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Abstract
We describe the design and implementation of P, a domain-specific
language to write asynchronous event driven code. P allows the
programmer to specify the system as a collection of interacting
state machines, which communicate with each other using events.
P unifies modeling and programming into one activity for the
programmer. Not only can a P program be compiled into executable
code, but it can also be tested using model checking techniques. P
allows the programmer to specify the environment, used to “close”
the system during testing, as nondeterministic ghost machines.
Ghost machines are erased during compilation to executable code;
a type system ensures that the erasure is semantics preserving.

The P language is designed so that a P program can be checked
for responsiveness—the ability to handle every event in a timely
manner. By default, a machine needs to handle every event that
arrives in every state. But handling every event in every state is im-
practical. The language provides a notion of deferred events where
the programmer can annotate when she wants to delay processing
an event. The default safety checker looks for presence of unhan-
dled events. The language also provides default liveness checks that
an event cannot be potentially deferred forever.

P was used to implement and verify the core of the USB device
driver stack that ships with Microsoft Windows 8. The resulting
driver is more reliable and performs better than its prior incarnation
(which did not use P); we have more confidence in the robustness of
its design due to the language abstractions and verification provided
by P.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification– Model checking; D.2.5
[Software Engineering]: Testing and Debugging; D.3.2 [Pro-
gramming Languages]: Language Classifications– Specialized
application languages, Concurrent, distributed, and parallel lan-
guages; D.3.3 [Programming Languages]: Language Constructs
and Features– Concurrent programming structures, Control struc-
tures

Keywords domain-specific language; device driver; event-driven
programming; state machine; verification; systematic testing
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1. Introduction
Asynchronous systems code that is both performant and correct is
hard to write. Engineers typically design asynchronous code us-
ing state machine notations, use modeling and verification tools to
make sure that they have covered corner cases, and then implement
the design in a language like C. They use a variety of performance
tricks, as a result of which the structure of the state machines is
lost in myriad of details. Clean state machine diagrams that were
initially written down become out-of-date with the actual code as it
evolves, and the resulting system becomes hard to understand and
maintain. During the development of Windows 8, the USB team
took a bold step and decided to unify modeling and programming.
Various components of the USB driver stack are now specified as
state machines and asynchronous driver code is generated from
these state machines. We are able to use state exploration tech-
niques directly on the state machines to find and fix design bugs.
Since the executable code was generated from the source, we could
make changes at the level of state machines and perform both ver-
ification and compilation from one description. This methodology
is used to design, validate and generate code for the USB stack that
ships with Windows 8. The resulting driver stack is not only more
reliable, but also more performant.

In this paper, we formalize and present the salient aspects of
this methodology as a domain-specific language P. Though P has a
visual programming interface, we represent P as a textual language
with a simple core calculus, so that we can give a formal treatment
of the language, compiler and verification algorithms. A P program
is a collection of state machines communicating via events. Each
state machine has a collection of states, local variables, and actions.
The states and actions are annotated with code statements to read
and update local variables, send events to other state machines,
raise events locally, or call external C functions. The external C
functions are used to write parts of the code that have do with
data transfer. A machine responds to received events by executing
transitions and actions which in turn causes the aforementioned
code fragments to execute. For programming convenience, call
transitions are used to factor out common code that needs to be
reused (similar to nested modes in state charts [11]).

Components in an operating system are required to be respon-
sive. Consequently P programs are required to handle every mes-
sage that can possibly arrive in every state. Our notion of respon-
siveness is weaker than synchronous languages like Esterel [4]
(which require input events to be handled synchronously during
every clock tick, and are hence too strong to be implemented in
asynchronous software), but stronger than purely asynchronous
languages like Rhapsody [12] (where asynchronous events can be
queued arbitrarily long before being handled). Thus, our notion
of responsiveness lies in an interesting design point between syn-
chrony and asynchrony. In practice, handling every event at every
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state would lead to combinatorial explosion in the number of con-
trol states, and is hence impractical. The language provides a notion
of deferred events to handle such situations and allow a program-
mer to explicitly specify that it is acceptable to delay processing of
certain events in certain states.

Reactive systems, such as device drivers, typically interact with
their environment, both synchonously via function calls and asyn-
chronously via events. The reliability of the system depends crit-
ically on the correct handling of all interactions via stateful pro-
tocols. To allow reasoning about such interactions, we allow pro-
grammers to model the environment of a P program using ghost
machines and variables. These ghost elements are used only during
modeling and verification and elided during compilation. The type
system of P ensures that the ghost machines can be erased dur-
ing compilation without changing the semantics of the program. It
is worth noting that both the real and ghost parts of a P program
are based on the computational model of communicating state ma-
chines. This aspect of the P language effectively blurs the distinc-
tion between modeling and programming and makes the specifica-
tion capabilities in the language more accessible to programmers.

A P program is validated via systematic testing [9, 17] of its in-
herent nondeterminism. Systematic testing is accomplished by in-
terpreting the operational semantics of a P program (closed using
ghost machines) in the explicit-state model checker Zing [2]. All
aspects of the operational semantics of the program are interpreted
including the code statements labeling the states and actions of a
P machine. The model checker takes care of systematically enu-
merating all implicit scheduling and explicit modeling choices in
the program. The number of states and executions of a P program
is unbounded in general (in fact, reachability analysis of P pro-
grams is undecidable). Therefore, in practice, the enumeration is
controlled by bounding techniques.

The simplest approach to bounding the exploration of nonde-
terministic transition systems is depth-bounding [19]. We have im-
plemented this approach and found it useful for discovering errors
witnessed by short executions. However, the complexity of depth-
bounded search increases exponentially with execution depth, and
consequently does not scale for systematic testing of large P pro-
grams, in which errors may be lurking in long executions. We use
delay-bounded scheduling [6] to overcome this problem. A delay-
ing scheduler is a deterministic scheduler with a “delay” opera-
tion, whose invocation causes the scheduler to change its default
scheduling strategy. Given a delay budget d, a delaying scheduler
naturally defines a set of schedules obtained by nondeterministi-
cally invoking the “delay” operation at most d times; the number
of generated schedules (under the assumption that scheduling is the
only source of nondeterminism) is independent of execution length
and exponential in d; thus arbitrarily long executions can be gen-
erated even with a delay bound of 0. We expect most bugs that
occur in practice to be found using low values of the delay bound.
We have developed a new delaying scheduler for P programs; our
scheduler prioritizes schedules that follow the causal sequence of
events in the program. We provide empirical evidence to demon-
strate that our scheduler indeed finds common errors with a small
delay bound.

In summary, our contributions are the following:

• We design a DSL P to program asynchronous interacting state
machines at a higher level of abstraction than detailed event
handlers that lose the state machine structure.
• We present formal operational semantics and a compiler and

runtime that enables P programs to run as KMDF (Kernel Mode
Driver Framework) device drivers.
• We show how to validate P programs using delay-bounded

scheduling and provide a novel delaying scheduler that, by

default, attempts to schedule events according to their causal
order.
• We report on the use of P in a production environment; our case

study is the USB stack in Windows 8.

