
Rotation Variance in Graph Convolutional Networks

Nguyen Anh Mac

American School of Warsaw

Warszawska 202, 05-520 Bielawa, Poland

Email: 22mac_a@aswarsaw.org

Hung Son Nguyen

University of Warsaw

Krakowskie Przedmieście 26/28, 00-927 Warszawa, Poland

Email: son@mimuw.edu.pl

Abstract—Convolution filters in deep convolutional networks
display rotation variant behavior. While learned invariant be-
havior can be partially achieved, this paper shows that current
methods of utilizing rotation variant features can be improved
by proposing a grid-based graph convolutional network. By
performing spectral graph convolutions on features extracted
from subareas of images, we are able to take advantage of
the geometric nature of relational machine learning in graph
neural networks to be able to overcome rotation variant features
to perform object localization. We demonstrate that Grid-GCN
heavily outperforms existing models on rotated images, and
through a set of ablation studies, we show how the performance of
Grid-GCN implies that there exist more performant methods to
utilize fundamentally rotation variant features and we conclude
that the inherit nature of spectral graph convolutions is able to
learn invariant behavior.

I. INTRODUCTION

O
BJECT LOCALIZATION, i.e., specifying an object’s

location within an image, is an evolving subtask of

computational vision problems that have grown in prevalence

in recent years.

While the usage of deep convolutional networks in object

localization shows near-human level accuracy [1], [2], convo-

lutional neural networks exhibit fundamental flaws, primarily

rotation variant behavior. This lack of rotation invariance is a

cost of the translation invariance present within convolutional

networks. Previous works in creating rotation invariant models

utilize explicit methods in order to encourage or establish

learned invariance within filters [3], [4]; however, it is clear

that convolutional models do not naturally learn or exhibit

rotation invariant performance.

Recent advancements in Graph Neural Networks allow us

to utilize Graph Neural Networks (GNNs) in performing this

object localization task with rotational invariant behavior. Re-

lational machine learning presents an interesting methodology

to approach these flaws of convolutional networks by leverag-

ing the relational nature of the rest of the connected graph.

In theory, this spectral characteristic of relational machine

learning permits us to establish rotational invariance in an

object localization system by utilizing message passing and

neighborhood aggregation. There are previous works towards

object localization with relational machine learning solutions

[5], [6], [7], utilizing the geometric nature of graphs to

represent images. In this paper, we present a system to perform

grid-based object localization using Graph Neural Networks,

titled Grid-GCN. Figure 1 demonstrates the usage and output

of Grid-GCN. By employing spectral graph convolutions and

pre-established feature extractors, we can effectively represent

images geometrically and utilize neighborhood aggregation to

learn rotational invariance. We show that our model performs

comparably to state-of-the-art models (namely YOLOv4 and

ResNest in grid localization) in general operation and outper-

forms these models on rotated images, despite lacking explicit

methodology to counteract the impact of rotated images. Thus,

we show that relational machine learning demonstrates the

ability to learn invariant behaviour that deep convolutional

networks are unable to, highlighting the current ineffective

use of rotation variant features.

Fig. 1: Output of Grid-GCN. Grid-GCN outputs a grid

containing the confidence that an object is present within the

image. Yellow squares represent subareas where the confi-

dence is above the detection threshold.

The structure of the manuscript is given as follows. In Sec-

tion 2, we describe the previous works done regarding feature

extraction, graph neural networks, and object localization. Sec-

tion 3 outlines the principle concepts behind Grid-GCN and

the theoretical and practical considerations of implementation.

In Section 4, we describe our experimental approach and the

different datasets used to validate our approach, and Section 5

compares the results of Grid-GCN compared to existing object

localization solutions. More importantly, in this section we

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 81±90

DOI: 10.15439/2021F140

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 81

Ni1

Ni2

...

Nif

































hi1

hi2

...

hif

































...

...

Graph Construction

Spectral Graph Convolutions

Node Updates

Output of Node

Features of Node

Fully Connected

Fig. 2: Grid-GCN process. The figure depicts the process of Grid-GCN and Graph Neural Networks. Given a graph (constructed

from an image, as described in 3.1 Graph Construction), inference begins with graph convolutions, as described in 3.2 Spectral

Graph Convolutions for Grid-GCN. Graph convolutions produce an output vector for each node, inserted as the input for a series

of fully connected layers (equivalent to classification layers in traditional neural networks). Standard Graph Neural Networks

commence with node updating, where the orange node is updated with the features of the nodes connected (represented by

blue nodes). For both processes, each node produces an output vector that represents the confidence that a node contains an

object.

discuss the rotation variant nature of features from convolution

filters and how Grid-GCN demonstrates that there exists better

methods to use features to exhibit learned invariant behaviors.

In Section 6, we conclude with further discussion of the

practical and future works regarding this paper’s findings.

II. PREVIOUS WORK

A. Feature Extraction in Deep Learning

Feature extraction is the process of representing an initial

set of information into a set of informative and non-redundant

values called features. We primarily focus on feature extraction

in deep learning models. Most, if not all, models relating to

computer vision utilize a form of feature extraction [8], [1],

[2], [9], [10], [11]. By learning on classifications of a specified

object, the feature extraction model can effectively learn the

necessary embeddings to represent specified objects’ defining

features. This paper employs the usage of a pre-trained ResNet

model, which is detailed in [12]. ResNet has proven to be a

reliable feature extractor for a multitude of domains [12], [13],

and has shown the ability to operate at a range of resolutions

[14], [15], [16], [17], which is crucial for the purposes of

generalized datasets such as the Common Objects in Context

dataset (abbreviated to COCO) [18].

