
Limited Access: The Truth Behind Far Memory
Anil Yelam∗, Stewart Grant∗, Enze Liu, Radhika Niranjan Mysore†,

Marcos K. Aguilera†, Amy Ousterhout and Alex C. Snoeren

UC San Diego †VMware Research

ABSTRACT
Memory capacity in data centers is becoming a scarce
resource. To address this issue, emerging runtimes en-
able applications to supplement their local memory with
additional tiers of compressed, non-volatile, or far mem-
ory, often accessed via OS-supported paging. In these
systems, minimizing page faults is crucial for good per-
formance. Yet, there is little common understanding of
which parts of application code are responsible for trig-
gering page faults. In this paper, we analyze page-fault
behavior across a suite of 26 applications and find that
the vast majority of page faults are triggered by a very
small number of lines of application code. In the light of
this and related observations, we discuss the feasibility
of several ways to reduce page faults.
ACM Reference Format:
Anil Yelam∗, Stewart Grant∗, Enze Liu, RadhikaNiranjanMysore†,,
Marcos K. Aguilera†, Amy Ousterhout and Alex C. Snoeren, .
2023. Limited Access: The Truth Behind Far Memory. In 4th
Workshop on Resource Disaggregation and Serverless (WORDS
’23), October 23, 2023, Koblenz, Germany. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3605181.3626288

1 INTRODUCTION
Memory capacity—once an abundant resource—is the
limiting factor for many applications in data centers to-
day. This shift is due to the confluence of three trends:
increasing demand for in-memory computing over multi-
terabyte datasets [14, 17], stagnating improvements in
DRAM density and cost [22, 24], and increasing per-CPU
core counts [19, 20]. As a result, applications increasingly
∗These authors contributed equally.

WORDS ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0250-1/23/10.
https://doi.org/10.1145/3605181.3626288

100

102

104

106

108

Co
un

t

canneal redis

10 30 50 70 90
Local Memory %

100

102

104

106

108
Co

un
t

pagerank

10 30 50 70 90
Local Memory %

sort

Page Faults
Faulted Pages

Faulting Code Locations
Faulting Code Locations (95%)

Figure 1: In four representative applications, the number
of unique code locations that trigger the vast majority
(95%) of page faults (red) remains small, orders of magni-
tude less than the number of overall page faults (blue),
unique pages accessed (orange), or total locations that
generate faults (green).

supplement their local DRAM with additional tiers of
memory. A common approach is to use OS-based swap-
ping to page out (cold) application data to a tier of com-
pressed memory [23], high-capacity non-volatile mem-
ory [28], or a pool of far memory shared by a rack of
servers [11, 18, 34]. All of these approaches can bring a
page into memory within several microseconds, enabling
applications to access a much larger pool of memory
without the latency of swapping pages from SSD or disk.

Despite the promise of new memory tiers, when ap-
plications operate with only a small fraction of their
working set present locally, page faults are abundant
and performance can significantly degrade [11, 18]. To
avoid page faults, prior work has studied memory ac-
cess patterns in an attempt to predict which pages are
likely to be accessed in the near future to hide access

37

This work is licensed under a Creative Commons Attribution
International 4.0 License.

https://doi.org/10.1145/3605181.3626288
https://doi.org/10.1145/3605181.3626288
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605181.3626288&domain=pdf&date_stamp=2023-10-23

WORDS ’23, October 23, 2023, Koblenz, Germany Yelam, Grant, Liu, Mysore, Aguilera, Ousterhout, and Snoeren

latency [10, 13, 34]. In general, however, it is difficult to
make accurate predictions without application-specific
knowledge, which has led others to suggest that program-
mers should annotate or redesign their code to optimize
memory usage [29], which may seem like an intractable
task for sophisticated applications. In this work, we take
a step back and ask, from howmany different locations in
application code do page faults actually arise in practice?

