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Abstract—Smart agriculture has seen impressive progresses
in monitoring the quality of the crop and early detecting the
onset of pathogens. However, this is typically achieved through
smart, expensive, and energy-demanding robots and autonomous
systems. We propose an AI-empowered portable low-cost short-
wave near-infrared spectroscopy (sw-NIRS) solution that allows
non-destructive measurements from plants and vegetables. In this
pilot study, we specifically targeted an orange fruit and showed
that it is possible to classify its different parts through sw-NIRS
in the range 1350-2150 nm by using AI models, exceeding 97%

accuracy. Also, we explored the minimum amount of energy
needed to reach such high classification performance. In the
future, we aim to extend this investigation to other targets (e.g.,
bean plants), to develop AI architectures to more accurately
model the physiological conditions of the target, and to create a
network of sw-NIRS sensors to simultaneously monitor a large-
scale crop.

Index Terms—Near-infrared spectroscopy, machine learning,
AI, chemometrics, energy efficient, green technology, smart
agrifood, precision agriculture.

I. INTRODUCTION

S
MART agri-food has recently seen tremendous devel-

opments thanks to new generation sensing, networking,

and data analytics, i.e., ICT and artificial intelligence (AI),

technologies.

This is allowing experts in the domain to quantitatively,

continuously, and precisely monitor the conditions of the crops

[1]. Near-infrared spectroscopy (NIRS) is one of the most

popular techniques employed in the field, as it has already

shown great potential in analyzing the quality and composition

of foods [1], the maturity of fruits [2], [3] and crops [4], as

well as the stress conditions of plants [5]. Another important

advantage of NIRS is that this technology is available as

portable devices (a very good review on the most recent

handheld spectrometers can be found in [6]) with very fast

scanning times (in the range of a few seconds) [7]. However,

current portable NIRS devices suffer from some important

limits, e.g., relatively large mass (over a few kilograms) [8],

[9], relatively large sizes (e.g., a few tens of centimeters),

no continuous acquisition modality, and a spectral resolution

rarely below 2 nm. Here, we present a pilot study where a

new handheld extremely lightweight but accurate NIRS spec-

trometer is used to acquire spectra from an orange fruit. With

the complementary application of AI and machine learning

(ML) modeling techniques [5], [10]–[12], we were able to

classify different parts of the fruit with very high precision

(classification accuracy over 97%), using very low energy.
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Fig. 1. Experimental setup and some representative targets. (a) Point 1 for Part 1 (whole orange). (b) Points 1 to 3 for Part 3 (white layer) and Part 4 (orange
layer).

Fig. 2. Dataset in three single-lamp power settings at 100, 150, and 200.

II. MATERIALS AND METHODS

A. Portable NIRS

In this study, we employed a portable near-IR spectrometer

that is able to capture the reflected light components from the

target in a wide range of wavelengths, i.e., from 1350 nm to

2150 nm (technically defined as short-wave NIRS), with very

high resolution of 1 nm. It is extremely lightweight (20 g) and

small (45x25x13 mm).

Our spectrometer utilizes two microelectromechanical sys-

tems (MEMS) spectral sensors by Hamamatsu1. These sensors

1The datasheets of these sensors (C14272, C14273) can be
found at https://www.hamamatsu.com/eu/en/product/optical-sensors/
spectrometers/mems-fpi-spectrum-sensor.html

generate two independent spectra: one captures the spectrum

from 1350 nm to 1650 nm, while the second captures from

1750 nm to 2150 nm. Although the sensors operate indepen-

dently, the data from both of them are processed together in

our analysis pipeline. This dual-sensor approach allows us to

cover a wide spectral range (1350-2150 nm). Its power con-

sumption is primarily determined by the lamp’s power. An Os-

hino lamp, integrated into the device, consumes approximately

60 mW at lamp power 100 and 270 mW at lamp power 250.

Additionally, the SoC system and other operations consume

120 mW. This results in a total power consumption falling

within the range of approximately 180 mW to 390 mW, which

is exceptionally low for these handheld spectrometers [9].

This energy-efficient profile enables users to perform precise
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spectral analysis without significant power demands, enhanc-

ing the spectrometer’s practicality and versatility for a wide

range of field and laboratory applications. The cost for such

a hardware setup is very low (less than 500 $ in the current

device configuration), compared to many other available NIRS

(e.g., hyperspectral) solutions (more than 1000 $, depending

on the specific features). Moreover, the device is prepared to

embed a Bluetooth Low Energy (BLE) chipset for wireless

transmissions (available in a later version). The acquisition

time is very short, i.e., less than 2 s is enough to scan the

entire range of wavelengths, making this device suitable for

on-the-fly measurements of different types of targets, from

plants to fruit, to animals [1].

B. Experimental protocol

Four different parts of an orange fruit were targeted for the

NIRS measurement: (1) the whole orange fruit, (2) a two-layer

target formed by the two outermost layers of the orange fruit,

i.e., the orange and the white layers, (3) the white layer, and

(4) the orange outermost layer. Spectra were collected from

three different points on each part of the fruit. Fig. 1 shows

the experimental setup and some representative targets.