B. Object Localization

Object localization refers to locating and indicating the

location of objects within an image. There have been vast

improvements in object localization in recent years due to

significant technical improvements and the introduction of

widely available and high-quality data sets such as the Com-

mon Objects in Context (COCO) dataset [18]. In this paper,

we discuss object localization from the perspective of object

detection and semantic segmentation. Historically, attempts at

object localization in object detection tasks evaluate region

proposals generated by heuristic algorithms [19]; however, re-

gion proposal networks and embedded-region detection meth-

ods have been steadily gaining prevalence [20], [10], [11].

Popular models, such as single-shot detectors [11], utilize an

embedding region proposal network to perform localization,

while models such as You-Only-Look-Once (YOLO) [21]

utilize embedded region information generated from feature

extraction to perform localization. Object localization, from

the perspective of semantic segmentation, approaches local-

izing by indicating the presence of an object on a pixel-

wise basis. Segmentation models [22], [23], [24] often build

from convolutional networks to perform pixel-wise class pre-

dictions, essentially constructing a detailed localization of an

image.

82 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

C. Graph Neural Networks (GNNs)

Relational machine learning, precisely graph neural net-

works, are becoming increasingly prevalent for solving com-

putational vision tasks [5], [6], [7]. Solutions with relational

machine learning often utilize the geometric nature of graphs

to define a unique representation of images in order to effec-

tively learn node relationships or graph classifications [25]. In

this paper, we primarily focus on node classification, formally

represented as learning the label of each node using the state

of each node feature-vector to be as close as the ground truth

of the node.

yi = o(hi, xi) (1)

where yi is the output of a node, o is the output function, hi

is a node’s state embedding, and xi is the features of node i.

Modern GNNs follow a message propagation or neighbour-

hood aggregation principle, in which each embedding of each

node updates depending on it’s neighbors [25]. GNNs can

be loosely categorized into a spectral filter and spatial filter

models, both of which attempt to generalize convolution into

a geometric manner, thus are dubbed ‘Graph Convolutional

Networks’ (GCNs) [26]. However, while spatial approaches

to relational machine learning exist in theory, it faces chal-

lenges regarding the representations of local neighborhoods

[27], [28]. The key difference between spatial and spectral

approaches in spatial approaches emphasizes edges in a node’s

nearest K-neighbours, while spectral approaches generalize

across all neighbors effectively. The authors of [29] propose

spectral graph convolutions in which filters are multiplied

by graph signals and processed through graph coarsening to

produce accurate representations of local neighborhoods. We

employ the graph convolutional process given in [29] which

is further explained in 3.2 Spectral Graph Convolutions, for

the proposed solution.

III. GRID-GCN

Grid-GCN is inspired by the graph convolutional network

model framework outlined in [26]. While we borrow ideas

from [26], the organization and applications of the GCN

method is completely novel. Traditional GNNs operate on

the assumption that connected nodes are likely to share the

same label. This assumption, however, while not necessarily

incorrect, hinders modeling capacity. As such, GCNs removes

this limitation by encoding a graph structure using a neural

network and training on a supervised target. The readers are

referred to [26] for more details.

The process outlined in this section consists of three stages:

graph construction, feature extraction, and classification. In the

case of this experiment, we view an image as a ten by ten grid.

Grid-GCN uses a ten by ten grid due to the size constraints

of the COCO dataset [18]. In general, it is vital to consider

the amount of detail present within a subarea of a grid when

deciding upon the resolution of the grid in order to convey

succinct features relating to the object. The initial states of

each subarea of this grid are set equal to the features of this

subarea, and the input for each continuous iteration of internal

inference is the initial states of each subarea.

Each node updates it’s hidden state for a certain amount

of steps (200 in our experiment). The output of each node

are then placed into a traditional classification network, which

returns a confidence measure. Figure 2 illustrates the outlined

process.

A. Graph Construction

Fig. 3: Graph Construction. Images can be seen as a combi-

nation of subareas, which represent nodes of a graph. By doing

so, we can represent an image geometrically effectively. Each

node’s initial state is the features of the subarea, and the weight

of each connection is the cosine distance between respective

initial states.

It is possible to view each image as a graph, where

the nodes in the graph represent a subarea of a grid. The

initial state of each node in this graph is set equal to the

feature-vector extracted from the respective subarea. Figure

3 illustrates this concept. Each node is arbitrarily connected

to its immediate vertical, horizontal, and diagonal neighbors

on the grid structure whose edge weight is set equal to the

cosine distance between the states of their respective nodes. By

setting the edge weight equal to the cosine distance of the state

of a node’s immediate neighbor, the graph can comprehend

the notion of scale and similarity. Nodes whose states are

drastically different represent distinctions from background

and foreground from one another; as such, their states should

minimally impact each other. Formally, an edge between two

nodes is determined as follows:

Wij =
si · sj

||si||||sj ||
(2)

where Wij is the weight between nodes i and j, sn is the state

of the node n. It is important to note that since the graph is

undirected, Wij = Wji.

By setting the edge of two nodes as the weight of the cosine

distance of their states, objects are scaled-down, i.e., instances

of an object whose size is equivalent to one subarea in the

grid negatively impact neighboring nodes due to differing

states. Likewise, nodes whose states are similar to one another

reinforce the states of one another. By doing so, images whose

objects span multiple subareas more directly influence one

another.

