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Abstract. Optimizing radar observation strategies is one of
the most important considerations in pre-field campaign pe-
riods. This is especially true for isolated convective clouds
that typically evolve faster than the observations captured
by operational radar networks. This study investigates uncer-
tainties in radar observations of the evolution of the micro-
physical and dynamical properties of isolated deep convec-
tive clouds developing in clean and polluted environments.
It aims to optimize the radar observation strategy for deep
convection through the use of high-spatiotemporal cloud-
resolving model simulations, which resolve the evolution
of individual convective cells every 1 min, coupled with a
radar simulator and a cell tracking algorithm. The radar sim-
ulation settings are based on the Tracking Aerosol Convec-
tion Interactions ExpeRiment (TRACER) and Experiment of
Sea Breeze Convection, Aerosols, Precipitation and Environ-
ment (ESCAPE) field campaigns held in the Houston, TX,
area but are generalizable to other field campaigns focus-
ing on isolated deep convection. Our analysis produces the
following four outcomes. First, a 5–7 m s−1 median differ-
ence in maximum updrafts of tracked cells is shown between
the clean and polluted simulations in the early stages of the
cloud lifetimes. This demonstrates the importance of obtain-
ing accurate estimates of vertical velocity from observations
if aerosol impacts are to be properly resolved. Second, track-
ing of individual cells and using vertical cross section scan-
ning every minute capture the evolution of precipitation par-
ticle number concentration and size represented by polari-
metric observables better than the operational radar observa-
tions that update the volume scan every 5 min. This approach

also improves multi-Doppler radar updraft retrievals above
5 km above ground level for regions with updraft velocities
greater than 10 m s−1. Third, we propose an optimized strat-
egy composed of cell tracking by quick (1–2 min) vertical
cross section scans from more than one radar in addition to
the operational volume scans. We also propose the use of
a single-RHI (range height indicator) updraft retrieval tech-
nique for cells close to the radars, for which multi-Doppler
radar retrievals are still challenging. Finally, increasing the
number of deep convective cells sampled by such observa-
tions better represents the median maximum updraft evolu-
tion with sample sizes of more than 10 deep cells, which de-
creases the error associated with sampling the true population
to less than 3 m s−1.

1 Introduction

The quality and performance of remote sensing measure-
ments, especially radar measurements, can strongly depend
on the siting of instruments relative to their targets and the
associated sampling strategies (e.g., Bousquet et al., 2008;
Potvin et al., 2012b; Oue et al., 2019a). This is especially
true for convective storm systems that evolve rapidly over
a range of spatial and temporal scales. The limitations as-
sociated with observation strategies influence microphysical,
dynamical, and convective-core property retrievals, resulting
in a misinterpretation of the observational data, and can limit
our understanding of storm processes. Some of these limi-
tations can be addressed using Model and field Experiment
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data fusion (ModEx Approach, 2022) concepts such as the
optimization of experimental design using models and for-
ward simulators. Using the ModEx framework, one can ap-
propriately determine optimal radar deployments and scan
strategies, as well as quantitatively understand the observa-
tional uncertainties arising from these strategies before field
campaigns begin. As such, the goal of this study is to suggest
optimal radar deployments and scan strategies for radar field
campaigns targeting isolated convective clouds.

The limitations in radar observations that are mostly at-
tributed to sampling strategy strongly impact radar-based re-
trievals of geophysical quantities and cloud properties (e.g.,
Clark et al., 1980; Given and Ray, 1994; Collis et al., 2010).
These sampling strategy choices include scanning time (scan
rate) for a volume scan, spatial resolution (azimuth and ele-
vation spacings as well as range-gate spacing), elevation an-
gles for plan position indicator (PPI) volume scans, distance
to the target phenomena from the radars (this is also related
to the spatial resolution), systematic variability (i.e., noisi-
ness) in the observables, and data smoothing and interpola-
tion for gridding the data. In particular, the sampling strategy
can significantly impact the uncertainties in vertical velocity
retrievals (e.g., Oue et al., 2019a), which are important for the
analysis of cloud microphysics and dynamics. In addition,
the retrievals include uncertainties attributed to assumptions
in their algorithms; for instance, some multi-Doppler radar-
based vertical velocity retrievals must make assumptions for
the particle fall speed and mass continuity (e.g., North et al.,
2017).

In operational radar networks (e.g., the Next Generation
Weather Radar, or NEXRAD, network), each radar performs
volume scans consisting of plan position indicator (PPI)
scans with multiple elevation angles to prioritize collecting
data for large areas. The volume scan strategy (known as
volume coverage pattern, VCP) takes approximately 5 min
to collect 3D atmospheric data. While this operational scan-
ning strategy is very valuable for performing surveillance
and collecting a large number of cloud samples, it may
not accurately capture fine-scale, rapidly developing cloud
phenomena. To increase our understanding of the links be-
tween convective cloud kinematic and microphysical pro-
cesses, field campaigns have recently started to focus on col-
lecting observations at higher temporal and spatial resolu-
tions to understand fine-scale characteristics and phenom-
ena including isolated convection, shallow cumulus clouds,
plumes embedded in mesoscale systems, convective updrafts
and downdrafts (e.g., Verification of the Origins of Rota-
tion in Tornadoes Experiment 2 – VORTEX2, Wurman et
al., 2012; Midlatitude Continental Convective Clouds Ex-
periment – MC3E, Jensen et al., 2016; CSU Convective
Cloud Updraft and Downdraft Experiment – C3LOUD-Ex,
van den Heever et al., 2021; Marinescu et al., 2020), and
high-latitude precipitation (e.g., Light Precipitation Evalua-
tion Experiment – LPVEx, L’Ecuyer et al., 2010). Further-
more, in some of these field campaigns, physically track-

ing individual convective phenomena using cutting-edge me-
chanically scanning radar systems was employed to priori-
tize high-spatiotemporal sampling (e.g., The Dynamical and
Microphysical Evolution of Convective Storms – DYMECS,
Stein et al., 2015; Iowa Flood Studies – IFloodS, Mishra
et al., 2016). High-spatiotemporal resolution observations
can also be achieved by complementing operational radar
networks with adapting scan strategies of regional research
radars that have been installed in local areas (e.g., Distributed
Collaborative Adaptive Sensing – DCAS, McLaughlin et al.,
2005; Multi-Sensor Agile Adaptive Sampling – MAAS, Kol-
lias et al., 2020).

In recent years, as phased-array weather radars (PARs)
have become more commonly used for severe weather obser-
vations, the sophisticated tracking of atmospheric phenom-
ena has become feasible (e.g., Kollias et al., 2022). PARs
have the significant advantage of sampling rapidly evolving
atmospheric phenomena at high temporal resolutions (e.g.,
Billam and Harvey, 1987; Heinselman and Torres, 2011;
Mahre et al., 2018; Griffin et al., 2019; Adachi and Mashiko,
2020; Moroda et al., 2021), thus allowing for sampling of the
entire cloud volume and cloud life cycle. The tracking obser-
vations obtained by these rapid-scanning radar or PAR sys-
tems are, however, more sensitive than previous approaches
to scan strategies such as sampling time, azimuth and eleva-
tion spacings, and deployments (locations and the number of
radars), all of which should be appropriately optimized de-
pending on the spatial scale and evolution speed of the target
phenomena (Kollias et al., 2020).

