
Formal analysis of timeliness in the RaSTA protocol

Billy Naumann, Christine Jakobs, Matthias Werner

TU Chemnitz

Faculty of Computer Science

Chemnitz, Germany

Email: {billy.naumann,christine.jakobs,matthias.werner}@informatik.tu-chemnitz.de

Abstract—Formal reasoning about the correctness of safety-
critical system properties is crucial since such systems may
impact their environment when malfunctioning. The Rail Safe
Transport Application (RaSTA) Protocol is a protocol for systems
used in railway applications such as signaling. It claims to
provide highly available and timely communication based on
the application’s demands. We investigate timeliness, i.e., the
property that application data do not become obsolete.

We analyze the protocol’s specification and provide assump-
tions necessary to resolve imprecisions. Under the specified error
model, we find that the deadlines proposed bound until messages
are considered timely is too restrictive, disabling RaSTA’s mech-
anisms to recover from lost messages in time. We formalize the
specification of timeliness to provide a counterexample for the
proposed bound and create an improved bound that does not
lead to violated deadlines under the same assumptions and error
model.

I. INTRODUCTION

T
HE Rail Safe Transport Application (RaSTA) [1] is a

protocol used in railway signaling technology between

diverse communication endpoints. It is independent of the

overlaying application. Since it may be usable for safety-

critical applications, its correctness is essential. The object of

this paper is to formally verify the correctness of a part of the

RaSTA protocol. We formally investigate RaSTA’s timeliness

property using networks of timed automata and the tool Uppaal

for formal reasoning [2].

RaSTA’s specification rests upon natural language. The

interpretation of such a specification often relies on either

explicit or implicit assumptions, allowing to focus on aspects

considered necessary while abstracting from others. Those

assumptions pose the danger of creating a model that cannot

reflect the wanted properties. The following quote from Sir

Tony Hoare shows that formal approaches are a necessary and

helpful tool to discuss such assumptions:

The job of formal methods is to elucidate the as-

sumptions upon which formal correctness depends.

In this investigation, we discuss necessary assumptions

about imprecisions in RaSTA’s specification, prove that the

bound for messages’ timeliness given in RaSTA’s specification

is insufficient, and provide an improved bound.

The remainder of this paper is structured as follows: Section

II provides an overview of the normative requirements applica-

ble to RaSTA and an overview of the protocol itself, including

assumptions made in the RaSTA specification. Section III

introduces the formal semantics of networks of timed automata

and Uppaal. In Section IV we present our model and the

evaluation of RaSTA’s timeliness property. Finally, section V

gives a conclusion of our work.

II. RASTA PROTOCOL

The RaSTA [1] protocol is specified in a pre-standard by

the DKE/UK 351.3, a national working committee of the

Association for Electrical, Electronic and Information Tech-

nologies for railway signaling facilities. It is used in railway

signaling technology to achieve safe and highly available

communication.

A. Requirements

Strict normative requirements exist, as safety is a crucial

concern in this field. RaSTA implements the requirements of

[3] for safe communication in open communication systems

of category 2, including networks consisting of safety-critical

and non-safety-critical systems that can read, write, process,

and transmit data. Safety-critical systems use safety-critical

transmission functions, assuring Authenticity, Integrity, Time-

liness, and Sequence of sent messages. Specifically, RaSTA

defines timeliness as a state in which information is available

in time according to the requirements. The number of users is

generally unknown, as well as their application. Thus unknown

amounts of data in arbitrary formats are sent in such networks.

There might be routing and management facilities and the

communication media may be prone to unforeseen external

faults. Authorized access with malicious intentions is explicitly

negligible in this category. Thus no cryptographic means are

enforced.

The system’s functionality must ensure the aforementioned

properties of safety-critical transmission functions. The imple-

mentation of such a system implies an evaluation of possible

safety threats. Appropriate means must be used to mitigate

these threats. In [3], a list of specific safety means is provided,

consisting of short descriptions and their requirements.

B. Architecture

RaSTA is implemented between a typical communication

stack’s application layer and the transport layer, as pictured

in Figure 1. There are only a few requirements on the

transport layer, making RaSTA suitable for different scenarios:

It must be possible to send messages to specific receivers. The

network, including the communication partners, must process

the messages in a best-effort manner. It is unnecessary to

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 505–514

DOI: 10.15439/2022F176

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 505



Application-
Layer

Safety- and
Retransmission-
Layer

Redundancy-
Layer

Transport-
Layer

Message

SRL-Header Safety-Code

RL-Header Check-Code

TL-Header TL-Trailer

Fig. 1: Architecture of the RaSTA Protocol Stack

TABLE I: Protocol Data Unit of the SRL

Byte(s) Content

0 - 1 length

2 - 3 type

4 - 7 receiver ID

8 - 11 sender ID

12 - 15 sequence number

16 - 19 confirmed sequence number

20 - 23 timestamp

24 - 27 confirmed timestamp

28 - 28+k-1 payload (k bytes)

28+k - (28, 35, 42)+k safety code

enforce deadlines, but safety reasons imply fast transmission

and adequate quality. Reference [1] states that commercial of

the shelf transport services such as UDP or TCP are well

suited.

RaSTA introduces two new layers between application and

transport: the upper Safety- and Retransmission-Layer (SRL)

and the lower Redundancy-Layer (RL), also shown in Figure 1.

The SRL provides a safe communication mechanism for net-

works according to [3], while the RL aims to provide a highly

available communication service via so-called Redundancy-

Channels. The RL uses multiple transport layer channels

(possibly with different transport services) for redundant com-

munication. In this way, messages that get lost or altered on a

single transport channel do not affect the communication on

SRL-level. Since most of the means to ensure the necessary

properties reside in the SRL, this paper only briefly covers the

RL.