2. Overview
Init

Deferred:
Action:

Timer = new Timer(Elevator = this);
Door = new Door(Elevator = this);
raise(unit)

start

Closed
Deferred:
Action: (CloseDoor , Ignore)

send(Door ,SendCmdToReset)

Opening

Deferred: CloseDoor
Action: (OpenDoor , Ignore)

send(Door ,SendCmdToOpen)

Opened

Deferred: CloseDoor
Action:

send(Door ,SendCmdToReset);
send(Timer ,StartTimer)

OkToClose
Deferred: OpenDoor
Action:

send(Timer ,StartTimer)

Closing

Deferred: CloseDoor
Action:

send(Door ,SendCmdToClose)

StoppingDoor

Deferred: CloseDoor
Action:
(OpenDoor , Ignore),
(ObjectDetected , Ignore),
(DoorClosed , Ignore)

send(Door ,SendCmdToStop)

StoppingTimer

Deferred: OpenDoor ,
ObjectDetected ,
CloseDoor

Action:

send(Timer ,StopTimer)

WaitingForTimer

Deferred: OpenDoor ,
ObjectDetected ,
CloseDoor

Action:

skip

ReturnState
Deferred:
Action:

raise(StopTimerReturned)

unit

OpenDoor

DoorOpened

TimerFired
StopTimerReturned

StopTimerReturned
TimerFired

OpenDoor

DoorClosed

ObjectDetected

DoorOpened

DoorClosed

DoorStopped

OperationSuccess

OperationFailure

TimerFired

OpenDoor CloseDoor

Figure 1: Elevator example

P is a domain-specific language for writing asynchronous event-
driven programs. Protocols governing the interaction among con-
currently executing components are essential for safe execution of
such programs. The P language is designed to clearly explicate
these control protocols; to process data and perform other func-
tions irrelevant to control flow, P machines have the capability to
call external functions written in C. We call those functions foreign
functions.

A P program is a collection of machines. Machines commu-
nicate with each other asynchronously through events. Events are
queued, but machines are required to handle them in a responsive
manner (defined precisely later)—failure to handle events is de-
tected by automatic verification.

We illustrate the features of P using the example of an elevator,
together with a model of its environment. The elevator machine
is shown in Figure 1 and the environment machines in Figure 2.
The environment is composed of ghost machines which are used
only during verification, and elided during compilation and actual
execution. Machines that are not ghost are called real machines.
We use the term machine in situations where it is not necessary to
distinguish between real and ghost machines.

Machines communicate with each other using events. An event
can be sent from one machine to another and or raised within a
machine. Each machine is composed of control states, transitions,
actions, and variables. The elevator machine has events unit and
StopTimerReturned (which are used for communication locally in-
side the elevator machine), an action called Ignore, and two ghost
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Init
Deferred:
Action:

Elevator = new Elevator();
raise(unit)

start

Loop

Deferred:
Action:

if ∗ then
send(Elevator ,OpenDoor);

else if ∗ then
send(Elevator ,CloseDoor);

raise(unit)

unit
unit

(a) User ghost machine

Init
Deferred:
Action: (SendCmdToStop, Ignore),

(SendCmdToReset , Ignore)

skip

start

OpenDoor

Deferred:
Action:

send(Elevator ,DoorOpened);
raise(unit)

ObjectEncountered

Deferred:
Action:

send(Elevator ,ObjectDetected);
raise(unit)

CloseDoor
Deferred:
Action:

send(Elevator ,DoorClosed);
raise(unit)

StopDoor

Deferred:
Action:

send(Elevator ,DoorStopped);
raise(unit)

Reset
Deferred:
Action: (SendCmdToOpen, Ignore),

(SendCmdToClose, Ignore),
(SendCmdToStop, Ignore)

skip

ConsiderClosingDoor

Deferred:
Action:

if ∗ then
raise(unit)

else if ∗ then
raise(ObjectEncountered)

SendCmdToOpen

unit

SendCmdToClose

unit

ObjectEncountered

SendCmdToStop

unit

unit

unit

SendCmdToReset

(b) Door ghost machine

Init
Deferred:
Action:
(StopTimer , Ignore)

skip

start

TimerStarted
Deferred: StartTimer
Action:

if ∗ then
raise(unit)

SendTimerFired
Deferred: StartTimer
Action:

send(Elevator ,TimerFired);
raise(unit)

ConsiderStopping

Deferred: StartTimer
Action:

if ∗ then
send(Elevator ,OperationFailure);
send(Elevator ,TimerFired)

else
send(Elevator ,OperationSuccess);

raise(unit)

StartTimer

unit

StopTimer

unit

unit

(c) Timer ghost machine

Figure 2: Environment for elevator

variables Timer and Door. Ghost variables are used only during
verification and are used to hold references to ghost machines.

Each state description consists of a 4-tuple (n, d, a, s), where
(1) n is a state name, (2) d is a set of events (called deferred
set), (3) a is a set of (event, action) pairs (called action handlers),
and (4) s is a statement (called entry statement), which gets exe-
cuted when the state is entered. For instance, the Init state in Fig-
ure 1 has an empty deferred set, no action handlers, and an en-
try statement that creates an instance of the Timer and Door ma-
chines and raises the event unit. As another example, the Open-
ing state has {CloseDoor} as the deferred set, a single action han-
dler (OpenDoor, Ignore), and send(Door, SendCmdToOpen)
as the entry statement. If the state machine enters the Opening
state, the following things happen: on entry to the state, the state-
ment send(Door, SendCmdToOpen) is executed, which results
in the event SendCmdToOpen being sent to the Door machine. On
finishing the execution of the entry statement, the machine waits
for events on the input buffer. The initial state of the Elevator
machine is Init. Whenever an instance of the Elevator machine

is created (using the new statement), the state of this machine in-
stance is initialized to Init.

Deferred events and action handlers. Events sent to a machine
are stored in a FIFO queue. However, it is possible to influence
the order in which the events are delivered. In a given state, some
events can be deferred. When trying to receive an event a machine
scans its event queue, starting from the front dequeuing the first
event that is not in the deferred set. A dequeued event is either
processed by executing an action handler or executing an outgoing
transition. An action is simply a named piece of code. The Elevator
machine has a single action called Ignore that does nothing. For
instance, in the Opening state, the event CloseDoor is deferred
and therefore never dequeued. If the event OpenDoor is dequeued,
the Ignore action is executed (which just drops the event on the
floor) and control stays in Opening. If the event DoorOpened is
dequeued, the outgoing transition labeled by DoorOpened is taken
and control moves to state Opened.

Step and call transitions. The edges in Figure 1 specify how the
state of the Elevator machine transitions on events. There are two
types of transitions: (1) step transitions, and (2) call transitions.
Both these transition types have the form (n1, e, n2), where n1

is the source state of the transition, e is an event name, and n2

is the target state of the transition. Step transitions are shown by
simple edges and call transitions by double edges. For instance,
when the machine is in the Init state, if an unit event arrives the
machine transitions to the Closed state. On the other hand, call
transitions have the semantics of pushing the new state on the top of
the call stack. Call transitions are used to provide a subroutine-like
abstraction for machines. For instance, there is a call transition to
the StoppingTimer state from the Opened state on the OpenDoor
event, and a similar call transition to the StoppingTimer state
from the OkToClose state on the CloseDoor event. One can think
about the StoppingTimer state as the starting point of a subroutine
that needs to be executed in both these contexts. This subroutine
has 3 states: StoppingTimer, WaitingForTimer and ReturnState.
The “return” from the call happens when ReturnState raises the
StopTimerReturned event. This event gets handled by the callers of
the subroutine Opened and OkToClose respectively.