To answer this question, we develop a tool that records
page faults (under a configurable paging policy) and iden-
tifies the specific line of code that triggered each fault
(§2). We use this tool to study page-fault behavior across
a suite of 26 applications (§3). Surprisingly, we find that
while both the frequency of page faults and the num-
ber of faulted-on pages can be quite large, the number
of unique lines of source code that are responsible for
generating the majority of these faults is quite small—
often fewer than 10. Figure 1 illustrates this trend for
four applications across a range of local memory sizes.

We believe that this observation suggests new oppor-
tunities for reducing page faults in far memory systems,
by focusing optimization efforts on the small number of
code locations that are responsible for generating page
faults. We discuss how these insights might be leveraged
in, e.g., application-guided prefetching and page-fault-
aware programming (§4). Most significantly, we believe
this observation suggests programmer-aided or other
manual techniques may be far more promising than pre-
viously imagined.

2 METHODOLOGY
In this section, we briefly describe how we record page
faults while an application runs and identify which line of
source code generated each fault (§2.1). Then, we describe
the suite of applications that we analyze (§2.2).

2.1 Fault Annotation
Our goal is to track the page faults an application would
generate if placed under memory pressure—without ac-
tually deploying any particular swapping system. While
Linux’s perf-trace tool [6] can record system-wide
page faults, we are interested only in anonymous pages
(excluding memory-mapped files) of a particular applica-
tion. We also desire a flexible swap backend with config-
urable reclaim behavior instead of limiting ourselves to
the default Linux swap policy.
Trace collection. To achieve these goals, we imple-

ment a simple page-fault tracing tool, fltrace, based on
Userfaultfd [4]which lets us handle the page faults within
the tool. Designed for C/C++ applications, a user links

Category Count LoC Max RSS

Key-value stores [31] 4 7–260K 0.5–1.3 GB

Graph [9] 10 0.2–1.2K 0.1–300 MB

Parsec [12] 9 10–32K 110–800 MB

Coreutils [2] 3 1–3K 44–98 MB

Table 1: Application Test Suite

fltrace against an application at runtime using LD_PRELOAD
and specifies the maximum amount of local memory it
can use. Fltrace then interposes on all heap allocations
and forwards them to Userfaultfd. It only ever maps
pages below the local memory limit and keeps the rest
of the heap unmapped. When accessed, the unmapped
pages result in page faults forwarded back to the tool,
which then uses signals to backtrace on the faulting
thread and save the stack traces of instruction pointers.
For this study, fltrace evicts pages on a simple first-in-
first-out basis.
Log processing. Post execution, we filter out zero-

page faults (i.e., first-ever faults on a mapped page) be-
cause they occur in any setting regardless of memory
pressure. Next, we convert the log of stack traces (com-
posed of instruction pointers) to lines of code using
addr2line [1], which requires us to disable address space
randomization and compile the applications with gcc -g
-no-pie -fno-pie to ensure that code locations are bi-
nary independent and debug information is available.
Some applications cannot be compiled with these flags
if they contain shared libraries which must be indepen-
dent; in these cases, we analyze traces by the instruction
pointers alone.
We are interested in the distribution of faults across

unique faulting code locations. However, in some appli-
cations these locations are in standard libraries, which
provides no insight into what application code caused
the fault. For example, if an application uses the C++
standard-vector library to load data, most faults may
appear to occur from the same line in the library even
though it is called from different lines of application code.
The reverse case, in which one line of application code
can trigger faults in multiple different locations in the
library, is also possible. To identify the fault-triggering
line of code in the application, we extract the backtrace
and remove shared library locations to record only the
top-most function in the stack that belongs to the appli-
cation itself.

