
Automatic code optimization for computing the

McCaskill partition functions

Wlodzimierz Bielecki, Marek Palkowski, Maciej Poliwoda

West Pomeranian University of Technology in Szczecin

ul. Zolnierska 49, 71-210 Szczecin, Poland

Email: mpalkowski@wi.zut.edu.pl

Abstract—In this paper, we present the application of three
automatic source-to-source compilers to code implementing Mc-
Caskill’s bioinformatics algorithm. It computes probabilities of
various substructures for RNA prediction. McCaskill’s algorithm
is compute and data intensive and it is within dynamic pro-
gramming. A corresponding programming code exposes non-
uniform dependences that complicate tiling of that code. The
corresponding code is represented within the polyhedral model.
Its optimization is still a challenging task for optimizing compilers
employing multi-threaded loop tiling. To generate optimized
code, we used the popular PLuTo compiler that finds and
applies affine transformations, the TRACO compiler based on
calculating the transitive closure of loop dependence graphs, and
the newest polyhedral tool DAPT implementing space-time tiling.
An experimental study fulfilled on two multi-core machines:
an AMD Epyc with 64 threads and a 2x Intel Xeon Platinum
9242 with 192 threads demonstrates considerable speedup, high
locality, and scalability for various problem sizes and the number
of threads of generated codes by means of space-time tiling.

I. INTRODUCTION

McCASKILL’S algorithm is an efficient dynamic pro-

gramming one to return the value of the computed

partition function Z = 3P exp(2E(P)/RT), where P repre-

sents all possible nested structures formed by a given RNA

sequence S, E(P) is the energy of structure P , R is the gas

constant, and T represents temperature [1].

The approach computes the structure probabilities of each

individual base pair in the RNA sequence. These probabilities

are used for simultaneous folding and alignment in algorithms

to predict an RNA structure with a maximum expected accu-

racy (MEA) [2].

Each base pair of a structure contributes a fixed energy term

Ebp independent of its context. Under such an assumption,

a partition function for a sub-sequence from position i to

position j is represented with table Qi,j , while table Q
bp
i,j holds

the values of the partition function of the sub-sequences for a

base pair or 0 when base pairing is absent.

The following calculations are used to compute the values

of the partition functions and inserted as elements of tables

Qi,j and Q
bp
i,j .

Qi,j = Qi,j−1 + 3
i≤k<(j−l)

Qi,k−1 ⋅Q
bp

k,j
,

Listing 1. Code of the McCaskill partition function computation.

i f (N>5 && l >=0 && l <=5)

f o r (i =N−1; i >=0; i − −)

f o r (j = i +1 ; j<N; j ++){
Q[i] [j] = Q[i] [j − 1] ;

f o r (k =0; k<j − i − l ; k ++){
Qbp [k+ i] [j] = Q[k+ i + 1] [j −1] *

ERT * p a i r e d (k+ i , j − 1) ;

Q[i] [j] += Q[i] [k+ i] * Qbp [k+ i] [j] ;

} }

Q
bp
i,j =

§«««««
«
««««««

Qi+1,j−1 ⋅ exp(−Ebp/RT)
if Si, Sj can form

base pair

0 otherwise

.

Listing 1 presents the code implementation computing Qi,j

and Q
bp
i,j filled with random double values (data in arrays

do not affect the speed of the code). ERT is equal to

exp(−Ebp/RT). To simplify target tiled code generation, we

replaced k with k+i and the innermost loop boundaries from

0 to j − i − 1.

Many algorithms in bioinformatics are within dynamic pro-

gramming (DP). Programming loop nests implementing those

algorithms can be represented within the polyhedral model.

That model is used in many optimization compilers, which

automatically generate efficient parallel tiled code. However,

the code implementing McCaskill’s algorithm exposes non-

uniform dependences that make it difficult effective paral-

lelization and tiling of that code.