Several radar field campaigns aim at enhancing our under-
standing of the links between convective cloud kinematic and
microphysical processes as well as life cycles (e.g., Tracking
Aerosol Convection Interactions ExpeRiment – TRACER,
Jensen et al., 2019; Experiment of Sea Breeze Convection,
Aerosols, Precipitation and Environment – ESCAPE; Jensen
et al., 2022; Atmospheric Radiation Measurements – ARM
– Mobile Facility 3 – AMF3 – Southeast US deployment,
Kang et al., 2021). All of these experiments have deployed or
plan to deploy multiple mobile weather radars, cloud radars,
rapid-scan radars, and phased-array radars. In particular, the
TRACER and ESCAPE campaigns focus on observing iso-
lated deep convective storms with different aerosol environ-
ments. Optimizing the radar deployments and scan strategies
while taking into account campaign costs, deployment limi-
tations, and sampling limitations (i.e., range, scan rate) is a
large but critical challenge. An observing system simulation
experiment (OSSE) is a powerful tool to investigate the im-
pact of the limitations on the observation analyses (Oue et
al., 2020), and using high-spatiotemporal data is needed to
reliably simulate the observations accounting for the limita-
tions. While the focus of this study has been on the TRACER
and ESCAPE field campaigns, the results are generalizable
to other future campaigns focused on isolated deep convec-
tion. In this paper we make use of OSSEs focused on deep
convection to specifically investigate the impacts of radar

Atmos. Meas. Tech., 15, 4931–4950, 2022 https://doi.org/10.5194/amt-15-4931-2022



M. Oue et al.: Optimizing radar scan strategies for tracking isolated deep convection 4933

scan strategies on the cell tracking performance, microphysi-
cal evolution, and dynamical retrievals of convective storms.
Specifically, the impacts of varying the scan elevation angles,
the period for a volume scan, and the locations of the radars
are assessed.

2 Method

Our OSSE approach is comprised of three parts: (1) the Re-
gional Atmospheric Modeling System (RAMS; Cotton et al.,
2003; Saleeby and van den Heever, 2013), (2) the Cloud-
resolving Radar Simulator (CR-SIM; Out et al., 2020), and
(3) the Tracking and Object-Based Analysis of Clouds (to-
bac; Heikenfeld et al., 2019a). Figure 1a–c show example
snapshots from parts (1) and (2), and Fig. 1d shows the track-
ing result from part (3). RAMS output from the Aerosol–
Cloud–Precipitation–Climate (ACPC) model intercompari-
son project (MIP) (van den Heever et al., 2018; Marinescu
et al., 2021), which focuses on the development and occur-
rence of isolated convective cells in the region around Hous-
ton, TX, on 19–20 June 2013 (Fig. 1a), forms the basis of this
study. The convective development was initiated both along
the inland propagation of the sea breeze and later in associa-
tion with convective cold pools produced by the earlier con-
vection in the simulation. In this study we focus on the time
period from 20:00–24:00 UTC (15:00–19:00 local time) dur-
ing which deep convective clouds developed, the dynamical
processes of which have been extensively analyzed (Mari-
nescu et al., 2021). The 1 min simulated deep convective
fields are used as an input to CR-SIM to represent and eval-
uate the radar-observable fields (Fig. 1b). The CR-SIM radar
observables are subsequently used to track convective cells
using tobac.

2.1 CR-SIM

CR-SIM is a sophisticated radar forward operator devel-
oped to bridge the gap between high-resolution cloud model
output and radar observations (Oue et al., 2020). CR-SIM
can be applied to the 3D model output produced by a va-
riety of cloud-resolving models and large-eddy simulation
models, including RAMS, the Weather Research and Fore-
casting (WRF, Powers et al., 2017) model, the System for
Atmospheric Modeling (SAM, Khairoutdinov and Randall,
2003), Cloud Model 1 (CM1, Bryan and Fritsch, 2002), and
the Icosahedral Nonhydrostatic model (ICON, Zängl et al.,
2015). It emulates the interaction between transmitted polar-
ized radar waves and rotationally symmetric hydrometeors
and can simulate the power (equivalent radar reflectivity fac-
tor), phase (Doppler velocity), and polarimetric (specific dif-
ferential phase, differential reflectivity, depolarization) vari-
ables with either a fixed elevation angle or varying elevation
angles with respect to a specified radar location. CR-SIM
outputs these variables on the same grid as the input model

grid. The radar simulator has been shown to be especially
effective in OSSEs to investigate the uncertainties in obser-
vational data (Oue et al., 2019a).

2.2 tobac

tobac is a Python-based software platform specifically de-
veloped for tracking atmospheric features, such as isolated
convective cells, in both model and observational datasets.
tobac has been developed using a modular code structure
with data input, feature detection and segmentation, and tra-
jectory linking steps. It uses a watershed algorithm to de-
tect and track individual convective cells, and it has been ex-
tensively tested on the ACPC simulations (e.g., Heikenfeld
et al., 2019a; Marinescu et al., 2021). For this study, tobac
version 1.2 is applied to CR-SIM vertically integrated liq-
uid (VIL; Fig. 1c), which represents the total hydrometeor
condensate within each vertical column and is similar to the
approach used by Hu et al. (2019). The CR-SIM radar reflec-
tivity is converted into VIL using the following equation:

VIL=
∑i=imax

i=0
3.44× 10−6[(Zi +Zi+1)/2

]4/7

(hi+1−hi) (kgm−2), (1)

where Z is radar reflectivity factor (mm6 m−3), h is height
(m), i is the vertical index, and imax is the index at the grid
domain top. We calculate VIL using the CR-SIM-simulated
total reflectivity greater than or equal to 0 dBZ at all vertical
levels and thus ensure that we consider all cloudy grid boxes
in the tracking analysis. Although this variable is named “liq-
uid”, we use the total reflectivity from all simulated hydrom-
eteor species to emulate real observations, including cloud
droplets, drizzle, rain, cloud ice, snow, aggregates, graupel,
and hail. Since “VIL” is a widely used name, we refer to
VIL as this parameter. When considering that clouds may
have lower reflectivity (< 0 dBZ) and the radar minimum de-
tectable reflectivity increases with distance from the radar,
the reflectivity threshold of 0 dBZ for the VIL calculation is
a reasonable value to use in detecting cells in the entire do-
main regardless of the distance. We also performed the cell
tracking using 10 and 40 dBZ thresholds at the height of 2 km
above ground level (a.g.l.) to compare the performance of the
use of VIL and single-level reflectivity thresholds.

2.3 RAMS

RAMS is a cloud-resolving model that includes sophisticated
microphysical–dynamical feedbacks and aerosol–cloud in-
teractions (Saleeby and van den Heever, 2013). RAMS, along
with several other cloud-resolving models from around the
world that participated in the ACPC MIP, focuses on the ef-
fects of changing the concentrations of cloud condensation
nuclei (CCN) on deep convective clouds (van den Heever
et al., 2018). Case study simulations of a period of scat-
tered convective clouds near Houston, Texas, were com-
pleted with relatively low and high concentrations of CCN
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Figure 1. (a) A snapshot of the RAMS-simulated total hydrometeor condensate field at 21:09 UTC at 5.5 km a.s.l. (b) CR-SIM simulated
radar reflectivity field at the same height and same time as (a). (c) Vertically integrated liquid (VIL) estimated from the CR-SIM C-band total
reflectivity (from total liquid and ice hydrometeor condensate) at the same time as (a). (d) Tracks of precipitating convective cells detected
between 20:00 and 23:59 UTC using tobac. In each panel, the red X marks the location of a radar performing 5 min VCP (i.e., NEXRAD
KHGX), the red solid dot represents the location of a radar performing a different 5 min VCP or RHI, and the blue solid dot represents the
location of another radar performing RHI. The red rectangle represents the tracked cell of interest used for multi-Doppler radar retrieval and
polarimetric evolution analysis.

that were based on observations from the Houston area (see
Fig. 2 from Marinescu et al., 2021). The low-CCN simulation
is initialized with 500 cm−3 of CCN in the boundary layer
(named CLN in this study), while the high-CCN simulation
is initialized with 4000 cm−3 of CCN in the boundary layer
(named POL in this study). The vertical aerosol profiles of
both the CLN and POL studies decrease linearly from the
top of the boundary layer to 150 cm−3 at ∼ 5 km a.g.l. (the
free troposphere), above which they remain constant. RAMS
allows for the advection, nucleation, wet and dry deposi-
tion, and regeneration of aerosol particles via hydrometeor
evaporation and sublimation. These simulations have been
performed using a horizontal grid resolution of 500 m and
the RAMS two-moment bin-emulating bulk-microphysics
scheme, which predicts the mass and number of eight hy-
drometeor types. The model data are output at a frequency
of 1 min. Additional details about the RAMS model parame-
terizations and experimental setup used for these simulations
can be found in Table 1 of Marinescu et al. (2021).

