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Abstract

The aim of the present paper is to study theoretically and numerically the Verlet
scheme for the explicit time-integration of elastodynamic problems with a contact
condition approximated by Nitsche’s method. This is a continuation of papers (Chouly
et al. ESAIM Math Model Numer Anal 49(2), 481–502, 2015; Chouly et al. ESAIM Math
Model Numer Anal 49(2), 503–528, 2015) where some implicit schemes (theta-scheme,
Newmark and a new hybrid scheme) were proposed and proved to be well-posed and
stable under appropriate conditions. A theoretical study of stability is carried out and
then illustrated with both numerical experiments and numerical comparison to other
existing discretizations of contact problems.

Keywords: Unilateral contact, Elastodynamics, Nitsche’s method, Explicit
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Introduction and problem setting
Explicit time-marching schemes for the dynamics of deformable solids with impact has
already been the subject of an abundant literature (see, e.g., [1–3] for some recent con-
tributions). They are appealing since they can be easy to implement, fast and adapted
to parallel architectures. Nevertheless, there still remains important difficulties to design
robust explicit methods and to obtain reliable numerical simulations in this context (see,
e.g., [4]). Among these difficulties, numerical stability and energy conservation remains
one of the most important ones. Another one is to preserve the quality and the accuracy
of the numerical solution, which can present spurious oscillations in the displacement,
the velocity or the contact stress. A last one is to enforce properly the contact condition,
particularly the non-penetration condition.
A precursory method is the one developed by Taylor and Flanagan [5] in the framework

of PRONTO3D software (see also the description in [6]). Nevertheless, the method is
not fully explicit, except in a node-to-node contact approximation, in the sense that
the contact pressure is computed in an iterative process on the whole contact surface.
To mention some other of the most important contributions, we can say that a widely
resumed theoretical work in dynamic impact problems is due to Moreau [7,8] for the
impact of rigid body systems. The (implicit) schemes proposed by Moreau have been
extended quite naturally to the elasticity case through finite element semi-discretization
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in space (for instance in [9]) which transforms the continuous impact problem into a
discrete one very close to a rigid body system. These discrete impact problems, governed
by a so-called measure differential inclusion are notoriously ill-posed and of very low
regularity.
The ill-posedness can be fixed (for the most part) by the addition of an impact law with

a restitution coefficient. As a matter of fact, standard schemes, such as the commonly
used ones of Newmark’s family [10], have an erratic behavior when they are applied to
dynamic contact problems. This is mainly because they select a solution corresponding to
an arbitrary (and potentially very large) restitution coefficient (see [11]). Alternatively, a
valuable scheme in this context is that of Paoli and Schatzman [12,13] who implicitly takes
into account this restitution coefficient. However, the addition of a restitution coefficient
can be considered as artificial in the context of deformable solids. This does not diminish
the interest for the Paoli–Schatzman scheme which will be a point of comparison with
our proposed approach. The implicit inclusion of a restitution coefficient has also been
considered in [14] to develop a wide range of schemes based on a time discontinuous
Galerkin framework.
As noticed in [11], even in the case where the continuous problem is well-posed (see,

e.g., [15,16] for well-posedness results), the ill-posed measure differential inclusion that
results fromfinite element semi-discretization in spacehas an infinite number of solutions,
depending on the choice of a restitution coefficient on each node of the contact boundary.
Moreover, it is not possible to decide which solution is more suitable than other. Indeed,
the two most remarkable solutions are, on the one hand, the one for a unitary restitution
coefficient which ensures conserving energy but which causes very important spurious
oscillations of the contact nodes and unexploitable contact stress, and, on the other hand,
the solution for a vanishing restitution coefficient which ensures stability and a better
approximationof the contact stress but is energydissipative,while the continuousproblem
is not. This resulted in [11] to design the mass redistribution method (generalized in
[17,18]) which allows a compromise in this context, i.e. well-posedness of the space semi-
discretized problem, conservation of the energy and an improved quality of the contact
stress. However, and this is also the case for the Paoli–Schatzman scheme, it introduces a
global problem to be solved (at least on the contact nodes) when an explicit time-marching
scheme is used. In the same spirit, a time-marching scheme has been designed in [19] for
dynamic fracture problems, in which the cohesive forces are treated implicitly, while an
explicit scheme is used for the dynamics of interior nodes.
For explicit time-integration, primal formulations of contact conditions are better

suited. Indeed, since no additional unknown such as a Lagrange multiplier are intro-
duced, they allow to enforce the contact conditions at the previous time-step, instead of
the current one, so that the contact term appears at the right-hand side and does not
require global (and non-linear) solving. A first possibility is to penalize / regularize the
contact conditions (see, e.g., [20,21]): the resulting penalty method is simple to imple-
ment and only an inversion of the mass-matrix is needed at each time-step to solve the
resulting fully discretized problem (and the scheme becomes fully explicit when the mass
matrix is lumped). Nevertheless, the penalty method is not consistent and the choice of
the penalty parameter remains a difficulty (see, e.g., [22]). The alternative we explore in
this paper is a Nitsche treatment of contact conditions, which is still a primal method,
with the same advantages as penalty, but that remains consistent with the original prob-
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lem, and more robust with respect to the Nitsche parameter. Nitsche’s method, orig-
inally designed to enforce weakly Dirichlet boundary conditions [23,24], was adapted
to unilateral contact in [25,26] (see also [27] for an overview of recent results on this
topic).
We studied previously in [28,29] the behavior of Nitsche’s method for contact in

elastodynamics, when combined to various implicit time-marching schemes. Particu-
larly, when applied to contact-impact in elastodynamics, Nitsche’s method has the good
property of leading to a well-posed semi-discrete problem in time (i.e., a system of
Lipschitz differential equations) as it is shown in [28]. This feature is shared also by
the penalty method and modified mass methods. Moreover the symmetric variant of
Nitsche’s space semi-discretization conserves an augmented energy [28], as does the
penalty method [30]. We studied as well theoretically the well-posedness, the stabil-
ity and energy conservation properties of fully discrete schemes based on space semi-
discretization with Nitsche’s method combined with the theta-scheme, the Newmark
scheme and a new Hybrid scheme. This study was illustrated with some numerical exper-
iments.
The aim of this paper is to study mathematically and numerically the approximation

of contact problems in elastodynamics by Nitsche’s method combined with the explicit
Verlet time-marching scheme. The choice of the Verlet scheme is motivated both by
its simplicity and its attractive theoretical properties (symplecticity) [31]. We will also
make comparisons with some of the existing methods mentioned above and with the
approximation by penalized contact. The numerical comparisonwill bemainly performed
on the one-dimensional problem introduced in [15] whose advantage is to present a
known periodic solution and to make clear the occurrence of parasitic oscillations, the
convergence and energy conservation properties. Comparisons for 2D and 3D problems
will also be presented.
Let us introduce some useful notations. In what follows, bold letters like u, v, indicate

vector or tensor valued quantities, while the capital ones (e.g., V,K . . .) represent func-
tional sets involving vector fields. As usual, we denote by (Hs(.))d , s ∈ R, d = 1, 2, 3 the
Sobolev spaces in one, two or three space dimensions (see [32]). The usual scalar product
of (Hs(D))d is denoted by (·, ·)s,D and the corresponding norm is denoted by ‖ · ‖s,D—we
keep the same notation when d = 1 or d > 1. The letter C stands for a generic constant,
independent of the discretization parameters.
We consider an elastic body � in R

d with d = 1, 2, 3. Small strain assumptions are
made (as well as plane strain when d = 2). The boundary ∂� of � is polygonal (d = 2)
or polyhedral (d = 3). The normal unit outward vector on ∂� is denoted n. We suppose
that ∂� consists in three nonoverlapping parts�D,�N and the contact boundary�C , with
meas(�D) > 0 and meas(�C ) > 0. In its initial stage, the body is in contact on �C with a
rigid foundation and we suppose that the unknown contact zone during deformation is
included into �C . The body is clamped on �D for the sake of simplicity. It is subjected to
volume forces f in � and to surface loads g on �N .
We deal with the unilateral contact problem in linear elastodynamics during a period of

time [0, T ] where T > 0 is the final time. We denote by �T := (0, T ] × � the time-space
domain, and similarly �DT := (0, T ] × �D, �NT := (0, T ] × �N and �CT := (0, T ] × �C .
The problem then consists in finding the displacement field u : [0, T ]×� → R

d verifying
the equations and conditions (1, 2):
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ρü − div σ(u) = f, σ(u) = A ε(u) in �T ,

u = 0 on �DT ,

σ(u)n = g on �NT ,

u(0, ·) = u0 u̇(0, ·) = u̇0 in �,

(1)

where the notation ẋ is used for the time-derivative of a vector field x on �T , so that u̇ is
the velocity of the elastic body and ü its acceleration; u0 and u̇0 are initial displacement
and velocity. The density of the elastic material is denoted by ρ, and is supposed to be a
constant to simplify the presentation (this is not restrictive and the results can be extended
straightforwardly for a variable density). The notation σ = (σij), 1 ≤ i, j ≤ d, stands for
the stress tensor field and div denotes the divergence operator of tensor valued functions.
The notation ε(v) = (∇v + ∇vT )/2 represents the linearized strain tensor field and A
is the fourth order symmetric elasticity tensor having the usual uniform ellipticity and
boundedness property. For any displacement field v and for any density of surface forces
σ(v)n defined on ∂� we adopt the following notation

v = vnn + vt and σ(v)n = σn(v)n + σt(v),

where vt (resp. σt(v)) is the tangential component of v (resp. σ(v)n). The conditions
describing unilateral contact without friction on �CT are:

un ≤ 0 σn(u) ≤ 0 σn(u)un = 0 σt(u) = 0. (2)

Note additionally that the initial displacement u0 should satisfy the compatibility Condi-
tion u0n ≤ 0 on �C .
To our knowledge, the well-posedness of Problems (1), (2) is still an open issue. The

few available existence results concern simplified model problems involving the (scalar)
wave equation with Signorini’s conditions (see, e.g., [16,33–36]) or thin structures like
membranes, beams (see [37]) or plates (see [38]). Even in these simplified cases, obtaining
uniqueness and energy conservation still involves difficulties in 2D or 3D. For a review on
some of these results, one can refer to the book [39].
We introduce the Hilbert space

V :=
{
v ∈ (H1(�)

)d : v = 0 on �D
}
,

and the following forms:

a(u, v) :=
∫

�

σ(u) : ε(v) d�, L(t)(v) :=
∫

�

f(t) · v d� +
∫

�N

g(t) · v d�,

for any u and v in V, for all t ∈ [0, T ]. The (total) mechanical energy associated with the
solution u of the dynamic contact problem (1, 2) is:

E(t) := 1
2
ρ‖u̇(t)‖20,� + 1

2
a(u(t),u(t)), ∀t ∈ [0, T ].

