


Abstract—The aim of this research is to present the Cell-based 

software architecture and explore its optimization. Cell-based 

software  architecture  organizes  a  software  system  into 

interconnected  cells,  each  containing  multiple  elements.  This 

research  focuses  on  optimizing  cell-based  architecture, 

particularly the number of cells and their internal organization. 

In  this  context,  the  Community  Detection  approach,  which 

identifies closely connected elements, was applied. Additionally, 

the model incorporates the concept of functionality, defined as a 

set  of  capabilities  allowable  and  actionable  by  the  software 

system.  We  conducted  a  series  of  experiments  based  on  the 

defined mathematical model to validate our approach, achieving 

optimal and near-optimal solutions within a given time limit. 

Considering that each cell can contain multiple elements realized 

in various architectural styles, the proposed model allows for the 

integration of different architectures within the same software 

system.  This  flexibility  enhances  the  system's  overall 

adaptability and efficiency.

Index Terms—software architecture, cell-based architecture, 

community detection, architecture optimization.

I. INTRODUCTION

N TODAY'S digital age, the application of software sys-

tems spans across various domains. These systems enable 

seamless  communication  and  data  exchange  within  and 

across different industries. In the interconnected world, soft-

ware systems can be utilized by a diverse range of clients, and 

it is essential to ensure they have capabilities to support them 

effectively.

I

In addition to functional requirements, these capabilities 

are related to non-functional requirements such as security, 

deployability, availability, scalability, reliability, resilience, 

maintainability, etc. [1]. However, achieving a high level of 

non-functional requirements can be a challenging task. Non-

functional requirements are typically defined as quality at-

This work was supported by the University of Belgrade – Faculty of 

Organizational Sciences.

tributes of a software system, and are closely related to soft-

ware architecture [2].

Software architecture of a system can be defined as the set 

of elements needed to reason about the system [3], encom-

passing various software components, their relationships, as 

well as the properties of components and relationships [1]. 

Software architecture can be considered as a blueprint for fur-

ther software design, based on which various components are 

created.  In  this  context,  software  architects  and  engineers 

should consider software architecture from the earliest phases 

of development.

This research presents the Cell-based software architecture. 

Cell-based architecture considers the organization of a soft-

ware system in the form of interconnected cells, while each 

cell can contain multiple elements [4]-[5]. The research ob-

serves cell-based software architecture optimization, specifi-

cally focusing on the number of cells and their internal organi-

zation, as community detection problem.

The rest of the paper is organized as follows. Section 2 in-

troduces various software architectures that can be applied in 

the  software  development  process.  Additionally,  the  Cell-

based software architecture is presented, as well as the Com-

munity  Detection  problem and  its  application  in  different 

fields. Section 3 introduces the problem and defines a mathe-

matical model for Cell-based software architecture optimiza-

tion. Evaluation and optimization results are presented in Sec-

tion 4. Finally, the conclusion is presented in Section 5.

II.BACKGROUND

This section introduces various software architectures, with 

a focus on Cell-based software architecture. Given that cells 

can be represented as a network of connected nodes, the sec-

tion also covers the Community Detection problem and its ap-

plication in various fields.

Optimization of the Cell-based Software Architecture by Applying 

the Community Detection Approach

Miloš Milić
0000-0002-2521-7607

University of Belgrade

Faculty of Organizational 

Sciences, Belgrade

Jove Ilića 154,

11000 Belgrade, Serbia

Email: milos.milic@fon.bg.ac.rs

Dragana Makajić-Nikolić
0000-0002-0790-6791

University of Belgrade

Faculty of Organizational 

Sciences, Belgrade

Jove Ilića 154,

11000 Belgrade, Serbia

Email: dragana.makajic-

nikolic@fon.bg.ac.rs

Proceedings of the 19th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 149–156

DOI: 10.15439/2024F3355
ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 149 Topical area: Software, System and Service Engineering



 

 

 

A. Software Architecture 

When software design is concerned, various software ar-

chitectures can be observed. For example, monolithic archi-

tecture represents a traditional software design approach. This 

architecture involves multiple modules that are executed to-

gether as a single unit at runtime, resulting in high coupling 

between the modules [6]. On the other hand, microservice ar-

chitecture is an alternative to monolithic architecture. In mi-

croservice architecture, each element is implemented as a sep-

arate microservice, which operates independently as a single 

unit at runtime. This approach results in low coupling be-

tween microservices [6]. However, taking into account that 

each microservice is managed independently, microservice 

organization and communication must be carefully consid-

ered [7]. In addition, microservices typically require addi-

tional components for management, such as microservice or-

chestration and choreography [8], which can introduce addi-

tional complexity. Although monolith and microservice ar-

chitecture can co-exist within the same system, researchers 

are exploring approaches decomposing and gradually transi-

tioning from monolithic applications to microservices [9]-

[12]. Both monolithic and microservice architectures require 

infrastructure services (e.g., application server, database 

server, etc.), which can be either on-premises or cloud-based. 

