
Practical parallelization of Gear-Nordsieck and

Brayton-Gustavson-Hatchel stiff ODE solver

Marek Stabrowski

Warsaw University of Technology, Poland, e-mail: marek.2491@gmail.com

Abstract—The paper compares two ODE solvers using an
example of a heat transfer equation. The sequential version
of Brayton-Gustavson-Hatchel solver has been slightly inferior
to Gear-Nordsieck solver. Algorithms profiling has led to the
decision of parallelizing linear equation solving section and
function evaluation. The first approach (parallelizing linear
equations) improves performance of both algorithms. Second
approach (parallelizing function evaluation) boosts BGH solver
performance. Finally, it has been proved that wholly parallel
version of BGH solver is more efficient with respect to processing
time.

Index Terms—differential equations, Brayton-Gustavson-
Hatchel ODE solver, Gear-Nordsieck ODE solver, parallel com-
putations

I. INTRODUCTION

T
HE PROBLEM of parallelism introduction in the field

of ordinary differential equations (ODE) systems is not

new. During the last 50 years three main directions of parallel-

techniques have been investigated [4] :

- across the method — e.g. independent stages of Runge-Kutta

or extrapolation integrators evaluated in parallel;

- across the problem — e.g. waveform relaxation;

- across the time-domain - e.g. PINT, PFASST .

This paper will be devoted to parallelization across the method,

applied to the field of stiff ODE solvers.

II. BASIC FEATURES OF BRAYTON-GUSTAVSON-HATCHEL

ODE SOLVER

Gear-Nordsieck method [3] is at present a classic tool for

solving of stiff ordinary differential equations (ODE). Critical

analysis of backward differentiation formulas (BDF) method

helped to select the possible challenger - a method developed

some 20 years ago by Brayton, Gustavson and Hatchel (in

further course BGH method) [5]. A problem to be solved, i.e.

ODE system, may be written in the form:

f(x, ẋ, t) = 0, 0 ≤ t ≤ T (1)

where f is a vector (a set of functions). The Gear method

uses Nordsieck vector components

(xn, hn, ẋn, 1/2h
2
nẍn,, (1/k!)h

k
ny

(k)
n) (2)

as basic backward information. Brayton, Gustavson and

Hatchel have forwarded the thesis that usage of backward

information in the form

xn−j , j = 0, 1, ...k (3)

This work was not supported by any organization

is more efficient and leads to stable formulas, even for

rapidly changing step size h.

The implementation of BGH method developed by the

author [5] features variable order, operation count has been

reduced and new efficient error control algorithm has been

introduced. Predictor and corrector coefficients are computed

through actualisation of old ones. Antisymmetry of square

arrays is taken into account. Two-dimensional arrays are ef-

fectively indexed as one-dimensional. New values of step size

reduction and expansion coefficients have been introduced.

Asymmetric dead space in order changing section helps elimi-

nate unnecessary order thrashing. The results of comparison of

BGH algorithm [5] and open source version of Gear-Nordsieck

algorithm [3], show competitiveness of BGH algorithm.

III. AN EXAMPLE OF REAL WORLD ODE SYSTEM – HEAT

TRANSFER PROBLEM

An example of heat diffusion through the wall will be used

for comparison of both algorithms in sequential and parallel

versions. The heat conduction equation for this case has the

form
∂T

∂t
=

λ

cpρ

∂2T

∂x2
(4)

where T - temperature depends on both time and place in

the wall, t - time, λ - heat transfer coefficient in the wall

material, cp - concrete heat capacity coefficient, ρ - concrete

density, x - coordinate location measured across the wall.

In order to solve this parabolic partial differential equation,

the derivative in space can be represented in differential form

by dividing the wall thickness L into a finite number of N

nodes. A system of ordinary differential equations describing

temperature changes over time in individual nodes is then

obtained:
dTj

dt
=

λ

cpρ

T n
j−1 − 2T n

j + T n
j+1

(∆x)2
(5)

This equation describes temperature changes in nodes lo-

cated inside the wall. The temperature at the edge nodes (left

and right wall surfaces) can be determined from simple alge-

braic equations averaging the temperature inside and outside

the wall.