Let us take t ∈ [0, T ]. Formally, we get from (1), after multiplication by u̇(t), integration
by parts, with the boundary conditions on �DT , �NT and the absence of friction:

∫

�

ü(t) · u̇(t) d� +
∫

�

σ(u(t)) : ε(u̇(t)) d�

︸ ︷︷ ︸
d
dt E(t)

−
∫

�C

σn(u(t))u̇n(t) d� = L(t)(u̇(t)).
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Moreover, if we assume that the contact force does not dissipate any energy, i.e. satisfies
the so called persistency Condition σn(u(t))u̇n(t) = 0 (see, e.g., [30,40,41]) then we end
up with:

d
dt

E(t) = L(t)(u̇(t)). (3)

Notably, when L vanishes, we get energy conservation: E(t) = E(0), for all t ∈ [0, T ].
Note that, even if it is expected that solutions to Problems (1), (2) satisfy the persistency

Condition σn(u(t))u̇n(t) = 0 in order to respect the non-dissipative character of the
frictionless contact condition, it has only been rigorously proved in a one dimensional
framework (elastic bar) for instance in [36, Lemma 2.5].
The rest of our paper is outlined as follows. The first section is dedicated to the descrip-

tion of the fully discrete formulation for dynamic contact with Nitsche and Verlet explicit
time-integration. Then, a stability analysis is carried out, and finally, some numerical
comparisons with other classical methods are investigated and analysed.

Discrete setting: Nitsche’s method with Verlet scheme
We begin this section with preliminary notations and results. Then, we introduce our
Nitsche-based finite element semi-discretization in space, and we recall its main proper-
ties of well-posedness and energy conservation. Finally we describe the fully discretized
problem based on the Verlet explicit time-marching scheme.

Preliminary notations and results

We make use of the notation [·]
R− , that stands for the projection onto R

− ([x]
R−

= 1
2 (x − |x|) for x ∈ R). The notation H (·) will stand for the Heaviside function

H (x) = 1 if x > 0, 12 if x = 0, and 0 if x < 0, which satisfies H (x) + H (−x) = 1,∀x ∈ R.
Moreover we will make use of the equality H (−x)[x]

R− = [x]
R− , ∀x ∈ R, and the

following property of projection:

(y − x)(
[
y
]
R− − [x]

R− ) ≥ (
[
y
]
R− − [x]

R− )
2 ∀x, y ∈ R. (4)

Let Vh ⊂ V be a family of finite dimensional vector spaces (see [42]) indexed by h
coming from a family T h of triangulations of the domain � (h = maxK∈T h hK where hK
is the diameter of the triangle K ). The family of triangulations is supposed:

• Regular, i.e., there exists σ > 0 such that ∀K ∈ T h, hK /ρK ≤ σ where ρK denotes
the radius of the inscribed ball in K ,

• Conformal to the subdivision of the boundary into �D, �N and �C , which means
that a face of an element K ∈ T h is not allowed to have simultaneous non-empty
intersection with more than one part of the subdivision,

• Quasi-uniform, i.e., there exists c > 0, such that, ∀h > 0, ∀K ∈ T h, hK ≥ ch.

To fix ideas, we choose a standard Lagrange finite element method of degree k with k = 1
or k = 2, i.e.:

Vh =
{
vh ∈ (C 0(�))d : vh| K ∈ (Pk (K ))d,∀K ∈ T h, vh = 0 on �D

}
.

However, our results would be similar for any C 0-conforming finite element method.
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We consider in what follows γh, a positive piecewise constant function on the contact
interface �C which satisfies for every K that has a non-empty intersection of dimension
d − 1 with �C

γh|K∩�C = γ0
hK

, (5)

where γ0 is a positive given constant (the Nitsche parameter). Note that the value of γh
on element intersections has no influence.
We next define convenient mesh-dependent norms, in fact weighted L2(�C )-norm

(since (γ0/γh)|K = hK ).

Definition 1 For any v ∈ L2(�C ), we set

‖v‖− 1
2 ,h,�C

:= ‖ (γ0/γh) 12 v‖0,�C , ‖v‖ 1
2 ,h,�C

:= ‖ (γh/γ0) 12 v‖0,�C .

Additionally, it will be convenient to endowVh with the followingmesh- and parameter-
dependent scalar product:

Definition 2 For all vh,wh ∈ Vh we set

(vh,wh)γh := (vh,wh)1,� + (γh
1
2 vhn, γh

1
2wh

n)0,�C ,

and note ‖ · ‖γh := (·, ·)
1
2
γh the corresponding norm. Remark that the two norms ‖ · ‖γh and

‖ · ‖1,� are equivalent on Vh, in the following sense (for a quasi-uniform mesh T h):

‖vh‖1,� ≤ ‖vh‖γh ≤
(
1 + C

γ0
h

) 1
2 ‖vh‖1,�,

for any vh ∈ Vh. The positive constantC comes from the trace inequality and the constant
of quasi-uniformity of the mesh T h. For a mesh T h that is not quasi-uniform, the same
relationship holds, replacing h by (minK∈T h hK ).

We end this section with the following statement: a discrete trace inequality (see, e.g.,
[43]), that is a key ingredient for the whole mathematical analysis of Nitsche’s based
methods.

Lemma 3 There exists C > 0, independent of the parameter γ0 and of the mesh size h,
such that, for all vh ∈ Vh

‖σn(vh)‖− 1
2 ,h,�C

≤ C‖vh‖1,�. (6)

Semi-discrete problem in space

OurNitsche-based discretization of the contact condition comes from the following result
(see [44] and as well [25] for a detailed formal proof).

Proposition 4 Let γ be a positive function defined on �C . The contact Condition (2) can
be reformulated as follows:

σn(u) = [σn(u) − γ un]
R− . (7)

As in [28,29] we will consider a family of methods indexed by a parameter � ∈ R (with,
in general, � = −1, 0, 1, see, e.g., [26]). Let us introduce the discrete linear operator
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Pn�,γh :
Vh → L2(�C )
vh 
→ �σn(vh) − γhvhn

.

Define as well the bilinear form:

An
�γh

(uh, vh) := a(uh, vh) −
∫

�C

�

γh
σn(uh)σn(vh) d�.

The space semi-discretizedNitsche-basedmethod for unilateral contact problems in elas-
todynamics then reads (see, e.g, [27,28]):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find uh : [0, T ] → Vh such that for t ∈ [0, T ]:

(ρüh(t), vh)0,� + An
�γh

(uh(t), vh) +
∫

�C

1
γh

[Pn1,γh (u
h(t))]

R−Pn�,γh (v
h) d�

= L(t)(vh), ∀ vh ∈ Vh,

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 ,

(8)

where uh0 (resp. u̇h0) is an approximation in Vh of the initial displacement u0 (resp. the
initial velocity u̇0), for instance the Lagrange interpolant or the L2(�) projection of u0
(resp. u̇0).

Remark 5 Note that, as in [27], we adopted in this presentation a different convention
for notations compared to previous works [28,29]. This is in order to get closer to the
formulations provided in most of the papers on Nitsche’s method and on the augmented
Lagrangian method.

We can reformulate (8) as a system of (non-linear) second-order differential equa-
tions. To this purpose, using Riesz’s representation theorem in (Vh, (·, ·)γh ) we first intro-
duce the mass operator Mh : Vh → Vh, which is defined for all vh,wh ∈ Vh by
(Mhvh,wh)γh = (ρvh,wh)0,�. Still using Riesz’s representation theorem, we define the
(non-linear) operator Bh : Vh → Vh, by means of the formula

(Bhvh,wh)γh := An
�γh

(vh,wh) +
∫

�C

1
γh

[Pn1,γh (v
h)]

R−Pn�,γh (w
h) d�,

for all vh,wh ∈ Vh. Finally, we denote by Lh(t) the vector in Vh such that, for all t ∈ [0, T ]
and for every wh in Vh: (Lh(t),wh)γh = L(t)(wh). With the above notation, Problem (8)
reads:

⎧⎪⎪⎨
⎪⎪⎩

Find uh : [0, T ] → Vh such that for t ∈ [0, T ]:

Mhüh(t) + Bhuh(t) = Lh(t),

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 .

(9)

Moreover, we recall the results of well-posedness and the energy estimate for the semi-
discrete problem in space, that were established in [28]. First, the following theorem
together with the boundedness of ‖(Mh)−1‖γh [see [28] show that Problem (8) or equiva-
lently Problem (9)] is well-posed.

Theorem 6 The operator Bh is Lipschitz-continuous in the following sense: there exists a
constant C > 0, independent of h, � and γ0 such that, for all vh1 , vh2 ∈ Vh:

‖Bhvh1 − Bhvh2‖γh ≤ C(1 + γ −1
0 )(1 + |�|)‖vh1 − vh2‖γh . (10)
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As a consequence, for every value of � ∈ R and γ0 > 0, Problem (8) admits one unique
solution uh ∈ C 2([0, T ],Vh).

Remark 7 Note that, conversely to the static case (see [25,26,45]) and the fully-discrete
case there is no condition on γ0 for the space (semi-)discretization, which remains well-
posed even if γ0 is arbitrarily small. However, this does not imply that the solution remains
consistent when γ0 becomes small (see Remark 19 and Fig. 4 in the sequel).