38

Limited Access: The Truth Behind Far Memory WORDS ’23, October 23, 2023, Koblenz, Germany

x2
64

 (P
)

(3
74

50
)

vi
ps

 (P
)

(1
84

60
7)

fe
rre

t (
P)

(1
57

34
)

fa
ce

sim
 (P

)
(4

57
28

)
de

du
p

(P
)

(5
21

0)
ca

nn
ea

l (
P)

(5
01

6)
flu

id
an

im
at

e
(P

)
(5

71
2)

ra
yt

ra
ce

 (P
)

(2
89

32
)

bl
ac

ks
ch

ol
es

 (P
)

(1
19

3)
ro

ck
sd

b
(K

)
(1

33
17

8)
le

ve
ld

b
(K

)
(7

69
4)

re
di

s (
K)

(2
60

53
8)

m
ca

ch
ed

 (K
)

(4
29

96
)

ts
p

(G
)

(3
29

)
bf

s (
G

)
(6

73
)

co
m

m
un

ity
 (G

)
(9

07
)

ss
sp

 (G
)

(1
26

6)
tc

 (G
)

(1
17

0)
df

s (
G

)
(3

10
)

cc
 (G

)
(7

56
)

bc
 (G

)
(5

91
)

pa
ge

ra
nk

 (G
)

(7
57

)
ap

sp
 (G

)
(2

29
)

so
rt

(C
)

(3
42

5)
sh

uf
 (C

)
(4

35
)

ts
or

t (
C)

(3
68

)

0

500

1000

1500

Fa
ul

tin
g

Co
de

 L
oc

at
io

ns

 86 75 5 62 24 18 18 22 7 19 11 10 12 32 12 4 4 5 10 2 12 10 4 13 7 3

100% fault coverage
95% fault coverage

Figure 2: The number of unique lines of source code that account for 100% (blue) and 95% (red) of the page faults in
26 different applications. Local memory is configured to hold only 10% of the working set. The 𝑥-axis labels indicate
the total number of lines of code in each application and the application’s category (bolded letter).

1

10

100

Fa
ul

tin
g

Co
de

Lo

ca
tio

ns

canneal (P)

1

10

100 redis (K)

1

10

100 pagerank (G)

1

10

100 sort (C)

10 30 50 70 90
Local Memory %

1

10

100

Fa
ul

tin
g

Co
de

Lo

ca
tio

ns

x264 (P)

10 30 50 70 90
Local Memory %

1

10

100 rocksdb (K)

10 30 50 70 90
Local Memory %

1

10

100 apsp (G)

10 30 50 70 90
Local Memory %

1

10

100 dfs (G)

0

10

20

30

40

50

Fault Intensity (%
)

Figure 3: Heat maps showing the fault intensity of each faulting code location, for eight example applications. Most
of the faults concentrate in the first several locations and the same locations remain the heavy-hitters across different
local memory settings.

2.2 Application Suite
Our analysis includes applications drawn from different
benchmark suites to cover a range of application cate-
gories listed in Table 1. We run each application with
its standard benchmarking workload to ensure similar
code coverage as in realistic scenarios. We first run each
application with a large amount of local memory to ob-
serve the size of its maximum resident set size (RSS). We
then use fltrace to restrict the amount of local memory
available in our experiments to a varying fraction of the
maximum RSS and record the resulting page faults. The
working sets for these applications are not particularly

large as our experiments with even these modest mem-
ory footprints already generate very large fault traces
(tens of GBs); however we do not expect the faulting
behavior to vary significantly for larger working sets
as the behavior depends more on the ratio of allowed
resident set size to working set size than the absolute
size of the working set itself.
KVS:We evaluate four key-value store applications:

two in-memory caches (Redis [7] and Memcached [5])
and two persistent data stores (Rocksdb [8] and Lev-
elDB [3] with memory caches). We use the workloads

39

WORDS ’23, October 23, 2023, Koblenz, Germany Yelam, Grant, Liu, Mysore, Aguilera, Ousterhout, and Snoeren

from LK_PROFILE [31] but increase the number of oper-
ations to at least a million, which yields a proportionally
larger memory footprint.