Table I shows the design of the Protocol Data Unit (PDU)

of the SRL. We omit a representation of the RL at this point.

The SRL makes use of IDs for sender and receiver to

ensure authenticity as well as a safety code based on the

message digest 4 (MD4) [4] algorithm to ensure integrity.

Depending on the individual requirements, the latter can

take either all, a few, or none of the result’s bytes. The

protocol uses the sequence number (SN ) and the confirmed

sequence number (CS) to maintain the correct sequence of all

communicated messages: With each communicated message,

SN gets incremented. At the same time, CS represents the

last received sequence number of the communication partner.

Both timestamp (TS) and confirmed timestamp (CTS) fields

are used to ensure timeliness. Here, TS represents the time at

which the sender created the message, and CTS represents the

last received timestamp of the communication partner, analog

to the confirmed sequence number. The insurance of both

Sequence and Timeliness requires additional logic, discussed

in the protocol specification.

The RL has a more lightweight PDU. There are two primary

choices: it uses CRC for its check code with different possible

configurations. Also, using an additional sequence number

ensures noticing any race conditions between messages via the

individual transport channels. Please note that additional logic

is necessary to ensure a correct transmission on the receiver

side.

C. Protocol specification

Since RaSTA is a relatively new protocol stack, there is not

much work regarding formalizing and verifying its properties,

even though its usage in safety-critical scenarios. However,

a shortcoming is using MD4 as safety code as described in

section II-B, shown by [5]. Here, possible changes to the

protocol stack extend RaSTA’s abilities to withstand attacks

such as the injection of forged messages or replay attacks.

Such malicious attacks are not in the scope of RaSTA’s

requirements for category 2 networks according to [3], but

it raises the question if these assumptions are valid in the use

case of railway signaling.

RaSTA defines message types for the SRL, used in different

situations. Figure 2 shows the abstract state machine for the

SRL. Defined are Connection Request (ConnReq), Connec-

tion Response (ConnResp), Disconnect Request (DiscReq),

Heartbeat (HB), Data, Retransmission Request (RetrReq),

Retransmission Response (RetrResp), and Retransmitted Data

(RetrData) messages, from which Data, RetrData and HB

messages are defined as relevant for time monitoring. Using

the first two message types, connections are established and set

up by performing a handshake between both communication

partners. This is visualized in Figure 2 with arrows (a),
(b), and (c). A Disconnect Request message is sent prior to

closing an established connection or to indicate errors during

the establishment or regular transmission. The corresponding

transitions shows Figure 2 as dashed arrows. The communi-

cation partners monitor the connection quality via messages

of type HB. Such Heartbeats are automatically sent after a

defined time interval during which no other messages were

sent. Application messages carrying a payload are transmitted

as Data messages. The remaining message types handle error

situations: A lost message leads to a corrupted sequence

of messages is corrupted. The receiver can recognize this

situation, in which he sends a RetrReq message. Figure 2

reflects this situation with transition (d). The original sender

of the lost or corrupted message answers with a RetrResp

message (corresponding to transition (f) in Figure 2), after

which he repeats all messages with an unconfirmed sequence

number as RetrData messages. To finalize, a Data or HB mes-

sage is sent to indicate that the retransmission is completed,

returning to normal operation by transition (e) in Figure

506 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Closed

Down

Start

Up

Retransmission
requested

Retransmission
running

(a)

(b)

(c)

(d) (e)

(f)

(g)

Fig. 2: Abstract State Machine of the SRL [1]

2. Finally, transition (g) corresponds to the situation where

another message gets lost during a running retransmission,

where another retransmission is initiated.

Besides the abstract states shown in Figure 2, each instance

has to manage an internal state, consisting, among other things,

of a set of sequence numbers, timestamps, and timers:

SNT : the sequence number of the next transmitted message

SNR: the expected sequence number of the next received

message

CST : the confirmed sequence number of the next transmitted

message

CSR: the confirmed sequence number of the last received

message

TSR: the last received timestamp

CTSR: the last received confirmed timestamp

THB : a timer representing the remaining time until the in-

stance has to send a new message

TDL: a timer representing the remaining time in which re-

ceived messages are considered timely

The maximum values for the timer TDL and THB are

defined as configurable parameters, depending on the appli-

cations demands. We use TDL,max and THB,max to represent

them.

To transmit data, the sender has to create a new PDU

according to Table I using SN = SNT , CS = CST ,

CTS = TSR, and TS = t, where t is the sender’s current

timestamp. After creating and sending the message, SNT is

incremented (SNT = SNT +1) and THB is reset to THB,max.

The sender has to store a copy of the message until a message

with CS g SN is received.

The message receiver has to check the sequence of SN , CS,

and CTS. First, plausibility checks evaluate if SN 2SNR is

below a configured limit. Also, CSR f CS < SNT has to

hold, stating that the received and confirmed sequence number

is plausible, too. If these conditions do not hold, the receiver

discards the message. Otherwise, he performs more vigorous

checks on SN and CTS. A boolean variable SNinSeq is

set to true, if SNPDR = SNR holds. Also, another boolean

variable CTSinSeq is set to true, if for messages relevant

for time monitoring 0 f CTS 2 CTSR < TDl,max holds.

