
Annals of Mathematics, 164 (2006), 51–229

The strong perfect graph theorem

By Maria Chudnovsky, Neil Robertson,∗ Paul Seymour,∗*
and Robin Thomas∗∗∗

Abstract

A graph G is perfect if for every induced subgraph H, the chromatic
number of H equals the size of the largest complete subgraph of H, and G is
Berge if no induced subgraph of G is an odd cycle of length at least five or the
complement of one.

The “strong perfect graph conjecture” (Berge, 1961) asserts that a graph
is perfect if and only if it is Berge. A stronger conjecture was made recently by
Conforti, Cornuéjols and Vušković — that every Berge graph either falls into
one of a few basic classes, or admits one of a few kinds of separation (designed
so that a minimum counterexample to Berge’s conjecture cannot have either
of these properties).

In this paper we prove both of these conjectures.

1. Introduction

We begin with definitions of some of our terms which may be nonstandard.
All graphs in this paper are finite and simple. The complement G of a graph
G has the same vertex set as G, and distinct vertices u, v are adjacent in G

just when they are not adjacent in G. A hole of G is an induced subgraph of G

which is a cycle of length at least 4. An antihole of G is an induced subgraph
of G whose complement is a hole in G. A graph G is Berge if every hole and
antihole of G has even length.

A clique in G is a subset X of V (G) such that every two members of
X are adjacent. A graph G is perfect if for every induced subgraph H of G,
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the chromatic number of H equals the size of the largest clique of H. The
study of perfect graphs was initiated by Claude Berge, partly motivated by a
problem from information theory (finding the “Shannon capacity” of a graph
— it lies between the size of the largest clique and the chromatic number, and
so for a perfect graph it equals both). In particular, in 1961 Berge [1] proposed
two celebrated conjectures about perfect graphs. Since the second implies the
first, they were known as the “weak” and “strong” perfect graph conjectures
respectively, although both are now theorems:

1.1. The complement of every perfect graph is perfect.

1.2. A graph is perfect if and only if it is Berge.

The first was proved by Lovász [16] in 1972. The second, the strong perfect
graph conjecture, received a great deal of attention over the past 40 years, but
remained open until now, and is the main theorem of this paper.

Since every perfect graph is Berge, to prove 1.2 it remains to prove the
converse. By a minimum imperfect graph we mean a counterexample to 1.2
with as few vertices as possible (in particular, any such graph is Berge and not
perfect). Much of the published work on 1.2 falls into two classes: proving
that the theorem holds for graphs with some particular graph excluded as
an induced subgraph, and investigating the structure of minimum imperfect
graphs. For the latter, linear programming methods have been particularly
useful; there are rich connections between perfect graphs and linear and integer
programming (see [5], [20] for example).

But a third approach has been developing in the perfect graph community
over a number of years; the attempt to show that every Berge graph either
belongs to some well-understood basic class of (perfect) graphs, or admits some
feature that a minimum imperfect graph cannot admit. Such a result would
therefore prove that no minimum imperfect graph exists, and consequently
prove 1.2. Our main result is of this type, and our first goal is to state it.

Thus, let us be more precise: we start with two definitions. We say that
G is a double split graph if V (G) can be partioned into four sets {a1, . . . , am},
{b1, . . . , bm}, {c1, . . . , cn}, {d1, . . . , dn} for some m, n ≥ 2, such that:

• ai is adjacent to bi for 1 ≤ i ≤ m, and cj is nonadjacent to dj for
1 ≤ j ≤ n.

• There are no edges between {ai, bi} and {ai′ , bi′} for 1 ≤ i < i′ ≤ m, and
all four edges between {cj , dj} and {cj′ , dj′} for 1 ≤ j < j′ ≤ n.

• There are exactly two edges between {ai, bi} and {cj , dj} for 1 ≤ i ≤ m

and 1 ≤ j ≤ n, and these two edges have no common end.

(A double split graph is so named because it can be obtained from what is called
a “split graph” by doubling each vertex.) The line graph L(G) of a graph G

has vertex set the set E(G) of edges of G, and e, f ∈ E(G) are adjacent in
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L(G) if they share an end in G. Let us say a graph G is basic if either G or G

is bipartite or is the line graph of a bipartite graph, or is a double split graph.
(Note that if G is a double split graph then so is G.) It is easy to see that all
basic graphs are perfect. (For bipartite graphs this is trivial; for line graphs of
bipartite graphs it is a theorem of König [15]; for their complements it follows
from Lovász’ Theorem 1.1, although originally these were separate theorems
of König; and for double split graphs we leave it to the reader.)

Now we turn to the various kinds of “features” that we will prove exist in
every Berge graph that is not basic. They are all decompositions of one kind or
another, so henceforth we call them that. If X ⊆ V (G) we denote the subgraph
of G induced on X by G|X. First, there is a special case of the “2-join” due to
Cornuéjols and Cunningham [13]: a proper 2-join in G is a partition (X1, X2) of
V (G) such that there exist disjoint nonempty Ai, Bi ⊆ Xi (i = 1, 2) satisfying:

• Every vertex of A1 is adjacent to every vertex of A2, and every vertex of
B1 is adjacent to every vertex of B2.

• There are no other edges between X1 and X2.

• For i = 1, 2, every component of G|Xi meets both Ai and Bi, and

• For i = 1, 2, if |Ai| = |Bi| = 1 and G|Xi is a path joining the members
of Ai and Bi, then it has odd length ≥ 3.

(Thanks to Kristina Vušković for pointing out that we could include the “odd
length” condition above with no change to the proof.)