Sixteen different lamp powers were available for the ac-

quisition: from the value of 100 to the value of 250, with

a 10-width step. Ten repeated measures were collected, in a

continuous modality, on the same experimental condition, i.e.,

the combination of part-point-lamp power. The overall dataset

finally included 1920 samples, with 702 features each (i.e.,

each feature representing one wavelength).

It is worth noting that we selected the three different points

of every part with no rigorous localization criterion. This

might have led to an increased intra-part variability but,

at the same time, allowed us to prove that a ML model

trained on these NIRS data is still able to distinguish across

different parts, making our contribution closer to real-world

applications.

C. Data preparation and pre-processing

From our previous investigations [1], we decided to use the

standard normal variate (SNV) which consists in normalizing

every spectrum by removing its own mean and dividing by

its own standard deviation. This method aims to reduce the

multiplicative effects of scattering and particle size, and allows

to reduce the differences in the global intensities of the signals

[13].

The Savitsky-Golay filter (SGF) is one of the most com-

monly used pre-processing steps in spectrometry and it con-

sists of a 1-D filter that fits a polynomial function with degree

p to a piece of data of length w. Often, first or second-order

derivative is computed on the data before applying the filter.

Based on our previous empirical investigations, we applied

SGF on the reflectance values, setting p = 2, and w = 30
for MEMS1 while w = 50 for MEMS2 (to cope with the

higher noise level), and using the first-order derivative. Thus,

the first-order derivative emphasizes the dynamic changes in

the reflectance spectrum, while the SGF smoothes up irrelevant

small peaks. Then, min-max normalization was applied to the

filtered reflectance data to limit their values in the [0, 1] range.

In this study, we investigated both the performance of our

system when using all lamp powers (namely, multi-lamp power

setting), or selecting one specific lamp power (namely, single-

lamp power setting). In the latter case, during pre-processing,

we extracted values obtained from the selected lamp power

and performed the other operations on the reduced dataset, in

the same way as in the case of the multi-lamp power setting.

In both cases, we also investigated the possibility to reduce the

dimensionality of the dataset (i.e., from the 702 dimensions)

using principal component analysis (PCA). We decomposed

the entire dataset in order to obtain a minimum number of

principal components that explain the most variance in the

dataset.

For visual inspection purposes, we also computed the

absorbance spectra from the reflectance ones by computing

A = log
10
(1/R). The absorbance values were further filtered

with a SGF with the same parameters values as the reflectance.

All processing steps were implemented in Python 3.9, as

available in the Jupyter environment in Google Colab.

D. Numerical experiments

Both for the multi-lamp power setting and the single-lamp

power setting, we investigated the possibility of classifying the

fruit parts, e.g., its different layers, from sw-NIRS data. Also,

by visually inspecting the results of PCA, we observed the

amount of separability among different classes while reducing

the dataset dimensionality (originally set to 702) to the first 2
principal components.

Following the literature mainstream [4], we selected support

vector machine (SVM) for the 4-class classification task, as it

represents one of the most successful ML models in NIRS

analysis. The Python class sklearn.svm.SV C was employed

in the implementation of the classification task. This library is

based on the libsvm package [14] that finds the best classifica-

tion solution using a one-vs-one approach (default solver: C-

SVC) in multi-class classification problems. During training,

we applied a grid-search parameter optimization with the

following values: kernel = [linear, radial basis function (rbf),

polynomial], C = [0.01, 1, 10, 100], γ = [0.01, 0.1, 1, 10],
where C is the regularization parameter that allows having

a certain number of mis-classified samples, while γ represents

the influence of far away samples in the computation of the

separation hyperplane. We left the degree parameter for the

polynomial kernel to the default value of 3. To train and

validate the SVM model, we randomly selected 70% of the

dataset, while keeping the remaining 30% for the test phase.

During training, 5-fold cross-validation was applied.

We built the SVM models using pre-processed reflectance R
values or, alternatively, using the first 2 principal components.

However, in most cases, the models relying on the R values

returned the best results. Thus, in the following, we show

the classification performance obtained from the pre-processed

R values, while the PCA results are used for visualization

purposes, only.
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To support the global effort of the scientific community in

the direction of full reproducibility of research [15], [16], we

share our Colab file at [17] and the dataset at [18].

III. RESULTS AND DISCUSSION

Visual inspection: Fig. 2 shows the dataset obtained by

averaging 10 repeated measurements from three different

points of every orange’s part in three single-lamp power

settings. It includes the raw reflectance spectrum, the pre-

processed reflectance spectrum (i.e., as used for the subsequent

analysis), the raw absorbance spectrum, and the pre-processed

absorbance spectrum (as described in Section II-C).

We could observe that all spectra are consistent with previ-

ous literature [4], [8], [19]. Then, it can be noted that the white

layer shows the most reflective intensity (both MEMS ranges),

while the other three parts are much more similar to each other.

Nevertheless, as one might expect, the whole orange and the

two-layer targets produced spectra in between the white layer

and the orange layer, with some slight differences in the two

MEMS ranges.