Note that the receiver does not discard the messages if the

A B

TS = t

CTS = t

TS > t

CTS = t

CTS > t

T
D

L
,m

a
x

T
D

L
,m

a
x

Fig. 3: Adaptive Channel Monitoring

checks result in negative results. The state transitions shown

in Figure 2 depend on these variables. Summarizing the

resulting behaviors, if CTSinSeq does not hold, the receiver

responds by sending a DiscReq and closing the connection. If

SNinSeq does not hold, the receiver initiates retransmission

of all messages with unconfirmed sequence numbers (i.e.

CST f SN < SNT ).

D. Timeliness in RaSTA

RaSTA ensures timeliness by applying a concept called

Adaptive Channel Monitoring (ACM). The necessary infor-

mation is included in each SRL-PDU but will be evaluated

only for time monitoring relevant messages. According to

[1], clocks may not be synchronized and can have different

resolutions, consequentially disallowing the interpretation of

timestamps of the communication partner.

ACM applies the Double-Timestamp-Principle, defined in

[3] to check the message round trip times on both commu-

nication partners. A sent message carries the sender’s local

timestamp in TS. Upon receiving this message, the receiver

stores this exact value as TSR = TS in his local state.

The following answer of the receiver will carry the confirmed

timestamp CTS = TSR back to the original sender, allowing

the round trip time calculation as RTT = t2CTS where t is

the current timestamp. A message’s timeliness is analyzable by

constraining the round trip time since this value overestimates

the timestamp of the send-event. Since multiple messages can

carry the same CTS value, a round trip completes once a

message with a new, greater CTS value arrives. This fact

naturally implies that the original sender sent a message with

TS > t in the meantime. This message also starts the next

round trip, overlapping the current one. This is visualized in

Figure 3 for an error-free communication.

After a message with a specific new value of CTS ar-

rives, the receiver updates CTSR in the local state. All later

messages with CTS = CTSR are considered timely, if

BILLY NAUMANN, CHRISTINE JAKOBS, MATTHIAS WERNER: FORMAL ANALYSIS OF TIMELINESS IN THE RASTA PROTOCOL 507



they arrive in an interval of length TDL,max since CTSR.

If another message with CTS > CTSR arrives, the stored

value of CTSR will be replaced by the new one, indicating

that no further messages with the old CTS value should arrive

anymore.

To implement these conditions, [1] uses the timer TDL,

which is reset with each update to CTSR to TDL =
TDL,max 2 RTT . If this timer reaches its limit, arriving

messages may carry outdated information, which would be

the case when CTS = CTSR. Figure 3 visualizes this timer

as dashed and dotted lines where the dashed portion represents

the actual timer running while the dotted portion corresponds

to the time since the reference point or until the deadline,

respectively.

As TDL,max is a configurable parameter, it is possible to

adjust it according to the application’s needs. However, [1]

states that TDL,max should include enough buffer to take

possible retransmissions into account, and gives the following

suggestion for its minimal value:

TDL,max > 3 · THB,max + 2 · (TAB + TBA) + TRL,seq (1)

Here, according to [1], THB,max refers to the commu-

nication partner’s maximum time between two consecutive

messages. TAB and TBA indicate the worst-case transmission

time of the channel from sender to receiver, where A and

B are the communication partners, and TRL,seq indicates the

maximum time a message can get delayed in the RL because

of race conditions.

As specified in [1], the reasoning behind this formula is as

follows: the round trip time of a message can be overestimated

by THB,max + TAB + TBA, a lost message will be noticed at

worst after 2 · THB,max and the following retransmission can

be estimated as TAB +TBA, which sums up to the right hand

side of Equation 1.

This bound results in an assumed error model where

only one message per round trip can be lost. We examine

this bound and see it as problematic since it introduces

artificial dependencies between the communication partners

and their communication channels: As soon as one channel

loses one message, the other must deliver correct messages.

This assumption is unrealistic since, in reality, the channels

themselves cannot share such information.

E. Assumptions regarding RaSTA’s specification

Before modeling RaSTA’s communication to show timeli-

ness, we need to state some assumptions regarding open or

imprecisely defined aspects.

1) Violation of message sequence: Since the RL aggregates

multiple transport connections between sender and receiver

to a single redundancy channel, the correct order of the

messages has to be assured since race conditions along the

individual channels can occur. The configuration parameter

TRL,seq states the delay of messages to be able to restore

sequence before delivery to the SRL. We assume that this

parameter is set to 0, effectively allowing messages to overtake

each other unhandled. This assumption is reasonable since the

SRL notices the incorrect message sequence in the same way

a lost message would, triggering the retransmission.

2) Immediate Responses: The specification [1] is unclear

about internal delays of messages that should be transmit-

ted immediately. This delay is significant in the case of a

retransmission of unconfirmed messages. We assume that no

additional delay is introduced between two such messages,

effectively sending all of them in the correct order simultane-

ously.

3) Handshakes: We focus on analyzing timeliness for the

central part of the protocol: The data exchange, in essence,

by the behavior of a message’s round trip. By that decision,

we exclude the handshake to establish the connection and any

disconnection semantics. The initial handshake includes a final

time-critical heartbeat message. However, this message must

be sent immediately after receiving the connection response

message. Thus, it will set the initial reference point for the

upcoming data exchange. If the receiver discards the message,

the handshake fails, and the connection is not established.

Additionally, we reduce the second part of the retransmis-

sion handshake, i.e., the RetrResp, RetrData, HB sequence to

transmit all missing messages to a single RetrResp message.

This reduction is feasible since we use the assumptions in

Section II-E2, together with the transmission error model.

The handshake is only carried out when a communication

partner previously discarded a message. Hence, during this

handshake, no further messages are discarded. All messages

are sent without any delays. Hence, the retransmitting side

immediately sends the (final) heartbeat message carrying the

CTS > t information. This assumption allows us to abstract

from the specific messages to be confirmed.