A polyhedral optimizer generally improves code locality by

means of loop tiling, which groups loop statement instances

within smaller blocks (tiles). This allows for reuse provided

that the block fits in cache. In parallel tiled code, tiles are

enumerated as indivisible macro statements. This increases the

granularity of parallel code that often improves the perfor-

mance of that code executed in parallel systems with shared

memory.

Dynamic programming codes expose non-uniform depen-

dences, which limit applying commonly known optimization

techniques such as permutation, diamond tiling [3], or index

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 475–478

DOI: 10.15439/2022F4

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 475

set splitting [4] very well trained, for example, on sten-

cils.

II. OPITMIZING COMPILERS USED FOR EXPERIMENTS

Modern automatic optimizing compilers, for example,

PLuTo [5], demonstrate the success of using the polyhe-

dral model. PLuTo extracts and applies affine functions to

parallelize and tile serial code. Target parallel tiled code

demonstrates good efficiency on modern multi-core computers

with shared memory in particular for stencils.

For a given loop nest statement, compilers based on affine

transformations use the relation [I]→ [t = C ∗ I + c], where

I is the loop statement iteration vector; t is the time assigned

to execute iteration I; C ∗ I + c represents the affine function.

When two statement instances get the same execution time,

they can be run in parallel. To extract the unknown matrix C

and unknown vector c, firstly, for each loop nest statement,

time-partition constraints are formed by applying extracted

dependences. Then the time-partition constraints are resolved

for elements of matrix C and elements of vector c.

The PLuTo engine is used in other compilers, for example,

in Apollo[6], PPCG [7], PTile[8], and Autogen framework [9]

as well as in commercial IBM-XL and R-STREAM from the

Reservoir Lab [10].

TRACO is based on the slicing framework introduced in

paper [11]. It calculates the transitive closure of a dependence

graph, which is used to fulfill corrections of original rectan-

gular tiles. The goal of the correction is to eliminate all cycles

among target tiles. This allows us to enumerate target tiles in

lexicographic order.

After tile correction, the inter-tile dependence graph does

not contain any cycle and any technique of loop nest paral-

lelization can be used to generate parallel code, details are

presented in paper [12]. TRACO uses the commonly known

wive-fronting technique for tiled code parallelization. For its

implementation, it applies the ISL library.

PLuTo and TRACO have some limitations. PLuTo may

not find the number of linearly independent solutions to time

partitions constraints that is equal to the number of the loops

surrounding a loop nest statement. This reduces the dimension

of target tiles and as a consequence target code locality may

be low. For example, it is not able to tile each loop nest for the

Nussinov and Knuth algorithms [13], i.e., instead of 3D tiles

it generates only 2D tiles. TRACO, in general, may generate

irregular tiles that reduce code locality and worsen multiple

thread work balance [14].

To generate regular code and increase tile dimension, DAPT

implements space-time tiling. First DAPT generates space tiles

according to the technique presented in paper [15]. Then it

splits each space tile into multiple time slices. Each time

slice is represented with a number of time partitions found

by means of the ISL scheduler. The number of time partitions

within the time slice is defined by the user. As a result, the tile

dimension is increased by one. Target code enumerates smaller

tiles (time slices) within each space tile. This increases code

locality due to increasing the probability of catching all the

data associated with each smaller tile in cache provided that

the number of time partitions forming the time slice is chosen

properly.

However, each of the mentioned above automatic source-

to-source compilers is able to generate tiled code for the

McCaskill algorithm and we conducted a comparison analysis

of the performance of codes generated by them on two modern

multi-core machines.

III. EXPERIMENTAL STUDY

In this section, we present the results of an experimental

study with PLuTo, TRACO, and DAPT codes implementing

the McCaskill partition function computation. All target par-

allel tiled codes were compiled using the Intel C++ Compiler

(icc) and GNU C++ Compiler (g++) with the -O3 flag of

optimization.

To carry out experiments, we used two multi-processor

machines: an 2x Intel Xeon Platinum 9242 CPU (2.30GHz,

2x96 threads, 71,5 MB Cache, compiler icc 21.3.0, 2019), and

an AMD Epyc 7542 (2.35 GHz, 32 cores, 64 threads, 128MB

Cache, compiler g++ 9.3.0, 2019).