If X ⊆ V (G) and v ∈ V (G), we say v is X-complete if v is adjacent to
every vertex in X (and consequently v /∈ X), and v is X-anticomplete if v

has no neighbours in X. If X, Y ⊆ V (G) are disjoint, we say X is complete
to Y (or the pair (X, Y ) is complete) if every vertex in X is Y -complete; and
being anticomplete to Y is defined similarly. Our second decomposition is a
slight variation of the “homogeneous pair” of Chvátal and Sbihi [7] — a proper
homogeneous pair in G is a pair of disjoint nonempty subsets (A, B) of V (G),
such that, if A1, A2 respectively denote the sets of all A-complete vertices and
all A-anticomplete vertices in V (G), and B1, B2 are defined similarly, then:

• A1 ∪A2 = B1 ∪B2 = V (G) \ (A ∪B) (and in particular, every vertex in
A has a neighbour in B and a nonneighbour in B, and vice versa).

• The four sets A1 ∩ B1, A1 ∩ B2, A2 ∩ B1, A2 ∩ B2 are all nonempty.

A path in G is an induced subgraph of G which is nonnull, connected, not
a cycle, and in which every vertex has degree ≤ 2 (this definition is highly
nonstandard, and we apologise, but it avoids writing “induced” about 600
times). An antipath is an induced subgraph whose complement is a path. The
length of a path is the number of edges in it (and the length of an antipath
is the number of edges in its complement). We therefore recognize paths and
antipaths of length 0. If P is a path, P ∗ denotes the set of internal vertices
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of P , called the interior of P ; and similarly for antipaths. Let A, B be disjoint
subsets of V (G). We say the pair (A, B) is balanced if there is no odd path
between nonadjacent vertices in B with interior in A, and there is no odd
antipath between adjacent vertices in A with interior in B. A set X ⊆ V (G)
is connected if G|X is connected (so ∅ is connected); and anticonnected if G|X
is connected.

The third kind of decomposition used is due to Chvátal [6] — a skew
partition in G is a partition (A, B) of V (G) such that A is not connected
and B is not anticonnected. Despite their elegance, skew partitions pose a
difficulty that the other two decompositions do not, for it has not been shown
that a minimum imperfect graph cannot admit a skew partition; indeed, this
is a well-known open question, first raised by Chvátal [6], the so-called “skew
partition conjecture”. We get around it by confining ourselves to balanced
skew partitions, which do not present this difficulty. (Another difficulty posed
by skew partitions is that they are not really “decompositions” in the sense of
being the inverse of a composition operation, but that does not matter for our
purposes.)

We shall prove the following (the proof is the content of Sections 2–24).

1.3. For every Berge graph G, either G is basic, or one of G, G admits a
proper 2-join, or G admits a proper homogeneous pair, or G admits a balanced
skew partition.

There is in fact only one place in the entire proof that we use the ho-
mogeneous pair outcome (in the proof of 13.4), and it is natural to ask if
homogeneous pairs are really needed. In fact they can be eliminated; one of
us (Chudnovsky) showed in her PhD thesis [3], [4] that the following holds:

1.4. For every Berge graph G, either G is basic, or one of G, G admits a
proper 2-join, or G admits a balanced skew partition.

But the proof of 1.4 is very long (it consists basically of reworking the
proof of this paper for more general structures than graphs where the adjacency
of some pairs of vertices is undecided) and cannot be given here, so in this paper
we accept proper homogeneous pairs.

All nontrivial double split graphs admit skew partitions, so if we delete
“balanced” from 1.3 then we no longer need to consider double split graphs
as basic — four basic classes suffice. Unfortunately, nontrivial double split
graphs do not admit balanced skew partitions, and general skew partitions are
not good enough for the application to 1.2; so we have to do it the way we
did.

Let us prove that 1.3 implies 1.2. For that, we need one lemma, the
following. (A maximal connected subset of a nonempty set A ⊆ V (G) is
called a component of A, and a maximal anticonnected subset is called an
anticomponent of A.) The lemma following is related to results of [14] that
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were used by Roussel and Rubio in their proof [23] of 2.1. Indeed, Lemma 2.2
of [14] has a similar proof, and one could use that lemma to make this proof a
little shorter.

1.5. If G is a minimum imperfect graph, then G admits no balanced skew
partition.

Proof. Suppose that (A, B) is a balanced skew partition of G, and let B1

be an anticomponent of B. Let G′ be the graph obtained from G by adding a
new vertex z with neighbour set B1.

(1) G′ is Berge.

Suppose not. Then in G′ there is an odd hole or antihole using z. Suppose
first that there is an odd hole, C say. Then the neighbours of z in C (say x, y)
belong to B1, and no other vertex of B1 is in C. No vertex of B \ B1 is in C

since it would be adjacent to x, y and C would have length 4; so C \z is an odd
path of G, with ends in B1 and with interior in A, contradicting that (A, B)
is balanced. So we may assume there is no such C. Now assume there is an
odd antihole D in G′, again using z. Then exactly two vertices of D \ z are
nonadjacent to z, so all the others belong to B1. Hence in G there is an odd
antipath Q of length ≥ 3, with ends x, y 	∈ B1 and with interior in B1. Since
both x and y have nonneighbours in the interior of Q it follows that x, y 	∈ B;
and so x, y ∈ A, again contradicting that (A, B) is balanced. This proves (1).

For a subset X of V (G), we denote the size of the largest clique in X by
ω(X). Let ω(B1) = s, and ω(A ∪ B) = t. Since G is minimum imperfect it
cannot be t-coloured. Let A1, . . . , Am be the components of A.