F. Discussion of RaSTA’s timelines property

A derivation of Equation 1 according to [1] is given in sec-

tion II-D. However, we like to point out that the interpretation

of THB,max as the communication partners parameter is not

feasible for all scenarios.

Under the assumption that only one message per round trip

can get lost, there are, in essence, two different scenarios that

lead to retransmission, shown in Figure 4. Both scenarios

share the loss of the information used to finish the round

trip, i.e., a timestamp TS > t or a confirmed timestamp

CTS > t. We describe these scenarios from the view of

the final CTS > t message, as the receiver will consider

this message’s timeliness. Hence, communication partner A

is the receiver while B is the sender in the scenarios. In

Figure 4a, the receiver’s first message containing TS > t is

lost during transmission. Subsequently, the sender discards the

following message also carrying this information. Since the

message sequence is not correct at this point, the sender initi-

ates retransmission. He continues to send heartbeat messages

containing the CTS = t information until the finalization of

the retransmission. We omitted them for readability reasons.

In the worst case, a heartbeat containing CTS = t is sent just

before the TS > t information reaches the sender, leading

508 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



A B
TS = t

TS > t

�

TS > t

RetrResp, TS > t

RetrReq

CTS
= t

CTS
> t

2
∗
T
H

B
,A

T
A
B

T
B
A

T
A
B

T
H

B
,B

T
B
A

(a) receivers (A) fault

A B
TS = t

TS > t

RetrReq

CTS
= t

CTS
> t

�

CTS
> t

RetrResp, CTS
> t

T
H

B
,A

T
A
B

2
∗
T
H

B
,B

T
B
A

T
A
B

T
B
A

(b) senders (B) fault

Fig. 4: Retransmission scenarios

to sending the CTS > t information with the next heartbeat.

Figure 4a also shows the individual worst case delays.

Accumulated, they lead to the following upper bound shown

in Equation 2:

TDL,A = 2 · THB,A + THB,B + 2 · (TAB + TBA) (2)

Analogously, we show the situation where the sender’s first

message containing CTS > t is lost in Figure 4b. The

receiver’s message containing TS > t arrives at the sender

just after a message containing CTS = t was sent. Hence,

the CTS > t is sent as the next heartbeat and gets lost.

The receiver discards the next heartbeat since the message

sequence is incorrect. At this point, the receiver initiates

the retransmission. After this retransmission, the CTS > t
information reached the receiver. Equation 3 presents the

according upper bound.

TDL,B = 2 · THB,B + THB,A + 2 · (TAB + TBA) (3)

Since both scenarios can occur under our assumptions, we

propose to use the maximum of both as the bound for the

deadline, referred to by T 2

DL,max, as shown in Equation 4.

T 2

DL,max > max(TDL,A, TDL,B) (4)

Please note that we used THB,· and TDL,· to indicate

THB,max,· and TDL,max,· for spacing reasons. In the following

sections, we show a formal analysis of both limits presented in

Equations 1 and 4 using timed automata supported by Uppaal.

III. TIMED AUTOMATA AND UPPAAL

To check the correctness of both limits presented in Equa-

tions 1 and 4, we modeled the interesting aspects of RaSTA

as timed automata and checked this model with the help of

Uppaal.

A. Uppaal

Uppaal [6], [2] is described as "an integrated tool envi-

ronment for modeling, validation, and verification of real-

time systems modeled as networks of timed automata, ex-

tended with data types (e.g., bounded integers, arrays)." It

is developed jointly by Basic Research in Computer Science

at Aalborg University in Denmark and the Department of

Information Technology at Uppsala University in Sweden.

Many applications of Uppaal in scientific case studies are

shown on Uppaal’s website [2], such as the verification of

different versions of the well-known Fischer Protocol [7] for

mutual exclusion in [8]. Nevertheless, also industrial protocols

such as the Philips Audio Protocol for exchange of con-

trol information [9], or the Bang and Olufsen Audio/Video

Protocol for transmission of messages between audio and

video components over a single bus [10] have been model

checked by Uppaal. Primarily the latter was known to be

faulty. Uppaal’s generation of (erroneous) traces allowed us

to find the error. Also, Uppaal was used to find and verify a

fix for this problem.

B. Modelling

Timed automata exist in multiple flavors, but they generally

combine the known concept of finite state machines and

clocks, unique variables used to represent time. Uppaal uses

a dense time model, where clocks evaluate real numbers and

advance synchronously. For evaluation, Uppaal can express

clock valuations as symbolic constraints, thus reducing the

state space by collapsing all clock valuations that share com-

mon properties. Further, Uppaal allows systems to be modeled

as networks of timed automata by composition from individual

automata. Every automaton may engage in (enabled) transi-

tions, also used to synchronize multiple automata. [11]

In [11], the definition of the Timed Automata used in Uppaal

is as follows:

A timed automaton A is a tuple (L, l0, C,A,E, I), where

L is a set of locations, l0 is the initial location, C is the set

of clocks, A is a set of actions, co-actions and the internal

τ -action, E ¦ L × A × B(C) × 2C × L is a set of edges

between locations with an action, a guard and a set of clocks

to be reset, and I : L ³ B(C) assigns invariants to locations.

Reference [11] also provides the definition and semantics of

a network of timed automata, consisting of n timed automata

Ai, 1 f i f n. The location vector l = (l1, ..., ln) corresponds

to the locations of each individual automation. Further, the

invariants are merged to an invariant function over the location

vectors I(l) = 'iIi(li). Finally, the notation l[l2i/li] denotes

the location vector where the ith element li is replaced by l2i.