Another alternative to monolithic and microservice archi-

tectures is serverless software architecture, an approach that 

focuses on designing services related to specific business ca-

pabilities [13]. In this context, Functions-as-a-Service (FaaS) 

can be coded and deployed, while the underlying infrastruc-

ture is managed by the cloud provider [14]. Although this ap-

proach allows software engineers to focus on business func-

tions, it results in a high degree of coupling with the infra-

structure services provisioned by the cloud provider.  

Based on the previous discussion, it can be stated that each 

software architecture has its own pros and cons that should be 

carefully considered during the software design process. 

B. Cell-based Software Architecture 

Cell-based architecture can be defined as a software archi-

tecture that incorporates multiple units of workload, with each 

unit known as a cell [5]. Each cell is independent from other 

cells, does not share state with other cells, and can encapsulate 

multiple components of different types [4]-[5]. Additionally, 

each cell contains a cell gateway, serving as the central entry 

point for cell communication. In this context, intra-cell and 

inter-cell communication can be observed, which is realized 

with well-defined interfaces and protocols [4]. A specific set 

of functionalities or services can be incorporated within a cell, 

defining a cell boundary. In this context, cell-based architec-

ture can be related with domain-driven software design [15]. 

Conceptual overview of the Cell-based software architec-

ture is presented in Figure 1. The figure depicts two cells with 

multiple elements, with the cell boundaries outlined by octa-

gons. Cell A incorporates three elements (e.g., one monolith 

and two microservices), while Cell B also includes three ele-

ments (e.g., three microservices). Additionally, element A2 

from Cell A communicates with Cell B through the cell gate-

way. In this way inter-cell communication is realized [4]. On 

the other hand, element B2 communicates with element B3. 

This communication is performed inside Cell B and repre-

sents intra-cell communication [4]. Each cell is autonomous 

and can be managed independently of other cells. As a result, 

better encapsulation, isolation, and distribution of software 

architecture elements can be achieved, addressing some of the 

typical challenges in software architecture design [16]. 

 

  

Fig 1. Conceptual overview of the Cell-based software architecture 

 

Considering that a cell can incorporate multiple capabilities 

implemented in various architectures, the cell-based approach 

facilitates the introduction of multi-architecture software de-

velopment. In this context, the benefits of each applied archi-

tecture can be utilized, while their cons can be managed. This 

approach allows each cell to be independent and iterate indi-

vidually, resulting in decentralized software architecture [4]. 

C. Community Detection Problem 

Community detection problem belongs to the field of Com-

plex Network Analysis. Its most common areas of application 

are: social networks [17]-[18], neuroscience and biology [19], 

supply chain networks [20]-[21], politics, customer segmen-

tation, smart advertising and targeted marketing [22], etc. 

Community detection approach were also applied in software 

engineering since the process-oriented and the object-oriented 

software architecture both can be presented as complex net-

work [23] characterized by properties like those commonly 

observed in other complex networks [24]. Authors Pan, Jing, 

and Li used community detection approach for refactoring the 

package structures of object-oriented software in order to im-

prove the maintenance process [25]. Software maintenance 

was also emphasized as the reason for using community de-

tection in research conducted by Huang et al. [26]. Authors 

Hou, Yao, and Gong applied community detection approach 

to developer collaboration network in software ecosystem 

based on developer cooperation intensity [27]. 

Communities are groups of network’s vertices with the 

common properties and/or role in the network [28]. The com-

munity detection problem is to find communities that maxim-

ize a given quality function. The solution of the problem is a 

set of communities such that the number of  edges within the 

150 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



 

 

 

community is greater of the number of edges between the 

community’s vertices and the rest of the network (Figure 2).  

There are several quality measures intended to evaluate the 

structure of communities [29]. In this paper we use the 

standard and most used measure of quality, called Newman–
Girvan modularity [30]. One of the formulations of Newman–
Girvan modularity is: 

 

2

2

m m

m C

L D
Q

L L

  = −     
  (1) 

where C represents the set of communities, Lm is the sum of 

the weights of the edges within community m, L is the sum of 

weights of all edges in entire the network, and Dm is the de-

gree of the vertices in community m. 

