST [19]. If a pairwise
comparison of both sequences resulted either in a single
BLAST hit with an E-value not exceeding 0.016 and cov-
ering at least 90% of the substring or the read sequence
or if a set of non-overlapping BLAST hits was found of
which none had an E-value above 0.01 and their lengths
summed up to at least 90% of either the reference sub-
string’s or the read sequence’s length, we considered the
reference mapping location as homologous.

For each read, we combine all the homologous ref-
erence substrings found across all tools into a ground
truth set for that read. We then measure the accuracy of
a mapping as follows. We determined for each k-mer of
the reference sequence’s sketch whether it is either a true
positive (TP), false positive (FP), true negative (TN) or
false negative (FN). A k-mer was considered a TP if it was
covered by both a mapping and a ground truth substring.
It was considered a FP if it was covered by a mapping,
but not by any ground truth substring. Conversely, it
was considered a TN if it was covered by neither a map-
ping nor a ground truth substring and considered a FN if
it was covered by a substring of the ground truth exclu-
sively. The determination was performed for each read
independently and results were accumulated per tool to
calculate precision and recall measures.

6  In order to ensure robustness of results, BLAST runs were also repeated
for E-value thresholds of 0.005 and 0.001 causing only neglectable differ-
ences for subsequent analyses.

https://github.com/medvedevgroup/eskemap
https://github.com/medvedevgroup/eskemap

Page 12 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19

Accuracy results
The precision and recall of the various tools is shown
in Fig. 2. The most controlled comparison can be made
with respect to minimap2, since the sketch used by
eskemap is a subset of the one used by minimap2. At a
score threshold corresponding to 70% recovery, eskemap
achieves the same precision (0.999) as minimap2.
However, the recall of eskemap is 0.88, compared
to 0.76 of minimap2. We see that the extra effort of
minimap2 to take k-mer order inside the sketches into
account does not seem to pay off in this experiment
compared to the approach of eskemap which avoids
this. The increased recall of eskemap can be explained
by the fact that eskemap is able to find all promising
but slightly worse suboptimal mapping positions for a
read originating, e.g., from the sequence of a duplicated
gene on the chromosome. Many of these are not
reported by minimap2 as it only reports a fixed number
of suboptimal mappings per read. This illustrates the
potential of eskemap as a method to recover more of
the correct hits than a heuristic method. More generally,
eskemap achieves a recall around 90%, while all other
tools have a recall of at most 76%. However, both edlib
and Winnowmap2 achieve a slightly higher precision (by
0.001).

Time and memory results
We compared the runtimes and memory usage of all
sketch-based methods (Table 1). Calculations were per-
formed on a virtual machine with 28 cores and 256 GB of

RAM. We did not include edlib in this alignment since, as
an exact alignment-based method, it took much longer to
complete (i.e. running highly parallelized for many days
on a system with many cores). We see that both heu-
ristics are significantly faster than our exact algorithm.
However, they also find many fewer mapping positions
per read. E.g., only one mapping position is reported
for 67% and 75% of all reads by minimap2 and Winnow-
map2, respectively. In comparison, eskemap finds more
than one mapping position for almost every second read
(49%). When the runtime is normalized per output map-
ping, eskemap is actually more than an order of magni-
tude faster than the other tools.

eskemap ’s memory usage was also found to be
smaller than that of minimap2 and Winnowmap2 in our
experiment.7

Conclusion
In this work, we formally defined the Sketch Read Map-
ping Problem, i.e. to find all positions inside a refer-
ence sketch with a certain minimum similarity to a
read sketch under a given similarity score function. We
also proposed an exact dynamic programming algo-
rithm called eskemap to solve the problem, running
in O(|t| + |p| + ℓ2) time and �(ℓ2) space. We evalu-
ated eskemap ’s performance by mapping a simulated
long read dataset to the T2T assembly of human chro-
mosome Y and found it to have a superior recall for a
similar level of precision compared to minimap2, while
offering precision/recall tradeoffs compared with edlib
or Winnowmap2.

In order to further improve on eskemap ’s runtime,
a strategy could be to develop filters that prune the
result’s search space. This could be established, e.g.,
by terminating score calculations for a column once
it is clear an optimal solution would not make use of
the rest of that column. Our prototype implementa-
tion of eskemap would also benefit from additional

Fig. 2  Mapping accuracies of all tools. For edlib, the color of the cross
encodes the various edit distance thresholds (0.01, 0.02, 0.03).
For eskemap, the color of the circles indicate the score threshold used,
in terms of the target confidence interval used (0.7, 0.8, 0.9, 0.95). The
ground truth is determined by combining the mappings from all
tools and filtering out those with bad BLAST scores. The most lenient
thresholds for edlib and eskemap were used

Table 1  Runtime and memory usage comparison of all sketch-
based methods

The tools were called to map 32295 simulated PacBio Hifi sequencing reads on
the T2T assembly of human chromosome Y. Runtimes are shown both as total
values and normalized by the number of reported mapping positions

Tool User time [s] Memory [GB]

Total Per mapping

eskemap 133,621 0.02 2

minimap2 26,232 0.55 4.5

Winnowmap2 9207 0.19 7

7  Note that eskemap ’s memory usage is significantly reduced relative to the
conference version of the paper.

Page 13 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19 	

engineering of the code base, potentially leading to
substantial improvements of runtime and memory in
practice.