ANH NGUYEN MAC, HUNG SON NGUYEN: ROTATION VARIANCE IN GRAPH CONVOLUTIONAL NETWORKS 83

B. Spectral Graph Convolutions

In this context, spectral convolutions offer a method to

filter repeated information from a node’s neighbors effectively.

A node’s state is not self-reinforced by an aggregate of the

neighborhood with similar states but instead reinforced by a

filtered state of the neighborhood, leading to diverse states

during both message passing and classification. Diverse states

preserve a node’s original state while incorporating crucial in-

formation from the neighborhood. Mathematically, to perform

effective convolutional operations on a graph, we must be able

to effectively multiply a signal with a diagonalized filter on

the Fourier basis. Convolution theory states that convolution in

the spatial domain is equivalent to multiplication in the Fourier

domain; thus, it is equivalent to eigendecomposition applied

on the graph Laplacian.

F (x, θ) = gθ(L)(x) = UgθU
Tx (3)

where L is the normalized graph Laplacian L = IN −
D−

1

2WD−
1

2 (where IN is the identity matrix, D is the

diagonal degree matrix, and W is the weighted adjacency

matrix), where gθ(N) = diag(θ) (where θ ε R
N is a vector

of Fourier coefficients), and U is the matrix of eigenvectors

of the normalized graph Laplacian, and x is the state of the

node [29], [26].

The naive approach to this process is generally considered

too inefficient to be utilized in practical cases; as such, [29]

proposed an efficient implementation of the above formula by

parameterizing the filter with the normalized Laplacian graph

and approximating the aforementioned function as a vector

whose terms are a part of the Chebyshev polynomial.

gθ(Λ) =
K−1
∑

k=0

θkTk(Λ) (4)

where Tk(x) is the Chebyshev polynomial Tk(x) =
2xTk−1(x) − Tk−2(x) and T0 = 1 and T1 = x, and

Λ = 2Λλmax
−1 − In where λmax represents the largest

eigenvalue in L. This approximation reduces the computational

complexity from O(n2) to O(|ǫ|) where ǫ is the set of edges.

The reader is advised to [29] for a more detailed justification.

Consider the general equation for the features of a particular

node at any given timestep t:

ht
i = f(xt−1

i ,
⋃

∀j:i⇒j

q(xt−1

j , ht−1

j , Eij)) (5)

where f is the update function, q is the message preparation

function, and Eij are the features between nodes i and j.

Graph Convolutional Networks specify the updating of the

hidden states as follows:

ht
i =

∑

∀j:i⇒j

N t−1

j θj (6)

where Nj is the output of a node from the convolution of the

hidden state with a filter, approximated using the Chebyshev

approximation, as defined as:

N t
i =

K−1
∑

k=0

θkTk(Λ) (7)

IV. THE PROPOSED METHOD

It is important to note that grid localization, as outlined in

the paper, is a novel task. Its nature is inherently difficult to

correctly evaluate the success of grid-based localization due

to a lack of previous work dedicated to the subject. As such,

we define our own measures of success. We classify a subarea

as predicted "correctly" (confidence score above the detection

threshold) if an object or lack thereof matches the ground truth.

Figure 4 illustrates an example of subareas of predicted grids

are classified as a true positive, true negative, false positive,

or false negative.

(a) Predicted Grid (b) Ground Truth Grid

(c) Samples Grid

Metric Amount

TP 2

TN 3

FP 2

FN 2

(d) Confusion Matrix

Fig. 4: Comparing a predicted grid to the ground truth.

In the Predicted Grid and Ground Truth Grid, yellow boxes

represent subareas with an (true or predicted) object. Thus,

blue boxes within the Samples Grid represent true results

(true positive and true negative), while orange boxes represents

false results. True positive or true negative results occur when

both the predicted and ground truth match and is positive or

negative respectively. Similarly, false negative results occur

when the predicted and ground truth subareas mismatch, and

the ground truth subarea is positive. False positive results occur

when the areas are mismatched, and the ground truth area is

negative.

A. Measures of Evaluation

F-Score. F-Score is a classic metric used in many other

works of object detection [30]. Classically, the F-Score mea-

84 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

sures the classification accuracy in terms of the harmonic mean

of the precision and recall.

F -Score = 2
precision · recall

precision+ recall

=
2TP

2TP + FP + FN

(8)

The harmonic mean property of the F-Score ensures that a

balance of identifying positives and negatives is observed.

This property is useful in scenarios with a large imbalance

of positives and negatives. For example, consider the case

where the rate of a positive sample to a negative sample is

1:99. A model that identifies all samples as negative returns

an accuracy rate of 99%, however, is not particularly helpful

in this context. Such a model, in contrast, has an F-Score

of 0. In this experiment and practical applications of Grid-

GCN, there is an imbalance of negative samples and positive

samples (particularly skewed towards negative samples). Thus,

F-Score is an appropriate measure of the success of Grid-GCN

in relation to pre-existing models.

Matthews Correlation Coefficient. Matthews Correlation

Coefficient (MCC) or phi coefficient, much like F-Score, is

a popular statistic in machine learning [31], [32]. MCC is

viewed as a balanced measure of true negative, true positive,

false negative, and false positive samples. Specifically, MCC

balances the performance of detecting each category of sam-

ples despite large imbalances in sample rates. MCC is defined

as the following expression:

TP · TN − FP · FN
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

The expression above produces results between -1 and 1,

where -1 symbolizes the opposite correlation between pre-

diction and truth, 0 is equivalent to random guessing, and 1

represents perfect predictions. While F-Score is an effective

statistic that accurately depicts the performance of a model,

there are particular imbalances in data that cause misleading

results, primarily due to the fact that F-Score does not consider

true negatives. For example, consider the scenario where a

model detects 100 true positive results, five false positive

results, one true negative, and nine false negative results. This

would produce an F-Score of 93.46%, however, notice that

the model is only detecting one negative sample out of a

total of 6 (one true negative and five false positive samples).