The function (1) is nonlinear, and it can only be solved for 

small and medium-sized unweighted graphs [31]. Hence, sev-

eral solving methods and linearizations of it can be found in 

the literature [32]-[33]. In this paper, we use the variant of 

modularity function (1) from [34] that enables further linear-

ization: 

 
( , ) ( , )

1 1
( )

4
m m

ij i j

k C i j E i j E

Q b d d
L L  

= −    (2) 

where Em represents the set of edges in community m of a 

given graph G=(E,V), V is the set of the vertices. Parameter bij 

is the weight of the edge (i,j), (i,j)E, and di is the weight of 

the vertex, obtained as sum of weight of all input and output 

edges of vertex i: 

 
( , ),( , )

i ij

i j j i E

d b


=  ,  iV (3) 

III. MATHEMATICAL MODEL FOR OPTIMIZING CELL-BASED 
SOFTWARE ARCHITECTURE  

As previously discussed in Section 2, cell-based software 

architecture can be depicted as a network of interconnected 

cells and elements that communicate with each other. Given 

that the solution of Community Detection problem can iden-

tify closely connected items, this section presents a mathemat-

ical model for optimizing cell-based software architecture. 

Optimizing the cell-based architecture can potentially lead to 

better resource utilization through an optimal number of cells 

and their internal organization. Additionally, various software 

quality attributes can be enhanced.  

When the software architecture whose elements should be 

grouped into cells based on community detection problem, the 

elements of the architecture are vertices of the graph G=(E,V). 

The edges of the graph exist between the elements (vertices) 

which communicate, while the weight of the edge (i,j), bij rep-

resents the intensity of the communication. 

Since the weights inside the parentheses in equation (2) 

should be calculated only for the edges and vertices belonging 

to the same community, the set of communities C and binary 

variables yik are introduced: 

1 if -th vertice is in community 
, ,

0 otherwise
ik

i k
y i V k C


=  


. 

Equation (2) now became: 

 
1 2

( , ) ( , )

( )ij ik jk i j ik jk

k C i j E i j E

Q L b y y L d d y y
  

= −    (4) 

where L1 = 1/L, L2 = 1/4L, and L is the sum of weights of all 

edges in entire the network.  

The nonlinearity yikyjk could be replaced by auxiliary 

binary variables zijk: 

1 if edge ( , ) is in community 
, ( , ) ,

0 otherwise
ijk

i j k
z i j E k C


=  
  

and inequalities: 

 1, ,( , )ijk ik jkz y y k C i j E + −    (5) 

 
, , ( , )

, , ( , )

ijk ik

ijk jk

z y k C i j E

z y k C i j E

  

  
 (6) 

The condition (5) ensures that variable zijk get the value 1 

if both yik and yik have the value 1, i.e. the edge (i,j) is inside 

the community k if both vertices i and j belong to the 

community k. Since based on condition (5), value of zijk can 

be 1 if yik and/or yik are equal to zero, the condition (6) is 

introduced to prevent such solutions. Furthermore, if for an 

edge (i,j) zijk equals zero for all kC, it indicates that edge (i,j) 

does not belong to any community; instead, it represents a link 

between two different communities. 

Additionally, the model also incorporates the concept of 

functionality. Functionality can be defined as a set of 

capabilities allowable and actionable by the software system 

[35]. Each functionality contains elements focused on a 

specific domain and should not be mixed to maintain 

boundaries, reduce complexity, and ensure modularity. In a 

cell-based software architecture, a single functionality can be 

represented by one or more cells, forming the foundation for 

optimizing the software architecture. In addition, different 

functionalities should not be organized in the same cell, 

allowing better separation of concerns between cells. As a 

result, each cell can be independent and managed individually 

[4]. 

In addition to the already introduced parameters and 

variables, notation used for the mathematical model 

formulation is as follows. 

Sets:  

 

Fig 2. A simple graph with three communities 

MILOŠ MILIĆ, DRAGANA MAKAJIĆ-NIKOLIĆ: OPTIMIZATION OF THE CELL-BASED SOFTWARE ARCHITECTURE 151



 

 

 

- FC - set of functionalities, 

- Fl - set of l-th functionality, 

, ,l l l

l FC l FC

F FC F F FC
 

 =  =  

Parameters: 

- e – lower bound of the number of vertices in communities, 

Variables: 

1 if -th community exist
,

0 otherwise
k

k
x k C


= 


 

The proposed mathematical model is listed below. 

 
1 2

( , ) ( , )

max ( ) ( )ij ijk i j ijk

k C i j E i j E

f z L b z L d d z
  

= −    (7) 

s.t. 