Unhandled events. The P language has been designed to aid the
implementation of responsive systems. Responsiveness is under-
stood as follows. If an event e arrives in a state n, and there is
no transition defined for e, then the verifier flags an “unhandled
event” violation. There are certain circumstances under which the
programmer may choose to delay handling of specific events or
ignore the events by dropping them. These need to be specified ex-
plicitly by marking such events in the associated deferred set, so
that they are not flagged by the verifier as unhandled. The verifier
also implements a liveness check that prevents deferring events in-
definitely. This check avoids trivial ways to silence the verifier by
making every event deferred in every state.

Environment modeling. Figure 2 shows the environment ma-
chines (which are ghost machines) and initialization statement
for the elevator. There are 3 ghost machines: User, Door and
Timer. These machines are used to model the environment dur-
ing verification, but no code is generated for these machines. For
the purpose of modeling, the entry statements in the states of
these machines are allowed to include nondeterminism. For ex-
ample, the entry statement of the TimerStarted state is specified
as “if ∗ then raise(unit)”. The ∗ expression evaluates nondeter-
ministically to true or false. Thus, when the Timer machine enters
this state, it can nondeterministically raise the unit event. The ver-
ifier considers both possibilities and ensures absence of errors in
both circumstances. In the real world, the choice between these
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program ::= evdecl machine+ m(init∗)
machine ::= optghostmachinem

vrdecl∗ actdecl∗ stdecl∗

spdecl∗ cldecl∗ acdecl∗

optghost ::= ε | ghost
evdecl ::= event edecl+

vrdecl ::= optghost var vdecl+

actdecl ::= action (a, stmt)+

stdecl ::= state (n, {e1, e2, . . . , ek}, stmt, stmt)+

spdecl ::= step (n, e, n)+

cldecl ::= call (n, e, n)+

acdecl ::= act (n, e, a)+

edecl ::= e(type)
vdecl ::= x : type

type ::= void | bool | int | event | id

stmt ::= skip
| x := expr
| x := newm(init∗)
| delete
| send(expr, e, expr)
| raise (e, expr)
| leave
| return
| assert(expr)
| stmt; stmt
| if expr then stmt else stmt
| while expr stmt

init ::= x = expr
expr ::= this |msg | arg | b | c |⊥| x | ∗

| uop expr | expr bop expr

c ∈ int b ∈ bool
¬,− ∈ uop +,−,∧,∨ ∈ bop
r ∈ expr a, e,m, x ∈ name

Figure 3: Syntax

possibilities depends on environmental factors (such as timing),
which we choose to ignore during modeling.

In this example, the initial machine is the User machine, and
this is the starting point for a model checker to perform verification.
Note that the initial state of the User machine creates an instance of
Elevator, and the Elevator instance in turn creates instances of
Timer and Door (in Figure 1). During execution, the external code
is responsible for creating an instance of the Elevator machine.

3. P Syntax and Semantics
Figure 3 shows the syntax of the core of P. Some of the features
presented in the examples of Section 2 can be compiled using a pre-
processor into this core language. In particular, state descriptions in
the core language are triples of the from (n, d, s1, s2), where n is
a state name, d is a set of deferred events, s1 is an entry statement,
and s2 is an exit statement.

A program in the core language consists of declaration of
events, a nonempty list of machines, and one machine creation
statement. Each event declaration also specifies a list of types,
which are types of data arguments that are sent along with the
event (can be thought of as “payload” of the event).

A machine declaration consists of (1) a machine name, (2) a list
of events, (3) a list of variables, (4) a list of actions, (5) a list of
states, (6) a list of transitions, and (7) a list of action bindings. Each
variable has a declared type, which can be int, byte, bool, event or
machine identifier type (denoted id). Actions associate an action

name with a statement. Transitions are one of two types: steps or
calls, and action bindings associate state-event pairs with actions.

A machine can optionally be declared as ghost by prefixing its
declaration by the keyword ghost. Variables can be also declared
as ghost. Events sent to ghost machines are (implicitly) ghost
events. Ghost machines, events and ghost variables are used only
during verification, and are elided during compilation and execu-
tion of the P program.

As mentioned in Section 2, a state declaration consists of a name
n, a set of events (called deferred set), and two statements: (1) an
entry statement and (2) an exit statement. Each state declaration
must have a distinct name. Thus, we can use the name n to denote
the state. The entry statement associated with a state n is executed
whenever control enters n, and the exit statement associated with
state n is executed whenever control leaves n. Given a machine
name m and a state n in m, let Deferred(m,n) denote the associ-
ated set of deferred events and let Action(m,n, e) be an that action
a is associated with event e in state n, if such a binding exists or ⊥
otherwise. Let Entry(m,n) denote the associated entry statement,
and let Exit(m,n) denote the associated exit statement. The ini-
tial state of the machine m is the first state in the state list and is
denoted by Init(m).

Each action declaration consists of an action name and a state-
ment. Let Stmt(m,a) denote the statement associated with action
a in machine m.

Transition declarations describe how a state responds to events.
The list of transitions is partitioned into step transitions, and call
transitions. A step transition from state n to another state n1 in-
volves executing the exit statement of n and the entry statement of
n1. A call transition is similar to function calls in programming lan-
guages and is implemented using a stack (more details below). The
set of transitions of m must be deterministic, that is, if (n, e, n1)
and (n, e, n2) are two transitions then n1 = n2.

An action binding does not change the state, but merely executes
the statement associated with the action.

A statement (be it an entry statement or exit statement associ-
ated with a state, or associated with an action) is obtained by com-
posing primitive statements using standard control flow constructs
such as sequential composition, conditionals, and loops. Primitive
statements are described below. The skip statement does nothing.
The assignment x := r evaluates an expression r and writes the
result into x. The statement x := new m(init∗) creates a new
machine and stores the identifier of the created machine into x.
The initializers give the initial values of the variables in the cre-
ated machine. The delete statement terminates the current ma-
chine (which is executing the statement) and release its resources.
The statement send(r1, e, r2) sends event e to the target machine
identified by evaluating the expression r1, together with arguments
obtained by evaluating r2. When e does not have any argument
null is expected. In the examples, we use send(r1, e) as syntactic
sugar for send(r1, e, null). The statement raise(e, r) terminates
the evaluation of the statement raising an event e with arguments
obtained by evaluating r. The event e must be a local event. The
leave statement jumps control to end of the entry function to wait
for an event to be dequeued. The return statement terminates the
evaluation of the statement and returns to the caller (see below for
more details). The statement assert(r) moves the machine to an
error state of the expression r evaluates to false, and behaves like
skip otherwise.

Expressions and evaluation. The expressions in the language, in
addition to the declared variables, can also refer to three special
variables—this, msg and arg. While this is a constant contain-
ing the identifier of the executing machine, msg contains the event
that is last received from the input buffer of the machine, and arg
contains the payload from the last event. Expressions also include
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constants c, the special constant ⊥, variables, and compound ex-
pressions constructed from unary and binary operations on primi-
tive expressions. Binary and unary operators evaluate to ⊥ if any
of the operand expressions evaluate to ⊥. The value ⊥ arises ei-
ther as a constant, or if an expression reads a variable whose value
is uninitialized, and propagate through operators in an expression.
The expression ∗ represents nondeterministic choice of a Boolean
value. Nondeterministic expressions are allowed only in ghost ma-
chines to conveniently model the environment.

Memory management. P programs manage memory manually
by using the new and delete commands. The new command
allocates a new instance of a machine and returns its reference, and
the delete command terminates the machine which executes the
command and frees its resources. It is the responsibility of the P
programmer to perform cleanup and ensure absence of dangling
references, or pending message exchanges before calling delete.
Manually managing the memory add some complexity in order to
retain a precise control over the footprint of the program.