(2) For 1 ≤ i ≤ m there is a subset Ci ⊆ Ai such that ω(Ci ∪ B1) = s and

ω((Ai \ Ci) ∪ (B \ B1)) ≤ t − s.

Let H = G′|(B ∪ Ai ∪ {z}); then H is Berge, by (1). Now by [6], there
are at least two vertices of G not in H (all the vertices in A \Ai), and since H

has only one new vertex it follows that |V (H)| < |V (G)|. From the minimality
of |V (G)| we deduce that H is perfect. Now a theorem of Lovász [16] shows
that replicating a vertex of a perfect graph makes another perfect graph; so if
we replace z by a set Z of t − s vertices all complete to B1 and to each other,
and with no other neighbours in Ai ∪ B, then the graph we make is perfect.
From the construction, the largest clique in this graph has size ≤ t, and so it
is t-colourable. Since Z is a clique of size t − s, we may assume that colours
1, . . . , s do not occur in Z, and colours s+1, . . . , t do. Since B1 is complete to
Z, colours s+1, . . . , t do not occur in B1, and so only colours 1, . . . , s occur in
B1; and since ω(B1) = s, all these colours do occur in B1. Since B1 is complete
to B \B1, none of colours 1, . . . , s occur in B \B1. Let Ci be the set of vertices
v ∈ Ai with colours 1, . . . , s. Then Ci ∪ B1 has been coloured using only s
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colours, and so ω(Ci ∪ B1) = s; and the remainder of H \ z has been coloured
using only colours s + 1, . . . , t, and so

ω((Ai \ Ci) ∪ (B \ B1)) ≤ t − s.

This proves (2).

Now let C = B1 ∪ C1 ∪ · · · ∪ Cm and D = V (G) \ C. Since there are no
edges between different Ai’s, it follows from (2) that ω(C) = s, and similarly
ω(D) ≤ t−s. Since |C|, |D| < |V (G)| it follows that G|C, G|D are both perfect;
so they are s-colourable and (t − s)-colourable, respectively. But then G is
t-colourable, a contradiction. Thus there is no such (A, B). This proves 1.5.

Proof of 1.2, assuming 1.3. Suppose that there is a minimum imperfect
graph G. Then G is Berge and not perfect. Every basic graph is perfect, and
so G is not basic. It is shown in [13] that G does not admit a proper 2-join.
From Lovász’s Theorem 1.1, it follows that G is also a minimum imperfect
graph, and therefore G also does not admit a proper 2-join. It is shown in [7]
that G does not admit a proper homogeneous pair, and G does not admit a
balanced skew partition by 1.5. It follows that G violates 1.3, and therefore
there is no such graph G. This proves 1.2.

There were a series of statements like 1.3 conjectured over the past twenty
years (although they were mostly unpublished, and were unknown to us when
we were working on 1.3.) Let us sketch the course of evolution, kindly furnished
to us by a referee. A star cutset is a skew partition (A, B) such that some vertex
of B is adjacent to all other vertices of B. An even pair means a pair of vertices
u, v in a graph such that every path between them has even length. It was
known [2], [6], [18] that no minimum imperfect graph admits a star cutset
or an even pair, and the earlier versions of 1.3 involved these concepts. For
instance, in Reed’s PhD thesis [19], the following conjecture appears:

1.6. Conjecture. For every perfect graph G, either one of G, G is a line
graph of a bipartite graph, or one of them has a star cutset or an even pair.

Reed also studied the same question for Berge graphs, and researchers
at that time were considering using general skew partitions instead of star
cutsets (although this would not by itself imply 1.2, since the skew partition
conjecture was still open).

A counterexample to all these versions of the conjecture was obtained in
the early 1990’s by Irena Rusu. At about the same time, Conforti, Cornuéjols
and Rao [9] proved a statement analogous to 1.3 for the class of bipartite
graphs in which every induced cycle has length a multiple of four, and their
theorem involved 2-joins. Since Cornuéjols and Cunningham [13] had already
proved that no minimum imperfect graph admits a 2-join, it was natural to
add 2-joins to the arsenal.
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At a conference in Princeton in 1993, Conforti and Cornuéjols gave a series
of talks on their work; and in working sessions at the conference (particularly
one in which Irena Rusu presented her counterexample), new variants of the
conjecture were discussed, including the following:

1.7. Conjecture. For every Berge graph G, either

• one of G, G is a line graph of a bipartite graph, or

• one of G, G admits a 2-join, or

• G admits a skew partition, or

• one of G, G has an even pair.

More recently, Conforti, Cornuéjols and Vušković [10] proposed a similar
conjecture, with the “even pair” alternative replaced by “one of G, G is bi-
partite”, although without explicitly listing a proposed set of decompositions.
Our result 1.3 is essentially a version of this conjecture, except that we only
accept skew partitions that are balanced (and therefore need a fifth basic class)
and also we include homogeneous pairs.

How can we prove a theorem of the form of 1.3? There are several other
theorems of this kind in graph theory — for example, [7], [10], [17], [21], [22],
[24], [25] and others. All these theorems say that “every graph (or matroid)
not containing an object of type X either falls into one of a few basic classes
or admits a decomposition”. And for each of these theorems, the proof is
basically a combination of the same two methods (below, we say “graph” and
“subgraph”, although the objects and containment relations vary depending
on the context):

• We judiciously choose an explicit X-free graph H (X-free means not con-
taining a subgraph of type X) that does not fall into any of the basic
classes; check that it has a decomposition of the kind it is supposed to
have; show that this decomposition extends to a decomposition of every
bigger X-free graph containing H. That proves that the theorem is true
for all X-free graphs that contain H, so now we may focus on the X-free
graphs that do not contain H.