The semantics are then given by [11] as follows: Let

Ai = (Li, l
0
i , C,A,Ei, Ii) be a network of timed automata and

l0 = (l01, ..., l
0
n) the vector of initial locations. The semantics

is defined as a labelled transition system ïS, s0,³ð with

S ¦ (L1× ...×Ln)×RC as the set of states, s0 = (l0, u0) is

the initial state and ³¦ S × S is the transition relation such

that:

BILLY NAUMANN, CHRISTINE JAKOBS, MATTHIAS WERNER: FORMAL ANALYSIS OF TIMELINESS IN THE RASTA PROTOCOL 509



" (l, u)
d
³ (l, u+d) if "d2 : 0 f d2 f d =ó u+d2 * I(l),

and

" (l, u)
a
³ (l[l2i/li], u

2]) if #li
τgr
2³ l2i : u * g, u2 = [r �³ 0]u

and u2 * I(l[l2i/li]).

" Further, (l, u)
a
³ (l[l2j/lj , l

2

i/li], u
2) if #li

c?giri
2³ l2i '

lj
c!gjrj
2³ l2j : u * (gi ' gj), u

2 = [ri * rj �³ 0]u ' u2 *

I(l[l2j/lj , l
2

i/li])

Hence, possible transitions are categorized in delay and

action transitions. The former are described by (l, u)
d
³

(l, u + d), letting the system evolve in time for d time units

by mapping each clock c * C to the value u(c) + d, if the

invariants of all locations aren’t violated for any time point

until the delay has occurred. The latter corresponds to a single

edge or a pair of edges in the automaton. Here, either a

single automaton or a pair of automata in the network change

their locations according to action a in (l, u)
a
³ (l[l2i/li], u

2])
and (l, u)

a
³ (l[l2j/lj , l

2

i/li], u
2) respectively. Either are only

possible if their guards are satisfied. Taking the transition

resets all referenced clocks, and the resulting locations’ in-

variants must be satisfied. When two automata perform such

a pairwise transition, it is also necessary to label the transitions

by corresponding co-actions, expressing active and passive

synchronization at these points.

Uppaal extends such networks of timed automata with many

features shown in the following list, as well as other constructs

borrowed from C-like programming languages such as arrays,

initializers, record- and custom-types as functions. [11]

" Templates for instantiating automata

" Invariants over internal state variables

" Non-deterministic choice of binary synchronization chan-

nels when multiple co-actions are possible

" Urgent and committed locations which disallow the pas-

sage of time

Within such templates, Uppaal uses additional labels for

locations and edges, which allow to define the behavior of the

automaton in an easy way, for example, to express a location’s

invariants. Actions can have select labels, which can be used

to non-deterministically bind values from a given range to

variables which can then be used in the remaining labels of the

action. Also, guards enable actions upon fulfillment or disable

them in case of violation. Synchronization labels allow the use

of synchronization channels, where edges with complementary

synchronization labels c! and c? over a shared channel c
synchronize on taking the c! labeled action, reassembling co-

actions. Finally, update labels can alter the current internal

state by changing variables’ values or assigning values to

clocks. [11], [12]

Figure 5 shows an example of a timely bounded syn-

chronous communication channel. We use this cannel to model

the communication between two RaSTA communication part-

ners. Messages are accepted from the sender via the send?

co-action, transiting from the Idle to the Transmitting

location. The variable content refers to the channel’s con-

tent, taken from whatever resides in data_send, the senders

send buffer. To reduce the state space, the send buffer is

Fig. 5: Model of the RaSTA Communication Channel

reset to empty as soon as the channel has accepted the

message. As long as t <= delay, the channel may reside

in the Transmitting location, transitions back to Idle

are possible immediately. There are two possible transitions

corresponding to the correct and faulty transmission. In the

latter case, the channel’s content is not altered and copied into

the receive buffer. Instead, the lost! co-action indicates an

altered message to discard. The clock t is reset when transiting

back to Idle, where it is stopped via the location’s invariant.

These measures are also made to reduce the state space.

To define a model, Uppaal uses a system definition, which

allows instantiating templates to processes. Here, it is possible

to bind the template’s parameters to actual values or define

partial instantiations to reuse similar processes. They are

composed concurrently to a system by enumerating them after

the system keyword.

C. Verification

Uppaal allows checking different properties for a system

via model checking. Queries to the model express these

properties using a simplified version of Timed Computation

Tree Logic (TCTL) [13]. Queries consist of the path- and

state formulae, where state formulae describe individual states

and path formulae quantify over the model’s traces. Uppaal

does not allow the nesting of path formulae [11]. Such

formulae are categorized depending on their semantic and

matched runs. We explain the used state formulae and safety

formulae in the following sections. Additionally, the standard

version of Uppaal supports reachability formulae and liveness

formulae. Note that many extensions extend classical Uppaal,

for example, by examining statistical properties.

1) State Formulae: State formulae express the properties

of individual states without considering the model’s behavior.

They are similar to guards in that they are described by

side-effect-free expressions, for instance, x == 42. Besides

statements over internal variables, it is also possible to test if

a automaton A is in a certain location l by the expression A.l.