2.4 Observation simulation processes

In this study, the cell tracking is applied to the CR-SIM-
simulated radar observation field (VIL) to detect and track
individual convective storm cells. Using the tracking results
for all cells, we investigate the performance of the cell track-
ing using VIL, the impact of the scan strategy on the VIL esti-
mates (Sect. 3.1), and the statistical impact of aerosols on the
cell dynamical evolution (Sect. 3.3). One of the tracked, iso-
lated, deep convective cells with a single precipitation core
is chosen to investigate the following: (1) the impacts of
the scan strategy on the examination of polarimetric observ-
ables and related microphysical studies (Sect. 3.2) and (2) the
influences of different sets of scan strategies on the multi-
Doppler vertical velocity retrievals (Sect. 3.3). The chosen
cell is representative of isolated deep convective cells from
the CLN simulation (discussed in Sect. 3.2).
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2.4.1 Tracking convective cells

The tobac cell tracking is coupled with CR-SIM radar ob-
servables obtained using the RAMS output in the following
manner.

1. The RAMS output from the ACPC MIP for an isolated
convective case over the Houston area (Fig. 1a) is used
as input to CR-SIM.

2. The radar-observable fields (Fig. 1b) are simulated us-
ing CR-SIM and output on the same grid as the input
model grid.

3. The CR-SIM-simulated radar reflectivity is converted
into VIL if the reflectivity exceeds 0 dBZ at all levels
(Fig. 1c).

4. tobac is applied to the VIL field to track the convective
cells (Fig. 1d). We use the VIL thresholds of 0, 0.1, 1.0,
and 5.0 kg m−2 to identify and track individual cells, in-
cluding those embedded in larger precipitation areas.

5. Steps 1–4 above are applied to the CLN and POL
RAMS simulations to investigate the impact of aerosols
on the cell dynamical evolutions in the entire simulation
domain.

2.4.2 Emulating radar scan strategies

We emulate the radar scan strategies to account for observa-
tional limitations including scanning time for a volume scan,
azimuth and elevation angle spacings, range-gate spacing, el-
evation angles for PPI volume scans, distance to the target
phenomena from the radars, and smoothness and interpola-
tion for gridding process. This study tests the sensitivity of
updraft retrievals to four of these scanning strategy choices:
(i) scanning time, (ii) elevation angle spacing, (iii) distance
to the targeted convective cell, and (iv) the number of radars
used for the updraft retrievals. This section explains how the
scan strategies are emulated using CR-SIM.

The various radar scan strategies emulated in this study
are listed in Table 1. We first emulate cell tracking using
sector range-height indicator (RHI) scans, each of which is
composed of full elevation angles from 0.5 to 89.5◦ with a
1◦ increment in an azimuth sector and takes approximately
1 min (1 min RHI in Table 1). The 1 min RHI scan uses a
snapshot of data to complete a full elevation scan for a sec-
tor. For mechanically scanning radars, 1 min RHI may not be
feasible due to mechanical limitations (e.g., overhead time
needed when changing the antenna sweep direction), and
those radars may need more time to complete the sector scans
(as discussed later in this section).

The second emulation of cell tracking is also a full eleva-
tion scan for an azimuth sector similar to 1 min RHI but takes
2 min using two continuous snapshots (2 min SEC). To con-
struct the cells observed by the sector scan that takes 2 min,

we use two consecutive model snapshots; the first snapshot
at the earlier time is used to simulate the scan for angles from
0.5 to 44.5◦ over the elevation, and the other is used to sim-
ulate the scan for the angles from 45.5 to 89.5◦ over the el-
evation (we intend this simulation to represent a 2 min RHI
in which each of the two snapshots should be used for half
of the azimuth sector for full elevation angles; however, for
technical and computational reasons, we separate the eleva-
tion angles into the two snapshots). This 2 min SEC simula-
tion is performed every 2 min.

The tracking cell by 1 min RHI and 2 min SEC is guided
by tobac using the VIL estimate from the model full grid
every 1 min. The azimuth sectors for 1 min RHI and 2 min
SEC are decided so that each azimuth sector covers the 10 km
width centered around the individual cells defined by tobac.
Therefore, the number of RHI sweeps for each cell varies
as a function of the distance between the radar and the tar-
get cell. The radar configuration for the RHI simulation is
assumed to be a general scanning radar such as the ARM
precipitation radars. The angle range for an azimuth sector
at the radar range of 40 km is approximately 14◦. With the
radar beam width of 1◦, the total beam for the sector scan is
90 (over elevation)× 14 (over azimuth)= 1260 beams. As-
suming that each beam uses ∼ 96 radar pulse samples, the
sector scan includes 120 960 pulses in total. If the radar op-
erates with 1.5 kHz pulse repetition frequency (PRF) (typical
value for C-band radars), then the sector scan takes 80 s; if
the radar operates with 2.5 kHz PRF (typical value for X-
band radars), then the scan takes 48 s. These numbers (scans
within 1–2 min) are easy to get for phased-array radar ob-
servations. For a reflector (mechanical scan) radar that needs
33 % overhead time due to acceleration and deceleration of
the antenna, these scan times become 106 and 64 s, respec-
tively.

The third strategy we investigate is the 5 min VCP.
This strategy follows the standard NEXRAD VCP precip-
itation mode (VCP 12, https://www.weather.gov/jetstream/
vcp_max, last access: 18 August 2022) and is composed of
14 PPI scans. Since our model output is every minute, for the
5 min VCP simulation, a volume scan is composed of five
snapshots from the 1 min model outputs. A single snapshot
is used to create two or three PPI sweeps (two or three eleva-
tion angles).

Finally, for the fourth strategy, we evaluate an “ideal” sim-
ulation in which a volume scan with full elevation and az-
imuth scans with a 1.0◦ increment over both elevation and
azimuth is performed within 1 min (referred to as “full” in
Table 1). This approach will be feasible when a network of
rapid-scan or electronically scanning radars is available. Al-
though such observations are not realistic, they can serve as
an upper boundary in terms of observational capabilities and
will be used for an evaluation of VIL from 5 min VCP in
Sect. 3.1.

We use an S-band frequency for the 5 min VCP simula-
tion (emulating NEXRAD radars) and a C-band frequency
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Table 1. Radar scan strategies simulated in this study.

Strategy Full elevation scan for an
azimuth sector tracking cells
(1 min RHI, 2 min SEC)

5 min volume coverage
pattern (5 min VCP)

Full elevation and az-
imuth
scan (full)

Beam width 1.0◦ 0.9◦ 1.0◦

Elevation angles From 0.5 to 89.5◦ every 1◦ 0.48, 0.88, 1.32, 1.8,
2.42, 3.12, 4.0, 5.1,
6.42, 8.0, 10.02, 12.48,
15.6, and 19.51◦

From 0 to 90◦ every 1◦

Azimuth range 14.5◦ at 40 km radar range
(sector to cover a 10 km width
centered around the individual
cells with 1◦ spacing)

From 0 to 360◦ with a
0.5◦ increment

From 0 to 360◦ with a
1.0◦ increment

Time for volume
scan

1 or 2 min∗ 5 min 1 min

∗ With the radar beam width of 1◦, the total number of beams for the sector scan is 90 (over elevation)× 14 (over azimuth)= 1260 beams.
Assuming that each beam needs ∼ 96 radar samples, the total number of pulses is 120 960. This takes 1–2 min with typical pulse repetition
ratios (1.5–2.5 kHz) for C- and X-band radars. See detailed discussion in Sect. 2.4.2.

for 1 min RHI, 2 min SEC, and full simulations (assuming
the C-band Scanning ARM Precipitation Radar – C-SAPR,
or any equivalent performance radar). Since we use unatten-
uated radar observables in this study, the impacts of the radar
frequency on the simulation results should not be significant.

2.4.3 Multi-Doppler radar wind retrieval

For the investigation of the impacts of scan and deploy-
ment strategies on multi-Doppler vertical velocity retrievals,
this study employs a three-dimensional variational (3D-Var)
multi-Doppler radar wind retrieval technique developed by
North et al. (2017). While this investigation focuses on un-
certainties caused by scan and deployment strategies, it does
not account for other sources of errors such as attenuation
or the particle fall speed assumed in the 3D-Var wind re-
trieval technique. We use unattenuated radar reflectivity and
reflectivity-weighted fall speed calculated by CR-SIM in all
present wind retrieval simulations. The details of the 3D-
Var retrieval settings are presented in Oue et al. (2019a). As
described in Oue et al. (2019a), the 3D-Var wind retrieval
technique is applied to the gridded radar-observable fields.
The radar observables that are resampled following the radar
scan strategies in the previous sections are then re-gridded
into a Cartesian coordinate of 250 km× 250 km× 14 km do-
main with 0.25 km horizontal and vertical spacings using the
Barnes distance-dependent weightings (Barnes, 1964).

