
Component visualization methods for large
legacy software in C/C++

Máté Cserépa, Dániel Kruppb

aEötvös Loránd University
mcserep@caesar.elte.hu

bEricsson Hungary
daniel.krupp@ericsson.com

Submitted August 28, 2014 — Accepted February 24, 2015

Abstract
Software development in C and C++ is widely used in the various in-

dustries including Information Technology, Telecommunication and Trans-
portation since the 80-ies. Over this four decade, companies have built up a
huge software legacy. In many cases these programs, implementing complex
features (such as OS kernels, databases) become inherently complicated and
consist of millions lines of code. During the many years long development, not
only the size of the software increases, but a large number (i.e. hundreds) of
programmers get involved. Mainly due to these two factors the maintenance
of software becomes more and more time consuming and costly.

To attack the above mentioned complexity issue, companies apply various
source code cross-referencers to help in the navigation and visualization of the
legacy code. In this article we present a visualization methodology that helps
programmers to understand the functional dependencies of artifacts in the
C++ code in the form similar to UML component diagrams. Our novel graph
representation reveals relations between binaries, C/C++ implementation
files and headers. Our technique is non-intrusive. It does not require any
modification of the source code or any additional documentation markup. It
solely relies on the compiler generated Abstract Syntax Tree and the build
information to analyze the legacy software.

Keywords: code comprehension, software maintenance, static analysis, com-
ponent visualization, graph representation, functional dependency

MSC: 68N99

Annales Mathematicae et Informaticae
44 (2015) pp. 23–33
http://ami.ektf.hu

23



1. Introduction

One of the main task of code comprehension software tools is to provide naviga-
tion and visualization views for the reusable elements of the source code, because
humans are better at deducing information from graphical images [2, 7]. We can
identify reusable software elements in C/C++ language on different abstraction
levels of modularity. At a finer granularity, functions provide reusable implemen-
tation of a specific behavior, while on a higher scale (in C++) classes defines the
next level, where a programmer can collect related functions and data that belong
to the same subject-matter. At the file level, header files group related functions,
variables, type declarations and classes (in C++ only) into a semantic unit.

State of the art software comprehension and documentation tools implement
various visualization methods for all of these modularization layers. For example,
on the function level call graph diagrams can show the relations between the caller
and the called functions [9], while on the class level, one can visualize the contain-
ment, inheritance and usage relations by e.g. UML diagrams. On the file level,
header inclusion diagrams help the developers in code comprehension [8].

However, our observations showed that the state of the art file level diagrams are
not expressive enough to reveal some important dependency relationships among
implementation and header files. In this paper, we describe a new visualization
methodology that exposes the relations between implemented and used header
files and the source file dependency chains of C/C++ software.

This paper is structured as follows. Section 2 consist of a brief overview of
the state of the art literature with special focus on static software analysis. In
Section 3 we describe the shortfalls of the visualization methods in the current
software comprehension tools, then in Section 4 we present our novel views that
can help C and C++ programmers in understanding legacy source code. Section 5
demonstrates our results by showing examples on real open-source projects, and
finally in Section 6 we conclude the paper and set the directions for future work.

2. Background

Researchers have proposed several software visualization techniques and various
taxonomies have been published over the past years. They address one or more
of three main aspects (static, dynamic, and evolutional) of a software. The visu-
alization of the static attributes focuses on displaying the software at a snapshot
state, dealing only with the information that is valid for all possible executions
of the software, assisting the comprehension of the architecture of the program.
Conversely, the visualization of the dynamic aspects shows information about a
particular execution of the software, therefore helps to understand the behavior of
the program. Finally, the visualization of the evolution – of the static aspects – of a
software handles the notion of time, visualizing the alternations of these attributes
through the lifetime of the software development. For a comprehensive summary
of the current state of the art see the work of Caserta et al.[3]

24 M. Cserép, D. Krupp



The static analysis of a software can be executed on different levels of granularity
based on the level of abstraction. Above a basic source code level, a middle –
package, class or method – level, and an even higher architecture level exists.
In each category a concrete visualization technique can focus on various different
aspects. A summary of categorization is shown on Table 1, classifying some of the
most known and applied, as well as a few interesting new visualization techniques.