The heat diffusion through the wall is now described by

the N-2 system of first order ordinary differential equations

(5) and two algebraic equations. This problem can be easily

scaled, i.e. the number of differential equations (5) can be

changed.

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 313±316

DOI: 10.15439/2021F141

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 313

Fig. 1. Execution time ratio of BGH algorithm vs. Gear algorithm - sequential
versions

IV. COMPARISON OF BRAYTON-GUSTAVSON-HATCHEL

AND GEAR-NORDSIECK SEQUENTIAL ODE SOLVERS

The implementation of Gear-Nordsieck algorithm re-

designed by J. P. Moreau [3] has been selected for the

comparisons in current research. The tests reported here have

been performed on the computer with SkyLake processor. It

features four physical cores (threads) and the additional four

virtual cores/threads (hyperthreading). The source code of both

algorithms has been compiled with C/C++ compiler version

8.3.1 and subsequently has been run on the Skylake desktop

(4 physical cores) with Linux Fedora 31 operating system.

Temperature distribution in the concrete wall (thickness =

0.1 m) have been computed for the time points 2, 4, 6 sec. Effi-

ciency of sequential BGH algorithm, in the sense of execution

time, is only slightly inferior to Gear algorithm (fig. 1). It can

be observed that the advantage of Gear algorithm diminishes

with increased number of ordinary differential equations. For

400 equations Gear algorithm outperforms BGH algorithm by

the factor of almost 2.0 but for 6400 equations this factor falls

to 1.2.

V. PROFILING OF BGH AND GEAR ODE SOLVERS

It is advisable, before any form of software tuning, to

locate critical sections, functions and subroutines, consuming

meaningful execution time. Profiling of both algorithms (for

800 equations) implementations has been carried out with the

aid of valgrind/callgrind tool. Two following tables (table I and

table II) present representative sample data of sections/subrou-

tines call count and approximate percent share of execution

times.

Subroutines performing linear equations LU decomposition

and solving gausol and gaudec are counterparts of decomp

and solve. Computation of the function to be integrated is

located in subroutines engl45, dgl14 vs. HeatTransfer. It is

apparent that the function evaluation (formula (5) for BGH

solver) is one candidate for parallelization (see section 6).

Another parallelization candidate is linear equation solving

routine gausol and solve. Both these routines consume more

TABLE I
CALLGRIND PROFILING OF SERIAL BGH ALGORITHM

approx. %% time no. of calls

BGHstiff 1.17 8000

solve 95.36 812

decomp 2.52 46

HeatTransfer 0.67 74414

interp 0.11 8000

predictor 0.06 1208

TABLE II
CALLGRIND PROFILING OF SERIAL GEAR-NORDSIECK ALGORITHM

approx. %% time no. of calls

gear4 6.95 4

awp 5.85 16

engl45 49.1 483351

dgl14 28.95 213

gausol 3.14 8000

gaudec 2.88 71

execution time than LU decomposition routines. However,

such conclusion and approach is superficial and naive. It has

been proved elsewhere [6] that the decomposition routines

gaudec and decomp are more promising with respect to

parallelization (see section 7).

The number of the linear equations routines calls does

not depend on the number of nodes, i.e. on the number of

differential equations. However, the dimension of the system

rises with the square of the nodes number. It is quite reasonable

to expect, that parallelization will be more efficient in the

case of larger, fine-grained systems. Different results may

be expected in the case of parallelization and fine-tuning of

function evaluation. In the case of 400 differential equations

BGH algorithm performs about 22% of function evaluations

with respect to Gear algorithm. For 6400 ordinary differential

equations this ratio falls to 1%. It may be expected that BGH

algorithm will be more efficient in the case of more complex

ODE formulas.