Having an exact sketch-based mapping algorithm at
hand also opens the door for the exploration of novel
score functions to determine sequence similarity on
the level of sketches. Using our algorithm, combina-
tions of different sketching approaches and score func-
tions may be easily tested. Eventually, this may lead to
a better understanding of which sketching methods
and similarity measures are most efficient considering
sequences with certain properties like high repetitive-
ness or evolutionary distance.

Appendix A: Proofs
Proof of Theorem 2  Observe that domination is a tran-
sitive property, i.e. if sc1 dominates sc2 and sc2 domi-
nates sc3 , then sc1 dominates sc3 . To prove equivalence,
we will prove the following circular chain of domination:
scℓ ← scB ← scC ← scD ← scA ← scℓ.

First, observe that scB trivially dominates scℓ by keeping
the threshold function the same and setting b1 = 1 and
b2 = w.

Next, we prove that scC dominates scB . Let p be
a pattern and let t = thrB(|p|) . Set thrC = thrB and
c1 = b1 + b2 and c2 = b2 . Then, for all s, the following
series of equivalent transformations proves that scC dom-
inates scB.

Next, we prove that scD dominates scC . Let p be a pat-
tern and let t = thrC(|p|) . Set d1 = c1 + c2 , d2 = c2 , and
thrD(i) = thrC(i)+ ic2 . Then, for all s, the following
series of equivalent transformations proves that scD dom-
inates scC.

scB(s, p; b1, b2) ≥ t
∑

x

b1xmin − b2xdiff ≥ t

∑

x

b1xmin − b2(xmax − xmin) ≥ t

∑

x

(b1 + b2)xmin − b2xmax ≥ t

scC(s, p; c1, c2) ≥ thrC(|p|)

Next, we prove that scA dominates scD . Let p be a
pattern and let t = thrD(|p|) . Set a1 =

d1
d2

− 2 and
thrA(i) =

thrD(i)
d2

− i . Then, for all s, the following series
of equivalent transformations proves that scD dominates
scC.

Finally, we prove that scℓ dominates scA . Let p be a pattern
and let t = thrA(|p|) . Set w = 1

a1
 and thrℓ(i) = thrA(i)

a1
 .

Then, for all s, the following series of equivalent
transformations proves that scℓ dominates scA.

	� �

scC(s, p; c1, c2) ≥ thrC(|p|)
∑

x

c1xmin − c2xmax ≥ t

∑

x

c1xmin − c2

(

|s| + |p| −
∑

x

xmin

)

≥ t

∑

x

(c1 + c2)xmin − c2|s| − c2|p| ≥ t

∑

x

(c1 + c2)xmin − c2|s| ≥ t + c2|p|

scD(s, p; d1, d2) ≥ thrD(|p|)

scD(s, p; d1, d2) ≥ thrD(|p|)
(

∑

x

d1xmin

)

− d2|s| ≥ t

(

∑

x

d1xmin

)

− d2

(

∑

x

2xmin +
∑

x

xdiff − |p|

)

≥ t

∑

x

((d1 − 2d2)xmin − d2xdiff)+ d2|p| ≥ t

∑

x

(

d1 − 2d2

d2
xmin − xdiff

)

+ |p| ≥
t

d2

∑

x

(

(
d1

d2
− 2)xmin − xdiff

)

≥
t

d2
− |p|

scA(s, p; a1) ≥ thrA(|p|)

scA(s, p; a1) ≥ thrA(|p|)
∑

x

(a1xmin − xdiff) ≥ t

∑

x

(xmin −
1

a1
xdiff) ≥

t

a1

scℓ(s, p;w) ≥ thrℓ(|p|)

Page 14 of 14Schulz and Medvedev ﻿Algorithms for Molecular Biology (2024) 19:19

Acknowledgements
We would like to thank K. Sahlin for helpful early feedback.

Funding
Open Access funding enabled and organized by Projekt DEAL. This material
is based upon work supported by the National Science Foundation under
grant nos. 2138585. Research reported in this publication was also supported
by the National Institutes of Health under Grant NIH R01GM146462 (to P.M.).
The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health. Research is also
funded in part by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie agreement [872539] (to T.S.).
This work was supported by the BMBF-funded de.NBI Cloud within the Ger-
man Network for Bioinformatics Infrastructure (de.NBI) (031A532B, 031A533A,
031A533B, 031A534A, 031A535A, 031A537A, 031A537B, 031A537C, 031A537D,
031A538A).

Availability of data and materials
Additional documentation of performed experiments and used data sets are
available from https://​github.​com/​medve​devgr​oup/​eskem​ap.