Multi-lamp power setting study: When all measurements

performed with any value of lamp power are included in

the analysis, we found that the most explained variance is

accounted for by the first 2 principal components, which rep-

resent 75% and 18% total variance in the dataset, respectively.

Furthermore, the best SVM classifier model (built on the

pre-processed R values) was obtained with C = 10, γ = 10,

and rbf kernel and reached 99.3% accuracy during the test.

Fig. 3 shows the normalized confusion matrix for the 4
classes in the multi-lamp power setting.

Fig. 3. Multi-lamp power setting: normalized confusion matrix for the 4

classes.

However, this setting leads to a high energy consumption

that could reduce the battery life of the device. Thus, we

performed a second stage of experiments while limiting the

lamp power, i.e., the energy consumption of the device. We

extensively tested the classification performance with every

single lamp power, in order to find the best trade-off between

low energy usage and satisfactory classification accuracy val-

ues.

Fig. 4. Single-lamp power setting: normalized confusion matrix for the
4 classes for three different values of the lamp power (100, 150, 200,
respectively).
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Single-lamp power setting study: Fig. 4 shows the normal-

ized confusion matrices for three different single-lamp powers,

i.e., 100, 150, and 200. We can observe that, as the lamp power

increases, the accuracy in the classification of the four orange’s

parts improves.

On the other hand, we also applied PCA to the three above

configurations and noticed that for higher lamp powers, more

variance is explained by the first principal components, only.

Table I shows the explained variances for the first five principal

components for the three different lamp powers.

TABLE I
EXPLAINED VARIANCE FOR THE FIRST 5 PRINCIPAL COMPONENTS FOR

THREE DIFFERENT LAMP POWERS.

Lamp power PC1 PC2 PC3 PC4 PC5

100 0.73 0.13 0.04 0.02 0.01

150 0.83 0.11 0.03 0.01 0

200 0.89 0.07 0.02 0.01 0

One might conclude that the lamp power acts as a rel-

evant factor that increases the data variance. Including all

measurements, regardless the lamp power, makes the variance

spread more onto two principal components. However, the

classification results are very satisfactory. On the other hand,

it seems also possible that using a low-power lamp setting

(i.e., 100) leads variance to be spread over more than one

principal component. However, in this case, the classification

performance decrease, possibly due to an increase of the

variance that is not related to the target’s characteristics.

Finally, Fig. 5 reports all classification accuracies, found

during the test phase (over the pre-processed R values), for

every lamp power value, i.e., from 100 to 250.

Fig. 5. Classification accuracy for every single-lamp power.

We could observe that, even with a single lamp power, it

is possible to obtain very high classification accuracy values

in the separation of the four orange fruit parts (chance level

is 25%). Our portable spectrometer includes power-saving

features when not in use, and switches to a higher power mode

when acquiring spectra continuously. However, with this work

we suggest that by empowering NIRS with AI (specifically,

ML modeling), we could fasten the acquisition times and lower

the energy consumption during the operating phase, while

obtaining very high classification performance. Specifically,

from Fig. 5, one can choose to set the lamp power, for example

150, to obtain consistently good classification, consistently

reduce the energy in the acquisition step and, at the same

time, reduce the redundant variance not related to the target

itself, as discussed above.

IV. CONCLUSIONS AND FUTURE PERSPECTIVES

The results presented in this study are still preliminary but

made us prove the reliability and the advantages of an AI-

empowered NIRS solution for the smart agri-food domain.

In the future, we will extend this investigation to more com-

plex scenarios: we will use the NIRS technology to monitor

other target plants (e.g., bean and pothos plants), fruits, or

to analyze organic compounds. Also, we can leverage the

Bluetooth connection available on our spectrometer to deploy

a network of wireless NIRS sensors [20] to precisely and

promptly extract relevant information about the physiological

conditions of plants in large-scale crops and new genera-

tion smart greenhouses. Furthermore, the current study was

conducted in a semi-controlled lab environment as our aim

was to perform a pilot study with our prototype. For real-

world outdoor deployments, we will operate ad-hoc calibration

based on the surrounding ambient light and we will perform a

systematic feasibility study. Finally, we will the SVM model

performance with other ML models and AI architectures

(e.g., convolutional neural networks) [12]. Although there

are other well-established solutions for precision agricolture

in the market (e.g., RGB cameras), they often operate in

different wavelength ranges, making direct comparisons with

our system difficult. Therefore, future additional efforts will

be dedicated to compare our system with more similar NIRS

devices, currently not available in the market. Additionally,

our system could be reviewed as a complimentary solution

for satellite-based crop monitoring techniques [21] or drones-

based weed mapping [22]. Then, to increase the sustainability

of our system, we will investigate the actual amount of power

consumption in the final NIRS product. However, with this first

prototype, we were able to show the combination of hardware

energy-saving features (e.g., battery size, lmap type, and other

sensor configurations) with AI-based methods can significantly

reduce the overall need of energy, while ensuring an effective

monitoring of crops and plants for long periods of time.
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