3.1 Operational semantics
The role played by the environment is different during execution
and verification of a P program. During execution, the environ-
ment is responsible for creating initial machines in the P program,
sending some initial messages to it, and responding to events sent
by the P machines. During verification, the environment is speci-
fied using ghost machines, and the program starts execution with a
single machine instance of the machine specified by the initializa-
tion statement at the end of the program, and this machine begins
execution in its initial state with an empty input queue. However,
once the initial configuration is specified (which is different during
execution and verification), the transition rules are the same for ex-
ecution as well as verification. We formally specify the transition
semantics using a single set of transition rules below.

Since our language allows dynamic creation of machines, a
global configuration would contain, in general, a collection of
machines. A machine identifier id represents a reference to a
dynamically-created machine; we denote by Name(id) the name
of the machine with identifier id . A global configuration M is a
map from a machine identifier to a tuple representing the machine
configuration. A machine configuration corresponding to identifier
id is of the form (γ, σ, s, q) with components defined as follows:

• γ is a sequence of pairs (n, α), where n is a state name, and α is
map from events toA∪{>,⊥}, whereA is the set of all actions
declared in machine Name(id). This sequence functions as
a call stack, to implement call and return, and the α values
are used to inherit deferred events and actions from caller to
callee. For an event e, α(e) can be an action a, or the value
> indicating that the event is deferred, or the value ⊥ which
indicates that the event does not have an associated action and
it is not deferred.
• σ is a map from variables declared in machine Name(id) to

their values; this map contains an entry for the local variables
this, msg and arg.
• s is the statement remaining to be executed in machine id .
• q is a sequence of pairs of a event-argument pairs representing

the input buffer of machine id .

Our type checker verifies that for any event e and state n, there is at
most one outgoing transition labeled with e out of n and at most one
action bound to e in s. We define Step(m,n, e) to be equal to n′ if
there is a step transition labeled e between n and n′ in machine m
and ⊥ otherwise. Similarly, we define Call(m,n, e) to be equal to
n′ if there is a call transition labeled e between n and n′ in machine
m and ⊥ otherwise. We define Trans(m,n, e) to be the union

M [id] = (γ, σ, S[x := r], q) σ(r) ↓ v
M −→M [id := (γ, σ[x := v], S[skip], q)]

(ASSIGN)

M [id] = (γ, σ, S[x := newm
′
(x1 = r1, x2 = r2, . . . , xn = rn)], q)

id
′
= fresh(m

′
) n

′
= Init(m

′
)

αo = λe. ⊥ σ(r1) ↓ v1 σ(r2) ↓ v2 · · · σ(rn) ↓ vn
σ
′
= λx. ⊥ [this := id

′
][x1 := v1][x2 := v2] · · · [xn := vn]

M −→M [id := (γ, σ[x := id
′
], S[skip], q)]

[id
′
:= ((n

′
, αo), σ

′
,Entry(m

′
, n

′
), ε)]

(NEW)

M [id] = (γ, σ, S[delete], q)

M −→M [id :=⊥]
(DELETE)

M [id] = (γ, σ, S[assert(r)], q) σ(r) ↓ true

M −→M [id := (γ, σ, S[skip], q)]
(ASSERT-PASS)

M [id] = (γ, σ, S[skip; s], q)

M −→M [id := (γ, σ, S[s], q)]
(SEQ)

M [id] = (γ, σ, S[if r then s1 else s2], q) σ(r) ↓ true

M −→M [id := (γ, σ, S[s1], q)]
(IF-THEN)

M [id] = (γ, σ, S[if r then s1 else s2], q) σ(r) ↓ false

M −→M [id := (γ, σ, S[s2], q)]
(IF-ELSE)

M [id] = (γ, σ, S[while r s], q) σ(r) ↓ true

M −→M [id := (γ, σ, S[s;while r s], q)]
(WHILE-ITERATE)

M [id] = (γ, σ, S[while r s], q) σ(r) ↓ false

M −→M [id := (γ, σ, S[skip], q)]
(WHILE-DONE)

M [id] = (γ, σ, S[send(r1, e, r2)], q)
σ(r1) ↓ id

′
σ(r2) ↓ v M [id

′
] = (γ

′
, σ

′
, C

′
, q

′
)

M −→M [id := (γ, σ, S[skip], q)][id
′
:= (γ

′
, σ

′
, C

′
, q

′ � (e, v))]
(SEND)

Figure 4: Operational semantics: statement execution

of Step(m,n, e) and Call(m,n, e). Note that Trans(m,n, e) is
the static transition in state s on event e, Action(m,n, e) is the
static action bound with state n and event e, and Deferred(m,n)
is the static set of events deferred in state n. During execution, both
deferred events and actions associated with a state can be inherited
from callers, and these are modeled in the second component of the
call stack, which is a sequence of pairs (n, α).

Let S be constructed according to the following grammar:

S ::= 2 | S; stmt

The leftmost position in S is a hole denoted by 2; there is exactly
one 2 in any derivation for S. We denote by S[s] the substitution
of statement s ∈ stmt for the unique hole in S. Finally, we have
|q| =

⋃
(e,v)∈q{e}.

The rules in Figures 4, 5, and 6 give the operational semantics of
our programming language. The program starts execution in a con-
figuration M defined at a single id0 such that Name(id0) = m,
where m is the machine name specified in the program’s ini-
tialization statement (at the end of the program). and M [id0] =
((Init(m), λe. ⊥), λx. ⊥,Entry(m, Init(m)), ε). The semantics
is defined as a collection of rules for determining transitions of the
form M −→ M ′. All existing state machines are running concur-
rently retrieving events from their input queue, performing local
computation, and possibly sending events to other machines. Each
rule picks an existing machine with identifier id and executes it for
a step. To simplify the rule we use small steps (−→) for statements
and big steps (↓) for the expression. The rules for expressions are
as expected and therefore omitted.

Figure 4 gives the rules for executing code statements inside a
state. These rules execute small steps performed during the com-
putation of the entry function of a state. During this computation,
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M [id] = ((n, α) · γ, σ, S[raise (e, r)], q)
σ(r) ↓ v σ

′
= σ[msg := e][arg := v] m = Name(id)

s = if Pop(m,n, α, e) ∨ Step(m,n, e) 6=⊥
then Exit(m,n)
else skip

M −→M [id := ((n, α) · γ, σ′
, s; raise (e, v), q)]

(RAISE)

M [id] = (γ, σ, S[leave], q)

M −→M [id := (γ, σ, skip, q)]
(LEAVE)

M [id] = (γ, σ, S[return], q)

M −→M [id := (γ, σ,Exit(m,n); return, q)]
(RETURN)

M [id] = ((n, α) · γ, σ, skip, q1 · (e, v) · q2) m = Name(id)
t = {e | Trans(m,n, e) 6=⊥ ∨Action(m,n, e) 6=⊥}
d = {e | α(e) = >} d

′
= (d ∪Deferred(m,n))− t

|q1| ⊆ d′ e 6∈ d′ σ
′
= σ[msg := e][arg := v]

s = if Pop(m,n, α, e) ∨ Step(m,n, e) 6=⊥
then Exit(m,n)
else skip

M −→M [id := ((n, α) · γ, σ′
, s; raise (e, v), q1 · q2)]

(DEQUEUE)

M [id] = ((n, α) · γ, σ, raise (e, v), q)
m = Name(id) Step(m,n, e) = n

′

M −→M [id := ((n
′
, α) · γ, σ,Entry(m,n

′
), q)]