VI. PARALLELIZATION OF FUNCTION COMPUTATION IN

GEAR AND BGH ODE SOLVERS

At first the results of parallel computation of ODE function

(5) will be presented. Parallelization will be implemented in

both cases with the aid of POSIX pthreads library [1, 2].

Computation is performed in N nodes across the wall. Quite

naturally, this set of N computations may be divided into

the segments assigned to individual cores through creation of

appropriate threads.

Parallelization has limited influence on computation effi-

ciency (timing) for 400 equations (fig.2). The situation is

better for 800 equations, as forking of 4 threads speeds-up

the processing by the factor of 3.5, reaching 6 for 8 threads.

For 1600 equations, the speed-up factor reaches the value of

4 for 4 threads and 7 to 8 for 8 threads. Limited speed-up

314 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

Fig. 2. The effect of function (5) parallelization in BGH algorithm; 4 and 8
threads without and with threads affinity

for lower equations count results from overhead of threads

forking. In another series of experiments, an attempt to limit

the overhead of threads forking has been implemented. It has

been achieved through fixed bounding of individual threads

with specific processor cores (affinity mechanism). For lower

equation count, introduction of threads affinity has adverse

influence on computation efficiency (fig. 2). The setting of

threads affinity incurs higher overhead of thread forking. For

higher equation count (e.g. at 1600 equations and above) this

additional overhead is relatively small, compared with real

number crunching inside individual threads. Summing it up

- there has been no execution speed-up due to threads affinity

setting.

Fig. 3. The effect of function (5) parallelization in Gear algorithm; 4 and 8
threads without and with threads affinity

Similar experiments with parallelization of function eval-

uation in Gear-Nordsieck algorithm, presented in fig. 3, are

disappointing. In the case of basic 4-thread parallelization, the

speed-up ranges from 2 (800 equations) up to 3. Hyperthread-

ing improves slightly the results for higher number of equa-

tions. Affinity setting degrades the performance. Comparison

of BGH and Gear-Nordsieck solvers with parallelized function

evaluation seems to confirm the preliminary profiling research.

Parallelizing of this code section improves the performance

of BGH solver almost by the factor equal to the number of

processor cores. In the case of Gear-Nordsieck solver, the

improvement is markedly lower, moreover for basic (without

affinity) parallelization only.

VII. PARALLELIZATION OF LINEAR EQUATION SOLVING IN

GEAR AND BGH ODE SOLVERS

The second area of the BGH and Gear algorithms, poten-

tially amenable to parallelization and speed-up, is the linear

equation solving section. Parallel linear equation solvers have

been designed and tested very extensively [6, 2]. The efficiency

of parallelization depends, among others, on the sparsity of

the coefficient matrix. In general, parallel speed-up is larger

in the case of rather dense matrices and falls down for the

sparse ones.

Fig. 4. The effect of linear equation solver parallelization in BGH algorithm;
4 and 8 threads without and with threads affinity

Straightforward parallelization (i.e. without thread affinity)

results in speed-up proportional to the number of threads (fig.

4). The results for lowest equation count are slightly inferior,

as the parallelization gains are offset by the overhead of

threads forking. Similarly, as in the case of function evaluation,

introduction of thread affinity does not improve efficiency.

Fig. 5. The effect of linear equation solver parallelization in Gear algorithm;
4 and 8 threads without and with threads affinity

Parallelization of linear equation solver in Gear-Nordsieck

algorithm leads to similar results. For higher equations/nodes

number, the speed-up (fig. 5) is almost proportional to the

number of forked threads. The improvement for lower equation

count (800 and below) is lower than in the case of BGH solver.

Also, the influence of affinity setting is negligible.