3 Results

3.1 Evaluation of the tracking parameter

This study employs VIL as a tracking parameter and, as such,
is similar to Hu et al. (2019). The use of VIL allows us to con-
sider hydrometeor condensate at all levels, whereas previous
convective cell tracking studies have employed reflectivity
criteria at a given height (e.g., Steiner et al., 1995; Shusse
et al., 2009; Oue et al., 2014). Tracking based on reflectiv-
ity at a single height may well define individual cells, espe-
cially for embedded cells in stratiform regions; however, it
can miss some of the early stages of convective cell develop-
ment that initiate at different (typically lower) heights. In this
section, we evaluate VIL as a tracking parameter for the sim-
ulations used in this study. Figure 2a shows a comparison of
the durations of tobac detected and tracked cells in the CLN
simulation as a function of the use of VIL, as well as 10 and
40 dBZ thresholds at 2 km of altitude. The time bin size used
for Fig. 2 is 5 min. The VIL-based tracking has the largest to-
tal number of cells detected since the VIL better captures the
presence of hydrometeor condensate throughout the vertical
columns and is not dependent on the presence of conden-
sate at a specific level. All of the frequency distributions, per-
haps unsurprisingly, peak at shorter durations for both CLN
and POL cases. The VIL-based and 10 dBZ-based trackings
are more comparable, although the VIL-based tracking has
higher frequencies at even longer durations (> 90 min) com-
pared to the 10 dBZ-based tracking. The 40 dBZ-based track-
ing generally has lower frequencies at all duration time bins
compared to the 10 dBZ- and VIL-based tracking, but it is
more similar to the 10 dBZ-based tracking in the 25–40 min
time bins. The frequency distributions of tracked cell life-
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times suggest that VIL can better capture longer life cycles
of individual cells, including their initial development and
decay stages, due to its ability to include information about
hydrometeors in the entire column.

The POL simulation (dashed line in Fig. 2a) shows a sim-
ilar tracked cell lifetime distribution as the CLN case. How-
ever, there are some notable differences. The POL case has
fewer cells detected (∼ 15 % fewer for VIL), which is consis-
tent with Marinescu et al. (2021), who also found fewer deep
convective updrafts in the POL case using different analyses
(their Fig. 7). When considering the relative frequency distri-
bution (not shown), the POL case also has a distribution shift
towards relatively fewer long-lived cells (lifetimes > 20 min)
and more frequent short-lived cells (lifetimes < 20 min) com-
pared to the CLN case. The relatively fewer long-lived cells
in the POL case are associated with deep convection. There
could be several reasons for the difference in cell lifetimes re-
lated to microphysical–dynamical feedback processes, such
as those associated with cold pools (e.g., Grant and van den
Heever, 2015). These differences between CLN and POL are
being examined in a separate paper. Hereafter, we use the
CLN case to examine the effects of scan strategy on the radar
polarimetric observables and vertical velocity retrievals. The
difference in the number of cells detected is consistent be-
tween the three tracking criteria. However, the difference
in lifetime is clearest in VIL, slightly evident in 10 dBZ-
based, and unclear in 40 dBZ-based. This suggests that the
VIL-based tracking is more sensitive to the difference in cell
lifetimes between the CLN and POL simulations and may
therefore be suitable for tracking isolated convective cells
throughout their lifetimes and quantifying cell lifetime statis-
tics. This may work for the cases in which isolated cells dom-
inate in the domain with less stratiform or mesoscale precip-
itation area. In such cases, the features identified by tobac in
the VIL field represent individual clouds well (i.e., a single
detected feature rarely includes more than one cell).

Since VIL integrates reflectivity from the surface to the
observed echo top, it better captures hydrometeor conden-
sate in the entire vertical column. This is especially effective
for conventional VCP scanning that may miss cells at a spe-
cific height if they are very close to the radar or far from the
radar. On the other hand, conventional VCPs that do not in-
clude higher elevation angles or that have sparse elevation
scans therefore tend to produce an underestimation of VIL.
Moreover, averaging inhomogeneities within large range-bin
volumes, which occur at distances far from the radar, can also
cause uncertainties when using VIL. To assess these uncer-
tainties, we investigate the VIL as a function of distance from
the radar.

Figure 3 compares contoured frequency by distance distri-
butions of VIL from the 5 min VCP and full scan (from 0 to
90◦ over elevation) strategies. Although we use the horizon-
tal distance from the radar instead of altitude in construct-
ing our contoured frequency by altitude diagram, we use the
term “CFAD” to refer to this kind of distribution diagram in

this study. Overall, both scans produce small differences in
the frequency of less than 0.05 in the CFADs, except within
the 30 km range from the radar. For 5 min VCP, there is a
shift to higher frequencies of smaller VIL values (red at a
distance of < 30 km and <−12 dB in Fig. 3b). At distances
within 30 km of the radar, both radars have sufficient sensitiv-
ity (<−9 dBZ). This underestimation is therefore likely due
to the fact that 5 min VCP does not observe the upper parts
of the clouds. The smaller differences that occur at distances
> 90 km, which are shown in both scan strategies, are likely
due to the minimum detectable reflectivity, which increases
with distance from the radar. It can be concluded that even the
NEXRAD VCP captures the VIL well except for distances
less than 30 km from the radar and is thus very valuable for
the surveillance of convective cells; it is also useful to detect
and subsequently track targeted cells, as well as guide the
cell tracking using RHI measurements.

3.2 Evolution of polarimetric variables associated with
microphysics

Polarimetric observables (e.g., differential reflectivity ZDR
and differential propagation phase KDP) have frequently
been used by past studies as an indicator of microphysical
and updraft evolution (e.g., Kumjian and Ryzhkov, 2008;
Kumjian et al., 2014; Snyder et al., 2013). The NEXRAD
polarimetric measurements are very important for capturing
the precipitation microphysical properties. However, its poor
spatiotemporal sampling (i.e., limited PPI elevation angles,
time for volume scan) provides only a limited view in con-
vective storms (Fridlind et al., 2019). Here, we assess the
impact of the NEXRAD spatiotemporal sampling by simu-
lating the polarimetric observables from the 1 min RHI track-
ing (1 min RHI in Table 1) and the 5 min conventional PPI
volume scan (5 min VCP in Table 1). We randomly select
12 cells from the 453 deep convective cells tracked in the
CLN simulation. These cells all have maximum radar reflec-
tivity exceeding 45 and 20 dBZ echo top heights greater than
8 km a.g.l. during their lifetime. We then examine the evolu-
tion of microphysical and dynamical characteristics such as
number concentration and mean diameter for each simulated
hydrometeor species, as well as the vertical velocity. Nine of
the cells have 40 dBZ mean echo top heights that exceed the
freezing level (approximately 5 km a.g.l.) and attain 8 km of
altitude, which signify stronger convection. These nine cells
show similar evolution of KDP, ZDR, and maximum updrafts,
all of which have magnitudes greater than 20 m s−1 in the
middle of their lifetimes. Three of the 12 cells do not have
40 dBZ echo top heights extending above the freezing level.
From the nine vigorous, deep convective cells, one represen-
tative cell is chosen for a detailed OSSE analysis based on
its isolated nature and development near the NEXRAD radar
and other radar locations used for TRACER and ESCAPE.
While we focus on one cell only, the results can be extended
to the other deep isolated cells. Figure 4 shows the evolu-
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Figure 2. Frequency distributions of cell duration time from the tobac cell tracking using VIL (red), 10 dBZ threshold at 2 km height (blue),
and 40 dBZ threshold at 2 km of height (black) for (a) CLN and (b) POL cases. The legend displays the total number of detected cells (N )
for each tracking parameter utilized. Panel (a) also includes the cell tracking using VIL for the POL case shown as the red dashed line. The
time bin size for the frequency distribution plots is 5 min.