(STEP)

M [id] = ((n, α) · γ, σ, raise (e, v), q)
m = Name(id) Trans(m,n, e) =⊥

(α(e) = a ∧ Action(m,n, e) =⊥) ∨ Action(m,n, e) = a
a 6∈ {⊥,>}

M −→M [id := ((n, α) · γ, σ,Stmt(m, a), q)]
(ACTION)

M [id] = ((n, α) · γ, σ, raise (e, v), q)
m = Name(id) Call(m,n, e) = n

′

α
′
= λe. if (Trans(m,n, e) 6=⊥) then ⊥

else if (Action(m,n, e) 6=⊥) thenAction(m,n, e)
else if (e ∈ Deferred(m,n)) then>
else α(e)

M −→M [id := ((n
′
, α

′
) · (n, α) · γ, σ,Entry(m,n

′
), q)]

(CALL)

M [id] = ((n, α) · γ, σ, raise (e, v), q)
m = Name(id) Pop(m,n, α, e)

M −→M [id := (γ, σ, raise (e, v), q)]
(POP1)

M [id] = ((n, α) · γ, σ, return, q) m = Name(id)

M −→M [id := (γ, σ, skip, q)]
(POP2)

Figure 5: Operational semantics: event handling

M [id] = (γ, σ, S[assert(r)], q) σ(r) ↓ false

M −→ error
(ASSERT-FAIL)

M [id] = (γ, σ, S[send(r1, e, r2)], q) σ(r1) ↓⊥
M −→ error

(SEND-FAIL1)

M [id] = (γ, σ, S[send(r1, e, r2)], q)
σ(r1) ↓ id

′
M [id

′
] =⊥

M −→ error
(SEND-FAIL2)

M [id] = (ε, σ, s, q)

M −→ error
(POP-FAIL)

Figure 6: Operational semantics: error transitions

local variables could be modified and events could be sent to other
state machines.

The rule SEND shows the semantics of the statement send(r1, e, r2).
First, the target of the send id′ = σ(r1), and the payload of the
event v = σ(r2) are evaluated and the event (e, v) is appended
to the queue of the target machine identified by id′ using the spe-
cial append operator �. The operator � is defined as follows. If
(e, v) 6∈ q, then q � (e, v) = q · (e, v). Otherwise, q � (e, v) =
q. Thus, event-value pairs in event queues are unique, and if the
same event-value pair is sent more than once to a machine, only
one instance of it is added to the queue, avoiding flooding of the
queue due to events generated by hardware, for instance. In some
cases, the programmer may want multiple events to be queued, and
they can enable this by differentiating the instances of these events
using a counter value in the payload.

Figure 5 gives the rules for how events are generated and pro-
cessed. These rules use raise and return, which are dynamic in-
stances of raise and return statements respectively. The compu-
tation terminates either normally via completion of all statements
in the entry statement, execution of leave to jump control to the
end of the entry function, execution of a return statement (which
results in popping from the call stack), or by raising an event e. In
the first two cases, the machine attempts to remove an event from
the input queue via the rule DEQUEUE prior to raising the retrieved
event.

Each state in a state machine can opt to defer a set of events
received from the outside world. The logic for dequeuing an event
from the input buffer is cognizant of the current set of deferred
events and skips over all deferred events from the front of the
queue. The deferred set of a stack of states is the union of the
deferred set at the top of the call stack with the value resulting
from evaluating the deferred set expression declared with that state.
In case an event e is both in the deferred set and has a defined
transition from a state, the defined transition overrides, and the
event e is not deferred (see rule DEQUEUE).

Once an event is raised, using either dequeuing or a raise state-
ment, it is handled using one of the three transition rules STEP, AC-
TION or CALL. The STEP transition results in leaving the current
state n and entering a target state n′. The ACTION transition picks
an appropriate action a either from Action(m,n, e) or from the
partial map α on the call stack, with the caveat that an action bound
on the current state using Action(m,n, e) overrides the action in-
herited in the call stack using α. Once a suitable action α is picked,
the statement Stmt(m,a) is executed. Also, if Step(m,n, e) or
Call(m,n, e) is defined, it takes higher priority over actions. The
CALL transition computes new values for the map α′ in terms of
the existing value of the map α on the top of the stack and the set
of transitions and actions defined on the current state n. The map
α′(e) is defined as follows: if a transition is defined for e then it is
bound to⊥, otherwise if the event e is bound to an action in n then
that binding is used, otherwise if event e is deferred in n then it is
mapped to >, and all the other events are mapped to the old value
α(e). As a result of the transition, the machine enters the target
state n′ by pushing the pair (n′, α′) on the stack.

If these transition rules are not applicable due to the unavail-
ability of a suitable transition, then the top most state on the ma-
chine stack is popped via the rules POP1 and POP2 to allow the
next state to continue processing. These rules use the predicate
Pop(m,n, α, e) to represent the condition under which a state is
popped.

Pop(m,n, α, e) = Step(m,n, e) =⊥ ∧
Call(m,n, e) =⊥ ∧
Action(m,n, e) =⊥ ∧
α(e) ∈ {⊥,>}
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If rule POP1 executes, the next state must process the unhandled
event; if rule POP2 executes, the next state dequeues a new event
from the input queue.

The exit function Exit(m,n) of a state n in machine m is
executed either when a step transition out of s is taken or s is
popped. When an event e is raised or dequeued, the available
transitions in s are examined to determined whether Exit(m,n)
needs to be executed, and if so, the code statement Exit(m,n) is
inserted into the state. Exit(m,n) is always executed if the entry
function terminates with a return. The rules in Figure 5 assume
that Exit(m,n) itself does not contain any explicit raise or return;
however, our implementation allows that.

Figure 6 specifies error transitions. The error configuration,
denoted by error , can be reached in one of 4 ways: (1) by failing
an assertion (rule ASSERT-FAIL), (2) by executing a statement
send(r1, e, r2) with r1 evaluating to ⊥ (rule SEND-FAIL1), (3)
by executing a statement send(r1, e, r2) with r1 evaluating to
some id′, but with M [id′] =⊥, thereby attempting to send to an
uninitialized or deleted machine (rule SEND-FAIL1), and (4) The
stack becomes empty after a pop (rule POP-FAIL). In Section 5,
we show how to detect all these 4 types of errors using systematic
testing.

Other features. We conclude the description of the core language
and semantics with two additional features: (1) foreign functions,
and (2) call statements. Both these features are very important to
write real-world asynchronous code, but their semantics is stan-
dard. Consequently, we describe them informally below.

To interact with external code, a P program has the ability to
call functions written in the C language. These functions needs to
be introduced in the scope of a machine by a declaration that give
the function’s name and type signature. The runtime semantics of a
function call to a foreign functions is similar to a standard C method
call. For verification purposes we allow the user to give a P body to
a foreign function. The body has to be erasable, i.e. uses only ghost
variables and expressions.

The P language also has a call statement of the form call n′,
where n′ is a state. This can be used to transition to the target
state n′ by pushing n′ on the call stack, much like a call transi-
tion. Unlike a call transition, the call statement requires saving a
continuation associated with the caller on the stack, so that execu-
tion can resume and complete the remaining statements when the
callee state is popped.