MAREK STABROWSKI: PRACTICAL PARALLELIZATION OF GEAR-NORDSIECK AND BRAYTON-GUSTAVSON-HATCHEL STIFF ODE SOLVER 315

Fig. 7. Cumulative speed-up of multi-threaded solvers with linear equations
and function computation vs. sequential Gear-Nordsieck solver

VIII. COMPARISON OF THE SOLVERS WITH PARALLEL

FUNCTION EVALUATION

Fig. 6. Comparison of BGH and Gear-Nordsieck solvers with parallel function
evaluation; 4 and 8 threads

It has been proved that parallelization of linear equation

solving improves the performance of both solvers in almost

equal degree with small advantage of BGH solver. Paralleliza-

tion of function evaluation favors BGH solver. Direct compar-

ison of such parallel versions of both solvers is presented in

fig. 6. It follows that BGH solver is faster by the factor of 2

for 4-thread version, reaching the speed-up of 4 to 5 for 8-

thread (hyperthreading) version. This advantage is a bit lower

for higher equation count.

IX. CUMULATIVE COMPARISON OF THE SOLVERS

In previous sections, two partial parallelization modifica-

tions of both solvers have been presented and investigated.

However, the end user is rather interested in the final cumu-

lative effect of these modifications. In order to perform such

comparison, a basic sequential Gear-Nordsieck solver has been

selected as the reference. Both solvers have been parallelized

in a cumulative way, i.e. through parallel linear equation and

function computation. First, it can be observed (fig. 7) that hy-

perthreading leads to inferior performance, as compared with

4-thread version. Next, parallel versions of Gear-Nordsieck

solver are significantly slower than the sequential version.

Third observation reveals good parallelization potential of

BGH solver. Parallel version of BGH solver outperforms the

fastest version of Gear-Nordsieck solver by 20-40% for higher

equation count.

X. CONCLUSIONS

Comparison of basic sequential version of Gear-Nordsieck

ODE solver and Brayton-Gustavson-Hatchel solver has shown

that both solvers are almost equally efficient with regard to

execution time. The performance of both solvers improves

with rising number of differential equations. Two most promis-

ing sections of both solvers have been parallelized. The

improvement of execution time has been observed in the case

of linear equation solving parallelization. The speed-up has

been proportional to the number of forked threads, at least for
higher equation number. Parallelization of function evaluation

has led to similar improvement only in the case of BGH

solver. The speed-up in the case of Gear solver has been

significantly lower than the threads number with limitation

to most basic parallelization (without hyperthreading). These

results conform to introductory profiling analysis. For both

solvers, introduction of thread affinity in both parallelization

cases, i.e. equation solving and function computation, has

adverse influence or no influence on execution timing.

REFERENCES

[1] J. Bylina. “A Framework for Generating and Evalu-

ating Parallelized Code”. In: Proceedings of the 2017

Federated Conference on Computer Science and In-

formation Systems. Vol. 11. 2017, pp. 493–496. DOI:

10.15439/2017F230.

[2] S. Fialko and V. Karpilovskyi. “Multithreaded Paral-

lelization of the Finite Element Method Algorithms for

Solving Physically Nonlinear Problems”. In: Proceedings

of the 2018 Federated Conference on Computer Science

and Information Systems. Vol. 15. 2018, pp. 311–318.

DOI: 10.15439/2018F40.

[3] J. P. Moreau. Website dedicated to numerical analysis.

2021. URL: http://jean-pierre.moreau.pagesperso-orange.

fr.

[4] S. I. Solodushkin and I. F. Iumanova. “Parallel Nu-

merical Methods for Ordinary Differential Equations: a

Survey”. In: CEUR Workshop Proceedings. Vol. 1729.

2016, pp. 1–10. URL: http://ceur-ws.org/Vol-1729/paper-

01.

[5] M. Stabrowski. “Efficient Algorithm for Solving of

Stiff Ordinary Differential Equations”. In: Simula-

tion Practice and Theory 5 (1997), pp. 333–344.

URL: https://www.sciencedirect.com/journal/simulation-

modelling-practice-and-theory.

[6] M. Stabrowski. “Parallel Real-world LU Decomposition:

Gauss vs Crout Algorithm”. In: Open Computer Science

(2018), pp. 210–217. URL: https://www.degruyter.com/

view/j/comp.

316 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