Thus, this model’s MCC is 6.64%, reflecting the model’s poor

performance in detecting negative samples. Therefore, using

MCC in conjunction with F-Score will accurately portray

Grid-GCN’s performance compared to other models.

B. Model Topology

The topology of Grid-GCN consists of three distinct, sepa-

rable ‘sections,’ the feature extraction, graph convolution, and

classification section. As mentioned previously, the feature

extraction section was implemented with a pretrained Resnet-

50, whose weights were frozen. The graph convolution section

consists of two distinct spectral graph convolution layers.

The function of these layers are detailed in 3.2 Spectral

Graph Convolutions. We chose a filter size of three for this

experiment, and hidden dimensions of 512 and 256 were

chosen for the first and second convolution layers, respectively.

A batch normalization and the RELU activation operator

were applied to each of these layers. During the Grid-GCN

training, a dropout of 0.5 was applied to the output of the

second convolution layer. Dropout layers within GNNs have

proven to be significantly important in the success of the

generalization of models during training. The classification

section of Grid-GCN consisted of two fully-connected layers

of a hidden dimension of 256. Batch normalization and RELU

were applied to the output of the first classification layer,

while the activation function of the second layer was sigmoid.

For each node, Grid-GCN outputs a vector representing the

confidence of each class.

C. Model Configuration

For this paper, Grid-GCN is implemented using Pytorch [33]

1.7.0, Pytorch-Geometric [34] 1.6.3 and Tensorflow [35] 2.4.0

on 2 Nvidia K80 GPUs. For feature extraction, our experiment

utilizes the Resnet-50 model trained on ‘ImageNet’ weights

included in the Keras interface, and the fast spectral convolu-

tion operations described in 3.2 Spectral Graph Convolutions

is implemented in Pytorch-Geometric by default. ResNet-50

uses a pooling mode of average, and we rescale the subareas

in the grid to 224x224. The Adam [36] optimizer, included in

Pytorch 1.7.0, whose hyperparameters were set to a learning

rate of 0.01 and a weight decay of 5·10−4 is used. Each image

is processed and trained in 200 steps.

D. Dataset

We use the COCO Dataset [18] which is divided into three

subsets, training, validation, and testing images, of which there

are 118k images in training, 5k in validation, and 41k in

testing. Each of these images is labeled using instances, of

which each instance represents an object (with a predetermined

class) and a mask. As such, we are able to translate the full

masks in each image into a grid, where each subarea a scalar

representing the presence of an object.

E. Training

Standard data augmentation procedures, consisting of ran-

dom scaling, rotation, mirroring is applied. We trained the

model using cross entropy loss, which has the following

formula:

L(y, ŷ) = −

K
∑

k

yk log ŷk (10)

where K represents the number of nodes (of which there were

100).

Validation or testing labels is not used to train the model,

and results mentioned in Table 1 are labels and samples

exclusively from the COCO testing set.

ANH NGUYEN MAC, HUNG SON NGUYEN: ROTATION VARIANCE IN GRAPH CONVOLUTIONAL NETWORKS 85

Standard

Model Recall Precision F-Score MCC

YOLOv4 0.7076 0.8398 0.7681 0.6001
ResNest 0.6079 0.8486 0.7084 0.5406
Grid-GCN 0.6941 0.8322 0.7569 0.5953

Rotated (randomly)

Model Recall Precision F-Score MCC

YOLOv4 0.6851 0.8042 0.7399 0.5549
ResNest 0.5171 0.7056 0.5969 0.3521
Grid-GCN 0.6871 0.8215 0.7483 0.5742

TABLE I: Recall, precision and F-Score of YOLOv4, ResNest, and Grid-GCN on the COCO dataset with and without rotation.

F. Baseline Models

YOLOV4. YOLOv4 [1] is a frontier object detection model,

whose trained weights are made public1. Recently, YOLOv4

achieved an mean average precision (abbreviated to mAP) of

43.5% [1] on the COCO [18] dataset, which is the model

that we utilized. While a newer version of the YOLO se-

ries (YOLOv5) has been made available, a technical report

regarding the construction and improvements of YOLOv5 has

not been made public, hence why YOLOv4 is used instead.

Given that YOLOv4 is an object detection model which pro-

duces bounding boxes, several adjustments must be made. To

compare these two models, we consider each subarea whose

corners are within the predicted bounding box to be a positive

result. Figure 5 illustrates comparing bounding boxes to a

grid. Naturally, object detection models are disadvantaged in

comparison to Grid-GCN in terms of Intersection-over-Union

(IOU) simply due to the fact that object detection models

are trained to perform localization in bounding boxes. The

model incorporates additional subareas into the final positive

sample count. Unfortunately, this is unavoidable as bounding

boxes are the predominant solution to non-segmentation object

localization. We create the final prediction of each subarea

by assigning each unique class’s values that intersects (or is

present) within the subarea.

Fig. 5: Comparing bounding boxes to a grid, where white

boxes represent positive subareas and black boxes represent

negative subareas. The figure shows how object detection

models are able to be compared to Grid-GCN by simply rep-

resenting subareas as a collection of classes whose bounding

box intersects the subarea.