Figure 3. (a) Contoured frequency by distance (from the radar) distribution of the VIL from the original Cartesian model grid from the 1 min
output over the 4 h analysis period. (b) Difference between the VIL from the 5 min VCP scan strategy and (a) and (c) difference between the
VIL from the full scan strategy and (a). The VILs from the 5 min VCP and full scan strategies are estimated from the gridded reflectivity
fields with 250 m horizontal and vertical spacing as well as 1 min output over the 4 h period.

tion of the mass-weighted mean diameter (Dm) and number
density for the rain and hail species for the chosen cell. Large
rain Dm (> 1.5 mm) is evident near the freezing level (dashed
line) during the later stage of the cell lifetime as the echo top
height descends (after 21:50 UTC in Fig. 4c). Around this
time, the largest Dm for hail is also apparent (Fig. 4d). This
indicates that the large hail melts as it falls through the freez-
ing level, thereby producing large raindrops. The hail number
concentration (Fig. 4f) is also strongly correlated with up-
draft magnitude (Fig. 4b), thus demonstrating the strong link
between the updraft dynamics and hail formation. Further-
more, the total hydrometeor mixing ratio (Fig. 4a) is consis-
tent with the number concentrations from both rain and hail
(Fig. 4e and f).

Figure 5a, d, and g (left column in Fig. 5) show simulated
reflectivity, ZDR, and KDP, respectively, averaged over the
region with reflectivity > 40 dBZ from the original Cartesian
model grid. The evolution of raindrops as represented by rain
Dm (Fig. 4c) is evident by the large values in the ZDR field
(Fig. 5d). The relatively large KDP and reflectivity values also
seem to accurately represent the high number concentration
of raindrops in the early stage of the cell lifetime (Figs. 4e
and 5a, g). These characteristics of reflectivity, ZDR, and KDP
are compared with those from the different scan strategies:
1 min RHI (middle column) and 5 min VCP (right column).
The RHI tracking reconstructs the magnitudes and evolution
of the polarimetric observables well (Fig. 5e and h) so that
they represent the hail Dm and cell evolution (Fig. 4a, b, d).
Meanwhile, the conventional volume scan cannot capture the
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Figure 4. Height-versus-time cross sections of the (a) total hydrometeor condensate content, (b) updraft, (c–d) the mass-weighted mean
diameter (Dm) for (c) rain and (d) hail, and the number density (N ) for (e) rain and (f) hail averaged for areas with reflectivity > 40 dBZ of
the selected convective cell from the CLN case. The dashed line in each panel represents a 0 ◦C isotherm of domain-averaged temperature.

fine-scale structure and magnitudes of the hail–rain evolution
observed by ZDR and KDP (Fig. 5f and i) due to the coarse
time resolution. The RHI tracking performs well in captur-
ing the KDP enhancement and its streak as the raindrops
fall (Fig. 5h). Note that the NEXRAD S-band frequency
(3.0 GHz) is assumed for the 5 min VCP simulation, while
C-band frequency (5.5 GHz) is assumed for the model and
RHI simulation. Therefore, the KDP values in this figure do
include the frequency dependency. The S-band KDP (Fig. 5i)
is approximately 1.8 (5.5 GHz / 3.0 GHz) times smaller than
the C-band KDP (Fig. 5h). This indicates that the KDP mea-
surements from the shorter-wavelength radar are more sen-
sitive to the KDP evolution and can therefore provide more
insights on the microphysical evolution of precipitation.

The region of relatively large ZDR > 1 dB extends to
6 km of altitude, which is approximately 1 km above the en-
vironmental 0 ◦C level (horizontal dashed line) at around
21:38 UTC (Fig. 5d and e). This seems to correspond to
the so-called ZDR column (e.g., Kumjian et al., 2014). The
ZDR column signature shows more columnar structure in the
vertical cross section at 21:38 UTC (not shown). The ZDR

extension is clearly evident in the original model simula-
tion (truth) (Fig. 5d) and the RHI tracking (Fig. 5e), but it
is not clear or is weak in 5 min VCP (Fig. 5f). The large
ZDR values associated with raindrops can be masked by the
presence of hail. Hail particles are assumed to be dry and
more nearly spherical than raindrops following Ryzhkov et
al. (2011) in CR-SIM and dominate the total reflectivity, pro-
ducing smaller ZDR. The ZDR extension is collocated with
large KDP > 1.8◦ km−1 shown in the original model simula-
tion truth (Fig. 5g) and the RHI tracking (Fig. 5h).

3.3 Dynamical evolution

One of the benefits of cell tracking using VIL is that it can
better capture the dynamical evolution of convective cells
over their lifetimes (Fig. 2). Figure 6 represents the maxi-
mum updrafts in the CLN and POL individual tracked cells
as a function of their lifetime for deep convective cells with
20 dBZ echo top heights exceeding the environmental 0 ◦C
level. Many of the cells attain maximum updrafts > 10 m s−1

within the first third of their lifetimes in both the CLN and
POL simulations. The peak occurrence for the POL simu-
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Figure 5. Time–height cross sections of C-band radar reflectivity (a–c), ZDR (d–f), and KDP (g–i) averaged for areas with reflectivity
> 40 dBZ for the selected convective cell for (a, d, g) the model simulation truth, (b, e, h) simulated RHI tracking strategy, and (c, f, i) sim-
ulated 5 min volume scan strategy. The cell in this figure is the same as that shown in the box in Fig. 4 and is from the CLN case. Note
that the NEXRAD S-band frequency is assumed for the 5 min VCP simulation, while C-band frequency is assumed for the model and RHI
simulation. Therefore, the KDP values in this figure include the frequency dependency. The dashed line in each panel represents a 0 ◦C
isotherm of domain-averaged temperature.

lation is found for updrafts that are approximately 5 m s−1

stronger than those of the CLN simulation, suggesting that
stronger updrafts are more frequent in the POL than CLN
convective cells in the earlier stages of the cells’ life cy-
cles. Since the earlier stages of convection are driven by
warm-phase processes, this finding is consistent with Mari-
nescu et al. (2021), who found stronger updrafts in the warm-
phase region of deep convective updrafts but not in the cold-
phase region (i.e., above the freezing level) in the POL envi-
ronment. The stronger updrafts support the development of
larger hail produced in the POL simulation (not shown). This
result suggests that it is important to estimate vertical veloc-
ity with a high level of accuracy if the impact of aerosols on
convective dynamics is to be properly resolved in observa-
tions. We use the CLN simulation output as well as the indi-
vidual CLN case deep convective cell shown in Figs. 4 and
5 to further investigate the uncertainties associated with the
multi-Doppler radar vertical velocity retrievals in this sec-
tion. Figure 7 shows the maximum updraft velocity in the cell
column at each time as a function of the normalized lifetime
for the nine deep convective cells from the CLN simulation
selected in the previous section. They all have peak updrafts
exceeding 20 m s−1, which mostly occur in the first half of

the cells’ lifetimes. The black line represents the profile from
the target cell analyzed for the OSSE in this section. It is clear
from Fig. 7 that the selected cell has a relatively typical dy-
namical evolution when compared with the other nine cells,
although it does reach its maximum updraft velocity a little
earlier in its life cycle.

Figure 8 shows the impacts of sets of radar scan strate-
gies for multi-Doppler updraft retrievals for the selected con-
vective cell using a 3D-Var technique (North et al., 2017;
Oue et al., 2019a). This cell is the same cell examined in
the previous section (Figs. 4 and 5). We simulate different
combinations of the scan strategies using 1 min RHI that
scans around the center of the cell and 5 min VCP. Recall
that Table 1 provides the details of the scan strategies, and
Fig. 1 shows the locations of the radars with these scan
strategies and the targeted OSSE cell. The sets of radars
for the multi-Doppler wind retrieval simulations are (1) two
radars each using a 1 min RHI (red dot and cross in Fig. 1,
called 2RHI), (2) two radars each using a 5 min VCP (called
2VCP), (3) two radars with one using a 1 min RHI (red dot
in Fig. 1) and the other using a 5 min VCP (red cross in
Fig. 1) (called RHIVCP), and (4) three radars with two us-
ing 1 min RHIs (red and blue dots in Fig. 1) and one us-
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Figure 6. Frequency of maximum updraft magnitudes in detected individual cells as a function of time normalized by the cell duration for
the (a) CLN and (b) POL case simulations and (c) the difference between the CLN and POL cases (POL–CLN). Here we present only deep
convective cells with 20 dBZ echo top heights that exceeded the freezing level during their lifetimes. Color shading in (a) and (b) represents
normalized frequency by cell lifetime, and that in (c) represents the difference in the normalized frequency. The sample size at each time bin
is presented on the top of (a) and (b). Black lines in (a) and (b) represent the median value in each time bin.