The code generated with DAPT is presented in Listing 2,

while the codes generated with PLuTo and TRACO can be

found at https://github.com/markpal/NPDP Bench/blob/main/

mcc/mcc dapt.cpp, they are too long to be inserted in this

paper.

It is worth noting that tiles generated with TRACO are

irregular, they can be fixed or parametric (the size of such

tiles is unbounded). PLuTo generates regular fixed tiles except

from boundary ones.

Space-time tiling implemented in DAPT generates regular

tiles and the tile dimension is one more than that of tiles

generates with PLuTo.

In all examined compilers, for parallelism representation,

the OpenMP standard is used. For different sizes examined

by us, by means of experiments, we discovered that the best

tile size for the TRACO target code is 1x128x16. This means

that the outermost loop in the loop nest should not be tiled.

For the target code generated with PLuTo, the best tile size is

16x16x16. For the DAPT code, the optimal size is 16x16x16

for space slices and the size of the time slice (the number of

time partitions within the space tile) is 2.

The McCaskill code can be tiled by all the compilers used

for us for experiments. However, only TRACO and DAPT

allow us to generate parallel tiled code. The serial code gen-

erated with PluTo is very cache-efficient, but PluTo is unable to

extract any affine schedule allowing for parallelism of target

code. TRACO generates target code applying the transitive

closure of the dependence graph for the McCaskill loop nest,

then it builds a relation representing inter-tile dependences.

Finally, using that relation, it applies the ISL scheduler to

extract a valid tile schedule, which is used to generate parallel

tiled code. DAPT applies the wave front technique to generate

target parallel tiled code.

Tables 1 and 2 hold execution times (in seconds) for the

PLuTo, TRACO, and DAPT codes for various RNA sequence

476 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

Listing 2. Parallel tiled loop nests of the McCaskill algorithm generated with DAPT .

1 i f (l >= 0 && l <= 5 && N >= 6) {
2 f o r (w0 = −1; w0 <= (N − 1) / 8 ; w0 += 1) {
3 # pragma omp p a r a l l e l f o r

4 f o r (h0 = max (w0 − (N+7) / 8 + 1 , −((N+5) / 8)) ; h0 <= min (0 , w0) ; h0 += 1) {
5 f o r (i 0 = max (max(−N+2 , −8*w0 + 8*h0 −6) , 8* h0) ; i 0 <= min (0 , 8* h0 + 7) ; i 0 ++) {
6 f o r (i 1 = max (8*w0 − 8*h0 , − i 0 + 1) ; i 1 <= min (N−1 , 8*w0 − 8* h0 + 7) ; i 1 ++) {
7 Q[− i 0] [i 1] = Q[− i 0] [i 1 − 1] ;

8 f o r (i 3 = 0 ; i 3 < − l + i 0 + i 1 ; i 3 += 1) {
9 Qbp[− i 0 + i 3] [i 1] = ((Q[− i 0 + i 3 + 1] [i1 −1] * (ERT)) * p a i r e d ((− i 0 + i 3) , (i1 − 1))) ;

10 Q[− i 0] [i 1] += (Q[− i 0] [− i 0 + i 3] * Qbp[− i 0 + i 3] [i 1]) ;

11 }}}}}

TABLE I
EXECUTION TIME OF THE PARALLEL TILED CODES FOR AN INTEL XEON

PLATINUM 9242 USING 192 HARDWARE THREADS.