• We choose a graph J , in one of the basic classes and “decently connected”,
whatever that means in the circumstances. Let G be a bigger X-free
graph containing J that we still need to understand. Enlarge J to a
maximal subgraph K of G that is still decently connected and belongs
to the same basic class as J . We can assume that K 	= G, for otherwise
G satisfies the theorem. Making use of the maximality of K, we prove
that the way the remainder of G attaches to K is sufficiently restricted
that we can infer a decomposition of G. Now we may focus on the X-free
graphs that do not contain J .
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It turns out that these two methods can be used for Berge graphs, in just the
same way. We need about twelve iterations of this process.

The paper is organized as follows. The next three sections develop tools
that will be needed all through the paper. Section 2 concerns a fundamental
lemma of Roussel and Rubio; we give several variations and extensions of it,
and more in Section 3, of a different kind. In Section 4 we develop some features
of skew partitions, to make them easier to handle in the main proof, which we
begin in Section 5. Sections 5–8 prove that every Berge graph containing a
“substantial” line graph as an induced subgraph, satisfies 1.3 (“substantial”
means a line graph of a bipartite subdivision of a 3-connected graph J , with
some more conditions if J = K4). Section 9 proves the same thing for line
graphs of subdivisions of K4 that are not “substantial” — this is where double
split graphs come in. In Section 10 we prove that Berge graphs containing an
“even prism” satisfy 1.3. (To prove this we may assume we are looking at a
Berge graph that does not contain the line graph of a subdivision of K4, for
otherwise we could apply the results of the earlier sections. The same thing
happens later — at each step we may assume the current Berge graph does
not contain any of the subgraphs that were handled in earlier steps.) Sections
11–13 do the same for “long odd prisms”, and Section 14 does the same for a
subgraph we call the “double diamond”.

Section 15 is a break for resharpening the tools we proved in the first four
sections, and in particular, here we prove Chvátal’s skew partition conjecture
[6], that no minimum imperfect graph admits a skew partition. (Or almost –
Chvátal actually conjectured that no minimal imperfect graph admits a skew
partition, and we only prove it here for minimum imperfect graphs. But that
is all we need, and of course the full conjecture of Chvátal follows from 1.2.)
Section 16 proves that any Berge graph containing what we call an “odd wheel”
satisfies 1.3. In Sections 17–23 we prove the same for wheels in general, and
finally in Section 24 we handle Berge graphs not containing wheels.

These steps are summarized more precisely in the next theorem, which we
include now in the hope that it will be helpful to the reader, although some
necessary definitions have not been given yet — for the missing definitions,
the reader should see the appropriate section(s) later. Let F1, . . . ,F11 be the
classes of Berge graphs defined as follows (each is a subclass of the previous
class):

• F1 is the class of all Berge graphs G such that for every bipartite sub-
division H of K4, every induced subgraph of G isomorphic to L(H) is
degenerate,

• F2 is the class of all graphs G such that G, G ∈ F1 and no induced
subgraph of G is isomorphic to L(K3,3),
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• F3 is the class of all Berge graphs G such that for every bipartite sub-
division H of K4, no induced subgraph of G or of G is isomorphic to
L(H),

• F4 is the class of all G ∈ F3 such that no induced subgraph of G is an
even prism,

• F5 is the class of all G ∈ F3 such that no induced subgraph of G or of G

is a long prism,

• F6 is the class of all G ∈ F5 such that no induced subgraph of G is
isomorphic to a double diamond,

• F7 is the class of all G ∈ F6 such that G and G do not contain odd
wheels,

• F8 is the class of all G ∈ F7 such that G and G do not contain pseu-
dowheels,

• F9 is the class of all G ∈ F8 such that G and G do not contain wheels,

• F10 is the class of all G ∈ F9 such that, for every hole C in G of length
≥ 6, no vertex of G has three consecutive neighbours in C, and the same
holds in G,

• F11 is the class of all G ∈ F10 such that every antihole in G has length 4.

1.8. (The steps of the proof of 1.3):

1. For every Berge graph G, either G is a line graph of a bipartite graph, or
G admits a proper 2-join or a balanced skew partition, or G ∈ F1; and
(consequently) either one of G, G is a line graph of a bipartite graph,
or one of G, G admits a proper 2-join, or G admits a balanced skew
partition, or G, G ∈ F1.

2 For every G with G, G ∈ F1, either G = L(K3,3), or G admits a balanced
skew partition, or G ∈ F2.

3. For every G ∈ F2, either G is a double split graph, or one of G, G admits
a proper 2-join, or G admits a balanced skew partition, or G ∈ F3.

4. For every G ∈ F1, either G is an even prism with |V (G)| = 9, or G

admits a proper 2-join or a balanced skew partition, or G ∈ F4.

5. For every G such that G, G ∈ F4, either one of G, G admits a proper
2-join, or G admits a proper homogeneous pair, or G admits a balanced
skew partition, or G ∈ F5.

6. For every G ∈ F5, either one of G, G admits a proper 2-join, or G admits
a balanced skew partition, or G ∈ F6.

7. For every G ∈ F6, either G admits a balanced skew partition, or G ∈ F7.

8. For every G ∈ F7, either G admits a balanced skew partition, or G ∈ F8.
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9. For every G ∈ F8, either G admits a balanced skew partition, or G ∈ F9.

10. For every G ∈ F9, either G admits a balanced skew partition, or G ∈ F10.

11. For every G ∈ F10, either G ∈ F11 or G ∈ F11.

12. For every G ∈ F11, either G admits a balanced skew partition, or G is
complete or bipartite.

The twelve statements of 1.8 are proved in 5.1, 5.2, 9.6, 10.6, 13.4,
14.3, 16.3, 18.7, 23.2, 23.4, 23.5, and 24.1 respectively.