Graph:We consider the CRONOgraph benchmark [9],
which consists of 10 independent multi-threaded graph
algorithms. We use the inputs provided with the bench-
mark suite and run each program with four threads.
PARSEC: PARSEC [12] is a benchmarking suite of

compute-intensive applications designed to stress par-
allel performance on multi-core CPUs. We include an
HPC-focused subset of these applications. We run each
with eight threads and its native dataset.

Coreutils: For breadth we analyze a subset of the
GNU coreutils library [2], as a representative set of
programs with a small code base and small memory foot-
print. Most coreutils with the exception of sort have
small working sets which are agnostic to the input, as
they are designed to work on streaming data. We chose
three which accept large files as input.

3 FINDINGS
Our experiments yield three key findings. The first two
observations are based on analysis of just the unique in-
struction pointers (which are frequently in library code)
that cause page faults. Our third observation results from
tracing the call stacks of the faulting instruction back to
their origins in application code.
The majority of page faults originate from a small

number of code locations. Figure 2 shows for each ap-
plication both the total number of code locations that
trigger faults and the number of code locations responsi-
ble for 95% of faults when the application can hold only
10% of its maximum RSS in local memory. In most cases,
a small number of locations cover 95% of faults—12 lo-
cations at the median and fewer than 32 for all but four
applications.
Faulting code locations remain stable under a wide

range of memory pressure. Figure 3 shows the intensity
of each faulting code location under different amounts
of local memory, where the “intensity” of a code location
is the percentage of page faults at that local memory
percentage that originate from this code location. The
most-frequently faulting locations are shown at the bot-
tom of each graph.While the intensity of a given location
shifts as the local memory percentage changes, the set
of heavy-hitter locations remains largely the same. This
suggests that a user can profile an application at one spe-
cific local memory percentage to discover the faulting
code locations, and that this set of locations will general-
ize well across different degrees of memory pressure.

fac
esi

m (P
)

de
du

p (
P)

can
ne

al
(P)

flu
ida

nim
ate

 (P
)

bla
cks

cho
les

 (P
)

fer
ret

 (P
)

tsp
 (G

)

bfs
 (G

)
bc

(G
)

dfs
 (G

)

pa
ge

ran
k (

G)

sss
p (

G)

ap
sp

(G
)

com
mun

ity
 (G

)
0

20

40

60

Fa
ul

tin
g

Co
de

Lo

ca
tio

ns

 24

 7 10
 17

 2 2
 16

 9 3 8 8 2 2 4

ip
source code

Figure 4: Code locations responsible for 95% of faults
using instruction pointer analysis (including library code)
vs. application source code analysis.

Faults concentrate evenmore in application code. The
previous two graphs are based on unique instruction
pointers, so the faulting locations may be in library code.
Figure 4 shows that when we trace the faults back to
the line of application code that led to the fault, even
fewer unique lines of code are implicated: less than 10 in
most cases. (Because this analysis is labor intensive, we
present results for only a subset of applications.)

4 IMPLICATIONS
The number of important faulting code locations in the
applications we analyze is well within the range of man-
ual inspection. This provides an opportunity to reduce
the number of page faults for far memory applications
not by predictingmemory access patterns, which is known
to be challenging, but rather by carefully handling this
small number of faulting locations.

4.1 Better Prefetching
App-aware Prefetching: Prefetching performs poorlywhen
accesses are random, and at theOS level predictive prefetches
can become muddled by the seemingly random accesses
of many threads and processes. Access patterns at spe-
cific faulting locations may follow a more predictable
pattern, which could be exploited to improve prefetch-
ing accuracy. Language-level annotations at the faulting
locations may reveal simple access patterns like strides,
which were previously hidden from the underlying sys-
tems like Leap and 3PO [10, 13]. For example, a managed-
language application with regular accesses running with
garbage collection enabled may exhibit a near random ac-
cess pattern from the OS perspective due to muddled ac-
cesses [33]. Labeling application and the garbage-collection
accesses as such could enable a prefetcher to isolate the
application accesses and run the prefetching on just these
accesses with better accuracy.