N Serial PLuTo TRACO Dapt

1000 0,61 0,51 0,14 0,07
2000 8,81 4,73 0,87 0,62
3000 38,63 21,73 3,43 2,22
4000 106,17 58,96 8,58 5,06
5000 227,41 116,75 17,73 9,88
6000 420,26 206,48 29,43 17,45
7000 721,88 333,84 47,61 28,16
8000 1157,84 503,13 69,81 46,41
9000 2575,45 713,69 98,67 71,33
10000 3676,3 1005,44 135,01 105,86

lengths on an Intel Xeon Platinum 9242 (192 hardware

threads) and an AMD Epyc 7542 (64 hardware threads),

respectively. Figures 1 and 3 show the speed-up (a ratio of

T1 over Tn, where T1 and Tn are execution times for one and

n threads used for code running, respectively) of parallel tiled

programs for RNA sequence sizes from 1000 to 10000 for

an Intel Xeon Platinum 9242 (192 hardware threads) and an

AMD Epyc 7542 (64 hardware threads), respectively. Figures

2 and 4 show how target code speed-up depends on the number

of threads for an Intel Xeon Platinum 9242 (192 hardware

threads) and an AMD Epyc 7542 (64 hardware threads),

respectively, for N = 5000 (roughly the size of the longest

human mRNA).

Analyzing the presented results of experiments, we may

state that the DAPT code overcomes considerable those of

PLuTo and TRACO ones. The TRACO code overcomes that

of PLuTo for eight and more threads. The worse efficiency of

the TRACO code for a few thread numbers is caused with the

irregularity of the target code (see the previous section).

IV. CONCLUSION

We presented the results of a comparative performance

analysis of three tiled codes generated with optimizing com-

pilers PLuTo, TRACO, and DAPT for the McCaskill partition

function calculation. The best performance demonstrates the

DAPT code due to the fact that it applies space-time tiling

Fig. 1. Speedups of the parallel tiled codes generated by applying TRACO,
PLuTo, and Dapt for an Intel Xeon Platinum 9242 and RNA sequence sizes
from 1000 to 10000.

TABLE II
EXECUTIONS TIME OF THE PARALLEL TILED CODES FOR AN AMD EPYC

7542 USING 64 HARDWARE THREADS.

N Serial PLuTo TRACO Dapt

1000 0,87 0,63 2,89 0,54
2000 10,22 5,28 10,33 2,05
3000 46,19 18,99 31,46 3,02
4000 129,29 56,33 70,56 4,94
5000 289,41 127,89 137,64 9,74
6000 572,61 246,36 241,06 17,35
7000 999,91 413,36 373,89 26,58
8000 1567,43 607,81 553,21 40,39
9000 2231,09 932,75 779,01 59,63

10000 3043,21 1299,29 1096,88 81,72

allowing us to increase the tile dimensionality by one in

comparison with that of PLUTO. That makes all tiles to be

regular and of fixed size. A proper choice of a tile size allows

us to hold all the data associated with each tile in cache that

increases code locality.

REFERENCES

[1] M. Raden, S. M. Ali, O. S. Alkhnbashi, A. Busch, F. Costa, J. A. Davis,
F. Eggenhofer, R. Gelhausen, J. Georg, S. Heyne, M. Hiller, K. Kundu,

WLODZIMIERZ BIELECKI ET AL.: AUTOMATIC CODE OPTIMIZATION FOR COMPUTING THE MCCASKILL PARTITION FUNCTIONS 477

Fig. 4. Speedups of the parallel tiled codes generated by applying TRACO,
PLuTo, and Dapt for an AMD Epyc 7542 using various number of hardware
threads

Fig. 2. Speedups of the parallel tiled codes generated by applying TRACO,
PLuTo, and Dapt for an Intel Xeon Platinum 9242 using various number of
hardware threads.

Fig. 3. Speedups of the parallel tiled codes generated by applying TRACO,
PLuTo, and Dapt for an AMD Epyc 7542 and RNA sequence sizes from 1000
to 10000.

R. Kleinkauf, S. C. Lott, M. M. Mohamed, A. Mattheis, M. Miladi, A. S.
Richter, S. Will, J. Wolff, P. R. Wright, and R. Backofen, “Freiburg RNA
tools: a central online resource for RNA-focused research and teaching,”
Nucleic Acids Research, vol. 46, no. W1, pp. W25–W29, 2018. doi:
10.1093/nar/gky329

[2] M. Raden, S. M. Ali, O. S. Alkhnbashi, A. Busch, F. Costa, J. A. Davis,
F. Eggenhofer, R. Gelhausen, J. Georg, S. Heyne et al., “Freiburg rna
tools: a central online resource for rna-focused research and teaching,”
Nucleic acids research, vol. 46, no. W1, pp. W25–W29, 2018.

