
Shenango:	Achieving	High	CPU	Efficiency	for	
Latency-sensitive	Datacenter	Workloads	

	

1	

Hari	
Balakrishnan	

Jonathan	
Behrens	

Adam								
Belay	

Joshua								
Fried	

Amy	
Ousterhout	

Trend	#1:	Faster	Networks	

•  But	today’s	operating	systems	add	significant	overheads	to	I/O	

2	

2008	 2018	
Latency:	~100	μs	
Throughput:	1	Gbits/s	

Latency:	~5	μs	
Throughput:	100	Gbits/s	100x	

20x	

The	Rise	of	Kernel	Bypass	

•  Dedicate	busy-spinning	cores	
•  Applications	directly	poll	NIC	queues	
•  Enables	higher	throughput	and	lower	latency	

3	

Kernel	

Kernel	Bypass	

Application	

NIC	packet	queues	

Kernel	

Traditional	Approach	
Application	

NIC	packet	queues	

core	 core	 core	
core	

core	 core	

Trend	#2:	Slowing	of	Moore’s	Law	

•  CPUs	only	utilized	10-66%	today	
•  CPU	efficiency	becomes	increasingly	important	

4	

increased	demand	for	servers	 increased	demand	for	energy	

Load	Variation	Makes	Efficiency	Challenging	

•  Load	variation	for	datacenter	workloads	
–  Days:	diurnal	cycles	
–  Microseconds:	packet	bursts,	thread	bursts	

•  Peak	load	requires	significantly	more	cores	than	average	load	

	

Figure 1: Continuously changing queries per second

bursts of traces across all software layers without re-
quiring explicit coordination. Unlike traditional sam-
pling or bursty approaches which rely on explicitly main-
tained counters [19, 6] or propagation of sampling deci-
sions [27, 22], coordinated bursty tracing uses time to
coordinate the start and end of bursts. Since all layers
collect their bursts at the same time (clock drift has not
been a problem in practice), we can reason across the en-
tire stack of our application rather than just a single layer.
By collecting many bursts we get a random sampling of
the mix of operations which enables us to derive valid
conclusions from our performance investigations.

Second, since interactions between software layers are
responsible for many performance problems, we need to
be able to connect trace events at one layer with events
at another. Vertical context injection solves this problem
by making a stylized sequence of innocuous system calls
at each high-level event of interest. These system calls
insert the system call events into the kernel trace which
we can analyze to produce a trace that interleaves both
high and low-level events. Unlike prior work (e.g., [27]
or [15]) our approach does not require explicit propaga-
tion of a trace context through the layers of the software
stack.

To illustrate the above points, this paper presents data
from Gmail, a popular email application from Google.
However, the authors have used the techniques for many
other applications at Google, particularly Google Drive;
the lessons in this paper apply equally well to those other
applications.

2 Our challenge: constantly varying load

The primary challenge in performance analysis of cloud
applications stems from their constantly varying load.
Figure 1 shows scaled queries per second (QPS) across
thousands of processes serving tens of millions of users
over the course of a week for one deployment of Gmail.
By “scaled” we mean that we have multiplied the actual
numbers by a constant to protect Google’s proprietary
information; since we have multiplied each point by the

Figure 2: Continuously changing response size

Figure 3: Continuously changing user behavior

same constant and each graph is zero based, it allows rel-
ative comparisons between points or curves on the same
graph.1 The time axes for all graphs in this paper are in
US Pacific time and start on a Sunday unless the graph
is for a one-off event in which case we pick the time
axis most suitable for the event. We see that load on our
system changes continuously: from day to day and from
hour to hour by more than a factor of two.

While one expects fluctuations in QPS (e.g., there are
more active users during the day than at night), one
does not expect the mix of requests to fluctuate signif-
icantly. Figure 2 shows one characteristic of requests,
the response size per request, over the course of a week.
Figure 2 shows that response size per request changes
over the course of the week and from hour to hour (by
more than a factor of two) which indicates that the actual
mix of requests to our system (and not just their count)
changes continuously.

The remainder of this section explores the sources of
variation in the mix of requests.