When to fetch? Researchers have long focused on iden-
tifying what data to prefetch, and prior systems have
incorporated a wide range of hints to try and improve

40

Limited Access: The Truth Behind Far Memory WORDS ’23, October 23, 2023, Koblenz, Germany

accuracy rates [25, 27, 30, 32]. Our observation addresses
a different dimension, which is when to fetch. Even if
a prefetcher knows what to fetch, an untimely request
may consume limited memory bandwidth restricting ap-
plication throughput. Just like modern CPUs do branch
prediction to determine which code paths are likely to
be executed (and results committed), speculation about
the upcoming set of instructions could provide input
to the prefetcher regarding when to dispatch requests.
Similarly runtimes like Javascript, Java, Go, and Python
that have knowledge of code flow could leverage this
foresight to hide access latency.

4.2 Manual Hinting
The main faulting locations provide a great place for a
variety of hints beyond prefetching to let the applica-
tion guide the memory management without requiring
significant application changes as in AIFM [29].
Alleviating page fault overheads: Page-fault handling

incurs significant overhead to transition between user
and kernel space, motivating solutions like AIFM [29]
andDiLOS [35], which handle remote accesses in userspace.
In that spirit, a few programmer-added hints at the fre-
quent faulting locations could avoid the cost of page
faults by servicing them in userspace.
Latency hiding: Latency of page-fault handling can

be hidden by scheduling another thread to run while
the page fault is serviced. Typically, rescheduling occurs
at the kernel, but this is too slow when context switch
time is on the order of the time to service a fault on a
fast device as in remote memory (2–3 𝜇s). Instead, with
userspace hints about where page faults might occur,
we can use userspace schedulers like Shenango [26] to
reschedule execution in nanoseconds.
Informing memory-management decisions: Annotat-

ing important faulting locations could provide rich infor-
mation to a user-level paging runtime, similar to AIFM [29].
For example, each faulting code location may point to a
specific data structure in the program. Based on offline
profiled hotness of data structures, memory reclamation
could prioritize the pages (or data) faulted in at certain
code locations over others.

4.3 Fault-aware Programming
When developers know that the number of faulting code
locations is small and also know their locations and fre-
quencies, it becomes feasible for them to manually im-
prove program behavior around them, in a few ways.

Optimizing data structures to reduce faults: In some
cases, refactoring data structures can reduce the num-
ber of page faults. Consider the paradigm of inlining
metadata with data. Iterations over this sparse metadata
triggers faults proportional to the size of the data. Placing
metadata into a separate small structure can dramatically
reduce the number of faults, especially if it enables data
that is commonly written to be separated from read-only
data, thereby reducing the number of write-protect faults.
Other faults can be reduced by minimizing the amount
of data processed or adjusting data-structure alignment.
Data structures may be shrunk by considering data types
carefully (e.g., replacing int64with int16). Just as some
programming languages provide keywords to facilitate
cache line alignment, languages could provide support
for aligning data structures to page granularities. Ulti-
mately, understanding faulting locations may lead us to
better data representations and algorithms.

Code Optimization: Important faulting code locations
are typically near the code that processes high volumes of
data. This neighborhood of code is ripe for optimization
as improvements will have a proportionally large impact.

4.4 Others
VM Memory Density: As the ratio of memory to com-
pute continues to shrink, servers tend to get packed with
a large number of VMs with little memory and high page-
fault rate. Because a host can only serve a few million
page faults per second, page faults become a scarce re-
source. Accordingly, developers can be given budgets on
page faults, and knowing the key faulting code locations
can help them manage their budget.

Mitigating side channels: Page faults create side chan-
nels because they expose information about how often
data is accessed (infrequent data have a much higher ac-
cess latency). Accordingly, information about important
faulting code locations can help developers remove these
side channels (e.g., by ensuring the time to execute the
code remains the same whether the fault occurs or not).