 1, ,( , )ijk ik jkz y y k C i j E + −    (8) 

 , ,( , )ijk ikz y k C i j E    (9) 

 1,ik

k C

y i V


=   (10) 

 , ,ik ky x k C i V    (11) 

 ,ik k

i V

y e x k C


    (12) 

 1, , ( ), ( ), , ,ik jky y k C i F l j F p l p FC l p+      

 (13) 

 {0,1},kx k C=   (14) 

 {0,1}, ,iky i V k C=    (15) 

 {0,1}, ( , ) ,ijkz i j E k C=    (16) 

 

The objective function (7) represents the modularity 

measure linearized by replacing yikyjk with zijk in (4). Since this 

function should be maximized, the first addend in parentheses 

will be as large as possible. Thus, the branches that have a 

greater weight will be within the same community, that is, the 

software elements with more frequent communication will be 

in the same cell. Constraints (8-9) are related to linearization. 

Constraint (10) ensures that each vertex is assigned exactly to 

one community. The constraint (11), the value 1 is set to xk if 

some vertex is assigned to the k-th community. Constraint 

(12) is related to the minimal number of vertices assigned to 

the existing communities. Constraint (13) provides that 

vertices of different functionality cannot belong to the same 

community, i.e. only vertices of the same functionality can be 

in the same community. Constraints (14-16) are related to the 

binary restrictions on the variables.  

If necessary, additional constraints can be introduced. For 

example, although the parameter e defines the lower bound 

for the number of vertices in communities, an additional 

constraint can be added to specify a different minimum 

number of vertices for a particular community. This allows 

for fine-grained definition of cell structure in specific 

circumstances.  

For example, if some of the software element should be 

isolated in a cell, a set of such element VIV and additional 

constraint can be included into mathematical model: 

 1, , , ,ik jky y k C i VI j V j i+       (17) 

Additionally, if some elements should be in the same cell, 

regardless the connections between them, the mathematical 

model can be extended as follows. 

- G - set of predefined groups of elements, 

- Vq - set of elements predetermined to be in the same cell, 

qG, 

 , , , ,ik jk qy y k C i j V q G=     (18) 

 1, , , \ik jk q qy y k C i V j V V+      (19) 

The constraint (18) ensures that the predetermined 

elements are in the same cell but allows other elements to be 

assigned to that cell as well. If it is necessary to assign to the 

same cell only the elements from qG, constraint (19) should 

be included into mathematical model. 

IV. EVALUATION 

The optimized structure of the solution can be graphically 

presented based on the results. 

Figure 3 presents the results of the optimization of a man-

ufacturing software system (e.g., mobile phone manufactur-

ing). The input includes defined Production and Purchasing 

functionalities. The Production functionality comprises two 

monolithic applications (i.e., production and legacy) and two 

microservices (i.e., inventory and product), while the Pur-

chasing functionality consists of three microservices (i.e., or-

der, payment, and notification). Additionally, the communi-

cation between these elements is specified (the weights of the 

edges in Figure 3). 

Based on the performed optimization, the resulted solution 

includes three communities (named Community A, Commu-

nity B, and Community C), each containing different ele-

ments (see Figure 3). In the following text these communities 

will be referred to as the Production Cell (Community A), 

Purchasing Cell (Community B), and Legacy Cell (Commu-

nity C).  

 

Fig 3. Results of the optimization of a manufacturing software system 

 

152 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



 

 

 

An additional observation pertains to the Legacy Commu-

nity, which contains only one element (i.e., the legacy mono-

lith). A legacy software system is defined as a core system 

that has been functioning correctly in production for decades 

[36]. Considering the prevalence of legacy systems today, re-

searchers are exploring approaches to migrate these systems 

to modern architectures [37]-[39]. In the context of cell-based 

software architecture, the legacy element is incorporated 

within a specific cell. From the optimization model perspec-

tive, this is represented as an additional constraint that re-

stricts the particular cell structure: 

 1, , \legk jky y k C j V leg+     (20) 

where leg is the index of the variable corresponding to the 

legacy monolith. This constraint ensures that no other element 

can be in the cell containing the legacy monolith. 

Another interesting observation pertains to the Cell Gate-

way component. While this component is not explicitly rep-

resented in the mathematical model, it serves as the central 

entry point for cell communication [4]. Therefore, we have 

included one gateway per cell based on the optimal solution. 

The final software architecture is shown in Figure 4. 

 

Fig 4. Cell-based software architecture based on the optimal solution 

 

In order to validate the mathematical model and examine 

the dimensions of the problem that can be solved exactly, we 

conducted a series of experiments.  