Internal state variables of a single Automaton are accessible in

the same way. Further, deadlocked states (where no outgoing

action transitions from the state or delayed successors are

possible) can be expressed via the keyword deadlock. [11]

510 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



2) Safety Formulae: Safety Formulae describe that some-

thing bad will never happen. A general technique is to express

something bad in the model’s terms, for instance, the violation

of a deadline, and then invariantly assure that the model

never fulfills this condition. Analogously, the model must

fulfill something good invariantly. Uppaal uses TCTL formulae

A¥φ, which are expressed in Uppaal as A[] φ for a state

formula φ, expressing that φ must be true for all reachable

states. [11]

IV. VERIFYING TIMELINESS

While it is possible to build a system in Uppaal reassem-

bling the whole SRL and find a suitable formula to describe

timeliness in this model, we decided to abstract from this

approach for multiple reasons. First, we are only interested in

the property of timelines. Therefore, it is feasible to abstract

from unnecessary parts of the protocol. Our model abstracts

the exact Protocol Data Unit shown in Table I while keeping

each message’s sequence and time information. Note that it is

possible to omit CS since the receiver will discard messages if

the plausibility checks fail as described in section II-C. Also,

by maintaining an appropriate communication channel model,

one can abstract from the RL, leaving only a concentrated

portion of the protocol for verification. It is possible to reduce

this model further since we are only interested in the timeliness

of a single message, expressed as a round trip as shown

in Figure 3. This reduction is possible since RaSTA claims

to ensure timeliness for all time-critical messages, so it is

sufficient to find a single situation where RaSTA fails to do

so to show the violation of this property. This reduction aims

to find a Uppaal model with only a few locations and internal

state variables.

Most model checking tools try to explore the whole state

space of the model by finding all possible execution paths

and states on them. This approach becomes infeasible quickly

since the number of possible states grows exponentially with

the number of used internal state variables. Ultimately, this

state space explosion leads to an infeasible time demand

for evaluating the properties. There exist ways to approach

this problem, such as symmetry reductions, but especially for

software verification, this problem is still not solved [14]. This

issue emphasizes the importance of a compact and abstract

model.

A. Modelling assumptions

We discussed some possible abstractions and why they are

feasible at the beginning of this section. Such abstractions’

bases are usually on assumptions that restrict the system’s

modeled behavior in a certain way. While such abstractions

allow the formulation of a simpler model, it is essential

to ensure that the result is still a valid model of reality,

including all necessary aspects of the system to reason about

the properties of interest. Otherwise, the model might still be

correct but becomes irrelevant since it does not lead to any

desired statements.

We have shown assumptions necessary to formalize the

specification of RaSTA in Section II-E. The following sections

discuss the consequences of formalization and make assump-

tions regarding which aspects the model of the protocol stack

needs and which can be abstracted.

1) Redundancy Channels: As described in section II-E1,

we assume that the redundancy channels used in the RL lead

to possible violations of message sequence. Since we are not

interested in showing availability improvements, we decided to

abstract from the RL and model only the SRL. The underlying

communication channels are seen as per message, meaning

that a new virtual communication channel is available for

each message. Since Uppaal supports the dynamic instantiation

of templates only for statistical queries, we have to limit

ourselves to a constant number of available channels, thus

limiting the number of messages sent simultaneously. Since,

in real-world scenarios, communication always is limited by

a specific throughput, we find this assumption feasible. We

restrict our analysis to the case where TAB < THB,max,A and

analogously for the values of B. This restriction allows the

assumption of FIFO channels so messages cannot overtake

each other. Alternating messages during transmission, leading

to discarding the message by its receiver, is still possible.

Such errors have the same impact on possible retransmissions

initiated by the SRL.

2) Message semantics: Heartbeat and Data messages share

the same information except for an empty application payload.

The sender sends Heartbeat messages only when the appli-

cation is ready to send (Data) messages in a defined time

interval since the last message. Since RaSTA is independent

of the overlying application, we can use this fact to abstract

from both message types and reduce them to a single kind of

message.

3) Timestamp relationship: Since we aim to show timeli-

ness for a single message round trip, we can abstract from

the specific values of the timestamps and use a relative

representation during this round trip. Additionally, such a

relative representation can abstract from the actual values since

only the relationship between their corresponding send- and

receive-events is necessary to capture the behavior, as shown in

Figure 3. Hence, we directly represent the relationship between

the ongoing time and the messages TS and CTS values using

state variables.

4) Message Sequence: Another critical assumption is that

the specific values of the sequence numbers and confirmed

sequence numbers do not matter to show the timeliness of

a single message. The sequence numbers are used to trigger

retransmission if SNinSeq is false, as described in Section

II-C. The receiver sets this flag if two consecutive messages do

not have consecutive sequence numbers. To be able to abstract

from the specific values, we inform the receiver of a message

about the alternation of the message. In reality, the receiver

would check the message’s integrity via the safety code and

discard it if the check fails. Hence, we update SNinSeq
before the reception of the following message. The receiver

can then react appropriately based on this information by

BILLY NAUMANN, CHRISTINE JAKOBS, MATTHIAS WERNER: FORMAL ANALYSIS OF TIMELINESS IN THE RASTA PROTOCOL 511



Fig. 6: Model of the RaSTA Receiver

engaging in a retransmission handshake.

5) Immediate Responses: We assume that the sender will

not delay messages from being sent immediately. There are

two significant points in the protocol where this is important:

The initial ConnReq, ConnResp, HB handshake to establish

the connection and the handshake to perform retransmission,

including the transmission of the RetrData messages carrying

the previously lost messages. As stated in II-E2, [1] covers this

not explicitly: The visualizations show a delay of one time unit

per message while the descriptions state that the sender has to

send messages immediately.

6) Number of retransmitted messages: When a message is

lost, the sender of this message must retransmit all uncon-

firmed messages, as described in Section II-C. Such messages

may be sent before the modeled round trip. Hence, it is im-

possible in our model to find a representation of the messages

to be retransmitted. However, the only information about these

messages we care about is if one of them will complete

the current round trip. Especially the final HB message will

contain the CTS > t information. Therefore, we reduced

the set of retransmitted messages to a single one carrying

the relevant information. This reduction is feasible since we

already assumed that there is no additional delay between

immediately sent messages in Section IV-A5.