5 RELATEDWORK
We are not aware of recent profiling studies of page fault
behavior, but there is prior work in adjacent topics.
Architecture-level profiling: CPU profiling of ap-

plication code is a mature topic, with both open-source
and commercial tools available (e.g., GNU perf [6], Intel
vTune, AMD 𝜇prof). These tools can identify instructions
that cause cache misses, which are analogous to page
faults. But the tools are quite different from page fault
profiling because of the different time scales involved:

41

WORDS ’23, October 23, 2023, Koblenz, Germany Yelam, Grant, Liu, Mysore, Aguilera, Ousterhout, and Snoeren

processor caches operate in the nanosecond scale, and so
profiling needs hardware help (e.g., performance coun-
ters), while page faults operate in the microsecond scale,
which is amenable to software profiling. Despite these
differences, CPU cache profiling is driven by a similar in-
sight as ours: unoptimized codemay have a small number
of instructions that cause a large number of misses.

Hot and cold pages: Prior work has looked into tech-
niques to classify pages as hot and cold to determine the
best candidates for swapping out (e.g. LRU, 2Q LRU [21],
multi-generational LRU [15], etc). These methods are
based on the insight that applications have working
sets [16] with few hot pages relative to cold pages. This
insight differs from ours because the hot or cold pages
refer to the data being accessed, not code locations.

Far memory: Recent work proposes ways to improve
swapping performance in the kernel for far memory [10,
11, 18, 34]. These techniques are orthogonal to our work
since they are application agnostic, while our work pro-
vides insights into applications. Other systems access far
memory through software constructs such as remoteable
pointers [29, 36], rather than transparently through page
faults. These systems could benefit from our insights
(e.g., code profiling could allow developers to optimize
remoteable pointers).

6 CONCLUSION AND FUTUREWORK
In this paper we study the origins of page faults in far
memory systems. We find that, surprisingly, the majority
of page faults originate from a small number of locations
in application source code, and that these code locations
are relatively stable across different amounts of local
memory. Our study is limited in several ways: we fo-
cus on a modest number of applications, our application
working set sizes are limited due to the overheads of post
processing traces, and we only evaluate one workload
for each application; we leave overcoming these limita-
tions to future work. Despite the limitations of our study,
we believe that it suggests promising new opportuni-
ties for reducing page faults in far memory systems via
fault-aware programming, improved prefetching, and—
perhaps most saliently—manual hinting.

ACKNOWLEDGEMENTS
This work was conducted under a sponsored research
agreement between UC San Diego and VMware Research.
S. Grant is supported by aMeta Research PhD Fellowship.

REFERENCES
[1] 2023. addr2line. https://man7.org/linux/man-pages/man1/

addr2line.1.html.
[2] 2023. GNU core utilities.

https://www.gnu.org/software/coreutils/.
[3] 2023. Leveldb - An open-source on-disk key-value store.

https://en.wikipedia.org/wiki/LevelDB.
[4] 2023. Linux Userfaultfd. https://www.kernel.org/doc/html/latest/

admin-guide/mm/userfaultfd.html.
[5] 2023. Memcached - Free, open source, high-performance, dis-

tributed memory object caching system. https://memcached.org/.
[6] 2023. perf-trace. https://man7.org/linux/man-pages/man1/perf-

trace.1.html.
[7] 2023. Redis - an open source, in-memory data store.

https://redis.io/.
[8] 2023. Rocksdb - A persistent key-value store for fast storage

environments. http://rocksdb.org/.
[9] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan.

2015. CRONO: A Benchmark Suite for Multithreaded Graph
Algorithms Executing on Futuristic Multicores. In Proceedings of
the IEEE International Symposium on Workload Characterization.
44–55.

[10] Hassan Al Maruf and Mosharaf Chowdhury. 2020. Effectively
Prefetching Remote Memory with Leap. In Proceedings of the
USENIX Annual Technical Conference (Virtual Event).