We recall that the standard (mixed) finite element semi-discretization for elastodynam-
ics with unilateral contact leads to ill-posed problems (see, e.g., [11,22]), which is not the
case of Nitsche’s formulation that leads to a well-posed (Lipschitz) system of differen-
tial equations. This feature is shared with the standard penalty method, the difference
being that Nitsche’s method remains consistent in a strong sense (see [28]). Note that the
standard (mixed) finite element semi-discretization is consistent as well as the singular
dynamic method introduced in [18]. The mass redistribution method introduced in [11]
is asymptotically consistent when h vanishes.
Now, we consider the energy estimates which are counterparts of the Eq. (3), in the

semi-discretized case. Let us define the discrete energy as follows:

Eh(t) := 1
2
ρ‖u̇h(t)‖20,� + 1

2
a(uh(t),uh(t)), ∀t ∈ [0, T ].

which is associated to the solution uh(t) to Problem (8). This is the direct transposition
of the mechanical energy E(t) from the continuous system. As in [28], we define also a
modified energy more suited to Nitsche’s method

Eh
�(t) := Eh(t) − �

2γ0

[∥∥∥σn(uh(t))
∥∥∥
2

− 1
2 ,h,�C

−
∥∥∥[Pn1,γh (uh(t))]R−

∥∥∥
2

− 1
2 ,h,�C

]
(11)

:= Eh(t) − �Rh(t), (12)

inwhich a consistent term is added. This termdenotedRh(t) represents, roughly speaking,
the non-fulfillment of the contact Condition (7) by uh. The relationship between Eh(t)
and Eh

�(t) is provided in the Lemma below:

Proposition 8 For � ≥ 0 and γ0 large enough, there exists C > 0 independent of h, of γ0
and of the solution to Problem (8), such that, for all t ∈ [0, T ]:

Eh(t) ≤ CEh
�(t).

Proof This result is obtained using the coercivity of a(·, ·) and applying Lemma 3. ��

Remark 9 Proposition 8 states that the energy Eh
�(t) remains always positive (if Eh(0) is)

for � ≥ 0 and γ0 large enough. For γ0 small, the existence of zero energy spurious modes
cannot be excluded.

Remark 10 For � < 0, such a result with a constant independent of the mesh parameter
h cannot be obtained. As a consequence, for � < 0, the quantity Eh

�(t) cannot be used for
optimal energy evolution estimates and might become even negative for h small.

Still in [28], the following evolution of Eh
� is obtained:
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Theorem 11 Suppose that the system associated to (1, 2) is conservative, i.e., that L(t) ≡ 0
for all t ∈ [0, T ]. The solution uh to (8) then satisfies the following identity:

d
dt

Eh
�(t) = (1 − �)

∫

�C

[Pn1,γh (u
h(t))]

R− u̇hn(t) d�.

Notably, when � = 1, we get for any t ∈ [0, T ]: Eh
1 (t) = Eh

1 (0).

This result links the non-satisfaction of the energy conservation to the non-satisfaction
of the so-called persistency condition. However, it appears in the present study that it
would be preferable to use Eh

1 (t) even for the variants � �= 1 (see Remark 10), for which
the following result can be established:

Theorem 12 Suppose that the system associated to (1, 2) is conservative, i.e., that L(t) ≡ 0
for all t ∈ [0, T ]. The solution uh to (8) then satisfies the following identity:

d
dt

Eh
1 (t) = (1 − �)

∫

�C

1
γh

(
[Pn1,γh (u

h(t))]
R− − σn(uh(t))

)
σn(u̇h(t)) d�.

Proof Let us take vh = u̇h(t) in (8):

(ρüh(t), u̇h(t))0,� + An
�γh

(uh(t), u̇h(t))

+
∫

�C

1
γh

[Pn1,γh (u
h(t))]

R−Pn�,γh (u̇
h(t)) d� = 0,

which we reformulate as:

d
dt

Eh(t) − �

∫

�C

1
γh

σn(uh(t))σn(u̇h(t)) d�

+
∫

�C

1
γh

[Pn1,γh (u
h(t))]

R−Pn�,γh (u̇
h(t)) d� = 0.

We split the second term, use Pn�,γh (u̇
h(t)) = �σn(u̇h(t)) − γhu̇hn = Pn1,γh (u̇

h(t))
+ (� − 1) σn(u̇h(t)) and get:

d
dt

Eh(t) −
∫

�C

1
γh

σn(uh(t))σn(u̇h(t)) d� − (� − 1)
∫

�C

1
γh

σn(uh(t))σn(u̇h(t)) d�

+
∫

�C

1
γh

[Pn1,γh (u
h(t))]

R−
(
Pn1,γh (u̇

h(t)) + (� − 1)σn(u̇h(t))
)
d� = 0.

The result is obtained by re-ordering the terms, using the property d
dt

1
2 [x(t)]

2
R−

= [x(t)]
R− ẋ(t) and the definition of Eh

1 (t). ��

Remark 13 The above result still states that Eh
1 (t) is conserved for the symmetric variant

� = 1, and, for� �= 1 the variations of Eh
1 (t) come from the non-fulfillment of the contact

Condition (7) by uh.
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Verlet scheme

Let τ > 0 be the time-step, and consider a uniform discretization of the time interval
[0, T ]: (t0, . . . , tN ), with tn = nτ , n = 0, . . . , N . Let θ ∈ [0, 1], we use the notation:

xh,n+θ = (1 − θ )xh,n + θxh,n+1

for arbitrary quantities xh,n, xh,n+1 ∈ Vh. Hereafter we denote by uh,n (resp. u̇h,n and üh,n)
the resulting discretized displacement (resp. velocity and acceleration) at time-step tn.
The discretization of Problem (9) with the velocity–Verlet scheme reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that:

uh,n+1 = uh,n + τ u̇h,n + τ 2

2
üh,n,

u̇h,n+1 = u̇h,n + τ üh,n+ 1
2 ,

Mhüh,n+1 + Bhuh,n+1 = Lh,n+1,

(13)

with initial Conditions uh,0 = uh0 , u̇h,0 = u̇h0 and üh,0 = üh0, and the notation Lh,n+1

= Lh(tn+1), the initial value üh0 being obtained throughMhüh0 = Lh,0 − Bhuh,0.
This scheme corresponds to the variant of the Newmark scheme with γ = 1

2 and β = 0
(see, e.g., [22,28]). As a result, this is a second order consistent scheme in τ . Note that,
for practical implementation, the acceleration can be eliminated using the relationship
Mhüh,n = Lh,n − Bhuh,n. This result into the following reformulation, where the only
unknowns are the displacement and the velocity:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find uh,n+1, u̇h,n+1 ∈ Vh such that:

Mhuh,n+1 = Mhuh,n + τMhu̇h,n + τ 2

2

(
Lh,n − Bhuh,n

)
,

u̇h,n+1 = u̇h,n + τ
(
Lh,n+ 1

2 − (Bhuh)n+ 1
2
)
.

(14)

Since this scheme only requires the inversion of the mass matrixMh at each time-step,
it becomes then fully explicit when the mass matrixMh is lumped.
We can transform the Scheme (13) into a two-steps scheme. Indeed, the first equation

of (13) applied for time-steps n and n + 1 reads:

τ 2

2
üh,n−1 = uh,n − uh,n−1 − τ u̇h,n−1,

τ 2

2
üh,n = uh,n+1 − uh,n − τ u̇h,n. (15)

So, using the above relationships, the second equation of (13), at time-step n, can be
written as

τ u̇h,n = τ u̇h,n−1 + τ 2

2
(üh,n + üh,n−1) = τ u̇h,n−1 + τ 2

2
üh,n +

(
uh,n − uh,n−1 − τ u̇h,n−1

)

which can be simplified as:

τ u̇h,n = τ 2

2
üh,n + (uh,n − uh,n−1).

We add the above equation to the second relationship in (15) and get

τ 2üh,n = uh,n+1 − 2uh,n + uh,n−1.
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Using finally the third equation in (13), combined with the above relationship, we obtain:

⎧
⎪⎨
⎪⎩

Find uh,n+1 ∈ Vh such that:

Mh uh,n+1 − 2uh,n + uh,n−1

τ 2
+ Bhuh,n = Lh,n.

(16)

This is a two-steps scheme, so called Störmer–Verlet schemeor central difference scheme,
that involves only the displacement as an unknown (the first stepuh,1 is classically obtained
via the first equation of (14) at n = 0). Note finally that Leapfrog scheme is also equivalent

to Verlet one (see e.g. [31,46]): it suffices to define an intermediate velocity u̇h,
[
n+ 1

2

]
at

half-time-steps tn+ 1
2 as follows:

u̇h,
[
n+ 1

2

]
= u̇h,n + τ

2
üh,n,

where we used the notation u̇h,
[
n+ 1

2

]
so as to differentiate this new unknown from u̇h,n+ 1

2

defined earlier. Using this new intermediate velocity, the Scheme (13) is reformulated as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find uh,n+1, u̇h,
[
n+ 1

2

]
, üh,n+1 ∈ Vh such that:

u̇h,
[
n+ 1

2

]
= u̇h,

[
n− 1

2

]
+ τ üh,n,

uh,n+1 = uh,n + τ u̇h,
[
n+ 1

2

]
,

Mhüh,n+1 + Bhuh,n+1 = Lh,n+1,

(17)

with initial Conditions uh,0 = uh0 , u̇h,[1/2] = u̇h0 + τ
2 ü

h
0.

Stability properties of Verlet scheme
First, we present different energies associated to the solution to Problem (13), and make
explicit their relationships. Then, we derive energy estimates associated to the fully dis-
crete Problem (13), and a (non-optimal) stability result is deduced. We conclude with
some comments and arguments that a better result may be expected.

Discrete energies

We next define the following energy:

Eh,n := 1
2
ρ‖u̇h,n‖20,� + 1

2
a(uh,n,uh,n),

which is associated with the solution uh,n to Problem (13). Set also

Eh,n
� := Eh,n − �

2γ0

[∥∥∥σn(uh,n)
∥∥∥
2

− 1
2 ,h,�C

−
∥∥∥[Pn1,γh (uh,n)]R−

∥∥∥
2

− 1
2 ,h,�C

]
:= Eh,n − �Rh,n.