[3] U. Bondhugula, V. Bandishti, and I. Pananilath, “Diamond tiling: Tiling
techniques to maximize parallelism for stencil computations,” IEEE

Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp.
1285–1298, May 2017. doi: 10.1109/tpds.2016.2615094

[4] U. Bondhugula, A. Acharya, and A. Cohen, “The pluto+ algorithm: A
practical approach for parallelization and locality optimization of affine
loop nests,” ACM Trans. Program. Lang. Syst., vol. 38, no. 3, pp. 12:1–
12:32, Apr. 2016. doi: 10.1145/2896389

[5] U. Bondhugula et al., “A practical automatic polyhedral paral-
lelizer and locality optimizer,” SIGPLAN Not., vol. 43, no. 6,
pp. 101–113, Jun. 2008. doi: 10.1145/1379022.1375595 Http://pluto-
compiler.sourceforge.net/.

[6] J. M. M. Caamaño, A. Sukumaran-Rajam, A. Baloian, M. Selva, and
P. Clauss, “Apollo: Automatic speculative polyhedral loop optimizer,” in
IMPACT 2017-7th International Workshop on Polyhedral Compilation

Techniques, 2017, p. 8.
[7] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez,

C. Tenllado, and F. Catthoor, “Polyhedral parallel code generation
for cuda,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, jan
2013. doi: 10.1145/2400682.2400713. [Online]. Available: https:
//doi.org/10.1145/2400682.2400713

[8] M. M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanujam,
and P. Sadayappan, “Parameterized tiling revisited,” in Proceedings of

the 8th annual IEEE/ACM international symposium on Code generation

and optimization, ser. CGO ’10. New York, NY, USA: ACM, 2010.
ISBN 978-1-60558-635-9 pp. 200–209.

[9] R. Chowdhury, P. Ganapathi, J. J. Tithi, C. Bachmeier, B. C. Kuszmaul,
C. E. Leiserson, A. Solar-Lezama, and Y. Tang, “Autogen: Automatic
discovery of cache-oblivious parallel recursive algorithms for solving
dynamic programs,” ACM SIGPLAN Notices, vol. 51, no. 8, pp. 1–12,
2016.

[10] U. Bondhugula et al., “A practical automatic polyhedral parallelizer
and locality optimizer,” SIGPLAN Not., vol. 43, no. 6, pp. 101–113,
Jun. 2008. [Online]. Available: http://pluto-compiler.sourceforge.net

[11] W. Pugh and D. Wonnacott, “An exact method for analysis of value-
based array data dependences,” in Sixth Annual Workshop on Program-

ming Languages and Compilers for Parallel Computing. Springer-
Verlag, 1993.

[12] W.Bielecki and M. Palkowski, “Tiling of arbitrarily nested loops by
means of the transitive closure of dependence graphs,” International

Journal of Applied Mathematics and Computer Science (AMCS), vol.
Vol. 26, no. 4, pp. 919–939, December 2016. doi: 10.1515/amcs-2016-
0065

[13] W. Bielecki and M. Palkowski, “Space-time loop tiling for dynamic
programming codes,” Electronics, vol. 10, no. 18, p. 2233, 2021.

[14] M. Palkowski and W. Bielecki, “Parallel cache-efficient code for com-
puting the McCaskill partition functions,” vol. 18, pp. 207–210, 2019.
doi: 10.15439/2019F8

[15] W. Bielecki and M. Poliwoda, “Automatic parallel tiled code generation
based on dependence approximation,” in International Conference on

Parallel Computing Technologies. Springer, 2021, pp. 260–275.

478 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