ResNeSt. ResNeSt [23] is a state-of-the-art mode semantic

segmentation model, achieving a mean Intersection over Union

(mIoU) of 47.6% on the ADE20K validation set [23]. ResNeSt

utilizes split attention networks and a unified computation

block to outperform previous models in detection accuracy,

classification accuracy, and computation time. At the time of

1https://github.com/pjreddie/darknet

writing, ResNeSt is the most accurate model (detection-wise)

for the PASCAL-context dataset. For this experiment, we are

utilizing ResNeSt-269, whose pretrained weights were made

public 2. Logistically, comparing the ResNeSt-269 model to

Grid-GCN is trivial. We will perform a standard inference on

the image (generating a mask) and divide it into an identical

grid to the grid in Grid-GCN. Figure 6 illustrates a conversion

from a mask to a grid.

Fig. 6: Masks on a grid, where white boxes represent positive

subareas and black boxes represent negative subareas. The

figure shows how semantic segmentation models are able to

be compared to Grid-GCN by simply representing subareas as

positive if the mask overlaps. Image, with mask, is taken from

COCO dataset’s website using the explore feature3.

V. RESULTS

Standard operation. We define standard operation as infer-

ence and localization based on unmodified or unaugmentated

images from the COCO dataset. As seen in Table 1, Grid-

GCN performs comparably to YOLOv4 and significantly out-

performs ResNest in all metrics. Low recall from the ResNest

models suggests that the false negatives are significantly

prevalent, though the poor behaviour of ResNest is difficult

to explain.

Percent Decrease of Model Performance

Model Recall Precision F-Score MCC

YOLOv4 3.18% 4.23% 3.67% 7.53%
ResNest 14.94% 16.85% 15.74% 34.87%
Grid-GCN 1.01% 1.29% 1.14% 3.54%

TABLE II: Percent decrease in performance of models where

images were rotated randomly, on the COCO dataset.

Rotated Images. We perform a similar evaluation in this

subcategory as the standard operation with the images rotated

at random angles. YOLOv4, and approaches to computational

2https://github.com/zhanghang1989/ResNeSt
3https://cocodataset.org/#explore

86 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

10 15 20 25 30

2

4

6

8

10

12

14

16

18

Grid Length

T
im

e
[s

ec
o

n
d

s
p

er
im

ag
e]

Inference time dependence on grid length

10 15 20 25 30
10.79

10.8

10.8

10.81

10.81

10.82

Grid Length
M

o
d

el
S

iz
e

[r
eq

u
ir

ed
m

em
o

ry
in

g
ig

ab
y

te
s]

Model size dependence on grid length

Fig. 7: Model size and inference time dependence on grid length. It is evident that both the size of the model (including

graph information) and the inference time is exponentially correlated to the length of the grid. This exponential relationship is

primarily driven by the fact that as grid size increases, the number of nodes in the graph increases exponentially.

vision tasks as a whole, rely on convolutional techniques to

be able to reduce the dimensionality of data into a meaningful

representation. It is known that convolutions, while being

translation invariant do not exhibit rotational invariance. In

more recent technology, the impact of rotational variance was

reduced primarily by rotation augmentation in data, allowing

filters to condition some form of rotational invariance. The

impact of rotation is evident in both the YOLOv4 and ResNest

models’ performance after the images have been rotated,

where there is a noticeable decrease in all performance metrics,

as seen inTable 2. However, the diagonalization effect of

bounding boxes may play a role in the decreased precision

and recall for YOLOv4. Specifically, the diagonalization effect

of bounding boxes increases the area of labeled positive

samples, as the bounding box covers a more extensive than

necessary area due to the nature of the output of such models.

The diagonalization effect may explain the more pronounced

decrease in precision for the YOLOv4 model. However, the

drastic decrease in MCC suggests that the diagonalization

effect was overshadowed by the increase in false negative

results, implying that this diagonalization effect did not as

heavily impact the performance of YOLOv4 as the rotational

invariant nature of the model did.

While there was a decrease in recall and precision for

Grid-GCN when images were rotated, this decrease was not

as pronounced as the decrease for YOLOv4 and ResNest.

Though this rotational invariance is not concrete (there was

still a decrease in both recall and precision when images were

rotated), the impact of rotation on Grid-GCN was significantly

less than the impact on both YOLOv4 and ResNest, as shown

in Table 2 by the lower percentage decrease in all performance

metrics. It is important to emphasize that no explicit techniques

to enforce rotational invariance were included within Grid-

GCN. In other terms, Grid-GCN was able to learn a soft form

of rotation invariance despite having rotation variant features.

Previous works attempting rotation invariant image classifi-

cation utilized explicit techniques [3], [4], whereas Grid-GCN

learned rotation invariant behavior in an unsupervised fashion.

Grid-GCN’s performance prompts the larger conversation

of whether there is an aspect of features generated from

convolution filters which contain a higher degree of rotation

invariance than previously thought. Fundamentally, learned

invariance in convolutional networks are caused by training

pooling units which immediately proceed convolution filters

[37]. These pooling layers allow a degree of rotation, in

learned examples, to provide approximate or identical features

from convolutional filters; hence demonstrating learned invari-

ance. However, overabundance of pooling units causes loss of

vital detail, thus, successful models which demonstrate learned

invariance achieve a balance of pooling units to preserve both

detail and invariance. According to their respective authors,

all compared models and the ResNet backbone do achieve

this balance [12], [1], [23]. Despite the input features of

Grid-GCN being rotation variant, the comparatively minimal

impact of rotation on Grid-GCN compared to both ResNeSt

and YOLOv4 suggests there exists better methods to utilize

learned variance in features.