Note that the energies Eh,n and Eh,n
� are the fully discrete counterparts of the semi-discrete

energies Eh(t) and Eh
�(t). Note additionally that a result similar to Proposition 8 can be

established, that allows to bound the physical energy by the augmented energy under
appropriate conditions on the numerical parameters (and the statements of Remark 9 and
Remark 10 still applies):
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Proposition 14 For � ≥ 0 and γ0 large enough, there exists C > 0 independent of h, of
γ0 and of the solution to Problem (13), such that, for all n = 0, . . . , N :

Eh,n ≤ CEh,n
� .

To simplify slightly the notations in the energy estimates below, we will make use of the
convention: Pn := Pn1,γh (u

h,n) for any n ∈ N. We will denote as well by [·]
R+ the projection

onto R
+. Additionally, we define a modified energy adapted to the Verlet scheme:

Eh,τ ,n := Eh,n
1 − ρτ 2

8
‖üh,n‖20,�.

Of course, this variant of the energy definitionmakes also sense and is usable for stability
analysis only if it can be used to bound the physical energy Eh,n. This is the aim of the
following result:

Proposition 15 Suppose that Ln ≡ 0 for all n = 0, . . . , N and that the mesh T h is quasi-
uniform. Then, for γ0 large enough and τ

h small enough, there exists C > 0, independent of
h, of γ0 and of the solution to Problem (13), such that, for all n = 0, . . . , N :

Eh,n ≤ CEh,τ ,n.

Proof We suppose Ln ≡ 0 and take vh = üh,n in Problem (13):

ρ‖üh,n‖20,� = −An
�γh

(uh,n, üh,n) −
∫

�C

1
γh

[Pn1,γh (u
h,n)]

R−Pn�,γh (ü
h,n) d�. (18)

We assume that γ0 is large enough, then use the Cauchy–Schwarz inequality, the Lemma
3 and the inverse inequality [47, Corollary 1.141, Remark 1.143] to bound the first right
term:

|An
�γh

(uh,n, üh,n)| ≤ C‖uh,n‖1,�‖üh,n‖1,� ≤ C
h

‖uh,n‖1,�‖üh,n‖0,�,

with C > 0 independent of γ0 and h. We use the Cauchy–Schwarz inequality for the
second term:

∣∣∣∣
∫

�C

1
γh

[Pn1,γh (u
h,n)]

R−Pn�,γh (ü
h,n) d�

∣∣∣∣

≤
(∫

�C

1
γh

[Pn1,γh (u
h,n)]2

R−d�

)1/2 (∫

�C

1
γh

(Pn�,γh (ü
h,n))2 d�

)1/2
.

Using once more Lemma 3 we bound:

∫

�C

1
γh

(Pn�,γh (ü
h,n))2 d� ≤ 2

∫

�C

(
�2

γh
σn

2(üh,n) + γh(üh,nn )2
)
d�

≤ C‖üh,n‖21,� + 2γ0‖üh,nn ‖21
2 ,h,�C

,

still with C > 0 independent of h and γ0. We then use the trace inequality [48, Theorem
1.6.6] and the inverse inequality [47, Corollary 1.141, Remark 1.143] and get:

‖üh,nn ‖21
2 ,h,�C

≤ C
h

‖üh,nn ‖20,�C ≤ C
h

‖üh,n‖0,�‖üh,n‖1,� ≤ C
h2

‖üh,n‖20,�.
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We insert the above bounds into (18), take into account that γ0 is large, apply once again
the inverse inequality and get:

ρ‖üh,n‖20,� ≤ C
h

‖uh,n‖1,�‖üh,n‖0,�

+ Cγ
− 1

2
0 ‖[Pn1,γh (uh,n)]R− ‖− 1

2 ,h,�C

(
‖üh,n‖21,� + γ0

h2
‖üh,n‖20,�

) 1
2

≤ C
h

‖uh,n‖1,�‖üh,n‖0,� + C
γ

− 1
2

0 (1 + γ0)
1
2

h
‖[Pn1,γh (uh,n)]R− ‖− 1

2 ,h,�C
‖üh,n‖0,�

≤ C
h

(
‖uh,n‖1,� + ‖[Pn1,γh (uh,n)]R− ‖− 1

2 ,h,�C

)
‖üh,n‖0,�.

As a result, we obtain

ρ‖üh,n‖0,� ≤ C
h
(‖uh,n‖1,� + ‖[Pn1,γh (uh,n)]R− ‖− 1

2 ,h,�C
), (19)

which allows to conclude that Eh,n
1 ≤ CEh,τ ,n for τ

h small enough using the coercivity of
a(·, ·). The estimate Eh,n ≤ CEh,τ ,n is then deduced from Proposition 14. ��

Energy evolution estimates

First, the straightforward adaptation of [29, Proposition 3.4], taking γ = 1
2 and β = 0 for

Verlet scheme gives the following energy identity:

Proposition 16 Suppose that Ln ≡ 0 for all n ≥ 0. The following energy identity holds for
all n ≥ 0:

Eh,n+1
� − Eh,n

� =�

∫

�C

1
2γh

([
Pn+1]

R−
[
Pn
]
R+ − [Pn]

R−
[
Pn+1]

R+

)
d�

− τ

4

[
An

�γh
(uh,n+1 − uh,n, u̇h,n+1 − u̇h,n)

+
∫

�C

1
γh

(
[
Pn+1]

R− − [Pn]
R− )P

n
�,γh (u̇

h,n+1 − u̇h,n) d�

]

+ (1 − �)
∫

�C

1
2

([
Pn+1]

R− + [Pn]
R−

) (
uh,n+1
n − uh,nn

)
d�. (20)

This result can be easily adapted as follows when the energy Eh,n
1 is considered instead,

even for � �= 1:

Proposition 17 Suppose that Ln ≡ 0 for all n ≥ 0. The following energy identity holds for
all n ≥ 0:

Eh,n+1
1 − Eh,n

1 =
∫

�C

1
2γh

([
Pn+1]

R−
[
Pn
]
R+ − [Pn]

R−
[
Pn+1]

R+

)
d�

− τ

4

[
An

�γh
(uh,n+1 − uh,n, u̇h,n+1 − u̇h,n)

+
∫

�C

1
γh

(
[
Pn+1]

R− − [Pn]
R− )P

n
�,γh (u̇

h,n+1 − u̇h,n) d�

]
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+ (1 − �)
∫

�C

1
2γh

([
Pn+1]

R− + [Pn]
R−

)
σn
(
uh,n+1 − uh,n

)
d�.

− (1 − �)
∫

�C

1
2γh

(
σn(uh,n+1) + σn(uh,n)

)
σn
(
uh,n+1 − uh,n

)
d�.

(21)

Proof This identity is deduced from

Eh,n+1
1 − Eh,n

1 = Eh,n+1
� − Eh,n

�

+ (1 − �)
∫

�C

1
2γh

([
Pn+1]2

R− − [Pn]2
R− − σn

2(uh,n+1) + σn
2(uh,n)

)
d�,

combined with the following rearrangement (where we use the identity [Pn]
R−

= σn(uh,n) − γhuh,nn − [Pn]
R+ ):

[
Pn+1]2

R− − [Pn]2
R− − σn

2(uh,n+1) + σn
2(uh,n)

=
([
Pn+1]

R− + [Pn]
R−

) ([
Pn+1]

R− − [Pn]
R−

)

−
(
σn(uh,n+1) + σn(uh,n)

) (
σn(uh,n+1) − σn(uh,n)

)

=
([
Pn+1]

R− + [Pn]
R− − σn(uh,n+1) − σn(uh,n)

) (
σn(uh,n+1) − σn(uh,n)

)

−
([
Pn+1]

R− + [Pn]
R−

) ([
Pn+1]

R+ − [Pn]
R+ + γhuh,n+1

n − γhuh,nn

)

=
([
Pn+1]

R− + [Pn]
R− − σn(uh,n+1) − σn(uh,n)

) (
σn(uh,n+1) − σn(uh,n)

)

+
([
Pn+1]

R−
[
Pn
]
R+ − [Pn]

R−
[
Pn+1]

R+

)

−
([
Pn+1]

R− + [Pn]
R−

) (
γhuh,n+1

n − γhuh,nn

)

and gathering the terms with the ones in the Expression (20) of Proposition 16. ��

As an interesting consequence, we obtain the following result for the discrete energy
Eh,τ ,n by simplifying the previous one:

Proposition 18 Suppose that Ln ≡ 0 for all n ≥ 0. The following energy identity holds for
all n ≥ 0:

Eh,τ ,n+1 − Eh,τ ,n =
∫

�C

1
2γh

([
Pn+1]

R−
[
Pn
]
R+ − [Pn]

R−
[
Pn+1]

R+

)
d�

+ (1 − �)
∫

�C

1
2γh

([
Pn+1]

R− + [Pn]
R−

)
σn
(
uh,n+1 − uh,n

)
d�

− (1 − �)
∫

�C

1
2γh

(
σn(uh,n+1) + σn(uh,n))

)
σn
(
uh,n+1 − uh,n

)
d�.

(22)

Proof We use Eq. (13) to rewrite:

− τ

4

[
An

�γh
(uh,n+1 − uh,n, u̇h,n+1 − u̇h,n)

+
∫

�C

1
γh

(
[
Pn+1]

R− − [Pn]
R− )P

n
�,γh (u̇

h,n+1 − u̇h,n) d�

]
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= τ

4

∫

�

ρ(üh,n+1 − üh,n) · (u̇h,n+1 − u̇h,n) d�

= τ 2

8

∫

�

ρ(üh,n+1 − üh,n) · (üh,n+1 + üh,n) d�

= ρτ 2

8
‖üh,n+1‖20,� − ρτ 2

8
‖üh,n‖20,�.

Then we just use the above identity in (21). ��

Remark 19 For γ0 small, the property of Proposition 15 can be lost and the energy Eh,n
1

may become negative. In that case, some deformation corresponding to a negative energy
may exist, which is of course a non-physical situation. This highlights that, even thought
the semi-discrete problem (9) has a unique solution for γ0 small, the reliability of the
discretization is guaranteed only for γ0 large enough.

Remark 20 Still referring to [29, Proposition 3.4], and instead of Verlet scheme, if we
consider the explicit Newmark scheme γ = 1 and β = 0 and � = 1 as Nitsche’s variant,
thepending energy evolution corresponding toProposition18 in that case involves the sole
term

[
Pn+1]

R− [Pn]
R+ (instead of

[
Pn+1]

R− [Pn]
R+ − [Pn]

R−
[
Pn+1]

R+ for Verlet scheme).
This termbeing non-positive, the stability of this explicit scheme can be established thanks
to Proposition 15 for τ

h small enough.