The evaluation considered three functionalities, with the 

number of elements varied. Each element represents an in-

stance of software architecture encapsulating specific features 

(e.g., a monolith with multiple features, a microservice con-

taining a single feature). Considering that these elements can 

vary in terms of their applied software architecture and size, 

a software system can encompass numerous elements. Within 

this context, the first functionality incorporated 40% of the 

elements, while the remaining elements were equally divided 

between the other two functionalities. Taking into account 

that elements cooperate with each other, each element has at 

least one connection with another element within the same 

functionality, while up to 40% of elements have double con-

nections within the same functionality. Finally, considering 

that all functionalities are part of the same software system, 

two connections between elements from different functional-

ities are also established. The previously discussed elements, 

such as edges and their weights (the intensity of the commu-

nication between the elements - parameter bij) are randomly 

generated. The lower bound of the number of vertices in com-

munities (parameter e) is set to 2. 

The experiments were conducted for the graphs whose di-

mensions are given in Table 1. The columns named vertices 

and edges give the number of vertices and edges, respectively, 

while column L represents the total weight of all vertices in 

graphs. 

Given that the model parameters are randomly generated, 

the mathematical model presented in section III was applied 

on ten instances of each graph from Table 1. All optimizations 

were performed solved using GLPK software on a laptop 

computer equipped with 11th Gen Intel(R) Core(TM) i5 and 

16 GB of RAM. The solving method used in GLPK software 

was Branch and Cut, with Gomory’s mixed integer cuts, MIR 
(mixed integer rounding) cuts, mixed cover cuts and clique 

cuts options. Execution time was limited, depending on 

graphs dimensions.  

Time limitations were: 5 minutes for cases 1 to 3, 10 

minutes for cases 4 to 7, and 15 minutes for cases 8 to 10. 

Table 2 gives the optimization time. The second column gives 

the number of instances (out of ten) for which the optimal 

solution was found within the given time limit. The three right 

columns give the minimum, maximum, and average duration 

(in seconds) of the optimization among ten generated 

instances.  

 

 

TABLE I. 

A SUMMARY OF DATA SETS USED IN THE EXPERIMENTS 

Case Number of 

vertices 

Number of 

edges 

L 

1 30 38 163 

2 40 52 214 

3 50 64 252 

4 60 77 307 

5 70 90 351 

6 80 103 393 

7 90 116 462 

8 100 128 519 

9 150 193 746 

10 200 257 991 

 

MILOŠ MILIĆ, DRAGANA MAKAJIĆ-NIKOLIĆ: OPTIMIZATION OF THE CELL-BASED SOFTWARE ARCHITECTURE 153



 

 

 

As expected, the number of instances that can be solved 

within the time limit decreases and optimization time 

increases with increasing of graphs dimensions. However, 

even for lower dimensions, the graph topology and parameter 

values can prevent finding the optimal solution in a given time 

limit, as can be seen in the case of 30 nodes. Generally, in 

most instances of graphs of the same dimensions, the 

optimization times were similar. Figure 5 shows distribution 

of the optimization time for all solved instances. 

In most cases, the optimization times are grouped, except 

for cases 3, 5, and 9 where the optimization of one instance 

takes significantly longer than the others and in case 10 where 

the optimization of one instance is significantly faster than the 

others. The reason for these deviations lies in the topology of 

the graphs and the values of the model parameters. 

Table 3 shows the average performance of obtained 

solutions. The last column represents the optimal value of the 

objective function, i.e. linearized modularity function. 

 

 

 

 

 

 

 

 

The number of cells increases slowly with the increasing 

of graphs dimensions even though the model does not contain 

its upper limit. Additionally, almost 20% of cells consist of 

two elements in the majority of instances. The only exception 

among 75 successfully solved instances is the two instances 

of the graphs with 70, 80, 100 and 150 vertices and one 

instance of the graph with 90 vertices. Figure 6 shows the 

number of cells for all solved instances. 

 

Based on Figure 6, it can be concluded that the number of 

cells is generally grouped for most instances within the same 

case. However, the number of cells slightly varies with 

different problem dimensions and typically ranges from 7 to 

16, with a few exceptions. This indicates that the number of 

cells is more influenced by the topology of the 

correspondence graph and the parameters values than by the 

number of software elements. 

The values of linearized modularity function in Table 3 are 

small, even negative in some cases. These negative values 

indicate that nodes are less connected within communities. 

However, the interpretation of the value of the modularity 

function in these experiments is not of great importance, 

given that hypothetical examples with randomly generated 

graph branches and mathematical model parameters were 

used.  

 

Fig 5. Duration of optimizations of all instances of all ten cases 

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Instances

Cases

T
im

e
(s

ec
)

 

Fig 6. The number of cells in all instances of all ten cases 

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Instances

Cases

T
im

e
(s

ec
)

TABLE II. 