To further understand the origin of Grid-GCN’s learned

invariance, we conducted a set of ablation studies to examine

the behavior of our model. In the first ablation study, we

removed the grid and feature extractor aspect of Grid-GCN,

and we solely focused on if this invariant behavior originated

from spectral graph convolutions. This was done by changing

ANH NGUYEN MAC, HUNG SON NGUYEN: ROTATION VARIANCE IN GRAPH CONVOLUTIONAL NETWORKS 87

the size of the grid to 100 by 100, and resizing images to

100 by 100. Next, the initial states of nodes were not features

extracted from ResNet, rather, normalized RGB values. After

training this model under similar conditions, we compared

the performance of such a model with standard and rotated

images (labelled as "Non-Grid GCN" in the table below). In

the second ablation study, we removed the spectral convolution

aspect of the model. We still represented each image as a ten

by ten grid with the initial state of each node still being output

features from the ResNet backbone. Instead of using a GCN,

these features were fed into a Support Vector Machine (SVM),

and this SVM classified each node within the grid. After

training this model under similar conditions, we compared the

performance of such a model with standard and rotated images

(labelled as "Grid SVM" in the table below)

Percent Decrease of Model Performance

Model Recall Precision F-Score MCC

YOLOv4 3.18% 4.23% 3.67% 7.53%
ResNest 14.94% 16.85% 15.74% 34.87%
Grid-GCN 1.01% 1.29% 1.14% 3.54%
Non-Grid GCN 2.11% 3.02% 2.83% 5.74%
Grid SVM 5.33% 5.77% 4.14% 7.98%

TABLE III: Percent decrease in performance of models where

images were rotated randomly, on the COCO dataset, includ-

ing the modified GCN and Grid SVM.

In all metrics, Non-Grid GCN displayed less of a perfor-

mance decrease in comparison to Grid SVM. This indicates

that the impact of learned invariance from the ResNet back-

bone is not as impactful as the learned invariance originating

from spectral graph convolutions. The exact reasons as to why

this is the case is still unclear, however, a likely hypothesis is

that it originates from the fact that adjacent nodes are taken

into consideration during the spectral convolutions. Analogous

to how convolutional networks learn invariant behavior due

to pooling layers, it maybe be possible that the fact that

the state of neighboring nodes are propagated act as a form

of pooling. Furthermore, both of these models were more

heavily impacted by rotation than Grid-GCN, suggesting that

the minimal impact on the model’s performance is attributed

to both the rotation invariant behavior of the ResNet backbone

and the dynamic nature of graph convolutions, not either/or.

This implies that both the learned invariant behavior of the

ResNet backbone and the consideration of neighboring nodes

in spectral graph convolutions play a vital role in the learned

invariant behavior of Grid-GCN.

In summary, Grid-GCN performs comparably to models in

the metrics defined for this experiment (namely F-Score and

MCC). Despite having no explicit rotation invariant aspects,

Grid-GCN learned a soft-form of rotational invariant behavior

and thus mitigated the impact of rotation variant filters on

rotated images and outperformed state-of-the-art models on

rotated images. It is likely that the origins of this learned

invariant behavior results from a combination of the invariant

behavior of the ResNet backbone and the dynamic nature of

graph convolutions.

VI. DISCUSSION

The most major limitation of Grid-GCN is the nature of

grid localization. For the sake of demonstrating the fact that

rotation variant features could be better utilized, Grid-GCN

performs object localization on a grid (justification for such a

choice is further explained in the previous section). Practically

speaking, this design choice heavily limits the use cases for

Grid-GCN. While there exists tasks which require grid-based

object localization, namely subtasks of object detection [38],

[39], [40], grid-based object localization by itself is rare.

However, it is important to consider the fact that the primary

goal of this paper was to emphasize the idea that current

models are ineffective at utilizing rotation variant features

and that graph neural networks are able to display invariant

behavior. Grids are limited yet necessary drawback to use

graphs in computer vision.

Another consideration for practical uses of Grid-GCN is the

inference time per image. On average, Grid-GCN spends 1068

ms per image, while YOLOv4 has an inference time of 155

ms, and ResNest has an inference time of 407 ms with the

implementation outlined in Section 4.3. This vast imbalance

of time between compared models and Grid-GCN can be

attributed to the graph construction. In the process of graph

construction, feature extraction of a subarea occurs n2, 100

in the case of this experiment, times. Moreover, the process

of graph convolutions is, in its nature, slower than existing

filters and standard convolutions as each image require a series

of steps on processing (200 in the case of this experiment),

thus, why Grid-GCN is significantly slower than the compared

models. Ideally, developing a method to parallelize feature

extraction across subareas (as they are independent of one

another) may offer a significant improvement to inference

time. Future works for accelerating graph processing on the

hardware level will also offer a significant improvement of

inference time [41].

Another factor is the scalability of the model. As the

resolution of the grid increases, the resources (namely memory

and time) required to sustain the model increase exponentially.

Figure 7 illustrates both the inference time per image and

the memory required to sustain the model as the grid length

increases. Though the model itself does not grow exponentially

(the model’s memory processing is static), the graph informa-

tion grows exponentially. Thus, the exponential nature of grids

prohibits high-resolution versions of Grid-GCN in a practical

manner both in time constraints and in-memory constraints.