B. Model and Verification

In this section, we show our model and the analysis of the

SRL of RaSTA in Uppaal based on the assumptions shown in

the previous sections. Since we want to model a single round

trip, our model uses asymmetrical behavior, even if the RaSTA

protocol is symmetrical after connection establishment. Hence,

individual templates in Uppaal model sender and receiver.

The channel is also an individual template model, which is

instantiable multiple times to enable communication between

sender and receiver.

Since we abstract from the specific values of the timestamps,

it is necessary to model the relation between the reference

point t7 when the receiver sends an initial message and the

values of TS_R and CTS_R. We defined constant values EQ_T

and GT_T to express if a received (confirmed) timestamp is

equal to or greater than t7. Transmitted messages carry this

information instead of concrete time information.

Both sender and receiver use a clock T_HB. This clock

represents the time since sending the last heartbeat message.

With appropriate location invariants and action guards, we

enforce that both communication partners never send two

consecutive messages more than T_HB_max time units apart,

where the concrete value depends on the chosen parameter

for sender and receiver. Additionally, we use a clock T for the

receiver model to indicate the current time during the round

trip, by which the receiver determines the duration until the

arrival in the End location, where this clock is stopped.

Further, sender and receiver use urgent states whenever a

message is received and during retransmissions. This reflects

that the time for the evaluation of the messages header and

the decision of the upcoming actions is negligible and serves

as an implementation of assumption in section II-E2.

The upcoming sections describe the individual templates.

1) Receiver: The Receivers model is shown in Figure 6.

As the evaluation of a message’s round trip time depends

on a defined reference timestamp, the receiver starts sending

a message carrying its current timestamp t7 in TS, which

is implemented in the send_msg(MSG, TS_S) update. At

this point TS_S has the value EQ_T and is updated to GT_T

512 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



Fig. 7: Model of the RaSTA Sender

after the message is sent. The receiver will use this information

for sending all further messages. He will reside in the location

Waiting until either a new message has to be sent or a

message is received or indicated as lost. By the assumption

in section IV-A2, we abstract from distinct HB and Data

messages at this point. We do not abstract from RetrReq

messages. Such messages are identified via the msg_type

variable and handled appropriately. The clock T_HB together

with the location’s invariant and the transition guards constrain

the time between sending such messages. When a message is

indicated as lost, the receiver sets SNinSeq = false. In

reality, this would happen later when the following message

is received, but since this is causally dependent on a lost

message in our model, we decided to set this flag at this point.

When a message is received, the receiver checks SNinSeq

and either updates its CTS_R value based on the information

in the message or triggers retransmission. If the message is a

RetrReq, indicated by msg_type == RREQ, the according

RetrResp message is sent immediately, carrying GT_T as its

timestamp. By assumption in Section II-E3, this is the only

message necessary to complete this retransmission in our

model. Otherwise, and when no retransmission is necessary,

the receiver either returns to the Waiting location when

the received CTS value is less or equal to t7, i.e., CTS_R

!= GT_T. In the same case, he moves to the End location,

indicating that a new reference timestamp was confirmed

by the sender via CTS_R == GT_T, thus ending the round

trip. If retransmission is necessary, the receiver will initiate

the corresponding handshake by sending the RREQ message

and transitioning to the RetransRequested location. Here

the receiver continues to send messages as in the Waiting

location and waits until the retransmitted messages arrive.

All other messages with msg_type != RRESP are ignored,

their information will be part of the RetrResp message. Upon

receiving his message, the receiver evaluates the contained

CTS_R as for regular messages.
2) Sender: In our model, the sender takes the role of send-

ing the messages whose timeliness is subject to verification.

The sender starts by receiving the reference point t7 as its

first message, represented by the value of TS_R, which is

EQ_T at this point. At this point, the sender transitions into

the Responding location. From here on, the model is similar

to the receiver, differing only in interpreting the message’s

timing information. Where the receiver uses this information

in the CTS_R variable, the sender uses it to update the state

of the TS_R variable. Also, the End location is absent since

the sender is not informed about finishing the round trip.
3) Channel: As described in Section IV-A1, we model the

RL and underlying channels as per message. Uppaal supports

the dynamic instantiation of templates only for statistical

queries. Hence we are forced to limit our model by over-

approximating the number of sent messages. At this point,

a single channel will act synchronously, only accepting mes-

sages for transmission when it is in Idle and only allowing

the delivery returning from the Transmitting location, as

shown previously in Figure 5. As long as the channel is in

location Idle, its clock t is stopped at 0 by the location’s

invariant. When a message is accepted via the in? co-action,

the channel transitions to the Transmitting location, and

BILLY NAUMANN, CHRISTINE JAKOBS, MATTHIAS WERNER: FORMAL ANALYSIS OF TIMELINESS IN THE RASTA PROTOCOL 513



after at most the worst-case transmission delay delay the

message is either delivered or lost. Both cases are modeled

as a transition back to the Idle state, resetting both the

internal state of the channel and its local clock t. Only for

successful transmission, the channel copies the message to the

receiver’s buffer out_msg, the receiver is synchronized here

via the out! co-action. The co-action lost! is used for a

faulty transmission, where the channel ignores the message’s

contents. In the case of an erroneous transmission, the channel

also decrements the variable num_losable_msgs to 0 to

indicate that no further messages should be lost.