3.2 Responsiveness
Beyond providing constructs for building safe programs, the design
of the P language also contains constructs to build responsive pro-
grams. Explicitly deferring messages instead of doing so implicitly
is such a design choice. However, it is still possible to excessively
defer events, thus not processing them. Therefore, we propose two
liveness properties that must be satisfied by a P program. We de-
scribe these two properties below in terms of a precise description
of those infinite executions which violate these properties; we use
linear temporal logic [18] for our specifications. Our specifications
use the following predicates over events that occur during an exe-
cution:

1. en(m) holds iff machine m is enabled, i.e., m can take a step.

2. sched(m) holds iff machine m is enabled and takes a step.

3. enq(m, e,m′) holds iff machine m enqueues an event e into
machine m′.

4. deq(m′, e) holds iff machine m′ dequeues an event e.

The first property specifies that a machine cannot execute indef-
initely without getting disabled. In particular, a machine should not

get into a cycle of private operations, causing it to loop forever. The
set of erroneous executions is given by

∃m. 32(sched(m)).

The second property specifies that events are not deferred ex-
cessively; the goal is to prevent events from being always deferred,
thus never processed. We first define the notion of fairly scheduling
a machine m.

fair(m)
4
= 23(en(m)⇒ sched(m))

An erroneous execution is one in which every machine is fairly
scheduled and an event is enqueued which is never subsequently
dequeued. The set of all erroneous executions is given by

∀m. fair(m) ∧ ∃m, e,m′. 3(enq(m, e,m′) ∧ 2¬deq(m′, e)).
Our experience with real drivers suggests that in some cases, this
property may be too strong. For instance, in a system with priori-
tized events, enough high priority events from the environment may
postpone forever the processing of lower priority events. We allow
programmers to indicate this expectation in a state s by annotat-
ing s with a list of postponed events. Our refinement of the sec-
ond liveness specification uses the predicate ppn(m, e) that holds
whenever m is in a state whose list of postponed events contains e.
The smaller set of erroneous executions is given by

∀m. fair(m)∧∃m, e,m′. 3(enq(m, e,m′) ∧ 2¬deq(m′, e))∧
32¬ppn(m′, e).

3.3 Type system and erasure
The type system of P is, on purpose, kept very simple. It mostly
does simple checks to make sure the machines, transitions, and
statements are well-formed. In particular, the following checks
are performed: (1) identifiers for machines, state names, events,
and variables are unique, (2) statements inside real machines are
deterministic, and (3) ghost machines, ghost variables, and ghost
events can be erased during compilation and execution.

The only non-trivial part of our type system is the rules that
deal with the erasure property of ghost variables, and ghost ma-
chines. We identify “ghost terms” in statements of real machines,
and check that they do not affect the runs of real machines (ex-
cept for assertions). The separation is needed since ghost terms are
kept only for verification purposes and are erased during the com-
pilation. Therefore, only a limited flow of information is allowed
between real and ghost terms. For machine identifiers we enforce
complete separation, because we need to unambiguously identify
the send operation that targets ghost machine, so that it can be
preserved during verification and erased during compilation.

The error transitions specified in Figure 6 cannot be detected
by our type checker. Instead, we use state-space exploration tech-
niques (described in Section 5) to check for these errors statically.

4. Execution
This section explains how we generate code from a P program, so
that the generated code can run as a Windows device driver. Execu-
tion requires a host driver framework; our current implementation
uses Windows Kernel Mode Driver Framework (KMDF). The com-
plete driver, which runs inside Windows, has four components:

1. The generated code is a C file which is produced by the P
compiler from a state machine description.

2. The runtime is a library that interacts with the generated code
and provides utilities for synchronization and management of
state, execution, and memory.

3. The interface code is a skeletal KMDF driver which mediates
between the OS and the generated code by creating instances
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of P machines and getting the execution started, and translating
OS callbacks into P state machine events that are queued into
the queues of the respective machines.

4. The foreign functions are provided as C source files or libraries.
The function calls occurring in the machines are linked to those
files.

Generated code. The code generated from a P program comprises
a collection of indexed and statically-allocated data structures that
are examined by the runtime when it executes the operational se-
mantics of the program. The set of names of events is compiled
to a C enumeration, thus giving a globally-known unique index to
each event. Similarly, names of machine types and names of local
variables and states in each machine are also compiled to C enu-
merations. At the top level, there is a driver structure that contains
pointers to an array of events and an array of machine types; these
arrays are indexed by the corresponding enumerations for events
and machine types respectively. Each entry in the machine array
contains pointers to an array of variables and an array of states,
each indexed by the corresponding enumeration. Each entry in the
state array contains a table of outgoing transitions, a table of de-
ferred events, a table of installed actions, and pointers for entry
and exit functions. In addition to these data structures, the compiler
also generates C code for the bodies of entry and exit functions of
all states and all actions declared in the program.

When P is compiled to C, the state of a machine is wrapped into
an object of type StateMachineContext. This object contains
data structures to represent the state of the machine, as described
in the formal operational semantics in Section 3. In addition, it
also contains a void* pointer to external memory used only by
the foreign functions and interface code.

To make the P compiler work for another driver framework or
another operating system, the runtime and foreign code needs to be
reimplemented appropriately but the generated code does not need
to change.

Runtime. The runtime of P provides functionality for all opera-
tions required for executing the operational semantics of a P pro-
gram, such as creating a machine, enqueueing an event into a
machine, running a state machine, maintaining the call stack and
available event handlers of each machine, etc. This functionality is
mostly private to the runtime with a few exceptions for the bene-
fit of interface code, which can interact with the P runtime using
three APIs: create a new state machine using SMCreateMachine,
queue an event into a machine using SMAddEvent, or request a
pointer to the external memory associated with a machine using
SMGetContext.

Windows drivers are parsimonious with threads. Worker threads
are rarely created and drivers typically use calling threads to do
all the work. Thus, when the OS calls the driver, either due to
an application request or due to a hardware interrupt or deferred
procedure call, the driver uses the calling thread to process the event
and run to completion. Multiple such threads could be executing
inside the runtime at any time; each dynamic instance of a state
machine is protected by its own lock for safe synchronization.

Interface code. The interface code is used to mediate between the
OS and the P code. It is written as a skeletal KMDF driver, which
handles callbacks from the Windows OS and translates them into
events it adds to the queue of the P machine, using the runtime
API. In KMDF, the EvtAddDevice callback is used to create the
state machine using the SMCreateMachine API. All events such
as Plug and Play or Power management or other events are handled
by the foreign code by queuing a corresponding event using the
SMAddEvent API. The EvtRemoveDevice callback results in a
special event Delete added to the P driver. Every P state machine

is required to handle this event by cleaning up and executing the
delete statement. Note that the P machine may have to do internal
bookkeeping and keep track of other machines it has created, and
the state of the interactions it has with other machines, cleanup
the state of the interactions, and only then execute the delete
statement. In our experience, the interface code is generic enough
so that it can be automatically generated for a particular class of
drivers.

Foreign functions. The foreign functions are provided by the pro-
grammer to complement the P machines. The foreign functions
must have one additional argument on top of the ones declared in
P. This argument, of type void *, points to external memory that
can be used by the programmer to persist some information as part
of the state of calling machine. The foreign functions are assumed
to terminate and to limit any side effect to the provided memory.
Unlike the interface code which is generic, foreign functions are
typically driver-specific and consequently need to be specified by
the programmer.