DURATIONS OF THE SUCCESSFUL OPTIMIZATIONS 

Case Number of 

optimal solutions 

min max avg 

1 8 0.2 12.9 1.9 

2 9 0.8 8.1 1.8 

3 9 1.7 86.7 12.0 

4 8 6 13.9 8.7 

5 8 11.2 181.7 39.9 

6 8 20.4 61 32.5 

7 6 30.4 58.1 44.6 

8 7 30.2 44.2 39.2 

9 7 87.3 218.8 117.3 

10 5 142 552 423.3 

 

TABLE III. 

AVERAGE PERFORMANCE OF THE OPTIMAL SOLUTIONS 

Case Number of 

cells 

Min cell 

size 

Max cell 

size 

Modularity 

value 

1 8.63 2 5.13 4.25E-07 

2 10.00 2 7.10 -2.78E-03 

3 10.78 2 8.11 -5.88E-02 

4 10 2 9.57 1.75E-07 

5 11.63 2.25 11.5 1.89E-06 

6 13 2.5 13.25 1.44E-06 

7 11 2.2 16.67 -1.61E-02 

8 10.14 2.43 17.43 8.86E-07 

9 11.71 3.43 25.43 1.14E-06 

10 15.80 2 32.00 0 

 

154 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



 

 

 

V.  CONCLUSION 

The selection of software architecture guides the software 

design and development process, making it an important topic 

in the field of software engineering. Therefore, the chosen 

software architecture should be carefully selected to suit the 

specific needs of the software system being implemented. 

While this research focuses on optimizing cell-based software 

architecture, particularly the number of cells and their internal 

organization, additional research directions can be 

considered.  

Further research could examine system workload in the 

context of additional non-functional attributes such as scala-

bility, availability, and reliability. Additionally, the details of 

intra-cell and inter-cell communication could be further in-

vestigated. Regarding mathematical model, different lineari-

zation of modularity function can be examined as well as dif-

ferent quality measures. The main goal of this research was to 

investigate the validity of modeling cell-based software archi-

tecture as community detection problem. Since this problem 

is NP hard, the next step of the research will be to develop a 

heuristic for solving large scale problems. 

DATA AVAILABILITY 

Input data and optimization results from a series of 

experiments can be accessed at the following address: 

https://github.com/mmilicfon/fedcsis2024.  

REFERENCES 

[1] P. Bourque and R. E. Fairley (Eds), Guide to the Software Engineering 
Body of Knowledge (SWEBOK (R)): Version 3.0, IEEE Computer So-

ciety Press, 2014. 

[2] A. Chandrasekar, S. Rajesh, and P. Rajesh, "A research study on soft-
ware quality attributes", International Journal of Scientific and Re-

search Publications, Vol. 4, No. 1, pp. 14-19, 2014. 

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture in Prac-
tice, 4th Edition, Addison-Wesley Professional, 2021.  

[4] A. Abeysinghe, "Cell-Based Architecture: A Decentralized Reference 

Architecture for Cloud-native Applications", 2024. Available online: 
https://github.com/wso2/reference-architecture/blob/master/reference-

architecture-cell-based.md (Access Date: May 17, 2024). 

[5] Amazon Web Services, "Reducing the Scope of Impact with Cell-Based 
Architecture: AWS Well-Architected", Amazon Corporation, 2024. 

Available online: https://docs.aws.amazon.com/wellarchitected/lat-

est/reducing-scope-of-impact-with-cell-based-architecture/reducing-
scope-of-impact-with-cell-based-architecture.html (Access Date: July 

12, 2024). 

[6] G. Blinowski, A. Ojdowska, and A. Przybyłek, "Monolithic vs. micro-
service architecture: A performance and scalability evaluation", IEEE 

Access, Vol. 10, pp. 20357-20374, 2022, https://doi.org/10.1109/AC-

CESS.2022.3152803. 
[7] S. Hassan and R. Bahsoon, "Microservices and their design trade-offs: 

A self-adaptive roadmap", in Proceedings of the 2016 IEEE Interna-

tional Conference on Services Computing (SCC), pp. 813-818, IEEE, 
2016, https://doi.org/10.1109/SCC.2016.113. 

[8] N. Singhal, U. Sakthivel, and P. Raj, "Selection mechanism of micro-

services orchestration vs. choreography". International Journal of Web 
& Semantic Technology (IJWesT), Vol. 10, No. 1, pp. 1-13, 2019, 

https://doi.org/10.5121/ijwest.2019.10101.  

[9] Y. Abgaz, A. McCarren, P. Elger, D. Solan, N. Lapuz, M. Bivol, G. 
Jackson, M. Yilmaz, J. Buckley, and P. Clarke, "Decomposition of 

monolith applications into microservices architectures: A systematic re-

view", IEEE Transactions on Software Engineering, Vol. 49, No. 8, pp. 
4213-4242, 2023, https://doi.org/10.1109/TSE.2023.3287297. 