2. The Roussel-Rubio lemma

There is a beautiful and very powerful theorem of [23] which we use many
times throughout the paper. (We proved it independently, in joint work with
Carsten Thomassen, but Roussel and Rubio found it earlier.) Its main use is
to show that in some respects, the common neighbours of an anticonnected set
of vertices (in a Berge graph) act like or almost like the neighbours of a single
vertex.

If X ⊆ V (G), we say an edge uv is X-complete if u, v are both X-complete.
Let P be a path in G (we remind the reader that this means P is an in-
duced subgraph which is a path), of length ≥ 2. Now let the vertices of P be
p1, . . . , pn in order. A leap for P (in G) is a pair of nonadjacent vertices a, b

of G such that there are exactly six edges of G between a, b and V (P ), namely
ap1, ap2, apn, bp1, bpn−1, bpn.

The Roussel-Rubio lemma (slightly reformulated for convenience) is the
following:

2.1. Let G be Berge, let X ⊆ V (G) be anticonnected, and P be a path in
G\X with odd length, such that both ends of P are X-complete. Then either :

1. some edge of P is X-complete, or

2. P has length ≥ 5 and X contains a leap for P , or

3. P has length 3 and there is an odd antipath with interior in X, joining
the internal vertices of P .

This has a number of corollaries that again we shall need throughout the
paper, and in this section we prove some of them.

2.2. Let G be Berge, let X be an anticonnected subset of V (G), and P

be a path in G \ X with odd length, such that both ends of P are X-complete,
and no edge of P is X-complete. Then every X-complete vertex of G has a
neighbour in P ∗.

Proof. Let v be X-complete. Certainly P has length > 1, since its ends
are X-complete and therefore nonadjacent. Suppose first it has length > 3.
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Then by 2.1, X contains a leap, and so there is a path Q with ends in X and
with Q∗ = P ∗. Then v is adjacent to both ends of Q, and since G|(V (Q)∪{v})
is not an odd hole, it follows that v has a neighbour in Q∗ = P ∗, as required.
Now suppose P has length 3, and let its vertices be p1- · · · -p4 in order. By
2.1, there is an odd antipath Q between p2 and p3 with interior in X. Since Q

cannot be completed to an odd antihole via p3-v-p2, it follows that v is adjacent
to one of p2, p3, as required.

Here is another easy lemma that gets used enough that it is worth stating
separately.

2.3. Let G be Berge, let X ⊆ V (G) be anticonnected, and let P be a path
or hole in G \ X. Let Q be a subpath of P (and hence of G) with both ends
X-complete. Then either the number of X-complete edges in Q has the same
parity as the length of Q, or the ends of Q are the only X-complete vertices
in P . In particular, if P is a hole, then either there are an even number of
X-complete edges in P , or there are exactly two X-complete vertices and they
are adjacent.

Proof. The second assertion follows from the first. For the first, we use
induction on the length of Q. If some internal vertex of Q is X-complete then
the result follows from the inductive hypothesis, so we may assume not. If Q

has length 1 or is even then the theorem holds, so we may assume its length
is ≥ 3 and odd. We may assume that there is an X-complete vertex v say of
P that is not an end of Q, and therefore does not belong to Q; and since P is
a path or hole, it follows that v has no neighbour in Q∗, contrary to 2.2. This
proves 2.3.

A triangle in G is a set of three vertices, mutually adjacent. We say a
vertex v can be linked onto a triangle {a1, a2, a3} (via paths P1, P2, P3) if:

• the three paths P1, P2, P3 are mutually vertex-disjoint,

• for i = 1, 2, 3 ai is an end of Pi,

• for 1 ≤ i < j ≤ 3, aiaj is the unique edge of G between V (Pi) and V (Pj),

• v has a neighbour in each of P1, P2 and P3.

The following is well-known and quite useful:

2.4. Let G be Berge, and suppose v can be linked onto a triangle {a1, a2, a3}.
Then v is adjacent to at least two of a1, a2, a3.

Proof. Let v be linked via paths P1, P2, P3. For 1 ≤ i ≤ 3, v has a
neighbour in Pi; let Pi be the path from v to ai with interior in V (Qi). At
least two of Q1, Q2, Q3 have lengths of the same parity, say Q1, Q2; and since
G|(V (Q1) ∪ V (Q2)) is not an odd hole, it is a cycle of length 3, and the claim
follows.
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A variant of 2.2 is sometimes useful:

2.5. Let G be Berge, let X ⊆ V (G), and let P be a path in G \ X of odd
length, with vertices p1- · · · -pn, such that p1, pn are X-complete, and no edge
of P is X-complete. Let v ∈ V (G) be X-complete. Then either v is adjacent
to one of p1, p2, or the only neighbour of v in P ∗ is pn−1.

Proof. By 2.2, v has a neighbour in P ∗, and we may assume that pn−1

is not its only such neighbour, so that v has a neighbour in {p2, . . . , pn−2}. If
P has length ≤ 3 then the result follows, so that we may assume its length
is at least 5. By 2.1, there is a leap a, b for P in X; so there is a path
a-p2- · · · -pn−1-b. Now {p1, p2, a} is a triangle, and v can be linked onto it via
the three paths b-p1, P \ {p1, pn−1, pn}, a; and so v has two neighbours in the
triangle, by 2.4, and the claim follows.

2.6. If G is Berge and A, B ⊆ V (G) are disjoint, and v ∈ V (G)\ (A∪B),
and v is complete to B and anticomplete to A, then (A, B) is balanced.