Stability analysis in the case� = 1

Themain result of this section is the following (non-optimal) stability result for theScheme
(13) in the case � = 1:

Proposition 21 Suppose that Ln ≡ 0 for all n ≥ 0 and that themesh T h is quasi-uniform.
Then, for � = 1, for γ0 large enough and for

γ0τ ≤ Ch2 (23)

with C > 0 independent of γ0, h and τ , the energies Eh,τ ,n and Eh,n remain bounded.

Proof We already know from Proposition 18 that, for � = 1:

Eh,τ ,n+1 − Eh,τ ,n =
∫

�C

1
2γh

([
Pn+1]

R−
[
Pn
]
R+ − [Pn]

R−
[
Pn+1]

R+

)
d�.

We note that
[
Pn+1]

R− [Pn]
R+ ≤ 0 and use − [Pn]

R−
[
Pn+1]

R+ ≤ 1
4 (
[
Pn+1]

R+ − [Pn]
R− )2

≤ 1
4 (P

n+1 − Pn)2 to get:

Eh,τ ,n+1 − Eh,τ ,n ≤
∫

�C

1
8γh

(Pn+1 − Pn)2 d�.

Since the mesh is quasi-uniform, we then use Lemma 3, the trace inequality of [48, Theo-
rem 1.6.6] and the inverse inequality [47, Corollary 1.141, Remark 1.143] to obtain, for γ0
large enough

Eh,τ ,n+1 − Eh,τ ,n ≤
∫

�C

1
8γh

(σn(uh,n+1 − uh,n) − γhuh,n+1
n + γhuh,nn )2d�
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≤ C
(

1
γ0

‖σn(uh,n+1 − uh,n)‖2
− 1
2 ,h,�C

+ γ0 ‖uh,n+1
n − uh,nn ‖21

2 ,h,�C

)

≤ C
(
‖uh,n+1 − uh,n‖21,�

+ γ0
h

‖uh,n+1 − uh,n‖1,�‖uh,n+1 − uh,n‖0,�
)

≤ C
γ0

h2
‖uh,n+1 − uh,n‖20,� = C

γ0

h2
‖τ u̇h,n + τ 2

2
üh,n‖20,�

≤ Cγ0

(
τ 2

h2
‖u̇h,n‖20,� + τ 4

h2
‖üh,n‖20,�

)
.

Following exactly the same path as above, but using ‖ · ‖0,� ≤ ‖ · ‖1,� after the trace
inequality, we bound also:

‖[Pn1,γh (uh,n)]R− ‖2− 1
2 ,h,�C

≤ C
γ 2
0
h

‖uh,n‖21,�.
We combine the above result with the bound (19). This yields:

‖üh,n‖0,� ≤ C
h
(‖uh,n‖1,� + ‖[Pn1,γh (uh,n)]R− ‖− 1

2 ,h,�C
) ≤ Cγ0

h
3
2

‖uh,n‖1,�.

This results into:

Eh,τ ,n+1 − Eh,τ ,n ≤ Cγ0

(
τ 2

h2
‖u̇h,n‖20,� + γ 2

0 τ 4

h5
‖uh,n‖21,�

)
,

from which we can deduce, using Proposition 15:

Eh,τ ,n+1 ≤
(
1 + Cγ0

τ 2

h2

(
1 + γ 2

0 τ 2

h3

))
Eh,τ ,n.

This means that, still with N = T
τ
,

Eh,τ ,N ≤
(
1 + Cγ0

τ 2

h2

(
1 + γ 2

0 τ 2

h3

))N

Eh,τ ,0

≤ e
CNγ0

τ2
h2

(
1+ γ 20 τ2

h3

)

Eh,τ ,0

= e
CT γ0τ

h2

(
1+ γ 20 τ2

h3

)

Eh,τ ,0,

which remains bounded under the assumption (23). The boundedness of Eh,N is then
deduced from Proposition 15. ��

Comments on the stability analysis

The stability result given by Proposition 21 is submitted to a CFLCondition τ = O(h2). Of
course, this is not the expected onewhichwould be τ = O(h) in accordancewith the result
of Proposition 15 and the stability analysis of Verlet scheme for a linear evolution equation
(see, e.g., [46]). The reason of the non-optimality of Proposition 21 is that we did not suc-
ceed to optimally bound the involved contact term

([
Pn+1]

R− [Pn]
R+ − [Pn]

R−
[
Pn+1]

R+

)
.
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However, an important remark is that this term vanishes unless the terms Pn and Pn+1

are of opposite signs, which occurs only when the contact status changes. Moreover it is
positive only when the status changes from contact to non-contact. If we assume that the
number of such transitions is finite during the simulation, a stability result with a Condi-
tion τ = O(h) may be recovered. However, an infinite number of changes of the contact
status cannot be excluded. Another argument in favor of such a stability result is obtained
via the definition of the following linear (but depending on uh,n) operatorBh,n : Vh → Vh:

(Bh,nvh,wh)γh = A�γh (v
h,wh) +

∫

�C

1
γh

H
(
−Pn1,γh (u

h,n)
)
Pn1,γh (v

h)Pn�,γh (w
h)d�,

for all vh,wh ∈ Vh. Due to the relationship [x]
R− = H (−x) x for x ∈ R, there holds:

(Bhuh,n,wh)γh =An
�γh

(uh,n,wh) +
∫

�C

1
γh

[Pn1,γh (u
h,n)]

R−Pn�,γh (w
h) d�

=An
�γh

(uh,n,wh)

+
∫

�C

1
γh

H (−Pn1,γh (u
h,n))Pn1,γh (u

h,n)Pn�,γh (w
h) d�

= (Bh,nuh,n,wh)γh

for all wh ∈ Vh, and therefore

Bh,nuh,n = Bhuh,n.

The following boundon thenormofBh,n canbe established, following an argument similar
to [28, Theorem 2.8]:

Lemma 22 Let us suppose that γ0 is large enough. There exists a constant C > 0, inde-
pendent of �, γ0 and h, such that

‖Bh,n‖γh ≤ C(1 + |�|), (24)

where ‖ · ‖γh is the operator norm induced by the norm ‖ · ‖γh on Vh.

Proof Let us take vh and wh in Vh. First, using Lemma 3 there holds

‖Pn�,γh (w
h)‖0,�C ≤

(
‖γh 1

2wh
n‖0,� + C|�|‖wh‖1,�

)
≤ C(1 + |�|)‖wh‖γh ,

and the same bound holds for ‖Pn1,γh (vh)‖0,�C , replacing |�| by 1. Then, using Lemma 3
and the above result, we bound:

|(Bh,nvh,wh)γh |
≤ C(1 + |�|)‖vh‖1,�‖wh‖1,� + ‖Pn1,γh (vh)‖0,�C‖Pn�,γh (w

h)‖0,�C

≤ C(1 + |�|)‖vh‖γh‖wh‖γh ,

which proves the assertion (24). ��

Using Bh,n we can rewrite the operator associated to the Scheme (14) as:

Ch,n =
[
2I − τ 2(Mh)−1Bh,n −I

I 0

]
,
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where I is the identity operator. It links the successive values uh,n+1,uh,n and uh,n−1 thanks
to [

uh,n+1

uh,n

]
= Ch,n

[
uh,n

uh,n−1

]
,

when neglecting the source term Lh,n. For a linear problem this would correspond to the
amplification matrix. The following result can be established for Ch,n:

Proposition 23 Let us suppose that the mesh T h is quasi-uniform, that γ0 is large and

γ
1
2
0 τ ≤ Ch,

where C > 0 is a constant independent of γ0, h and τ . Then, Ch,n is diagonalizable and its
spectral radius ρ(Ch,n) is equal to 1. Furthermore, the same conclusion holds forCh,nCh,n+1,
which is diagonalizable with a spectral radius ρ(Ch,nCh,n+1) also equal to 1.

Proof Let us consider λ ∈ C an eigenvalue of the operator Ch,n. Denoting Ah,n = 2I −
τ 2(Mh)−1Bh,n, this means there exists a non-zero pair (vh,wh) ∈ Vh × Vh such that:

Ah,nvh − wh = λvh

vh = λwh.

With help of the second equation, the first one can be written λAh,nwh − wh = λ2wh, or
equivalently

Ah,nwh = 1 + λ2

λ
wh. (25)

We then use [28, Lemma A.1] and Lemma 22 to bound

‖(Mh)−1Bh,n‖γh ≤ ‖(Mh)−1‖γh‖Bh,n‖γh ≤ C(1 + |�|)γ0
h2

.

We now consider γ
1
2
0 τ/h small enough so that the eigenvalues of Ah,n = (2I

− τ 2(Mh)−1Bh,n) are positive. We call αj these eigenvalues and wh
j the corresponding

eigenvectors. Taking wh = wh
j in Eq. (25), we deduce that, for each index j, we can

compute two eigenvalues λ±
j which are solution to

λ2 − αjλ + 1 = 0.

Since the eigenvalues of (Mh)−1Bh,n are all positive, we infer αj < 2, and�j = α2
j −4 < 0.

Therefore the above algebraic equation has two imaginary solutions

λ±
j = αj ± i

√−�j

2
.

Remark that these eigenvalues are such that

|λ±
j | = 1

4
(α2

j + 4 − α2
j ) = 1.

This allows to conclude that Ch,n is diagonalizable and ρ(Ch,n) = 1. We can now make a
similar computation for two successive iterations. Since

Ch,n+1Ch,n =
[
Ah,n+1Ah,n − I −Ah,n+1

Ah,n −I

]
,

λ ∈ C is an eigenvalue of Ch,n+1Ch,n if there exists a non-zero pair (vh,wh) ∈ Vh × Vh

verifying:
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Ah,n+1Ah,nvh − vh − Ah,n+1wh = λvh,

Ah,nvh − wh = λwh,

which implies

λAh,n+1Ah,nvh = (λ + 1)2vh.