VII. CONCLUSION

We have introduced a grid-based relational learning frame-

work for object localization using graph convolutional net-

works. We show that our framework was able to display rota-

tional invariant behavior, outperforming state-of-the-art object

localization models on rotated planes despite lacking explicit

methodology to enable invariant performance. Thus, we show

that GCNs are able to implicitly learn invariant behaviour

that deep convolutional networks are unable to. Moreover, we

88 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

discuss the origins of the learned invariant behavior in Grid-

GCN, namely considering spectral graph convolutions and the

ResNet backbone through a set of ablation studies.

Our paper highlights two distinct topics of interest for

future work. The methodology in which relational machine

learning learns invariant behaviour in a more effective manner

than traditional machine learning frameworks is still unclear.

Exploring this methodology can be done by modifying and

alternating any aspect of the Grid-GCN process. Moreover,

viability of the outlined processes is dependent on alleviating

time and memory constraints associated with graph machine

learning.

REFERENCES

[1] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed
and accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020.
[Online]. Available: https://arxiv.org/abs/2004.10934

[2] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, “Deep learning for generic object detection: A
survey,” International Journal of Computer Vision, vol. 128, no. 2,
pp. 261–318, Oct. 2019. [Online]. Available: https://doi.org/10.1007/
s11263-019-01247-4

[3] J. Kim, W. Jung, H. Kim, and J. Lee, “Cycnn: A rotation invariant cnn
using polar mapping and cylindrical convolution layers,” 2020.

[4] D. Marcos, M. Volpi, and D. Tuia, “Learning rotation invariant
convolutional filters for texture classification,” 2016 23rd International

Conference on Pattern Recognition (ICPR), Dec 2016. [Online].
Available: http://dx.doi.org/10.1109/ICPR.2016.7899932

[5] W. Shi and R. Rajkumar, “Point-GNN: Graph neural network for 3d
object detection in a point cloud,” in 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). IEEE, Jun. 2020.
[Online]. Available: https://doi.org/10.1109/cvpr42600.2020.00178

[6] A. Luo, X. Li, F. Yang, Z. Jiao, H. Cheng, and S. Lyu, “Cascade graph
neural networks for RGB-D salient object detection,” in Computer

Vision - ECCV 2020 - 16th European Conference, Glasgow, UK,

August 23-28, 2020, Proceedings, Part XII, ser. Lecture Notes in
Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm,
Eds., vol. 12357. Springer, 2020, pp. 346–364. [Online]. Available:
https://doi.org/10.1007/978-3-030-58610-2_21

[7] Y. Wang, K. Kitani, and X. Weng, “Joint object detection and multi-
object tracking with graph neural networks,” in Proceedings of (ICRA)

International Conference on Robotics and Automation, May 2021.
[8] A. O. Salau and S. Jain, “Feature extraction: A survey of the types,

techniques, applications,” in 2019 International Conference on Signal

Processing and Communication (ICSC). IEEE, Mar. 2019. [Online].
Available: https://doi.org/10.1109/icsc45622.2019.8938371

[9] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection
and feature extraction techniques in machine learning,” in 2014 Science

and Information Conference. IEEE, Aug. 2014. [Online]. Available:
https://doi.org/10.1109/sai.2014.6918213

[10] Z. Chen, X. Jin, B. Zhao, X. Wei, and Y. Guo, “Hierarchical
context embedding for region-based object detection,” in Computer

Vision - ECCV 2020 - 16th European Conference, Glasgow, UK,

August 23-28, 2020, Proceedings, Part XXI, ser. Lecture Notes in
Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm,
Eds., vol. 12366. Springer, 2020, pp. 633–648. [Online]. Available:
https://doi.org/10.1007/978-3-030-58589-1_38

[11] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector,” Lecture

Notes in Computer Science, p. 21–37, 2016. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-46448-0_2

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). IEEE, Jun. 2016. [Online]. Available:
https://doi.org/10.1109/cvpr.2016.90

[13] D. Rukhovich, K. Sofiiuk, D. Galeev, O. Barinova, and A. Konushin,
“Iterdet: Iterative scheme for object detection in crowded environments,”
in Structural, Syntactic, and Statistical Pattern Recognition - Joint

IAPR International Workshops, S+SSPR 2020, Padua, Italy, January

21-22, 2021, Proceedings, ser. Lecture Notes in Computer Science,

A. Torsello, L. Rossi, M. Pelillo, B. Biggio, and A. Robles-Kelly,
Eds., vol. 12644. Springer, 2020, pp. 344–354. [Online]. Available:
https://doi.org/10.1007/978-3-030-73973-7_33

[14] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test
resolution discrepancy,” in Advances in Neural Information Processing

Systems 32: Annual Conference on Neural Information Processing

Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,

BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 8250–
8260. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
hash/d03a857a23b5285736c4d55e0bb067c8-Abstract.html

[15] Z. Lu, X. Jiang, and A. Kot, “Deep coupled ResNet for low-resolution
face recognition,” IEEE Signal Processing Letters, vol. 25, no. 4, pp.
526–530, Apr. 2018. [Online]. Available: https://doi.org/10.1109/lsp.
2018.2810121

[16] M. Kawulok, P. Benecki, S. Piechaczek, K. Hrynczenko, D. Kostrzewa,
and J. Nalepa, “Deep learning for multiple-image super-resolution,”
IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 6, p.
1062–1066, Jun 2020. [Online]. Available: http://dx.doi.org/10.1109/
LGRS.2019.2940483