4) Verification and Results: Since, in our model, the ab-

sence of missed deadlines describes timeliness, the formulation

of the property is possible as a safety formula, stating that there

is no case of deadline violation. We checked both the original

value shown in Equation 1 as well our adapted deadline shown

in Equation 4 via the following formulae for verification in

Uppaal, where both the values for TDL,max and T 2

DL,max

are calculated as the bounds based on the parameters for the

heartbeat and worst-case transmission times in Uppaal.

A¥(Receiver.End =ó Receiver.T f TDL,max) (5)

A¥(Receiver.End =ó Receiver.T f T 2

DL,max) (6)

Since Uppaal doesn’t allow symbolic constants for

model parameters, we used the values THB,max,A = 5,

THB,max,B = 3, and TAB = TBA = 1, resulting in the

bounds TDL,max = 13 and T 2

DL,max = 17. With these values,

we could show that the proposed bound TDL,max by [1] is

violated while our bound is still satisfied.

Even though we aim to instantiate channels for each mes-

sage individually, the increased state space limits the feasibility

of the evaluation. We decided to restrict the channel model

to FIFO channels by instantiating only one pair of channels

between sender and receiver. As shown in section IV-A1,

this limits the validity of our results to the case where

TAB < THB,max,A, as in this case, heartbeats are not affected

by unavailable channels.

We were able to show for a few selected values that

this property holds, but a general statement for all possible

assignments is not possible in this way. However, our model

can be used to verify the timeliness of a concrete RaSTA

communication instance within our assumptions.

V. CONCLUSION AND FUTURE WORK

Safety-critical systems, such as railroad communication

networks, demand a clear and comprehensible analysis of

all aspects that potentially affect the correctness and safety

of the user and the environment. Our analysis shows where

the specification of RaSTA is unclear regarding timeliness.

We were able to show that the recommended deadline for

the RaSTA communication protocol is not guaranteed to hold

for the corresponding error scenario. This inherent violation

demonstrates that using formal methods for software verifica-

tion is a viable approach not only to show formal correctness

where necessary but also to elucidate underlying assumptions.
While we were able to show that the proposed bound is not

sufficient, we could not provide a complete formal verification

of the correctness of our bound. This open end is caused pri-

marily by inherent problems of model checking, e.g., the state

space explosion when stepping back from specific abstractions,

such as using concrete timestamps instead of our approach.

We aim to encounter the use of more general communication

channels by lifting our FIFO assumption. Also, we will deal

with more complex scenarios, for example, where the worst-

case transmission delay is higher than the deadline for sending

heartbeats.

REFERENCES

[1] “Electric signalling systems for railways - part 200: Safe transmission
protocol according to DIN EN 50159 (VDE 0831-159),” Jun. 2015.

[2] Home - Uppaal. Date accessed: 2022-21-04. [Online]. Available:
https://uppaal.org

[3] “Railway applications - communication, signalling and processing sys-
tems - safety-related communication in transmission systems; german
version EN 50159:2010,” Apr. 2011.

[4] R. L. Rivest, “The MD4 Message-Digest Algorithm,” Internet Requests
for Comments, April 1992, http://www.rfc-editor.org/rfc/rfc1320.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc1320.txt

[5] M. Heinrich, J. Vieten, T. Arul, and S. Katzenbeisser, “Security
analysis of the rasta safety protocol,” in 2018 IEEE International

Conference on Intelligence and Security Informatics (ISI), 2018. doi:
10.1109/ISI.2018.8587371 pp. 199–204.

[6] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“Uppaal—a tool suite for automatic verification of Real–Time
Systems,” BRICS Report Series, vol. 3, no. 58, Jun. 1996. doi:
10.7146/brics.v3i58.18769. [Online]. Available: https://tidsskrift.dk/
brics/article/view/18769

[7] L. Lamport, “A fast mutual exclusion algorithm,” ACM Trans. Comput.

Syst., vol. 5, no. 1, p. 1–11, jan 1987. doi: 10.1145/7351.7352. [Online].
Available: https://doi.org/10.1145/7351.7352

[8] K. G. Larsen, P. Pettersson, and W. Yi, “Compositional and Symbolic
Model-Checking of Real-Time Systems,” in Proc. of the 16th IEEE Real-

Time Systems Symposium. IEEE Computer Society Press, Dec. 1995.
doi: 10.1109/REAL.1995.495198 pp. 76–87.

[9] ——, “Diagnostic model-checking for real-time systems,” in Hybrid

Systems III. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. doi:
10.1007/BFb0020977. ISBN 978-3-540-68334-6 pp. 575–586.

[10] K. Havelund, A. Skou, K. G. Larsen, and K. Lund, “Formal modeling
and analysis of an audio/video protocol: An industrial case study using
uppaal,” in Proceedings Real-Time Systems Symposium. IEEE, 1997.
doi: 10.1109/REAL.1997.641264 pp. 2–13.

[11] G. Behrmann, A. David, and K. G. Larsen, A Tutorial on

Uppaal, ser. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, vol. 3185, p. 200–236. ISBN 978-
3-540-23068-7. [Online]. Available: http://link.springer.com/10.1007/
978-3-540-30080-9_7

[12] Uppaal documentation. Date accessed: 2022-21-04. [Online]. Available:
https://docs.uppaal.org/

[13] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model
checking for real-time systems,” Information and Computation, vol. 111,
no. 2, p. 193–244, Jun 1994. doi: 10.1006/inco.1994.1045

[14] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, Model

Checking and the State Explosion Problem, ser. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, vol. 7682, p. 1–30. ISBN 978-3-642-35745-9. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-35746-6_1

514 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022