Received: 1 November 2023 Accepted: 19 March 2024

References
	1.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-

matics. 2018;34(18):3094–100.
	2.	 Sahlin K, Baudeau T, Cazaux B, Marchet C. A survey of mapping algo-

rithms in the long-reads era. Genom Biol. 2023;24(1):1–23.
	3.	 Medvedev P, Stanciu M, Brudno M. Computational methods for discover-

ing structural variation with next-generation sequencing. Nat Method.
2009;6:13.

	4.	 Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F,
Kitzman JO, Baker C, Malig M, Mutlu O, et al. Personalized copy number
and segmental duplication maps using next-generation sequencing. Nat
Genet. 2009;41(10):1061–7.

	5.	 Jain C, Rhie A, Hansen NF, Koren S, Phillippy AM. Long-read mapping
to repetitive reference sequences using Winnowmap2. Nat Method.
2022;19:705–10.

	6.	 Šošić M, Šikić M. Edlib: a c/c++ library for fast, exact sequence alignment
using edit distance. Bioinformatics. 2017;33(9):1394–5.

	7.	 Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage
requirements for biological sequence comparison. Bioinformatics.
2004;20(18):3363–9.

	8.	 Schleimer S, Wilkerson DS, Aiken A. Winnowing: Local algorithms for
document fingerprinting. In: Proceedings of the 22nd International
Conference on Management of Data (SIGMOD 2003), 2003;76–85.

	9.	 Edgar R. Syncmers are more sensitive than minimizers for selecting
conserved k-mers in biological sequences. Peer J. 2021;9:10805.

	10.	 Irber L, Brooks PT, Reiter T, Pierce-Ward NT, Hera MR, Koslicki D, Brown CT.
Lightweight compositional analysis of metagenomes with FracMinHash
and minimum metagenome covers. bioRxiv (2022) https://​doi.​org/​10.​
1101/​2022.​01.​11.​475838.

	11.	 Hera MR, Pierce-Ward NT, Koslicki D. Debiasing FracMinHash and deriving
confidence intervals for mutation rates across a wide range of evolution-
ary distances. bioRxiv (2022).

	12.	 Belbasi M, Blanca A, Harris RS, Koslicki D, Medvedev P. The minimizer
jaccard estimator is biased and inconsistent. Bioinformatics. 2022;38(Sup-
plement_1):169–76. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btac2​44.

	13.	 Blanca A, Harris RS, Koslicki D, Medvedev P. The statistics of k-mers from
a sequence undergoing a simple mutation process without spurious
matches. J Comput Biol. 2022;29(2):155–68.

	14.	 Schulz T, Medvedev P. Exact Sketch-Based Read Mapping. In: Belazzougui,
D., Ouangraoua, A. (eds.) 23rd International Workshop on Algorithms
in Bioinformatics (WABI 2023). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 273, pp. 14–11419. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany (2023). https://​doi.​org/​10.​

4230/​LIPIcs.​WABI.​2023.​14 . https://​drops.​dagst​uhl.​de/​opus/​vollt​exte/​
2023/​18640.

	15.	 Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger
MR, Altemose N, Uralsky L, Gershman A, et al. The complete sequence of
a human genome. Science. 2022;376(6588):44–53.

	16.	 Cechova M, Vegesna R, Tomaszkiewicz M, Harris RS, Chen D, Rangavittal
S, Medvedev P, Makova KD. Dynamic evolution of great ape y chromo-
somes. Proc Natl Acad Sci. 2020;117(42):26273–80.

	17.	 Hon T, Mars K, Young G, Tsai Y-C, Karalius JW, Landolin JM, Maurer N,
Kudrna D, Hardigan MA, Steiner CC, et al. Highly accurate long-read hifi
sequencing data for five complex genomes. Sci Data. 2020;7(1):399.

	18.	 Ono Y, Asai K, Hamada M. Pbsim2: a simulator for long-read sequenc-
ers with a novel generative model of quality scores. Bioinformatics.
2021;37(5):589–95.

	19.	 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215(3):403–10. https://​doi.​org/​10.​1016/​
S0022-​2836(05)​80360-2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://github.com/medvedevgroup/eskemap
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.1093/bioinformatics/btac244
https://doi.org/10.4230/LIPIcs.WABI.2023.14
https://doi.org/10.4230/LIPIcs.WABI.2023.14
https://drops.dagstuhl.de/opus/volltexte/2023/18640
https://drops.dagstuhl.de/opus/volltexte/2023/18640
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2

	ESKEMAP: exact sketch-based read mapping
	Abstract
	Background
	Results

	Introduction
	Preliminaries
	Problem definition
	Score function
	Choosing a threshold
	Analytical analysis
	Simulation-based analysis

	Algorithm for the Sketch Read Mapping Problem
	Computing
	Computing maximality
	Runtime and memory analysis

	Results
	Datasets
	Tools
	Accuracy measure
	Accuracy results
	Time and memory results

	Conclusion
	Appendix A: Proofs
	Acknowledgements
	References