The proof is clear.

2.7. Let (A, B) be balanced in a Berge graph G. Let C ⊆ V (G) \ (A∪B).
Then:

1. If A is connected and every vertex in B has a neighbour in A, and A is
anticomplete to C, then (C, B) is balanced.

2. If B is anticonnected and no vertex in A is B-complete, and B is complete
to C, then (A, C) is balanced.

Proof. The first statement follows from the second by taking complements,
so that it suffices to prove the second. Suppose u, v ∈ A are adjacent and joined
by an odd antipath P with interior in C. Since B is anticonnected and u, v

both have nonneighbours in B, they are also joined by an antipath Q with
interior in B, which is even since (A, B) is balanced. But then u-P -v-Q-u is
an odd antihole, a contradiction. Now suppose there are nonadjacent u, v ∈ C,
joined by an odd path P with interior in A. Then P has length ≥ 5, since
otherwise its vertices could be reordered to be an odd antipath of the kind
we already handled. The ends of P are B-complete, and no internal vertex
is B-complete, and so B contains a leap for P by 2.1; and hence there is an
odd path with ends in B and interior in A, which is impossible since (A, B) is
balanced. This proves 2.7.

We already said what we mean by linking a vertex onto a triangle, but
now we do the same for an anticonnected set. We say an anticonnected set X

can be linked onto a triangle {a1, a2, a3} (via paths P1, P2, P3) if:

• The three paths P1, P2, P3 are mutually vertex-disjoint.

• For i = 1, 2, 3 ai is an end of Pi.
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• For 1 ≤ i < j ≤ 3, aiaj is the unique edge of G between V (Pi) and
V (Pj).

• Each of P1, P2 and P3 contains an X-complete vertex.

There is a corresponding extension of 2.4:

2.8. Let G be Berge, let X be an anticonnected set, and suppose X can
be linked onto a triangle {a1, a2, a3} via P1, P2, P3. For i = 1, 2, 3 let Pi have
ends ai and bi, and let bi be the unique vertex of Pi that is X-complete. Then
either at least two of P1, P2, P3 have length 0 (and hence two of a1, a2, a3 are
X-complete) or one of P1, P2, P3 has length 0 and the other two have length
1 (say P3 has length 0); and in this case, every X-complete vertex in G is
adjacent to one of a1,a2.

Proof. Some two of P1, P2, P3 have lengths of the same parity, say P1

and P2. Hence the path Q = b1-P1-a1-a2-P2-b2 (with the obvious meaning - we
shall feel free to specify paths by whatever notation is most convenient) is odd,
and its ends are X-complete, and none of its internal vertices are X-complete.
If Q has length 1 then the theorem holds, and so we assume it has length
≥ 3. By 2.2, every X-complete vertex has a neighbour in Q∗, and since b3 is
X-complete, it follows that b3 = a3. Hence we may assume both P1 and P2

have length ≥ 1 for otherwise the claim holds. Suppose that Q has length 3.
Then P1 and P2 have length 1, and the claim holds again. Thus, we may
assume (for a contradiction) that Q has length ≥ 5, and from the symmetry
we may assume P1 has length ≥ 2. Since b3 is not adjacent to the end b1 of Q

or to its neighbour in Q, and yet has at least two neighbours in Q∗ (namely
a1 and a2), this contradicts 2.5 and proves 2.8.

As we said earlier, the main use of 2.1 is to show that the common neigh-
bours of an anticonnected set behave in some respects like the neighbours of
a single vertex. From this point of view, 2.1 itself tells us something about
when there can be an odd “pseudohole” in which one “vertex” is actually an
anticonnected set. We also need a version of this when there are two such
vertices:

2.9. Let G be Berge, and let X, Y be disjoint nonempty anticonnected
subsets of V (G), complete to each other. Let P be a path in G \ (X ∪ Y ) with
even length > 0, with vertices p1, . . . , pn in order, such that p1 is the unique
X-complete vertex of P and pn is the unique Y -complete vertex of P . Then
either

1. P has length ≥ 4 and there are nonadjacent x1, x2 ∈ X such that
x1-p2- · · · -pn-x2 is a path, or

2. P has length ≥ 4 and there are nonadjacent y1, y2 ∈ Y such that
y1-p1- · · · -pn−1-y2 is a path, or
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3. P has length 2 and there is an antipath Q between p2 and p3 with interior
in X, and an antipath R between p1 and p2 with interior in Y , and exactly
one of Q, R has odd length.

In each case, either (V (P \ p1), X) or (V (P \ pn), Y ) is not balanced.

Proof. It follows from the hypotheses that X,Y and V (P ) are mutually
disjoint. If P has length 2, choose an antipath Q between p2 and p3 with
interior in X, and an antipath R between p1 and p2 with interior in Y . Then
p2-Q-p3-p1-R-p2 is an antihole, and so exactly one of Q,R has odd length and
the theorem holds. So we may assume P has length ≥ 4. We may assume that
V (G) = V (P ) ∪ X ∪ Y , by deleting any other vertices. Let G′ be obtained
from G \ Y by adding a new vertex y with neighbour set X ∪ {pn}. Let P ′ be
the path p1- · · · -pn-y of G′. Then P ′ has odd length ≥ 5. If G′ is Berge then
by 2.1 there is a leap for P ′ in X, and the result follows. So we may assume
G′ is not Berge.