[10] R. Chen, S. Li, and Z. Li, "From monolith to microservices: A dataflow-

driven approach", In J. Lv, H. Zhang, X. Liu, and M. Hinchey (Eds.), 

Proceedings of the 2017 24th Asia-Pacific Software Engineering Con-
ference (APSEC), pp. 466-475, IEEE, 2017, 

https://doi.org/10.1109/APSEC.2017.53. 

[11] G. Mazlami, J. Cito, and P. Leitner, "Extraction of microservices from 
monolithic software architectures", in Proceedings of the 2017 IEEE  

International Conference on Web Services (ICWS), pp. 524-531, IEEE, 

2017, https://doi.org/10.1109/ICWS.2017.61. 
[12] K. Sellami, M. A. Saied, A. Ouni, and R. Abdalkareem, "Combining 

static and dynamic analysis to decompose monolithic application into 

microservices", in International Conference on Service-Oriented Com-
puting, pp. 203-218, Cham: Springer Nature Switzerland, 2022, 

https://doi.org/10.1007/978-3-031-20984-0_14. 

[13] M. Sewak and S. Singh, "Winning in the era of serverless computing 
and function as a service", in Proceedings of the 2018 3rd International 

Conference for Convergence in Technology (I2CT), pp. 1-5, IEEE, 

2018, https://doi.org/10.1109/I2CT.2018.8529465. 
[14] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. 

Laureano, C. Tresness, M. Russinovich, and R. Bianchini, (2020), 

"Serverless in the wild: Characterizing and optimizing the serverless 
workload at a large cloud provider", in Proceedings of the 2020 USE-

NIX annual technical conference (USENIX ATC 20), pp. 205-218, 

2020. 
[15] S. Millett and N.Tune, Patterns, principles, and practices of domain-

driven design, John Wiley & Sons, 2015. 

[16] A. Bierska, B. Buhnova, and H. Bangui, "An Integrated Checklist for 
Architecture Design of Critical Software Systems", Annals of Computer 

Science and Information Systems, Vol. 31, 17th Conference on Com-
puter Science and Intelligence Systems (FedCSIS), pp. 133-140, 2022, 

IEEE, https://doi.org/10.15439/2022F287. 

[17] C. C. Lin, J. R. Kang, and J. Y. Chen, "An integer programming ap-
proach and visual analysis for detecting hierarchical community struc-

tures in social networks", Information Sciences, 299, pp. 296-311, 

2015, https://doi.org/10.1016/j.ins.2014.12.009. 
[18] A. R. Costa, & C. G. Ralha, "AC2CD: An actor–critic architecture for 

community detection in dynamic social networks", Knowledge-Based 

Systems, 261, 110202, 2023, 
https://doi.org/10.1016/j.knosys.2022.110202. 

[19] E. M. Mohamed, T. Agouti, A. Tikniouine, and M. El Adnani, "A com-

prehensive literature review on community detection: Approaches and 
applications", Procedia Computer Science, 151, pp. 295-302, 2019, 

https://doi.org/10.1016/j.procs.2019.04.042. 

[20] N. M. Viljoen and J. W. Joubert, "Supply chain micro-communities in 

urban areas", Journal of Transport Geography, 74, 211-222, 2019, 

https://doi.org/10.1016/j.jtrangeo.2018.11.011. 

[21] Z. Lu and Z. Dong, "A Gravitation-Based Hierarchical Community De-
tection Algorithm for Structuring Supply Chain Network", Interna-

tional Journal of Computational Intelligence Systems, Vol. 16, No. 1, 

110, 2023, https://doi.org/10.1007/s44196-023-00290-x. 
[22] A. Karataş, and S. Şahin, "Application areas of community detection: 

A review", in Proceedings of the 2018 International congress on big 

data, deep learning and fighting cyber terrorism (IBIGDELFT), pp. 65-
70, IEEE, 2018, https://doi.org/10.1109/IBIGDELFT.2018.8625349. 

[23] D. Li, Y. Han, and J. Hu, "Complex network thinking in software engi-

neering", in Proceedings of the 2008 International Conference on Com-
puter Science and Software Engineering, pp. 264-268, IEEE, 2008, 

https://doi.org/10.1109/CSSE.2008.689. 

[24] L. Šubelj and M. Bajec, "Community structure of complex software 
systems: Analysis and applications", Physica A: Statistical Mechanics 

and its Applications, Vol. 390, No. 16, pp. 2968-2975, 2011, 

https://doi.org/10.1016/j.physa.2011.03.036. 
[25] W. F. Pan, B. Jiang, and B. Li, "Refactoring software packages via com-

munity detection in complex software networks", International Journal 

of Automation and Computing, Vol.10, No. 2, pp. 157-166, 2013, 
https://doi.org/10.1007/s11633-013-0708-y. 