If we denote by βj the eigenvalues of Ah,n+1Ah,n which are close to 4 for γ
1
2
0 τ/h small

enough, and vhj the corresponding eigenvectors, we conclude that the eigenvalues of
Ch,n+1Ch,n are

λ±
j =

(2 − βj) ± i
√
4 − (βj − 2)2

2
.

Since |λ±
j | = 1, the operator Ch,n+1Ch,n is diagonalizable with a unit spectral radius. ��

Remark 24 For a linear problem, we would conclude that the scheme is stable, under
the Condition τ

h small enough. However, in a nonlinear framework, the conclusion can-
not be drawn since the matrix Ch,n changes from an iteration to another. Moreover, it
seems difficult to pursue the reasoning made on two iterations to an arbitrary number of
iterations.

Numerical experiments
Wefirst carry out numerical experiments in 1D,wherewe can compare our results with an
exact solution. Then, numerical experiments in 2D/3Dwill be described. These numerical
tests are performed with the help of our freely available finite element library GetFEM++
(see http://getfem.org).

1D numerical experiments: multiple impacts of an elastic bar

We first present the setting, and then the results obtained by combination of Nitsche’s
contact discretization and Verlet scheme. These results are also compared with computa-
tions using other methods: the Paoli–Schatzman scheme, the Taylor–Flanagan scheme,
themass redistributionmethodand thepenaltymethod.This section is endedwithnumer-
ical convergence tests.

Setting

We first deal with the one-dimensional case d = 1 with a single contact point, namely an
elastic bar � = (0, L) with �C = {0}, �D = {L} and �N = ∅. The elastodynamic equation
is then reduced to find u : �T = (0, T ] × (0, L) → R such that:

ρü − E
∂2u
∂x2

= f, in �T , (26)

where E is the Young modulus and the Cauchy stress tensor is given by σ (u) = E(∂u/∂x).
Note that σn(u) = (σ (u)n) ·n = σ (u) on�C . In this case, Problem (1, 2) admits one unique
solution (see e.g. [36]) for which the following energy conservation equation holds, for t
a.e. in (0, T ]:

1
2
d
dt

(∫

�

ρu̇2(t)d� +
∫

�

E
(

∂u
∂x

(t)
)2

d�

)
= −

∫

�

f (t)u̇(t)d�. (27)

http://getfem.org
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Weconsider a finite element space using linear (k = 1) or quadratic (k = 2) finite elements
and a uniform subdivision of [0, L] withM segments (so L = Mh). We denote the vector
which contains all the nodal values of uh,n (resp. u̇h,n and üh,n) by Un := [Un

0 , . . . , U
n
N ]

T

(resp. U̇n, Ün). The component of index 0 corresponds to the node at the contact point
�C . We also note M, resp. K, the mass, resp. the stiffness, matrix that results from the
finite element discretization. We introduce the Courant number which is defined as:

νC := c0
τ

h
=
√
E
ρ

τ

h
,

where c0 is the wave speed associated to the bar. For each simulation, we compute and
plot the following time-dependent quantities:

1. The displacement u at the contact point �C , given at time tn by uh,n(0)(= Un
0 ).

2. The contact pressure σC , which, in the discrete case, is different from σ (u). If a
standard (mixed) method is used for the treatment of contact, it is directly given by
the Lagrange multiplier, i.e., σ n

C := λh,n at time tn. In the case of the Nitsche-based
formulation, it can be computed as follows at time tn:

σ n
C :=

[
σn(uh,n)(0) − γh(−uh,n(0))

]
R−

=
[
E
h
(Un

1 − Un
0 ) + γ0

h
Un
0

]

R−
,

which comes from the contact Condition (7).
3. The discrete energy Eh which is at time tn

Eh,n = 1
2

(
(U̇n)TMU̇n + (Un)TKUn

)
,

and the discrete augmented energy Eh
1 :

Eh,n
1 = Eh,n − Rh,n, Rh,n = h

2γ0

(
(σn(uh,n)(0))2 − (σ n

C )
2
)
.

We propose a benchmark associated to multiple impacts. This allows to check both the
presence of spurious oscillations and the long term energetic behavior of the method. In
the absence of external volume forces, the bar is initially compressed. Then, it is released
without initial velocity. It impacts first the rigid ground, located at x = 0, and then gets
compressed again. We take the following values for the parameters: f = 0, E = 1, ρ = 1,
L = 1, u0(x) = 1

2 − x
2 and u̇0(x) = 0. This problem admits a closed-form solution uwhich

derivation and expression is detailed in [15]. Notably, it has a periodic motion of period
3. At each period, the bar stays in contact with the rigid ground during one time unit
(see Fig. 1). The chosen simulation time is T = 12, so that we can observe 4 successive
impacts.

Numerical results for Nitsche’s method

We discretize the bar with M = 20 linear finite elements (k = 1, h = 0.05) and take
τ = 0.01. The resulting Courant number is νC = 0.2. Note that almost all the parameters
have been taken identical as in [29] for comparison purposes. The number of element is
smaller (M = 20 instead of 100 in [29]) and the time-step τ is 0.01 for stability reasons.We
first investigate the variant � = 0 with a parameter γ0 = 1. The mass matrix is computed
in a standard fashion. The choice γ0 equal to 1 is guided by the concern to obtain a
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x = 0

L

t = 0 t2 = 2 t3 = 3t1 = 1

Fig. 1 Multiple impacts of an elastic bar. The bar is clamped at x = L and the contact node is located at the
bottom. The closed-form solution is periodic of period 3, with one impact during each period (here between
t = 1 and t = 2)

Fig. 2 Multiple impacts of an elastic bar. Nitsche’s method with Verlet scheme for h = 1/20, τ = 0.01,
� = 0, γ0 = 1 and P1 Lagrange finite elements

stiffness associated with the degree of freedom on the contact boundary comparable to
the stiffnesses obtained by the finite element discretization inside the bar.
The results are depicted in Fig. 2 where the approximated solution corresponds to the

solid blue line and the red dotted line is the exact solution. Note also that the dashed
energy is Eh

1 , the modified energy given by expression (11).
For an element size which remains relatively rough, one notes the good approximation

of the displacement. Significant oscillations can be deplored on the velocity of the contact
point, but unfortunately they are very difficult to avoid. Indeed, since a velocity shock
is propagating without attenuation or dissipation in the proposed test case, the Gibbs
phenomena are inevitable in the finite element approximation. It would be the case even
without a contact condition. The approximation of the contact stress is, although polluted
by oscillations too, of good quality given the discontinuous character of the exact solution
and the relatively coarse mesh size (one can compare with the results obtained in [29] for
elements five times smaller). The evolution of the energy reveals some variationswhich are
far from being negligible, but remain moderate, and without appearance of instabilities.
Moreover these variations tend to decrease for a finer element size.
The calculation for the variant � = −1 and for Nitsche’s parameter γ0 still equal to 1

is presented on Fig. 3. It can be seen that the non-penetration condition is slightly better
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Fig. 3 Multiple impacts of an elastic bar. Nitsche’s method with Verlet scheme for h = 1/20, τ = 0.01,
� = −1, γ0 = 1 and P1 Lagrange finite elements

Fig. 4 Multiple impacts of an elastic bar. Nitsche’s method with Verlet scheme for h = 1/20, τ = 0.01,
� = 1, γ0 = 1 and P1 Lagrange finite elements

respected, which indicates that the additional terms compared to the variant � = 0 rein-
force the consistency of the method. However, this is at the price of stronger oscillations
on the velocity at the contact point. The approximation of the contact stress remains
comparable to the � = 0 variant, as well as the energy evolution.
For the same test with the variant � = 1 and Nitsche’s parameter γ0 = 1, as shown

in Fig. 4, one gets a non convergent approximation of the displacement. This is due to
the loss of coercivity arising when the assumption of Proposition 14 is not satisfied and
probably to the existence of zero-energy modes. Indeed, the variant � = 1 is the most
restrictive from this point of view and needs a larger parameter γ0. Figure 5 represents
the simulation for γ0 = 2 which allows to recover the coercivity. We observe the very
good conservation of the discrete energy together with a good approximation of the non-
penetration condition. The level of oscillations on the contact point velocity and on the
contact stress is similar with the case � = 0.
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Fig. 5 Multiple impacts of an elastic bar. Nitsche’s method with Verlet scheme for h = 1/20, τ = 0.01,
� = 1, γ0 = 2 and P1 Lagrange finite elements

Fig. 6 Multiple impacts of an elastic bar. Nitsche’s method with Verlet scheme for h = 1/20, τ = 0.01,
� = 1, γ0 = 2, P1 Lagrange finite elements and a lumped mass matrix

Figure 6 displays a simulation still for (� = 1, γ0 = 2) but using a lumped mass
matrix. Following a standard strategy for P1 Lagrange finite elements, on each row, the
extra-diagonal components of the mass matrix are set to zero and added to the diagonal
component. The comparison with Fig. 5 allows to notice more pronounced oscillations
on the displacement, the velocity and the contact stress, but still with a very good energy
conservation.
Finally, Figs. 7 and 8 show the evolution of the solution for decreasing discretization

parameters, and for the variant � = 1, γ0 = 2, and the standard mass matrix. We note
in Fig. 7 a rapid decrease of the oscillations on the displacement with the refinement of
the discretization. Conversely, the convergence of the contact stress as depicted in Fig. 8
is rather slow, as it could be expected from the very low regularity of the solution. Indeed
we observe a very gradual decrease in the amplitude of the oscillations.
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Fig. 7 Multiple impacts of an elastic bar. Convergence of the displacement for Nitsche’s method for P1
Lagrange finite elements, � = 1, γ0 = 2, and for discretization parameters (h = 1/10, τ = 1/50),
(h = 1/40, τ = 1/200), (h = 1/160, τ = 1/800) and (h = 1/320, τ = 1/3200), respectively

Fig. 8 Multiple impacts of an elastic bar. Convergence of the contact stress for Nitsche’s method for P1
Lagrange finite elements, � = 1, γ0 = 2, and for discretization parameters (h = 1/10, τ = 1/50),
(h = 1/40, τ = 1/200), (h = 1/160, τ = 1/800) and (h = 1/320, τ = 1/3200), respectively

Comparisonwith Paoli–Schatzman scheme

The Paoli–Schatzman scheme directly addresses the measure differential inclusion that
results from the finite element semi-discretization of the dynamic contact problem. Fol-
lowing [12,13,49–51], it can be summarized as follows. Let Uh

adm be the approximated
set of admissible displacements such that U ∈ Uh

adm means that the vector of degrees
of freedom U satisfies a chosen approximated non-penetration condition. In our one-
dimensional test case, this can be simply writtenU0 ≥ 0, whereU0 is the displacement of
the contact point. Then, still denoting M, resp. K, the mass, resp. stiffness, matrices that
result from the finite element discretization, the (generally ill-posed) measure differential
inclusion resulting from the semi-discretization of the dynamic contact Problem (1), (2)
can be written:

Ü(t) + M−1KU(t) + ∂IUh
adm

(U(t)) � M−1L(t),
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Fig. 9 Multiple impacts of an elastic bar. Paoli–Schatzman scheme for h = 1/20, τ = 0.01, e = 0 and P1
Lagrange finite elements

where ∂IUh
adm

(U) denotes the normal cone to Uh
adm at U. Then, the Paoli–Schatzman

scheme can be written for a given restitution coefficient e ∈ [0, 1]:
(
Un+1 − 2Un + Un−1

τ 2

)
+ M−1KUn + ∂IUh

adm

(
Un+1 + eUn−1

1 + e

)
� M−1Ln.