Assume first that there is an odd hole C of length ≥ 7 in G′. It necessarily
uses y, and the neighbours of y in C are Y -complete, and no other vertices of
C \ y are Y -complete. Hence there is an odd path Q in G \ Y of length ≥ 5,
with both ends Y -complete and no internal vertices Y -complete. So the ends
of Q belong to X ∪ {pn} and its interior to V (P ) \ {pn}. By 2.1, Y contains a
leap for Q; so there is an odd path R of length ≥ 5 with ends (y1, y2 say) in Y

and with interior in V (P ) \ {pn}. Since R cannot be completed to a hole via
y2-pn-y1 it follows that pn has a neighbour in R∗, and so pn−1 belongs to R.
If also p1 belongs to R then the theorem holds, so we may assume it does not.
Since R is odd and P is even it follows that p2 also does not belong to R,
and so p1 has no neighbour in R∗; yet the ends of R are X-complete and its
internal vertices are not, contrary to 2.2. This completes the case when there
is an odd hole in G′ of length ≥ 7.

Since an odd hole of length 5 is also an odd antihole, we may assume that
there is an odd antihole in G′, say D. Again D must use y, and uses exactly
two nonneighbours of y; so in G there is an odd antipath Q between adjacent
vertices of P \ pn (say u and v), and with interior in X ∪ {pn}. Since u and v

are not Y -complete, they are also joined by an antipath R with interior in Y ,
and R must also be odd since its union with Q is an antihole. Since R cannot
be completed to an antihole via v-pn-u it follows that pn is adjacent to one of
u or v, and hence we may assume that u = pn−2 and v = pn−1. Since P has
length ≥ 4 it follows that u,v are also joined by an antipath with interior in
X, say S, and again S is odd since its union with R is an antihole. But S can
be completed to an antihole via v-p1-u, a contradiction. This proves 2.9.

Next we need a version of 2.1 for holes. Let C be a hole in G, and let
e = uv be an edge of it. A leap for C (in G, at uv) is a leap for the path C \ e
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in G \ e. A hat for C (in G, at uv) is a vertex of G adjacent to u and v and to
no other vertex of C.

2.10. Let G be Berge, let X ⊆ V (G) be anticonnected, let C be a hole in
G \ X with length > 4, and let e = uv be an edge of C. Assume that u, v are
X-complete and no other vertex of C is X-complete. Then either X contains
a hat for C at uv, or X contains a leap for C at uv.

Proof. Let the vertices of C be p1, . . . , pn in order, where u = p1 and
v = pn. Let G1 = G|(V (C) ∪ X), and let G2 = G1 \ e. If G2 is Berge, then
from 2.1 applied to the path C \ e in G2 it follows that X contains a leap for
C at uv. So we may assume that G2 is not Berge. Consequently it has an odd
hole or antihole, D say, and since D is not an odd hole or antihole in G1 it must
use both p1 and pn. Suppose first that D is an odd hole. Since every vertex in
X is adjacent to both p1 and pn it follows that at most one vertex of X is in
D; and since G2 \X has no cycles, there is exactly one vertex of X in D, say x.
Hence D \ x is a path of G2 \X between p1 and pn, and so D \ x = C \ e; and
since D is a hole of G2 it follows that x has no neighbours in {p2, . . . , pn−1},
and therefore is a hat as required. Next assume that D is an antihole. Since it
uses both p1 and pn, and they are nonadjacent in G2, it follows that they are
consecutive in D; so the vertices of D can be numbered d1, . . . , dm in order,
where d1 = p1 and dm = pn, and therefore m ≥ 5. Consequently, both d2

and dm−1 are not in X, since they are not complete to {p1, pn}, and therefore
d1, d2, dm−1, dm are vertices of C. Yet d1dm−1, dm−1d2, d2dm are edges of G1,
which is impossible since n ≥ 6. This proves 2.10.

There is an analogous version of 2.9, as follows.

2.11. Let G be Berge, and let X, Y be disjoint nonempty anticonnected
subsets of V (G), complete to each other. Let P be a path in G \ (X ∪ Y ) with
even length ≥ 4, with vertices p1, . . . , pn in order, such that p1 is the unique
X-complete vertex of P , and p1, pn are the only Y -complete vertices of P . Then
either :

1. There exists x ∈ X nonadjacent to all of p2, . . . , pn, or

2. There are nonadjacent x1, x2 ∈ X such that x1-p2- · · · -pn-x2 is a path.

Proof. The proof is similar to that of 2.9. We may assume V (G) =
V (P )∪X ∪ Y . Let G′ be obtained from G \ Y by adding a new vertex y with
neighbour set X ∪ {p1, pn}. If G′ is Berge then the result follows from 2.10,
so we may assume G′ is not Berge. Assume first that there is an odd hole C

of length ≥ 7 in G′. Hence there is an odd path Q in G \ Y of length ≥ 5,
with both ends Y -complete and no internal vertices Y -complete. So the ends
of Q belong to X ∪ {p1, pn} and its interior to V (P ∗). By 2.1, Y contains a
leap for Q; so there is an odd path R of length ≥ 5 with ends (y1, y2 say) in
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Y and with interior in V (P ∗). Since R is odd and R∗ is a subpath of the even
path P ∗, it follows that not both p2 and pn−1 belong to R; but then R can be
completed to an odd hole via one of y2-pn-y1 , y2-p1-y1, a contradiction. This
completes the case when there is an odd hole in G′ of length ≥ 7, so now we
may assume that there is an odd antihole in G′, say D. Again D must use y,
and uses exactly two nonneighbours of y; so in G there is an odd antipath Q

between adjacent vertices of P ∗ (say u and v), and with interior in X ∪ {pn}.
Since u and v are not Y -complete, they are also joined by an antipath R with
interior in Y , and R must also be odd since its union with Q is an antihole.
Since one of p1,pn is nonadjacent to both of u, v, we may complete R to an
odd antihole via one of u-p1-v,u-pn-v, a contradiction. This proves 2.11.