Kind Level Focus Techniques

Time T
Visualization

Line Line properties Seesoft
Class Functioning, Metrics Class BluePrint

Architecture

Organization Treemap

Relationship

Dependency
Structure Matrix
UML Diagrams
Node-link Diagrams
3D Clustered Graphs

Visualizing Evolution

Table 1: Categorization of visualization tools

This article focuses on assisting the code comprehension through visualizing
the relationships between architectural components of a software. The relevant
category not only contains various prevalent and continuously improved visualizing
techniques like the UML diagrams [4], but also recently researched, experimental
diagrams like the three dimensional clustered graphs [1]. This technique aims to
visualize large software in an integral unit, by generating graphs in a 3D space
and grouping remote vertices and classes into clusters. The visibility of the inner
content of a cluster depends dynamically on the viewpoint and focus of the user
who can traverse the whole graph.

Our novel solution uses the classical node-link diagram in two dimensional space
for visualization, which was formerly used at lower abstraction levels primarily.

3. Problems of visualization

Modularity on the file level of a software implementation in C/C++ is expressed
by separating interfaces and definition to header and implementation (source) files.
Interfaces typically contain macro and type definitions, function and member dec-
larations, or constant definitions; while implementation files usually contain the
definition of the functions declared in the headers. This separation allows the
programmers to define reusable components in the form of – static or dynamic –
libraries. Using this technique, the user of a library does not need to have infor-
mation about the implementation details in order to use its provided services.

Separation of these concerns is enforced by the C/C++ preprocessor, compiler
and linker infrastructure. When a library is to be used, its header file should be

Component visualization methods for large legacy software in C/C++ 25



included (through the #include preprocessor directive) by the client implemen-
tation or the header files. Implementation files should almost never1 be included
in a project where the specification and implementation layers are properly sepa-
rated. Unfortunately naming conventions of the header and implementation files
in C/C++ are not constrained (like calss and file-naming in Java). Thus, based on
a name of a file, it is not possible to find out the location, where the methods of
a class are declared or implemented. Furthermore, the implementation of the class
members declared in a header file can be scattered through many implementation
files that makes the analysis even more difficult.

When a programmer would like to comprehend the architecture of a software,
the used and provided (implemented) interface of a library component or the im-
plementers of a specific interface should be possible to be fetched.

Problem 3.1. As an example let us analyze the commonly presented header in-
clusion graph of a fileset in Figure 1. We assume that lib.h is an interface of
a software library and that there are many users of this component, thus several
files includes this header. If the programmer would like to comprehend where the
functions declared in the header are implemented, the header inclusion graph is
not helpful, since it does not unveil which C/C++ files are only using, and which
are implementing the lib.h interface.

Figure 1: Implementation decision problem between component(s)
and an interface.

As a solution we propose a so-called Interface diagram that is similar to the
well-known header inclusion graph, but refines the include relation into uses and
provides relationships. For this purpose we defined that a C/C++ file provides a
header file when it contains its implementation, while it only uses it if the mentioned
file refers to at least one symbol in the header, but does not implement any of them.
A proper and precisely defined description of this diagram is given in Section 4.2.

1A few exceptions may exist, i.e. in some rare cases of template usage.

26 M. Cserép, D. Krupp



4. Definition of relationships and diagrams

In this section first we introduce the commonly used basic terms of relationships
defined between the C/C++ source files and the binary objects (see Figure 2),
then present our more complex relationship definitions to describe the connections
between the various kind of files in a software project at a higher abstraction level.

4.1. Preliminaries
Definition 4.1 (Relations between source files). At the level of the abstract syntax
tree [6], the main artifacts of a C/C++ source code are the user defined symbols2,
which can be declared, defined or referred/used by either the source files (.c/.cc)
or the header files (.h/.hh). A C/C++ symbol might have multiple declarations
and references, but can be defined only once in a semantically correct source code.
To enforce the separation of the specification and implementation layer, header
files should mainly consist of declarations, whose definitions are in the appropriate
source files.3 From our perspective only those C/C++ symbols are important,
which are declared in a header file and are defined or referred by a source file.

Figure 2: Relations between compilation artifacts.

2From our viewpoint only the function (and macro) symbols and their declaration, definition
and usage are significant, although a similar classification for other symbol types can be established
without difficulties.

3In some cases, headers may contain definition and source file may also consist forward decla-
rations as an exception.