4.1 Efficiency of generated code and runtime
In order to evaluate the efficiency of the code generated by P and
the runtime, we performed the following experiment. We devel-
oped two drivers for a simple switch-and-led device, one using P,
and one directly using KMDF. Both drivers use the same level of
asynchrony. The P code is about 150 lines with one driver machine
and four ghost machines. The driver machine has 15 states and 23
transitions, and each ghost machines has approximately four states
and transitions. The foreign code is 1720 lines, written directly in
C, interfacing between KMDF and the P code. In contrast, the full
KMDF driver (written without using P) is about 6000 lines of C
code.

We tested both drivers in an environment which sends 100
events per second, and both drivers are able to process each event
with an average processing time of 4ms, demonstrating that the
P compiler and runtime do not introduce additional overhead. We
present a more substantial case study in Section 6.

5. Systematic testing
P is designed to enable systematic testing of programs written in
it. There are two kinds of nondeterminism in the semantics of P
programs—explicit nondeterministic choice in the ghost machines
and implicit nondeterministic choice of which machine to schedule
next. Systematic testing of a P program is accomplished by inter-
preting its operational semantics (closed using ghost machines) in
the explicit-state model checker Zing [2]. All aspects of the op-
erational semantics of the program are interpreted including the
code statements labeling the states and actions of a P machine.
The model checker takes care of systematically enumerating all
implicit scheduling and explicit modeling choices in the program
and checks for the possible errors (see Figure 6) namely, (1) as-
sertion failures, (2) executing send commands with uninitialized
target identifiers, (3) sending events to machine that has been al-
ready freed, and (4) unhandled events. We leave verification of the
liveness checks in P programs for future work.

Machines in P programs communicate via message-passing;
there are only three operations at which a communication between
two machines occurs—creating a machine, sending an event, and
receiving an event. It suffices to introduce context-switches after
only these operations; since a private operation in a machine com-
mutes with operations of other machines, a context switch after is
redundant. In other words, if an error occur in an execution with
a more fine-grained context-switching, it can be shown to occur
in another equivalent execution in which context-switches happen
only at the points mentioned above. This optimization is an exam-
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ple of atomicity reduction [7]. Furthermore, it can be shown that a
receive operation is a right mover [15]; therefore, a context switch
after a receive operation can also be eliminated and it suffices to in-
troduce context switches only after a machine is created or an event
is sent.

Delay-bounded scheduling. Unfortunately, even the coarse-grained
context-switching described above is not sufficient to prevent the
state space explosion problem. If there are k machines enabled at
each interleaving point, the number of possible schedules for runs
with n context switches is kn. Therefore, systematic exploration
of long schedules becomes prohibitively expensive. Consequently,
we have designed a delaying scheduler to scale our exploration to
large P programs with long executions.

Intuitively, our delaying scheduler explores schedules that fol-
low the causal sequence of events. Diverging from that sequence is
done by delaying some machine. Given a bound d, the scheduler
may introduce at most d delays. Suppose machine m1 sends an
event e to machine m2. Then, at a later point m2 removes e from
its input buffer, and processes this message, thereby resulting in an
event e′ sent to machine m3. The delay bounded scheduler follows
the causal sequence of steps which consists of machinem1 sending
the event e to m2, machine m2 processing the event e and sending
the event e′ to m3, and machine m3 handling the event e′. A delay
that the scheduler may choose to introduce is, for instance, at the
second context-switch delaying m3 and executing m2.

More formally, our delaying scheduler maintains a stack S of P
machine identifiers, and an integer delay score. Initially, the stack S
contains a single machine identifier corresponding to the instance
created by the initialization statement of the P program, and the
delay score is set to 0. For example, in the Elevator example
from Section 2, the stack initially contains the id of the User ghost
machine.

The scheduler always chooses to schedule the machine whose
identifier is at the top of S. The scheduled machine executes until
it reaches a scheduling point (which is a send or the creation
of a machine) at which point the scheduler again provides the
next machine to be scheduled. The stack S and the delay score
is updated in response to events happening in the execution as
follows:

• If m is scheduled and m sends an event to machine m′ and
m′ 6∈ S, m′ is pushed on S.
• If m is scheduled and m creates a new machine m′, then m′ is

pushed on S.
• If m is delayed, m is moved from top of S to the bottom of S,

and the delay score is incremented by 1.

Given a delay bound d, a delay bounded scheduler explores only
those schedules which have a delay score lesser than or equal to d.

We can show that for d = 0, the real part of schedules ex-
plored by the delay bounded scheduler are exactly the same as the
one executed by the P runtime in Section 4, assuming no mul-
tithreading (that is, at most one thread calls into the P runtime
from the kernel). Differences between the runtime and the delay
bounded scheduler occur only in the interaction with the ghost ma-
chines/environment. Increasing the delay bound d let the scheduler
explores more schedules and captures more interactions with the
environment. We can also show that as d approaches infinity, in the
limit, the delay bounded scheduler explores all possible schedules
of a P program, and in particular includes all cases where the P
runtime is invoked by an arbitrary number of parallel threads from
the kernel. However, even for low values of d, the delay bounded
scheduler is very useful in error detection, as shown below.

Empirical results. In order to evaluate the efficacy of delay bound-
ing, we conducted the following experiments. For three benchmark
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Figure 7: States explored with increasing delay bound.

P programs (elevator example from Section 2, driver for Switch-
and-LED device, and for a software implementation of German’s
cache coherence protocol), we studied the behavior of delay bound-
ing for varying values of the delay bound parameter d. Figure 7
shows how the number of explored states varies as we increase the
value of the delay bound parameter. We scaled the number of states
in the Switch-LED by a factor of 10 and Elevator by a factor of 100
to make the graphs legible. We also experimented with buggy ver-
sions of these designs and determined that bugs are found within a
delay bound of 2. The data can be summarized as follows: bugs are
found for low values of delay bound (note the low value of number
of states explored for delay bound of 2 in Figure 7 within which
bugs were found), and as we increase the delay bound we eventu-
ally explore all states within a delay bound of around 12.

6. Case Study

USB Hub Driver: Context and challenges. The state machine
methodology described in this paper, together with code generation
as well as verification, was used in the development of core com-
ponents of the USB 3.0 stack that was released as part of Microsoft
Windows 8. In particular, the USB hub driver (“USBHUB3.sys”)
was developed using our methodology. The USB hub driver is re-
sponsible for managing USB hubs, the ports in these hubs, enu-
merating the devices and other hubs connected to their downstream
ports. It receives a large number of un-coordinated events sent from
different sources such as OS, hardware and other drivers, in tricky
situations when the system is suspending or powering down. It can
receive unexpected events from disabled or stopped devices, non-
compliant hardware and buggy drivers. The hub driver can fail re-
quests from incorrect hardware or buggy function drivers. How-
ever, it is important that the USB hub itself handles all events and
does not crash or hang itself.

State P P Explored Time Memory
machine states transitions states

(millions) (hh:mm) MB
HSM 196 361 5.9 2:30 1712
PSM 3.0 295 752 1.5 3:30 1341
PSM 2.0 457 1386 2.2 5:30 872
DSM 1919 4238 1.2 5:30 1127

Figure 8: State machine sizes and exploration time
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Experience using P in USB Hub. We designed the USB Hub in P
as a collection of state machines. The hub, each of the ports, and
each of the devices are designed as P machines. Using P helped
us serialize the large number of uncoordinated events coming in
from hardware, operating system, function drivers and other driver
components. In order to make hub scalable, the processing in the
hub should be as asynchronous as possible. We captured all the
complexity of asynchronous processing using P state machines,
and fine-grained and explicit states for each step in the processing.
We used sub-state machines to factor common event handling code,
and control the explosion in the number of states in the P code, and
deferred events to delay processing of low-priority events. We made
sure that any code in the driver that lives outside the P state machine
(as foreign functions) is relatively simple and primarily does only
data processing, and no control logic. This helped us ensure that
the most complex pieces of our driver are verified using the state
exploration tools of P.