[11] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo,
Amy Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Rat-
nasamy, and Scott Shenker. 2020. Can far memory improve job
throughput?. In Proceedings of the 15th European Conference on
Computer Systems (Heraklion, Greece).

[12] Christian Bienia. 2011. Benchmarking Modern Multiprocessors.
Ph. D. Dissertation. Princeton University.

[13] Christopher Branner-Augmon, Narek Galstyan, Sam Kumar, Em-
manuel Amaro, Amy Ousterhout, Aurojit Panda, Sylvia Rat-
nasamy, and Scott Shenker. 2023. 3PO: Programmed Far-
Memory Prefetching for Oblivious Applications. arXiv preprint
arXiv:2207.07688 (2023).

[14] Kindra Cooper. 2021. OpenAI GPT-3: Everything You Need to
Know. https://www.springboard.com/blog/data-science/machine-
learning-gpt-3-open-ai/.

[15] Jonathan Corbet. 2021. Multi-generational LRU: the next genera-
tion. https://lwn.net/Articles/856931.

[16] Peter J. Denning. 1968. The working set model for program
behavior. Commun. ACM 11, 5 (May 1968), 323–333.

[17] Google. 2023. The Size and Quality of a Data Set.
https://developers.google.com/machine-learning/data-
prep/construct/collect/data-size-quality.

[18] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowd-
hury, and Kang G Shin. 2017. Efficient memory disaggregation
with infiniswap. In Proceedings of the 14th USENIX Symposium
on Networked Systems Design and Implementation (Boston, MA).
649–667.

[19] HPC Wire. 2022. AMD’s Genoa CPUs Offer Up to 96 5nm Cores
Across 12 Chiplets. https://www.hpcwire.com/2022/11/10/amds-
4th-gen-epyc-genoa-96-5nm-cores-across-12-compute-
chiplets/.

[20] Intel. 2023. Intel Launches 4th Gen Xeon Scalable Processors,
Max Series CPUs. https://www.intel.com/content/www/us/en/
newsroom/news/4th-gen-xeon-scalable-processors-max-series-
cpus-gpus.html.

42

https://man7.org/linux/man-pages/man1/addr2line.1.html
https://man7.org/linux/man-pages/man1/addr2line.1.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
https://man7.org/linux/man-pages/man1/perf-trace.1.html
https://man7.org/linux/man-pages/man1/perf-trace.1.html
https://lwn.net/Articles/856931
https://www.hpcwire.com/2022/11/10/amds-4th-gen-epyc-genoa-96-5nm-cores-across-12-compute-chiplets/
https://www.hpcwire.com/2022/11/10/amds-4th-gen-epyc-genoa-96-5nm-cores-across-12-compute-chiplets/
https://www.hpcwire.com/2022/11/10/amds-4th-gen-epyc-genoa-96-5nm-cores-across-12-compute-chiplets/
https://www.intel.com/content/www/us/en/newsroom/news/4th-gen-xeon-scalable-processors-max-series-cpus-gpus.html
https://www.intel.com/content/www/us/en/newsroom/news/4th-gen-xeon-scalable-processors-max-series-cpus-gpus.html
https://www.intel.com/content/www/us/en/newsroom/news/4th-gen-xeon-scalable-processors-max-series-cpus-gpus.html

Limited Access: The Truth Behind Far Memory WORDS ’23, October 23, 2023, Koblenz, Germany

[21] Theodore Johnson and Dennis Shasha. 1994. 2Q: A Low Over-
head High Performance Buffer Management Replacement Algo-
rithm. In Proceedings of the International Conference on Very Large
Databases (San Francisco, CA). 439–450.

[22] Uksong Kang, Hak-Soo Yu, Churoo Park, Hongzhong Zheng,
John Halbert, Kuljit Bains, S. Jang, and Joo Sun Choi. 2014. Co-
architecting Controllers and DRAM to Enhance DRAM Process
Scaling. In Proceedings of the Memory Forum.