Table 2. The root mean square error (RMSE) of the retrieved updraft averaged over the regions with reflectivity ≥ 40 dBZ at four different
altitudes as well as all heights for a variety of scan strategies for the entire lifetime.

1. Two 1 min 2. Two 5 min 3. One 1 min RHI + one 4. Two 1 min RHIs + one
RHIs (2RHIs) VCPs (2VCPs) 5 min VCP (RHIVCP) 5 min VCP (2RHIVCP)

10 km 4.794 16.82 7.995 4.800
8 km 5.371 7.396 5.609 5.112
6 km 5.862 6.601 4.764 4.895
4 km 4.232 3.178 3.625 3.511
All heights 5.030 6.763 5.539 4.535

ing a 5 min VCP (red cross in Fig. 1) (called 2RHIVCP).
Table 2 represents the root mean square errors (RMSEs) of
the retrieved vertical velocity at four different heights and at
all heights. The 2VCP simulation (Fig. 8c; green in Fig. 8f)
significantly underestimates the updraft, with the error ex-
ceeding 5 m s−1 above 5 km a.g.l., where the cell produces
mean updrafts stronger than 12 m s−1. The 2VCP radar pair,
whose volume scan takes 5 min, does not resolve the up-
draft evolution well. We note that other studies also found
an underestimation of vertical velocity retrievals using two
5 min VCPs. For example, Marinescu et al. (2020) used two
5 min VCPs to estimate strong updrafts in supercells and
found an underestimation in the region from 5–10 km a.g.l.
when compared with radiosonde estimates of vertical veloc-
ity. This pair of 5 min VCPs (2VCP) does, however, produce
less error below 4 km a.g.l. where the cell produces weaker
updrafts (< 5 m s−1) when compared with the other sets of
radar combinations. This suggests that the conventional PPI
scans, which have dense scans at low elevation angles, cap-
ture the low-level horizontal inflow well, and the mass conti-
nuity assumption is satisfied at the low levels. It is interesting
that while 5 min VCP represents VIL well for the distance

> 30 km as shown in Fig. 3, its limitations produce signif-
icant uncertainties in the convective dynamical retrieval of
individual clouds above ∼ 5 km a.g.l. even though the cell is
observed at a distance of > 30 km from the radar (Fig. 1).

With an RHI scan every minute, even when adding only
one RHI, cell tracking improves the retrievals above 5 km of
altitude (Fig. 8b, d, e; 2RHI, RHIVCP, and 2RHIVCP; red,
magenta, and blue, respectively in Fig. 8f). The improve-
ments are particularly significant for regions in which the
updraft velocities are stronger than 10 m s−1. The RHIVCP
simulation shows the best estimate at the middle altitude
(∼ 6 km) among the four simulations, followed by 2RHIVCP
and thirdly 2RHI. The 2RHI and 2RHIVCP simulations
show RMSEs less than 6 m s−1 at all altitudes and better es-
timates than the other two simulations at the higher altitudes
(8 and 10 km a.g.l.). The RHI scan has better sampling at el-
evations higher than 5 min VCP, resulting in a better retrieval
at these higher altitudes.

As the profile and Table 2 show, 2RHI and 2RHIVCP have
the lowest RMSEs when considering all altitudes (Table 2,
bottom row). In addition, 2RHIVCP shows better results at
altitudes < 10 km than 2RHI. This suggests that the conven-
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Figure 7. Maximum updraft velocity in the cell column at each time
represented as a function of the normalized lifetime for the nine
deep convective cells from the CLN simulation. These cells were
randomly selected, as described in Sect. 3.2, and were required to
have maximum radar reflectivity greater than 45 dBZ, an echo top
height of 40 dBZ exceeding 5 km in altitude, and an echo top height
of 20 dBZ extending above 8 km of altitude during the storm life
cycle. The black line represents the target cell that was analyzed for
the present OSSE. Note that because the plot displays the maximum
updraft found in regions with reflectivity greater than 45 dBZ, some
lines do not end at time 1.0 when the maximum reflectivity is below
45 dBZ.

tional 5 min VCP scan can be used for further improvement
of the RHI-only tracking retrievals for the low and middle
altitudes. Since the 5 min VCP has dense scans at lower el-
evations, this can help to provide enough data covering the
horizontal domain of the cell, which may better represent the
low-level horizontal wind convergence, thereby better con-
straining the cost functions in the 3D-Var.

We also investigate the impacts of the radar radial loca-
tions relative to the same cell as in Figs. 4, 5, and 8. Radars
horizontally extending from 10 to 70 km (in 10 km incre-
ments) radially away from the cell are assessed. For this anal-
ysis, we use the scan strategy with the lowest errors from our
prior analysis, i.e., two radars performing 2 min SECs and
one radar performing 5 min VCP (e.g., Table 2, the track-
ing radars used 2 min SEC rather than 1 min RHI). We be-
lieve that 1 min RHI can be feasible with electrical scan or
mechanical rapid-scan radars. However, 2 min SEC can be
more reasonable when the cell is relatively close to the radars
because scans need to extend to higher elevations as dis-
cussed in Sect. 2.4.2. Figure 9a shows the radar locations for
the seven simulations, and Fig. 9b demonstrates the verti-
cal profiles of errors of the retrieved updrafts averaged over a
20 km× 20 km box with reflectivity > 30 dBZ at 21:42 UTC.
For each retrieval, the largest error is evident above an alti-

tude of ∼ 9 km a.g.l. where the stronger updrafts are simu-
lated by the model (Fig. 8a). The largest error among the re-
trievals is found in the retrieval with the radars closest to the
cell (red profile in Fig. 9b). This occurs since the PPI volume
scan does not cover the upper part of the cell and/or the hor-
izontal wind convergence at higher elevation angles may not
be retrieved from the RHI measurements accurately. When
each radar has a distance greater than or equal to 20 km from
the cell, the retrievals are improved by 5–10 m s−1 between
5 and 11 km altitudes. The retrievals in which the radar dis-
tances from the cell fall between 20 and 50 km show errors
less than 5 m s−1 below 11 km a.g.l. Such accuracies in the
retrievals may allow for resolving the aerosol impacts on up-
draft velocities shown in Fig. 6. The errors are then found
to increase again above 10 km a.g.l., especially for the radars
located 60 and 70 km away from the cell. This investigation
suggests that the radars should target cells that are 20–50 km
from the radar for optimal multi-Doppler radar retrievals.
This finding is consistent with previous field campaigns us-
ing multi-Doppler radar measurements (e.g., Wurman et al.,
2012; Collis et al., 2013; Jensen et al., 2016) and OSSE stud-
ies (e.g., Potvin et al., 2012a).

In the simulations above, the three radar locations are al-
most equidistant from the target cell. Now we explore the im-
pacts of having radars located at different distances from the
target. We move one of the three radars to a distance of 10 to
70 km at 10 km increments (except 20 km, which has already
been tested) while keeping the other two radars at a fixed
distance of 20 km (blue dots in Fig. 9a). Similar to Fig. 9b,
Fig. 10a and b show vertical profiles of the errors of the re-
trieved updrafts when moving the 2 min SEC radar (at the
northwest corner of the triangle) and the 5 min VCP radar (at
the south corner), respectively. When moving the 2 min SEC
radar from distances between 30 and 70 km (Fig. 10a), the
retrievals show better profiles as the RMSEs range from 1.7
to 2.6 m s−1. The RMSE increases when the radar is located
at 10 km, which is consistent with the equidistance simula-
tions (Fig. 9). Another notable point is that when the radar is
located at distances from 50 to 70 km, the errors below 1 km
slightly increase, which is most likely because the radar cov-
erage is sparse at the lowest elevation due to the distance.
Similarly, when moving the 5 min VCP radar, the RMSE in-
creases when the radar is located at 10 km (Fig. 10b). The
impact is significant above 5 km of altitude. When the radar
is located at 60 or 70 km the errors below 5 km increase. This
also reflects the sparse radar coverage at the lower altitudes
for the far distances.