[17] A. Zhou, Y. Ma, Y. Li, X. Zhang, and P. Luo, “Towards improving
generalization of deep networks via consistent normalization,” CoRR,
vol. abs/1909.00182, 2019. [Online]. Available: http://arxiv.org/abs/
1909.00182

[18] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in Computer Vision - ECCV 2014 - 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, ser.
Lecture Notes in Computer Science, D. J. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, Eds., vol. 8693. Springer, 2014, pp. 740–755.
[Online]. Available: https://doi.org/10.1007/978-3-319-10602-1_48

[19] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” in 2014 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28,

2014. IEEE Computer Society, 2014, pp. 580–587. [Online]. Available:
https://doi.org/10.1109/CVPR.2014.81

[20] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017.
[Online]. Available: https://doi.org/10.1109/TPAMI.2016.2577031

[21] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2016,

Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016,
pp. 779–788. [Online]. Available: https://doi.org/10.1109/CVPR.2016.91

[22] A. Tao, K. Sapra, and B. Catanzaro, “Hierarchical multi-scale attention
for semantic segmentation,” CoRR, vol. abs/2005.10821, 2020. [Online].
Available: https://arxiv.org/abs/2005.10821

[23] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun,
T. He, J. Mueller, R. Manmatha, M. Li, and A. J. Smola, “Resnest:
Split-attention networks,” CoRR, vol. abs/2004.08955, 2020. [Online].
Available: https://arxiv.org/abs/2004.08955

[24] Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations
for semantic segmentation,” in Computer Vision - ECCV 2020 - 16th

European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,

Part VI, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof,
T. Brox, and J. Frahm, Eds., vol. 12351. Springer, 2020, pp. 173–190.
[Online]. Available: https://doi.org/10.1007/978-3-030-58539-6_11

[25] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun, “Graph neural networks: A review of methods and
applications,” AI Open, vol. 1, pp. 57–81, 2020. [Online]. Available:
https://doi.org/10.1016/j.aiopen.2021.01.001

[26] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in 5th International Conference on

Learning Representations, ICLR 2017, Toulon, France, April 24-26,

2017, Conference Track Proceedings. OpenReview.net, 2017. [Online].
Available: https://openreview.net/forum?id=SJU4ayYgl

[27] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” in 2nd International Conference

on Learning Representations, ICLR 2014, Banff, AB, Canada, April

14-16, 2014, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2014. [Online]. Available: http://arxiv.org/abs/1312.6203

ANH NGUYEN MAC, HUNG SON NGUYEN: ROTATION VARIANCE IN GRAPH CONVOLUTIONAL NETWORKS 89

[28] Q. Liu, M. Kampffmeyer, R. Jenssen, and A. Salberg, “SCG-Net:
Self-Constructing Graph Neural Networks for Semantic Segmentation,”
CoRR, vol. abs/2009.01599, 2020. [Online]. Available: https://arxiv.org/
abs/2009.01599

[29] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Advances in Neural Information Processing Systems 29: Annual

Conference on Neural Information Processing Systems 2016, December

5-10, 2016, Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von
Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp. 3837–
3845. [Online]. Available: https://proceedings.neurips.cc/paper/2016/
hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html

[30] D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, H. Omata,
T. Kashiyama, and Y. Sekimoto, “Global road damage detection:
State-of-the-art solutions,” in IEEE International Conference on

Big Data, Big Data 2020, Atlanta, GA, USA, December 10-13,

2020, X. Wu, C. Jermaine, L. Xiong, X. Hu, O. Kotevska,
S. Lu, W. Xu, S. Aluru, C. Zhai, E. Al-Masri, Z. Chen, and
J. Saltz, Eds. IEEE, 2020, pp. 5533–5539. [Online]. Available:
https://doi.org/10.1109/BigData50022.2020.9377790

[31] D. Chicco and G. Jurman, “The advantages of the matthews correlation
coefficient (MCC) over f1 score and accuracy in binary classification
evaluation,” BMC Genomics, vol. 21, no. 1, Jan. 2020. [Online].
Available: https://doi.org/10.1186/s12864-019-6413-7

[32] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for
imbalanced data using matthews correlation coefficient metric,” PLOS

ONE, vol. 12, no. 6, p. e0177678, Jun. 2017. [Online]. Available:
https://doi.org/10.1371/journal.pone.0177678

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems

32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,

pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[34] M. Fey and J. E. Lenssen, “Fast graph representation learning
with pytorch geometric,” CoRR, vol. abs/1903.02428, 2019. [Online].
Available: http://arxiv.org/abs/1903.02428

[35] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in Proceedings of the 12th USENIX Conference on

Operating Systems Design and Implementation, ser. OSDI’16. USA:
USENIX Association, 2016, p. 265–283.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

[37] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[38] J. Gao, T. Zhang, and C. Xu, “Graph convolutional tracking,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019.
[39] A. Nicolicioiu, I. Duta, and M. Leordeanu, “Recurrent space-time

graph neural networks,” in Advances in Neural Information Processing

Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/383beaea4aa57dd8202dbff464fee3af-Paper.pdf

[40] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng, “A2-nets: Double
attention networks,” CoRR, vol. abs/1810.11579, 2018. [Online].
Available: http://arxiv.org/abs/1810.11579

[41] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph
neural networks,” in 2020 57th ACM/IEEE Design Automation Confer-

ence (DAC), 2020, pp. 1–6.

90 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