[23] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha
Agarwal, Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin
Chaugule, Nan Deng, Junaid Shahid, Greg Thelen, Kamil Adam
Yurtsever, Yu Zhao, and Parthasarathy Ranganathan. 2019.
Software-Defined Far Memory inWarehouse-Scale Computers. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems. 317–330.

[24] Seok-Hee Lee. 2016. Technology Scaling Challenges and Oppor-
tunities of Memory Devices. In IEEE International Electron Devices
Meeting.

[25] Todd C. Mowry, Angela K. Demke, and Orran Krieger. 1996. Au-
tomatic Compiler-Inserted I/O Prefetching for Out-of-Core Appli-
cations. Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation.

[26] Amy Ousterhout, Joshua Fried, Jonathan Behrens, and Adam Be-
lay. 2019. Shenango: Achieving High CPU Efficiency for Latency-
sensitive Datacenter Workloads. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation
(Boston, MA). 361–377.

[27] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodol-
sky, and Jim Zelenka. 1995. Informed Caching and Prefetching.
In Proceedings of the ACM SIGOPS 15th Symposium on Operating
Systems Principles (Copper Mountain, CO).

[28] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and
Simon Peter. 2021. HeMem: Scalable TieredMemoryManagement
for Big Data Applications and Real NVM. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles
(Virtual Event, Germany). 392–407.

[29] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and
Adam Belay. 2020. AIFM: High-Performance, application-
integrated far memory. Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation, 315–332.

[30] Andrew Tomkins, R. Hugo Patterson, and Garth Gibson. 1997.
Informed Multi-Process Prefetching and Caching. In Proceedings
of the ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (Seattle, WA).

[31] Muhammed Ugur, Cheng Jiang, Alex Erf, Tanvir Ahmed Khan,
and Baris Kasikci. 2023. One Profile Fits All: Profile-Guided Linux
Kernel Optimizations for Data Center Applications. SIGOPS Oper.
Syst. Rev. 56, 1 (June 2023), 26–33.

[32] S. VanDeBogart, C. Frost, and E. Kohler. 2009. Reducing Seek
Overhead with Application-Directed Prefetching. In Proceedings
of the USENIX Annual Technical Conference (San Diego, CA).

[33] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolf-
son, Christian Navasca, Shan Lu, and Guoqing Harry Xu. 2022.
MemLiner: Lining up Tracing and Application for a Far-Memory-
Friendly Runtime. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (Carlsbad, CA). 35–
53.

[34] ChenxiWang, Yifan Qiao, HaoranMa, Shi Liu, Yiying Zhang,Wen-
guang Chen, Ravi Netravali, Miryung Kim, and Guoqing Harry
Xu. 2023. Canvas: Isolated and adaptive swapping for multi-
applications on remote memory. In Proceedings of the 19th USENIX

Symposium on Networked Systems Design and Implementation
(Boston, MA).

[35] Wonsup Yoon, Jinyoung Oh, Jisu Ok, Sue Moon, and Youngjin
Kwon. 2021. DiLOS: Adding Performance to Paging-Based Mem-
ory Disaggregation. In Proceedings of the 12th ACM SIGOPS Asia-
Pacific Workshop on Systems (Hong Kong, China). 70–78.

[36] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James
Mickens, Minlan Yu, Chris Kennelly, Paul Turner, David E. Culler,
Henry M. Levy, and Amin Vahdat. 2022. Carbink: Fault-Tolerant
Far Memory. In Proceedings of the 16th USENIX Symposium on
Operating Systems Design and Implementation (Carlsbad, CA). 55–
71.

43

	Abstract
	1 Introduction
	2 Methodology
	2.1 Fault Annotation
	2.2 Application Suite

	3 Findings
	4 Implications
	4.1 Better Prefetching
	4.2 Manual Hinting
	4.3 Fault-aware Programming
	4.4 Others

	5 Related Work
	6 Conclusion and Future Work
	References