In nature, convective cells often do not nicely evolve over
pre-defined multi-Doppler regions and move outside the re-
gion of optimal analysis. Therefore, we also propose a single-
RHI vertical velocity retrieval which can be used on a much
larger sample of convective cells in the vertical in the vicin-
ity of the radar compared to fixed multi-Doppler platforms.
The single-RHI vertical velocity retrieval extracts the verti-
cal air motion component from the radial velocity (Doppler

Atmos. Meas. Tech., 15, 4931–4950, 2022 https://doi.org/10.5194/amt-15-4931-2022



M. Oue et al.: Optimizing radar scan strategies for tracking isolated deep convection 4943

Figure 8. Height–time cross sections of the updraft velocity averaged over the area with reflectivity > 40 dBZ from (a) the model (truth)
and (b–e) the simulated retrievals, as well as the (f) errors of the simulated multi-Doppler vertical velocity retrievals (retrieval–truth) at
21:42 UTC, when the maximum updraft was produced by the cell.

Figure 9. (a) Horizontal distribution of VIL centered around one identified convective cell (gray box, the same cell shown in Figs. 4, 5,
and 8) at 21:42 UTC from the CLN simulation and (b) vertical profiles of errors of simulated retrievals (retrieval–model) averaged over a
region with reflectivity > 30 dBZ at 21:42 UTC for the identified convective cell. The colored dots in (a) represent the radar locations for
the multi-Doppler radar wind retrievals. The colors of the dots correspond to the colors of the set of radars for the multi-Doppler radar wind
retrievals shown in (b). The two radars to the north of the cell performed 2 min RHIs, and the other performed 5 min VCP. The RMSE for
each profile is displayed in (b).

velocity), which is composed of the vertical air motion, hor-
izontal air velocity, and hydrometeor fall velocity (Lamer et
al., 2014). Figure 11a shows examples of Doppler velocity
vectors (clear arrows) and the components of the Doppler
velocity including horizontal wind along the RHI plane (yel-
low arrows), vertical velocity (red arrows), and hydrometeor
fall velocity (blue arrows) at two different points ([x,y] = [0,
5 km] and [7.5, 5 km]). These examples assume that each
component at the two points has the same value. At the
radar distance equal to 0 km (x= 0 km), the horizontal wind
component can be ignored. At the radar distance greater
than 0 km, the contribution of the horizontal wind compo-
nent increases with decreasing elevation angle (i.e., increas-
ing the distance from the radar at a constant height). To ap-

ply this technique to real observations, horizontal velocity
and hydrometeor fall velocity should be provided. Gener-
ally, the horizontal velocity profile can be provided from a
velocity–azimuth display (VAD) technique using PPI mea-
surements or sounding measurements, assuming that the hor-
izontal wind is constant at each level. However, this assump-
tion is a major source of the uncertainty in the single-RHI
vertical velocity retrieval technique, particularly at lower ele-
vation angles. At these lower elevation angles, the horizontal
wind component dominates the radial velocity, but the cov-
erage of these lower elevation angles often does not prop-
erly capture the variability in the horizontal wind, especially
close to the radar. We therefore investigate the impact of the
distance of the radar from the cell on the single-RHI re-
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Figure 10. Vertical profiles of errors of simulated retrievals
(retrieval–model) averaged over a region with reflectivity > 30 dBZ
at 21:42 UTC for the identified convective cell using the three
radars, with two fixed at a distance of 20 km (blue dots in Fig. 9a)
while one is moved (dots with the other colors in Fig. 9a). In (a) the
2 min SEC radar (at the northwest corner of the triangle in Fig. 9a)
is moved, and in (b) the 5 min VCP radar (at the south corner of the
triangle in Fig. 9a) is moved. The colors of lines correspond to the
dot’s colors for the moved radar.

trieval. In the simulations, we use the reflectivity-weighted
hydrometeor fall velocity simulated by CR-SIM, similar to
the present multi-Doppler retrieval simulations, to exclude
the uncertainty related to the fall velocity estimates.

Figure 11 shows the simulated single-RHI vertical velocity
retrieval from the selected convective cell. Profiles in Fig. 11c
and d are retrieved vertical velocity at the convective core
(distance of 0 km) and the errors from the truth, respectively.
We investigate this technique for a profile at 21:42 UTC of
the cell (same as Figs. 8f and 9b) in which the strongest up-
draft is simulated. This single-RHI Doppler velocity tech-
nique works very well at a distance of 0 km (red), at which
the horizontal wind component can be ignored, as evidenced
by the error profile being equal to 0 at all altitudes (red line).
However, below 6 km a.g.l., the error significantly increases
with the radar distance from the core. Interestingly, the char-
acteristics of the error distribution are opposite to those of the
multi-Doppler retrievals (Figs. 8f and 9b). We would there-
fore suggest the complementary use of the multi-Doppler
wind retrieval and the single-RHI vertical velocity retrieval
for better vertical velocity estimates of convective cells. For
example, in a tracking strategy in which two radars track a
targeted cell, the optimal scenario can be one in which the
two radars track the cell with sector RHI and PPI scans at
intervals of ∼ 2 min when the distance of the cell from both
radars is greater than 20 km. However, when the distance of

the cell from one of the radars is less than 20 km, the radar’s
scan is then switched to hemispheric RHI.

This study highlights the importance of focusing on high-
spatiotemporal observations of individual convective cells
rather than utilizing conventional surveillance scans. Such
high-spatiotemporal observations can be accomplished by
tracking cells using fast-scan RHI measurements facilitated
by rapid-scan radars. However, it is not hard to anticipate
that the number of individual cells tracked successfully dur-
ing a short-term intensive observation period during which
such special scan strategies are performed will also be lim-
ited. Therefore, we have investigated the sample size of cells
needed to represent the typical convective evolution of deep
convective cells using the median maximum updraft metric
shown in Fig. 6. This specific analysis accounts for the er-
ror regarding cell sampling, but it does not account for the
wind retrieval uncertainty from the scan strategy. Figure 12a
and c show box plots of the maximum vertical velocity as a
function of the normalized lifetime from all convective cells
detected (910 tracked cells including deep and shallow cells)
in the CLN case and from deep convective cells defined in
Fig. 6a (453 tracked cells), respectively. These figures indi-
cate high variability in the maximum updraft magnitude as a
function of time and that, potentially, one randomly sampled
convective cell may not represent the typical evolution of
vertical velocity. Figure 12b depicts the relationship between
the sample size and the errors associated with estimating the
full population median evolution of the maximum updraft
magnitude. We randomly sample convective cells from all of
the tobac-detected cells in the CLN simulation (910 tracked
cells) and estimate the median value of maximum updrafts at
each time bin with different numbers of samples. The median
values for the different sample sizes are then compared to the
median values from all deep convective cells detected (shown
as a black line in Fig. 6a) to estimate RMSEs. Figure 12b
suggests that increasing the sample size generally decreases
the RMSE to less than 4.5 m s−1 until a population of 10 cell
samples is reached and converges to approximately 2.6 m s−1

for a sample size of 20 or more samples. When focusing the
analysis on deep convective cells only (Fig. 12d), the RMSE
decreases to approximately 3 m s−1 for 10 cell samples and
converges to approximately 1 m s−1 for 40 or more samples.