406 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Performance	Analysis	of	Cloud	Applications,	NSDI	‘18	 5	

The	Need	for	Multiplexing	

•  Two	types	of	applications:	latency-sensitive	and	batch-
processing	

•  Pack	both	on	the	same	server	
–  Bing	does	this	on	over	90,000	servers	

6	

Multiplexing	with	Existing	Approaches	

7	

•  Example:	Memcached	+	batch	processing	application	

client	 server	

~1	μs	

0

100

200

300

400

0 2 4 699
.9

%
 L

at
en

cy
 (μ

s)
Memcached Offered Load (million requests/s)

Multiplexing	with	Existing	Approaches	

8	

No	existing	approach	provides	high	network	
performance	and	high	CPU	efficiency	

0

100

200

300

400

0 2 4 699
.9

%
 L

at
en

cy
 (μ

s)

0
25
50
75

100

0 2 4 6
Memcached Offered Load (million requests/s)

Ba
tc

h
O

ps
/s

0

100

200

300

400

0 2 4 699
.9

%
 L

at
en

cy
 (μ

s) Linux Arachne Shenango ZygOS

0
25
50
75

100

0 2 4 6
Memcached Offered Load (million requests/s)

Ba
tc

h
O

ps
/s

poor	latency	
poor	throughput	

0

100

200

300

400

0 2 4 699
.9

%
 L

at
en

cy
 (μ

s) Linux Arachne Shenango ZygOS

0
25
50
75

100

0 2 4 6
Memcached Offered Load (million requests/s)

Ba
tc

h
O

ps
/s

0
100
200
300
400
500

0.0 2.5 5.0 7.5 10.0 12.599
.9

%
 L

at
en

cy
 (µ

s)

Linux Goal

0
25
50
75

100

0.0 2.5 5.0 7.5 10.0 12.5
Memcached Throughput (million requests/s)Ba

ck
gr

ou
nd

 O
ps

/s

poor	efficiency	

poor	latency	
poor	throughput	

Goal	

•  Reconcile	the	tradeoff	between	high	CPU	efficiency	and	
network	performance	

•  Reallocate	cores	across	applications	at	microsecond	
granularity	
–  Coarser	granularities	insufficient	for	microsecond-scale	tasks	and	

microsecond-scale	bursts	

9	

Challenges	of	Fast	Reallocations	

•  How	many	cores	does	an	application	need?	
–  Application-level	metrics	are	too	slow	
–  Multiple	sources	of	load:	packets	and	threads	

•  Overhead	of	reallocation	
–  Reconfiguring	hardware	is	too	slow	

•  Existing	systems	don’t	address	these	challenges	

	

	

10	

Shenango’s	Contributions	

•  Efficient	algorithm	for	determining	when	an	application	
needs	more	cores	
–  Based	on	thread	and	packet	queueing	delays	

•  IOKernel:	steers	packets	in	software	and	allocates	cores	
–  Core	reallocations	take	~5	μs	

•  Cache-aware	core	selection	algorithm	
•  Load	balancing	of	packet	protocol	(e.g.,	TCP)	handling	

	
11	

Shenango’s	Design	

12	

active	
core	

App	1	

work	stealing	

App	2	
app	

thread	

idle	core	

IOKernel	

Kernel	

NIC	queues	

runtime	
library	

packet	
queues	

How	Many	Cores	Should	the	IOKernel	Allocate?	

13	

active	
core	

runtime	
library	

App	1	
app	

thread	

IOKernel	

Kernel	packet	
queues	

idle	core	 App	2	

1	 packet	arrival	
and	no	cores	

2	 periodic	
algorithm	

NIC	queues	

Compute	Congestion	

•  Compute	congestion:	when	granting	an	application	an	
additional	core	would	allow	it	to	complete	its	work	more	
quickly	

•  Goal:	grant	each	application	as	few	cores	as	possible	while	
avoiding	compute	congestion	

	

14	

active	core	

App	1	app	thread	

new	thread	

•  Queued	threads	or	packets	indicate	congestion	
•  Any	packets	or	threads	queued	since	the	last	run	(5	μs	ago)?	

–  Grant	one	more	core	

•  Ring	buffers	enable	an	efficient	check	
–  headt=n-1	>	tailt=n	implies	congestion	

Congestion	Detection	Algorithm	

15	headt=0	

tailt=0	

headt=1	

tailt=1	

congested	

headt=0	

tailt=0	

headt=1	

tailt=1	

not	congested	

active	core	

App	1	

runqueue	
packet	
queues	

Implementation	

•  IOKernel	
–  Uses	DPDK	18.11	

•  Runtime	
–  UDP	and	TCP	
–  C++	and	Rust	bindings	

•  13,000	lines	of	code	total	

16	

Evaluation	Questions	

•  How	well	does	Shenango	reconcile	the	tradeoff	between	CPU	
efficiency	and	network	performance?	