[26] G. Huang, P. Zhang, B. Zhang, T. Yin, and J. Ren, "The optimal com-

munity detection of software based on complex networks", Interna-
tional Journal of Modern Physics C, Vol. 27, No. 08, 1650085, 2016, 

https://doi.org/10.1142/S0129183116500856. 

[27] T. Hou, X. Yao, and D. Gong, "Community detection in software eco-
system by comprehensively evaluating developer cooperation inten-

sity", Information and Software Technology, 130, 106451, 2021, 

https://doi.org/10.1016/j.infsof.2020.106451. 

MILOŠ MILIĆ, DRAGANA MAKAJIĆ-NIKOLIĆ: OPTIMIZATION OF THE CELL-BASED SOFTWARE ARCHITECTURE 155



[28] S. Fortunato, "Community detection in graphs", Physics reports, Vol. 

486,  No.  3-5,  pp.  75-174,  2010,  https://doi.org/10.1016/j.physrep 

.2009.11.002.

[29] V. L. Dao, C. Bothorel, and P. Lenca, "Community structure: A com-

parative evaluation of community detection methods", Network Science

, Vol. 8, No. 1, pp. 1-41, 2020, https://doi.org/10.1017/nws.2019.59.

[30] M. E. Newman and M. Girvan, "Finding and evaluating community 

structure in networks", Physical review E, Vol. 69, No. 2, 026113, 2004, 

https://doi.org/10.1103/PhysRevE.69.026113.

[31] L. Bennett, S. Liu, L.G. Papageorgiou, and S. Tsoka, "A mathematical 

programming approach to community structure detection in complex 

networks", Computer Aided Chemical Engineering, Vol. 30, pp. 1387-

1391, 2012, https://doi.org/10.1016/B978-0-444-59520-1.50136-6.

[32] B. Serrano and T. Vidal, "Community detection in the stochastic block 

model by mixed integer programming", Pattern Recognition, Vol. 152, 

110487, 2024, https://doi.org/10.1016/j.patcog.2024.110487.

[33] A. Ferdowsi and M. D. Chenary, "Toward an Optimal Solution to the 

Network Partitioning Problem", Annals of Computer Science and Infor-

mation Systems, Vol. 35, 18th Conference on Computer Science and In-

telligence  Systems  (FedCSIS),  pp.  111-117,  2023,  IEEE, 

https://doi.org/10.15439/2023F2832.

[34] E. Alinezhad, B. Teimourpour, M.M. Sepehri, and M. Kargari, "Com-

munity detection in attributed networks considering both structural and 

attribute  similarities:  two  mathematical  programming  approaches",

Neural Computing and Applications,  Vol. 32, pp. 3203-3220, 2020, 

https://doi.org/10.1007/s00521-019-04064-5.

[35] ISO/IEC/IEEE 24765:2017 Systems and software engineering — Vo-

cabulary, International Organization for Standardization, Available on-

line: https://www.iso.org (Access Date: May 27, 2024).

[36] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and J. Hage, "How 

do  professionals  perceive  legacy  systems  and  software 

modernization?", in Proceedings of the ACM 36th International Con-

ference on Software Engineering (ICSE 2014), ACM, pp. 36-47, 2014, 

http://dx.doi.org/10.1145/2568225.2568318.

[37] J. Kazanavičius and D. Mažeika, "Migrating legacy software to mi-

croservices architecture", in Proceedings of the IEEE 2019 Open Con-

ference of Electrical, Electronic and Information Sciences (eStream), 

pp. 1-5, 2019, IEEE, https://doi.org/10.1109/eStream.2019.8732170.

[38] A. Ahmad and M. A. Babar, "A framework for architecture-driven mi-

gration of legacy systems to cloud-enabled software", in Proceedings of  

the  WICSA  2014  Companion  Volume,  pp.  1-8,  2014, 

http://dx.doi.org/10.1145/2578128.2578232.

[39] A. Menychtas, C. Santzaridou, G. Kousiouris, T. Varvarigou, L. Orue-

Echevarria, J. Alonso, J. Gorronogoitia, H. Bruneliere, O. Strauss, T. 

Senkova, B. Pellens, and P. Stuer, "ARTIST Methodology and Frame-

work: A novel approach for the migration of legacy software on the 

Cloud", in Proceedings of the IEEE 2013 15th International Symposium 

on Symbolic and Numeric Algorithms for Scientific Computing, pp. 424-

431, 2013, IEEE, https://doi.org/10.1109/SYNASC.2013.62.

156 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