This study focuses on tracking isolated deep convective
cells, each of which has a single core. Although we provide
a detailed investigation of one selected cell using OSSEs, the
result should be robust for the other cells that have a vertical
structure similar to that shown in Sect. 3.2. The error val-
ues presented in this study, however, may depend on cloud
type. As the larger errors of the multi-Doppler radar wind
retrievals are shown to exist in the higher altitudes in this
study, the heights of convection could influence the observa-
tional uncertainties (i.e., height of maximum updraft). More-
over, in a strong wind shear environment in which storms ad-
vect quickly, the impact of the use of quick updates of RHI
scans would be more effective (e.g., Clark et al., 1980; Oue
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Figure 11. Vertical cross section of (a) radar reflectivity and (b) Doppler velocity from the simulated RHI measurement for a convective cell
and vertical profiles of (c) retrieved vertical air motion and (d) errors (retrieval–model), simulated with different distances between the radar
and the center of the convective cell (distance of 0 km in b) at 21:42 UTC. The location of the radars from the center of the convective cell
in (c)–(d) are indicated by their corresponding colored triangle in panel (b). A negative Doppler velocity in (b) represents motion toward
the radar. In panel (b), arrows represent examples of the Doppler velocity vector and the components at two range-height bins ([x,y] = [0,
5 km] and [7.5, 5 km]); the clear arrows with a black line represent the observed Doppler velocity (labeled as DV), the red arrows represent
the vertical velocity component (labeled as VV), the yellow arrows represent the horizontal wind component along the vertical cross section
(labeled as U), and the light blue arrows represent the component of the particle fall velocity (labeled as Vfall). These examples assume that
each component at the two points has the same value, but the scale does not represent a specific value.

Figure 12. (a, c) Box plots of maximum vertical velocity as a function of the normalized lifetime from all convective cells detected (910
cells including deep and shallow cells) from the CLN case and from the deep convective cells (453 cells) defined in Fig. 6a, respectively.
For each box plot, the central red mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points excluding outliers. Outliers are plotted individually using the cross symbol.
Black solid lines in (a) and (c) represent the temporal evolution of the median values of maximum updrafts for deep cells as a function of
time. (b, d) The RMSEs of median values of the maximum vertical velocity as a function of the number of cells randomly sampled from all
convective cells detected in the CLN simulation (b) and from deep convective cells defined in Fig. 6a (d). The RMSEs are estimated from
the median profiles as a function of the normalized lifetime from the random sampling and that from all deep convective cells (black line in
Fig. 6a).
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et al., 2019a). Various convective cloud morphologies have
been investigated in terms of uncertainties in observations,
including mesoscale convective systems (e.g., Bousquet et
al., 2008; Oue et al., 2019a), supercells (e.g., Potvin et al.,
2012a; Marinescu et al., 2020), and convection embedded in
stratiform precipitation (e.g., Bousquet et al., 2008). How-
ever, the qualitative characteristics found in this study, such
as the error profile trends, the dependency on the radar loca-
tions, and the dependency on scan strategy, are likely to be
common to those deep convective cloud systems as well.

4 Summary

Optimizing radar observation strategies has been one of the
most important topics in pre-field campaign periods, espe-
cially when the focus is on atmospheric phenomena that
rapidly evolve on timescales that standard operational radar
networks cannot resolve. This study uses the Cloud-resolving
Radar Simulator (CR-SIM) and the tobac cloud object track-
ing algorithm to investigate observational uncertainties of
isolated deep convective clouds associated with pre-existing
and planned radar deployments and strategies. The focus of
this paper is to optimize the radar observation strategies for
the TRACER and ESCAPE field campaigns, but the results
are also generalizable for field campaigns that focus on iso-
lated deep convection using radar observations.

The following results and associated recommendations are
made.

– The cell tracking algorithm with the use of VIL bet-
ter captures the difference in cell lifetimes between
the low-CCN (CLN) and high-CCN (POL) simulations
compared with the use of reflectivity thresholds at in-
dividual altitudes and is suitable to detect and track
more convective cells for longer time periods, including
the early development and dissipating stages of isolated
storms.

– An analysis of the CLN and POL simulations, used
to quantify the impact of aerosols on the convective
dynamical evolution, shows a 5–7 m s−1 difference in
maximum updraft at the early stages of convective de-
velopment. This suggests the importance of accurate
vertical velocity estimates using the radar observations
if the impact of aerosols on convective updrafts is to be
assessed.

– Fast scanning of the individual convective cells every
minute captures the microphysical evolution better than
operational radar observations that update the volume
scan every 5 min. In particular, the tracking of cells us-
ing RHI every minute better captures the evolution of
KDP in the early stage and ZDR in the later stage, which
are primarily associated with the rain number concen-
tration and hydrometeor particle (hail and rain) size, re-
spectively.

– Tracking using RHI improves the multi-Doppler radar
updraft retrievals above 5 km a.g.l., particularly for re-
gions with updraft velocities greater than 10 m s−1. The
conventional 5 min PPI volume scan can be used for fur-
ther improvement of the RHI-tracking-only retrievals.

– The multi-Doppler radar updraft retrievals, even when
using RHI, are still challenging, especially for cells that
are close to the radars (i.e., within 10 km of the radar).
This approach can be complemented by a single-RHI
updraft retrieval technique.

– Based on these results, the suggested strategy to bet-
ter capture microphysics and dynamics of deep con-
vective cells is tracking by frequent RHI scans from
more than one radar (blue and red scans in Fig. 13),
in addition to the operational PPI volume scans gener-
ally performed by the NEXRAD radars (green scans in
Fig. 13). We also suggest a hybrid radar scan strategy
which switches between the RHI cell tracking and hemi-
spheric RHI measurements depending on the distance
between the radar and the targeted cell (red and orange
scans in Fig. 13). Such RHI tracking measurements
would be possible with conventional mobile radars, but
fast-scanning Doppler radars (Wurman, 2001) and/or
phased-array radars (Kollias et al., 2022) would have
more advantages in faster updating, better spatial reso-
lution, and higher-quality datasets.

– Increasing the number of deep convective cells sampled
by such observations better represents the population
median maximum updraft evolution. When increasing
the number of deep cells sampled to more than 10, the
RMSE decreases to less than 3 m s−1, and when increas-
ing the sample size to more than 40, the RMSE further
decreases to less than 1 m s−1.

For the strategy suggested above we have assumed that
the real-time cell tracking will be guided by another algo-
rithm that will take advantage of surveillance scans by con-
ventional radar networks (e.g., Multi-Sensor Agile Adaptive
Sampling – MAAS) (Kollias et al., 2020). The new MAAS
has incorporated a cell tracking algorithm using a watershed
technique (similar to tobac and the approach of Hu et al.,
2019) and predicts the future location of convective cells us-
ing multiple sensors (e.g., NEXRAD radar at Houston, TX,
and GOES-16).

Finally, this study highlights the importance of using
OSSEs in developing radar strategies during pre-field cam-
paign periods. Current radar systems used for field cam-
paigns, as well as operational radars, have more functions
(e.g., polarimetry, Doppler, Doppler spectrum, and dual
wavelength) and configurable parameters (e.g., pulse sam-
pling, pulse width, range-bin gate, azimuth, elevation spac-
ings) than in the past. While this increased functionality
makes the scan strategies more sophisticated, it also makes
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Figure 13. A schematic image of a suggested scan strategy opti-
mized for observing convective cell evolution. Optimal cell track-
ing is achieved by frequent RHI scans from more than one radar
(blue and red scans) in addition to the operational PPI volume scans
generally performed by the NEXRAD radars (green scans). The
schematic also suggests an optimal hybrid radar scan strategy which
switches between cell tracking by frequent RHI measurements and
hemispheric RHI measurements depending on the distance between
the radar and the target cell (red and orange scans).

the optimization of the scan strategy more complex. Al-
though we argue that the results from this study can be ap-
plied to other field campaigns that focus on deep convec-
tion, for more qualitative analyses, the pre-field campaign
OSSEs should also be optimized for a specific field cam-
paign, thereby accounting for characteristics of the radar sys-
tems that will be used for the field campaigns. The use of
a radar simulator in OSSEs provides several advantages in-
cluding (1) facilitating instrument deployments, such as the
radar locations and the number of radars required, as well as
accounting for the radar characteristics and functions; (2) op-
timizing radar configurations such as the scan rate, elevation
angles, update time of scans, and trade-offs; and (3) quantify-
ing errors of the observables and retrievals. Effective OSSEs
can lead to successful, state-of-the-art field campaigns and
provide high-quality, unique datasets that can allow for new
insights into atmospheric phenomena.
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