We had to carefully constrain the environment machines in
several cases to help direct the verification tools. Even with such
constraints, the actual state spaces explored by the verifier were on
the order of several millions, and the verifier runs took several hours
to finish (even after using multicores to scale the state exploration),
once our designs became mature and the shallow bugs were found
and fixed. Figure 8 shows the size and scale of state spaces for
the various state machines. The second and third columns show the
number of states and transitions at the level of P. The fourth column
shows the number of states explored by the explored (taking into
account values of variables, state of queues, and state of ghost
machines modeling the environment). The fifth and sixth column
give the time and space needed to complete the exploration.

The systematic verification effort enabled by P helped us greatly
flesh out corner cases in our design, forced us to handle every event
(or explicitly defer it) in every state, and greatly contributed to
the robustness of the shipped product. Overall, state exploration
tools helped us identify and fix over 300 bugs, and justified their
continued use throughout the development cycle. A majority of
the bugs were due to unhandled events that we did not anticipate
arriving. Other bugs were due to unexpected interactions between
machines, or with the environment, which manifested in either
unhandled messages or assertion violations.

Comparison with existing USB stack. The old USB driver in
Windows has existed for several years and predates P. We com-
pare the old USB driver and new driver in terms of functionality,
performance, and reliability.

1. Functionality. The new USB hub driver has to deal with new
USB 3.0 hardware in addition to all the requirements for the
old driver. Therefore the new USB hub driver implements func-
tionality that is a super set of the functionality of the old hub
driver.

2. Reliability. The old USB hub driver had significantly more syn-
chronization issues in PnP, power and error recovery paths even
till date. The number of such issues has dropped dramatically in
the new USB hub driver. The number of crashes in the new USB
hub driver due to invalid memory accesses and race conditions
is insignificant.

3. Performance. The new USB hub driver performs much better
than the old USB hub driver —average enumeration time for
a USB device is 30% faster. We have not seen any instances
of worker item starvation that we used to see with the old hub
driver.

This gain in performance is mainly due to the highly asyn-
chronous nature of the new hub driver. In comparison, the old hub
driver blocks processing of worker items in several situations, lead-

ing to performance degradation. It is theoretically possible to de-
velop a driver that is not based on explicit state machines such as
in P, but is equally (or more) performant. However, in practice,
when we have tried to build such asynchronous drivers directly, we
have run into myriad of synchronization issues and unacceptable
degradation in reliability. The support for asynchrony in P in terms
of explicitly documented states and transitions, and the verification
tools in P that systematically identified corner cases due to asyn-
chrony were the key reasons why we were able to design the new
USB hub driver with both high performance and high reliability.

We note that the new USB hub driver has only been released to
the public for about a month at the time of this writing. Once we get
more empirical data from usage of USB by Windows 8 users, we
can make a more thorough comparison on actual number of crashes
and hangs with the old driver.

7. Related work

Synchronous languages. Synchronous languages such as Esterel
[4], Lustre [10] and Signal [3] have been used to model, and gener-
ate code for real-time and embedded systems for several decades.
All these languages follow the synchrony hypothesis, where time
advances in steps, and concurrency is deterministic —that is, given
a state and an input at the current time step, there is a unique pos-
sible state at the next time step. Lustre and Signal follow a declar-
ative dataflow model. Every variable or expression in Lustre rep-
resents a flow which is a sequence of values. For a flow x, Lus-
tre uses pre(x) do denote a flow with values postponed by one
time step. A Lustre program [10] is a set of definitions of flows,
where each flow is defined using some constant flows or other
flows. Even though flows can be recursively defined, each recur-
sive cycle should be broken using the pre operator. In contrast,
Esterel is an imperative language [4] where a program consists of
a collection of nested concurrently running threads, and each step
is triggered by an external event, and threads are scheduled until all
internally generated events are consumed. The Esterel compiler en-
sures a property called constructive causality, which guarantees ab-
sence of cyclical dependencies in propagating events, and ensures
that each step terminates. Harel’s StateCharts [11] is a visual lan-
guage, with hierarchical states, broadcast communication of events
and a synchronous fixpoint semantics which involves executing a
series of micro-steps within each time step until all internally gen-
erated events are consumed.

The synchronous model has the advantage that every event
sent to machine is handled in the next clock tick, and is widely
used in hardware and embedded systems. However, in an OS or a
distributed system, it is impossible to have all the components of
the system clocked using a global clock, and hence asynchronous
models are used for these systems. In such models events are
queued, and hence can be delayed arbitrarily before being handled.
However, arbitrary delays are unacceptable in OS components such
as device drivers, which require responsiveness in event handling.
The main focus of our work is an asynchronous model where
responsiveness is enforced using verification, with the ability do
code generation.

Asynchronous languages. Asynchronous languages are used to
model and program software systems. The adaptation of State-
Charts in the Rhapsody tool has produced a variant, which is
suitable for modeling asynchronous software systems. This vari-
ant (see [12]) allows steps that take non-zero time and resembles a
collection of communicating and interacting state machines, where
each machine has a named input queue, and each transition of a ma-
chine consumes a message from its input queue and possibly sends
messages to the output queues of one or more machines. Other
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asynchronous models include the actor model [13] and process cal-
culi, such as CSP [14] and CCS [16], and Join Calculus [8], which
have asynchronous processes communicating with each other via
messages. While these models are useful in modeling and reason-
ing about asynchronous systems, our goal is to unify modeling and
verification with programming, and generate code that can run in
an OS kernel.

Domain-specific languages. The Teapot [5] programming lan-
guage shares similar goals to our work in that they attempt to unify
modeling, programming and verification, although in a different ap-
plication domain —cache coherence protocols. Teapot’s continu-
ation passing design is related to the design of P’s call transitions.
The notion of deferred sets, ghost machines and erasure property,
default safety and liveness checks, delay bounding, and the ability
of the P compiler and runtime to generate code that runs in an OS
kernel are all unique to P.

Automatic stack management. There have been attempts to pro-
vide automatic stack management for event-driven programming to
allow the possibility of blocking constructs inside procedure calls
(e.g., [1]). In P, entry functions of states are written in non-blocking
style and call transitions are provided to conveniently factor com-
mon event handling code. Thus, stack management is particularly
simple in our current design.

8. Conclusion
We presented P, a domain specific language for writing asyn-
chronous event-driven programs. We have given a full formal treat-
ment of various aspects of P, including operational semantics, type
system, and verifier. We also presented experience using P to pro-
gram the USB stack that ships with Windows 8. The main technical
contribution of our work is an asynchronous model which forces
each event in the queue to be handled as soon as the machine asso-
ciated with the queue is scheduled, and has a chance to dequeue the
event. Our verifier systematically explores the state space of ma-
chines and ensures that there are no unhandled events. In certain
circumstances, such as processing a high priority event, or process-
ing a sequence of event exchanges during a transaction, some other
lower priority events may have to be queued temporarily. P has fea-
tures such as deferred events for a programmer to explicitly specify
such deferrals. Thus, our main contribution is the design of an asyn-
chronous language, which promotes a discipline of programming
where deferrals need to be declared explicitly, and consequently
leads to responsive systems.
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