Component visualization methods for large legacy software in C/C++ 27



Definition 4.2 (Relations between binaries). The source files of a project are com-
piled into object files, which are then statically linked into archive files (.lib/.a),
shared objects or executable binaries. Shared objects are linked dynamically into
the executables at runtime. To extract this information and visualize the relation-
ship of binaries together with the relations declared between the C/C++ files, the
analysis of the compilation procedure of the project is required beside the static
analysis of the source code.

For the purpose of the presented visualization views in this paper the different
kind of binary relationships is irrelevant, therefore they will be collectively referred
as the contains relation henceforward (see Figure 2).

4.2. Extended classification

The basic include relationship among the implementation and header C/C++ files
have already been introduced in Section 4.1, however in order to solve the problem
raised in Section 3, the definitions of the proposed uses and provides relations have
to be separated.

Definition 4.3 (Provides relationship from implementation c to header h). We
say that in a fileset a implementation file c provides the interface specified by the
header file h, when c directly includes h and a common symbol s exists, for which
h contains the declaration, while c consists the definition of it.

Definition 4.4 (Uses relationship from implementation c to header h). Similarly
to the previous provides relationship definition, we state that in a fileset an imple-
mentation file c uses the interface specified by the header file h, when c directly
includes, but does not provides h and a common symbol s exists, which c refers
and h contains the declaration of it.

Definition 4.5 (Interface graph (diagram) of implementation file c). Let us
define a graph with the set of nodes N and set of edges E. Let P be the set of
header files which are provided by c and U the set of header files used by c, and B
the set of binary files which contain c. We define that N consists of c, the elements
of P , U , and B. E consists the corresponding edges to represent the relationships
between the nodes in N .

Figure 2 shows the illustration for the above mentioned definitions. Based
on the idea of the Interface diagram defined in Definition 4.5, which shows the
immediate provides, uses and contains relations of the examined file, we defined
the following more complex file-based views.

The nodes of these diagrams are the files themselves and the edges represent the
relationships between them. A labeled, directed edge is drawn between two nodes
only if the corresponding files are in either provides, uses or contains relationship.
The label of the edges are the type of their relationship and they have the same
direction as the relation they represent.

28 M. Cserép, D. Krupp



Definition 4.6 (Used components graph (diagram) of source c). Let us define
a graph with the set of nodes N and set of edges E, and let S be the set of
implementation files which provides an interface directly or indirectly used by c.
We define that N consists of c, the elements of S and the files along the path from
c to the elements of S. Binaries containing any implementation file in S are also
included in N . E consists the corresponding edges to represent the relationships
between the nodes in N .

Intuitively we can say if source t is a used component of c, then c is using some
functionality defined in t.

Definition 4.7 (User components graph (diagram) of source c). Let us define
the graph with the set of nodes N and set of edges E, and similarly to the previous
definition, let S be the set of implementation files which directly or indirectly uses
the interface(s) provided by c. We define that N consists of c, the elements of S
and the files along the path from c to the elements of S. Binaries containing any
implementation file in S are also included in N . E consists the corresponding edges
to represent the relationships between the nodes in N .

Intuitively we can say if source t is a user component of c, then c is providing
some functionality used by t.

5. Experimental results

In order to implement the views defined in Section 4, we created a diagram visual-
izing tool was created as part of a larger code comprehension supporting project –
named CodeCompass. The software is developed in cooperation at Eötvös Loránd
University and Ericcson Hungary. The tool provides an interactive graph layout
interface, where the users are capable of requesting more information about the
nodes representing files and can also easily navigate between them, switching the
perspective of the view they are analyzing.

Figure 3: Interface diagram of tinyxml.cpp.

Component visualization methods for large legacy software in C/C++ 29



For demonstration purposes in this paper, the open-source TinyXML parser
project[10] was selected. In this section altogether three examples for the use of
our tool is shown and information retrievable from them is examined.

Example 5.1. Figure 3 displays an Interface diagram, showing the immediate re-
lations of a selected file with other files in the software. As the image shows, the
C++ implementation file in the middle (tinyxml.cpp) includes two header files,
but the special connection of implementation (provides) is distinguished from the
mere uses relation. This diagram not only presents the connections between C++
source and header files, but also displays in which object file the focused imple-
mentation file was compiled into through the compilation process of the project.

Figure 4: Used components by tinyxml.cpp.