Of course, one easily recognize the Verlet scheme except for the contact constraint which
is taken in an implicit manner and prescribed to the intermediate displacement Un+1,e

= Un+1 + eUn−1

1 + e
.

When implementation is considered, one usually introduces a multiplier to prescribe
the constraint. Denoting by B the matrix having Nc lines such that the non-penetration
condition reads (BU)i ≤ 0, i = 1 . . .Nc, the scheme may be re-written

(
Un+1 − 2Un + Un−1

τ 2

)
+ M−1KUn + BT�n+1 = M−1Ln, (28)

(
BUn+1,e)

i ≤ 0, �n+1
i ≤ 0,

(
BUn+1,e)

i �
n+1
i = 0, i = 1 . . .Nc, (29)

or, as a one-step scheme

Un+1 = Un + τ U̇n − τ 2

2
M−1(KUn − Ln) − τ 2

2
BT�n+1, (30)

U̇n+1 = U̇n − τ

2
M−1(KUn − Ln + KUn+1 − Ln+1) − τBT�n+1, (31)

still with the addition of the complementarity conditions (29). The proof that the restitu-
tion coefficient e is asymptotically reached for a vanishing time-step is detailed in [12,13].
Note that, even though Verlet scheme is an explicit scheme, the implicitation of the

contact force in Paoli–Schatzman scheme results in a global problem to be solved on
the contact surface at each time-step. Of course, this corresponds to a scalar algebraic
equation which can be explicitly solved in the one-dimensional test.
The numerical tests for h = 0.05 and τ = 0.01 are presented in Figs. 9, 10 and 11 for a

restitution coefficient equal to 0, 1/2 and 1, respectively. The results for e = 0 and e = 1/2
are very similar to each other despite the difference between the restitution coefficients,
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Fig. 10 Multiple impacts of an elastic bar. Paoli–Schatzman scheme for h = 1/20, τ = 0.01, e = 1/2 and P1
Lagrange finite elements

Fig. 11 Multiple impacts of an elastic bar. Paoli–Schatzman scheme for h = 1/20, τ = 0.01, e = 1 and P1
Lagrange finite elements

and we observe a very similar loss of energy for each impact. The approximation of the
displacement and of the non-penetration condition are quite good. The results for e = 1
show an excessive bounce of the contact point which leads to very noisy contact point
velocity and contact stress.

Comparisonwith Taylor–Flanagan scheme

Taylor and Flanagan [5] developed an explicit scheme in the framework of PRONTO3D
software which rapidly became a reference for explicit integration of contact and impact
problems. To summarize the principle of the method, it is based on the Leapfrog form
of Verlet scheme (17). When contact occurs, the persistency condition is prescribed at
the half time-step by enforcing the relative velocity to vanish (see Eq. (21) in [6], for
instance). To this aim, a Lagrange multiplier is introduced which is taken into account in
an implicit way. The equation associated to the Lagrange multiplier can be solved locally
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Fig. 12 Multiple impacts of an elastic bar. Taylor–Flanagan scheme for h = 1/20, τ = 0.01, and P1 Lagrange
finite elements

only in a node-to-node contact approximation. For a more general contact condition,
the Lagrange multiplier is obtained by solving a global problem on the contact surface.
However, Taylor and Flanagan propose an iterative method to compute the Lagrange
multiplier which needs only a few iterations.
Since the Taylor–Flanagan scheme prescribes the contact condition with an implicited

Lagrange multiplier and enforces the persistency condition, it is very close to the Paoli–
Schatzman scheme with a restitution coefficient e = 0 even if the contact condition is
prescribed in a slightly differentway. The consequence is that the results of the simulations
shownonFig. 12 for theTaylor–Flanagan scheme are almost identical to the results shown
on Fig. 9 for the Paoli–Schatzman scheme with e = 0. Particularly, a loss of energy occurs
at each impact.

Comparisonwith themass redistributionmethod

The mass redistribution method, introduced in [11], considers a semi-discretization that
comes from the finite element approximation of the dynamic contact problem combined
with a Lagrange multiplier method to enforce the contact condition:

MrÜ(t) + KU(t) + BT�(t) � L(t), (32)

�(t) ≤ 0, (�̄ − �(t))TBU(t) ≥ 0, ∀�̄ ≤ 0. (33)

for a.e. t ∈ (0, T ], still with K the stiffness matrix, with B the matrix representing the dis-
crete normal trace operator on the contact boundary, andwithMr amodifiedmassmatrix
with a vanishing contribution on the contact boundary. ThematrixMr is simply built from
the standard mass matrix M by setting to zero the lines and columns corresponding to
the degrees of freedom on the contact boundary and redistributing the removed mass on
the internal degrees of freedom (see a possible redistribution algorithm in [11] and other
strategies in [17,52,53]). In the one-dimensional test-case, this just means setting to zero
the first column and first row and adding the removedmass on the first degree of freedom,
which as been proved to be the most optimal strategy in [52]. It is proved in [11] that the
mass redistributionmethod allows to recover the well-posedness of the discretization and
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Fig. 13 Multiple impacts of an elastic bar. Mass redistribution method for h = 1/20, τ = 0.01 and P1
Lagrange finite elements

that the solution to the approximated problem is energy conserving. Some convergence
results can be found in [15,17,52,54,55]. Note also that such singular mass matrices can
be obtained with the method introduced in [18] by considering different approximations
for the displacement and the velocity instead of using a post-modification of the mass
matrix.
Since the mass matrix admits a kernel containing the vectors being only nonzero on

the contact boundary, the system (32), (33) consists in an algebraic variational inequality
when reduced on this kernel. Due to the Lipschitz continuity, with respect to the data,
of the solution to this variational inequality, Problems (32), (33) reduces to a system of
ordinary differential equations on the orthogonal of the kernel. This property, detailed
in [11] allows to use quite arbitrary time-marching schemes to approximate (32), (33),
among others the Verlet scheme. Of course, the method is not strictly an explicit one
since a global solving has to be done on the kernel of the modified mass matrix. However,
in the one-dimensional test case, this kernel is one-dimensional which allows an explicit
solving.
The corresponding simulations can be seen on Fig. 13. One characteristic of the mass

redistribution method is to produce low oscillating velocity and contact stress compared
to other discretizations. One can see that the energy is conserved, but slightly modified
compared to the standard energy.

Comparisonwith the penaltymethod

The penalty method is one of the simplest and most popular way to approximate the
contact condition (see for instance [21]). With the notations used to write system (9)
for Nitsche’s method and with the non-linear operator Bh

p : Vh → Vh, defined for all
vh,wh ∈ Vh by

(Bh
pvh,wh)γh := a(vh,wh) +

∫

�C

γh[vhn]R+wh
n d�,
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Fig. 14 Multiple impacts of an elastic bar. Penalty method for h = 1/20, τ = 0.01, γ0 = 5 and P1 Lagrange
finite elements

the dynamic contact problem approximated by a penalty method reads:
⎧⎪⎪⎨
⎪⎪⎩

Find uh : [0, T ] → Vh such that for t ∈ [0, T ]:

Mhüh(t) + Bh
puh(t) = Lh(t),

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 .

(34)

This problem corresponds to a nonlinear system of ordinary differential equations on
which a Verlet scheme can be applied. The parameter γh is now the penalty parameter
and, following for instance the analysis in the static case of [56] and similarly to Nitsche’s
method, we will still consider that γh| K∩�C

= γ0/hK for each finite element K .
Figures 14, 15 and 16 depict three simulations for the one-dimensional test case for

γ0 = 5, γ0 = 1 and γ0 = 0.25, respectively. The augmented energy associated to penalty
is the following one [30]:

Eh,n
p = Eh,n + 1

2

∫

�C

γh[vh,nn ]2
R+ d�.

For γ0 = 0.25 the contact interface is clearly too soft and a large penetration occurs,
whichmakes the approximated solution being far from the exact one. Conversely, for γ0 =
5, the non-penetration condition is better approximated, but some important oscillations
on the velocity of the contact point and on the contact stress occur. Similarly to Nitsche’s
method, an acceptable compromise seems to set γ0 = 1,which corresponds to comparable
stiffnesses on the contact point due toboth thepenalty term,onone side, and to the interior
elasticity terms, on the other.
It isworth comparingFig. 15 toFigs. 2, 3 and4 forNitsche’smethodand the samevalueof

the parameter γ0. The non-penetration condition is better satisfiedwithNitsche’smethod,
which highlights its consistency. However, energy conservation is better preserved by the
penalty method except when the variant � = 1 of Nitsche’s method is used.