•  How	does	Shenango	respond	to	sudden	bursts	in	load?	
•  How	do	Shenango’s	individual	mechanisms	contribute	to	its	

overall	performance?	

17	

Experimental	Setup	

•  1	server	+	6	clients,	10	Gbits/s	NICs	
•  Clients	run	our	open-loop	load	generator	built	on	Shenango	

–  Requests	follow	Poisson	arrivals,	use	TCP	

	

18	

System	 Kernel	Bypass	
Networking	

Lightweight	
Threading	

Balancing	
Interval	

Linux	 ✗	 ✗	 4000	μs	

System	 Kernel	Bypass	
Networking	

Lightweight	
Threading	

Balancing	
Interval	

Linux	 ✗	 ✗	 4000	μs	

ZygOS	(SOSP	’17)	 ✓	 ✗	 N/A	

System	 Kernel	Bypass	
Networking	

Lightweight	
Threading	

Balancing	
Interval	

Linux	 ✗	 ✗	 4000	μs	

ZygOS	(SOSP	’17)	 ✓	 ✗	 N/A	

Arachne	(OSDI	’18)	 ✗	 ✓	 50000	μs	

System	 Kernel	Bypass	
Networking	

Lightweight	
Threading	

Balancing	
Interval	

Linux	 ✗	 ✗	 4000	μs	

ZygOS	(SOSP	’17)	 ✓	 ✗	 N/A	

Arachne	(OSDI	’18)	 ✗	 ✓	 50000	μs	

Shenango	 ✓	 ✓	 5	μs	

CPU	Efficiency	and	Network	Performance	
with	Memcached	

•  Memcached	+	batch	processing	application	

19	

•  Shenango	matches	ZygOS’s	tail	latency	with	high	CPU	efficiency	

0

100

200

300

400

0 2 4 699
.9

%
 L

at
en

cy
 (μ

s) Linux Arachne Shenango ZygOS

0
25
50
75

100

0 2 4 6
Memcached Offered Load (million requests/s)

Ba
tc

h
O

ps
/s

0

100

200

300

400

0 2 4 699
.9

%
 L

at
en

cy
 (μ

s) Linux Arachne Shenango ZygOS

0
25
50
75

100

0 2 4 6
Memcached Offered Load (million requests/s)

Ba
tc

h
O

ps
/s

0

100

200

300

400

0 2 4 699
.9

%
 L

at
en

cy
 (μ

s) Linux Arachne Shenango ZygOS

0
25
50
75

100

0 2 4 6
Memcached Offered Load (million requests/s)

Ba
tc

h
O

ps
/s

kernel	bypass	
networking	

no	overprovisioning	

IOKernel	is	
saturated	

client	 server	

0
1
2
3
4
5

0 5 10 15
Time (s)

O
ffe

re
d

Lo
ad

(m
illi

on
 re

qu
es

ts
/s

)

Shenango	is	Resilient	to	Bursts	in	Load	

•  TCP	requests	with	1	μs	synthetic	work	+	batch	processing	
application	

•  Increase	or	decrease	the	load	every	1	s	

20	

reallocates	cores	
10,000x	as	often	

0
1
2
3
4
5

0 5 10 15

Time (s)

O
ffe

re
d

Lo
ad

(m
illi

on
 re

qu
es

ts
/s

)

0

250

500

750

1000

0 5 10 15

99
.9

%
 L

at
en

cy
 (μ

s)
Arachne Shenango

0
1
2
3
4
5

0 5 10 15

Time (s)

O
ffe

re
d

Lo
ad

(m
illi

on
 re

qu
es

ts
/s

)

0

250

500

750

1000

0 5 10 15

99
.9

%
 L

at
en

cy
 (μ

s)
Arachne Shenango

590	ms	

Conclusion	

•  Shenango	reconciles	the	tradeoff	between	low	tail	latency	
and	high	CPU	efficiency	

•  Reallocates	cores	at	microsecond	granularity	
–  Efficient	congestion	detection	algorithm	
–  IOKernel:	allocates	cores	and	steers	packets	in	software	

	

	
21	

https://github.com/shenango