Example 5.2. Figure 4 presents the Used components diagram of the implemen-
tation file tinyxml.cpp at the top. The goal of this visualization is to determine

30 M. Cserép, D. Krupp



which other files and compilation units the selected file depends on. As it is de-
picted in the figure, the interface specification for the tinyxml.cpp implementation
file is located in the tinyxml.h header. This header file on the one part is pro-
vided by the tinyxmlparser.cpp, and on the other hand uses the tinystr.h. The
latter header file is provided by the tinystr.cpp source. Hence the implication
can be stated that the original tinyxml.cpp indirectly uses and depends on the
tinyxmlparser.cpp and the tinystr.cpp file.

Example 5.3. Parallel to Figure 4, the following example deduces the compilation
artifacts depending on the same selected source tinyxml.cpp. The User compo-
nents diagram displays (see Figure 5) that this implementation file implements an
interface contained by the tinyxml.h header. This header is used or provided by
three sources (tinyxmlparser.cpp, xmltest.cpp and tinyxmlerror.cpp), there-
fore they are the users of tinyxml.cpp.

Figure 5: User components of tinyxml.cpp.

6. Conclusions and future work

In large legacy software projects a huge codebase can easily be built up because
of the extended development time, while fluctuation among programmers can also
often be a significant problem. Code comprehension support addresses these ques-
tions through assisting – both experienced and newcomer – developers with visu-
alization views to better understand the source code. In this paper we discussed

Component visualization methods for large legacy software in C/C++ 31



what kind of file-level views are missing from the current code comprehension tools,
regarding the relationships between different type of compilation artifacts. We de-
fined our novel graph view as a solution to this problem, and demonstrated the
practical use of our technique through examples on an open-source C++ project.
The new visualization techniques were found helpful and applicable for legacy soft-
ware in supporting code comprehension.

Above the file-level granularity, a higher level of modularity can also be defined,
considering that related files can form the interface of a reusable binary component
and are often grouped together physically (i.e. contained in a directory) or virtu-
ally (e.g. using packages or namespaces). Future development will generalize and
expand the file-based dependency relationship definitions introduced in this paper
to be applicable for modules containing multiple files.

Further work will also include the examination of how the information retrieved
by our definition rules can be used in the field of architecture compliance checking.
Software systems often impose constraints upon the architectural design and im-
plementation of a system, for example on how components are logically grouped,
layered and how they may interact with each other. In order to keep the main-
tainability of a software system through a long development time with a large
programmer team, it bears extreme importance that the design and implementa-
tion are compliant to its intended software architecture. Due to the complexity of
large software systems, guaranteeing the compliance by manual checking is almost
impossible, hence automated support is required, which is still not a completely
solved issue nowadays [5].

References

[1] Balzer, M., Deussen, O., Level-of-detail visualization of clustered graph lay-
outs, Proceedings of the 6th International Asia-Pacific Symposium on Visualization,
(2007), 33–140.

[2] Biederman, I., Recognition-by-components: a theory of human image understand-
ing, Psychological review, Vol. 94 (1987), 115–147.

[3] Caserta, P., Zendra, O., Visualization of the static aspects of software: a survey,
IEEE Transactions on Visualization and Computer Graphics, Vol. 17 (2011), 913–
933.

[4] Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert, S., Mutzel, P.,
A new approach for visualizing UML class diagrams, Proceedings of the 2003 ACM
Symposium on Software Visualization, (2003), 179–188.

[5] Pruijt, L., Koppe, C., Brinkkemper, S.,, On the accuracy of architecture com-
pliance checking support: Accuracy of dependency analysis and violation reporting,
IEEE 21st International Conference on Program Comprehension, (2013), 172–181.

[6] Salomaa, A., Formal Languages, Academic Press Professional, Inc., (1987).

[7] Spence, I., Visual psychophysics of simple graphical elements, Journal of Experi-
mental Psychology: Human Perception and Performance, Vol. 16 (1990), 683–692.

32 M. Cserép, D. Krupp



[8] Doxygen Tool: http://www.stack.nl/~dimitri/doxygen/.

[9] Understand Source Code Analytics & Metrics, http://www.scitools.com/.

[10] TinyXML parser, http://www.grinninglizard.com/tinyxml/.

Component visualization methods for large legacy software in C/C++ 33