Numerical convergence

Simulations in the previous sections allow a qualitative comparison of the different studied
methods on the one-dimensional test-case. The aim of this section is to complete this
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Fig. 15 Multiple impacts of an elastic bar. Penalty method for h = 1/20, τ = 0.01, γ0 = 1 and P1 Lagrange
finite elements

Fig. 16 Multiple impacts of an elastic bar. Penalty method for h = 1/20, τ = 0.01, γ0 = 0.25 and P1
Lagrange finite elements

comparison with a convergence study, still for the same test-case. This is done for both
linear finite elements (P1 Lagrange) on Fig. 17 and quadratic finite elements (P2 Lagrange)
on Fig. 18. ForM the number of elements, h = 1/M is the element size and the time-step
is chosen to be τ = h/10 for P1 elements and τ = h/20 for P2 elements.
A comparison of Figs. 17 and 18 leads to the conclusion that despite the very low regular-

ity of the exact solution (velocity and stress are discontinuous), there is a substantial gain
in using quadratic elements. It even improves the convergence rate for the L2(0, T, L2(�))-
norm of the error of the displacement. Globally, the mass redistribution with quadratic
elements provides the best compromise. However, as the Paoli–Schatzman scheme, it
necessitates to solve a global problem on the contact surface.
So, if we limit the comparison to primal discretizations, which do not require to solve

such a global problem (except the inversion of the mass matrix if the mass matrix is not
lumped), we can compare onlyNitsche and penaltymethods.What can be observed, espe-
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Fig. 17 Multiple impacts of an elastic bar. Convergence tests for P1 Lagrange finite elements

cially on the L2(0, T, L2(�))-norm of the error in displacement, is that Nitsche’s method
is less sensitive to the parameter γ0 due to its consistency. The difficulty to achieve a good
compromise for penaltymethod is illustrated on Fig. 17: a low γ0 allows a good approxima-
tion of the contact stress, but the worst approximation of the L2(0, T, H1(�))-norm of the
displacement for coarse meshes. Conversely, a large γ0 leads to a better approximation for
the L2(0, T, H1(�))-norm but a too much oscillatory solution which prevents the L2(0, T )
convergence of the contact stress. There is, however, also a constraint for the choice of
γ0 with Nitsche’s method because it has to be chosen sufficiently large to preserve the
coercivity of the formulation (see Remark 19 and Fig. 4).

2D/3D numerical experiments: multiple impacts of a disc / a sphere

Numerical experiments are then carried out in 2D and 3D, to assess the behavior of
Nitsche’s method in a more realistic situation. We study the impact of a disc and a sphere
on a rigid support. The physical parameters are the following: the diameter of the disc is
D = 40, the Lamé coefficients are λ = 30 and μ = 30, and the material density is ρ = 1.
The total simulation time is T = 120.
The volume load in the vertical direction is set to ‖f‖ = 0.1 (gravity, oriented towards

the support). On the upper part of the boundary is applied a homogeneous Neumann
condition g = 0 and the lower part of the boundary is the contact zone �C . There an
initial vertical displacement (u0 = (0, 4)) and no initial velocity (u̇0 = 0). In such a



Chouly and Renard Adv. Model. and Simul. in Eng. Sci.           (2018) 5:31 Page 32 of 38

Fig. 18 Multiple impacts of an elastic bar. Convergence tests for P2 Lagrange finite elements

Fig. 19 P2 meshes used for the ball and the sphere

situation, there is up to our knowledge no analytic solution to validate the numerical
results.
For space semi-discretization, Lagrange isoparametric finite elements of order k = 2

have been used. The mesh size is h = 4 for the ball and h = 8 for the sphere (see Fig. 19).
Integrals of the non-linear term on �C are computed with standard quadrature formulas
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Fig. 20 First bounce of the disc. Von Mises stress distribution

Fig. 21 First bounce of the sphere. Von Mises stress distribution. One view over two is a sectional one

of order 4. A snapshot of the evolution of the disc and the sphere during the first impact
can be seen on Figs. 20 and 21.
The comparison of the simulations for the different methods is depicted Fig. 22 for the

two-dimensional case and Fig. 23 for the three-dimensional case. For the sake of short-
ness, only the penalty, the singular mass and Nitsche methods are compared. First of
all, a conclusion that can be drawn from these numerical experiments is that the tested
methods are all capable of reliably approximating two and three-dimensional dynamic
contact problems. An important difference between simulations in dimension 2 and 3
is a much smaller oscillation of the contact stress in dimension 3, except for the mass
redistribution method which is not subjected to spurious oscillations. The energy is con-
served more strictly with the penalty method, the mass redistribution method and the
variant � = 1 of Nitsche’s method, the other two variants presenting significant dis-
turbances in the energy evolution. The mass redistribution method appears to give the
best compromise between energy conservation and the low level of oscillation on the
contact boundary. Note however that it produces a weakening of the rebound, mainly in
dimension 3, which we do not explain. The lake of consistency of the penalty method is
illustrated on the normal displacement graph where we can note a larger interpenetration
compared to the other methods. Finally, among the variants of Nitsche’s method, the
symmetric variant � = 1 is the one that achieves the best compromise between energy
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Fig. 22 Comparison of the penalty, singular mass and Nitsche methods in the 2D case

conservation and the level of oscillations of the contact stress, which remains moder-
ate.

Concluding remarks
In this paper,we studied the application of an explicit Verlet scheme for the approximation
of elastodynamic contact problems with Nitsche’s method. The explicit method being
commonly used in elastodynamic contact problems, it seemed important to complete the
study that hadbeenperformed in [28,29] for implicit schemes.We tried to characterize the
stability properties of the different variants of Nitsche’s method for the Verlet scheme and
we introduced a number of necessary tools for this analysis. Of course, we are aware that
the stability result we establish is very partial (only for � = 1) and certainly suboptimal: a
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Fig. 23 Comparison of the penalty, singular mass and Nitsche methods in the 3D case

stability condition such as τ = O(h) would be more satisfactory and would correspond to
what we noted in numerical tests. This result remains to be refined. Moreover, it would
certainly be possible to prove a convergence result in dimension one, as in [15], because
in this context the existence and uniqueness of the solution is theoretically proven.
We numerically compared the Nitsche method to the main existing methods that can

support an explicit scheme: the Paoli–Schatzman scheme, the Taylor–Flanagan scheme,
the mass redistribution method and the penalty method.
Wefirst performed this comparison on a one-dimensional test casewhose exact solution

consists of a shock wave indefinitely travelling between the two ends of a bar. We can see
globally, by comparing the Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 that
Nitsche’s method, especially the variant corresponding to� = 1, yields an approximation
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of a comparable quality as the one obtained with the schemes using an implicitation of the
contact force (Paoli–Schatzman scheme, Taylor–Flanagan scheme, mass redistribution).
Only the mass redistribution method results in lower oscillation levels. Compared to the
penalty method, the oscillation levels are of the same magnitude, but contact penetration
is more limited. This is reflected in Figs. 17 and 18 by quite similar convergence rates for
all the methods, except for penalty. For this latter, a compromise remains difficult to find
between a large penalization coefficient, which corresponds to a good approximation of
the displacement but a poor approximation of the contact stress, and a small penalization
coefficient, for which the interpenetration becomes too large. The decisive advantage of
Nitsche’s method over the other methods, with the exception of the penalty method, is
to be a primal method for which there is no need for an implicit resolution of the contact
force. This allows a really explicit resolution in case of lumped mass matrix. The 2D and
3D test cases we performed also confirm the good behavior of Nitsche’s method. We can
see in Figs. 22 and 23 the advantage in comparison to the penalty method in term of
interpenetration, which is less. Still some better approximation results are obtained for
the variant � = 1.
We can thus conclude that, among the variants of Nitsche’s method, the symmetric

variant� = 1 seems to be the most suitable for solving dynamic contact problemsmainly
because of its energy conservation properties. For the other variants a gain of energy
can be observed, especially for low values of Nitsche’s parameter γ0. Some perspectives
of this work could be to gain further insight into the properties of energy conservation,
for instance using other definitions of the discrete energies, such as in [57, Theorem
4.1, Remark 4.1] in which an energy that remains positive irrespectively of the value
of numerical parameters is introduced. Also some new explicit time-marching schemes
endowed with appealing properties of energy conservation could be considered (see, e.g.,
[58]). Moreover, further study of the effect of themassmatrix lumping, particularly on the
stability of the method, and of the proper choice of the Nitsche’s parameter γ0 are other
perspectives of this work.
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52. Dabaghi F, Krejči P, Petrov A, Pousin J, Renard Y. A weighted finite element mass redistribution method for dynamic

contact problems. J Comp Appl Math. 2019;345:338–56.
53. Wohlmuth BI. Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta

Numer. 2011;20:569–734.
54. Doyen D, Ern A. Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem.

Commun Math Sci. 2009;7(4):1063–72.
55. Doyen D, Ern A. Analysis of the modified mass method for the dynamic Signorini problem with Coulomb friction.

SIAM J Numer Anal. 2011;49(5):2039–56.
56. Chouly F, Hild P. On convergence of the penalty method for unilateral contact problems. Appl Numer Math.

2013;65:27–40.
57. Burman E, Fernández MA, Frei S. A Nitsche-based formulation for fluid-structure interactions with contact. Research

Report RR-9172, Inria (2018). hal-01784841. https://hal.inria.fr/hal-01784841
58. Marazzato F, Ern A, Mariotti C, Monasse L. An explicit energy-momentum conserving time-integration scheme for

Hamiltonian dynamics. hal-01661608 (2017). https://hal-enpc.archives-ouvertes.fr/hal-01661608

https://hal.inria.fr/hal-01784841
https://hal-enpc.archives-ouvertes.fr/hal-01661608

	Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems
	Abstract
	Introduction and problem setting
	Discrete setting: Nitsche's method with Verlet scheme
	Preliminary notations and results
	Semi-discrete problem in space
	Verlet scheme

	Stability properties of Verlet scheme
	Discrete energies
	Energy evolution estimates
	Stability analysis in the case Θ= 1
	Comments on the stability analysis

	Numerical experiments
	1D numerical experiments: multiple impacts of an elastic bar
	Setting
	Numerical results for Nitsche's method
	Comparison with Paoli–Schatzman scheme
	Comparison with Taylor–Flanagan scheme
	Comparison with the mass redistribution method
	Comparison with the penalty method
	Numerical convergence

	2D/3D numerical experiments: multiple impacts of a disc / a sphere

	Concluding remarks
	Acknowledgements
	References