3. Paths and antipaths meeting

Another class of applications of 2.1 is the situation when a long path or
hole meets a long antipath or antihole. In this section we prove a collection of
useful lemmas of this type. First, a neat application of 2.1 (we include this
only because it is striking — in fact we do not use it at all).

3.1. Let G be Berge, let C be a hole in G, and D an antihole in G, both
of length ≥ 8. Then |V (C) ∩ V (D)| ≤ 3.

Proof. We see easily that |V (C) ∩ V (D)| ≤ 4, without using that G is
Berge. Suppose that |V (C) ∩ V (D)| = 4; then V (C) ∩ V (D) is the vertex set
of a 3-edge path. Let C have vertices p1, . . . , pm in order, and D have vertices
q1, . . . , qn in order, where m, n ≥ 8 and p1 = q2, p2 = q4, p3 = q1, p4 = q3. Let
P be the path p4-p5- · · · -pm-p1, and Q the antipath q4-q5- · · · -qn-q1. Let X be
the interior of Q. Then p1 and p4 are X-complete (since D is an antihole), and
P is a path with length odd and ≥ 5 between these two vertices. If some vertex
pi say in the interior of P is X-complete, then since pi is nonadjacent to both
p2 and p3 we can complete Q to an odd antihole via q1-pi-q4, a contradiction.
So by 2.1, X contains a leap for P ; so there exist i with 5 ≤ i < n and a path
P ′ joining qi and qi+1 with the same interior as P . Since n ≥ 8, either i > 5 or
i + 1 < n and from the symmetry we may assume the first. But then P ′ can
be completed to an odd hole via qi+1-p2-qi, a contradiction. This proves 3.1.

The next two lemmas are results of the same kind:

3.2. Let p1- · · · -pm be a path in a Berge graph G. Let 2 ≤ s ≤ m− 2, and
let ps-q1- · · · -qn-ps+1 be an antipath, where n ≥ 2 is odd. Assume that each of
q1, . . . , qn has a neighbour in {p1, . . . , ps−1} and a neighbour in {ps+2, . . . , pm}.
Then either :

• s ≥ 3 and the only nonedges between {ps−2, ps−1, ps, ps+1, ps+2} and
{q1, . . . , qn} are ps−1qn, psq1, ps+1qn, or
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• s ≤ m− 3 and the only nonedges between {ps−1, ps, ps+1, ps+2, ps+3} and
{q1, . . . , qn} are psq1, ps+1qn, ps+2q1.

Proof. The antipath ps-q1- · · · -qn-ps+1 is even, of length ≥ 4; all its vertices
have neighbours in {p1, . . . , ps−1} except ps+1, and they all have neighbours
in {ps+2, . . . , pm} except ps. Since the sets {p1, . . . , ps−1}, {ps+2, . . . , pm} are
both connected and are anticomplete to each other, it follows from 2.9 applied
in G and the symmetry that there are adjacent vertices u, v ∈ {p1, . . . , ps−1}
such that u-ps-q1- · · · -qn-v is an antipath. Since v is adjacent to ps and to u it
follows that s ≥ 3, v = ps−1 and u = ps−2. Since ps−2-ps-q1- · · · -qn-ps−1 is an
odd antipath of length ≥ 5, and its ends are anticomplete to {ps+1, . . . , pm}
and its internal vertices are not, it follows from 2.1 applied in G that there
are adjacent w, x ∈ {ps+1, . . . , pm} such that w-ps-q1- · · · -qn-x is an antipath.
Since x is adjacent to ps and to w it follows that x = ps+1 and w = ps+2. But
then the theorem holds. This proves 3.2.

3.3. Let G be Berge, let C be a hole in G of length ≥ 6, with vertices
p1, . . . , pm in order, and let Q be an antipath with vertices p1, q1, . . . , qn, p2,
with length ≥ 4 and even. Let z ∈ V (G), complete to V (Q) and with no
neighbours among p3, . . . , pm. There is at most one vertex in {p3, . . . , pm}
complete to either {q1, . . . , qn−1} or {q2, . . . , qn}, and any such vertex is one
of p3, pm.

Proof. None of q1, . . . , qn belong to C, since they are all adjacent to z.
Let X = {q1, . . . , qn}, and let Y1, Y2 be the sets of vertices in {p3, . . . , pm}
complete to X \ {qn}, X \ {q1} respectively.

(1) Y1 ⊆ Y2 ∪ {pm}, and Y2 ⊆ Y1 ∪ {p3}.
Suppose some pi ∈ Y1, and is not in Y2; then since the odd antipath Q \ p2

cannot be completed to an odd antihole via qn-pi-p1, it follows that i = m.
This proves (1).

(2) If Y1 	⊆ {pm} then p3 ∈ Y1 ∩ Y2, and if Y2 	⊆ {p3} then pm ∈ Y1 ∩ Y2.

Assume Y1 	⊆ {pm}, and choose i with 3 ≤ i ≤ m−1 minimum so that pi ∈ Y1.
By (1), pi ∈ Y2, so we may assume i > 3, for otherwise the claim holds. If i is
odd, then the path p2-p3- · · · -pi is odd and between X \{qn}-complete vertices,
and no internal vertex is X \ {qn}-complete, and yet the X \ {qn}-complete
vertex z does not have a neighbour in its interior, contrary to 2.2. So i is
even. The path pi- · · · -pm-p1 is therefore odd, and has length ≥ 3, and its
ends are X \ {q1}-complete, and the X \ {q1}-complete vertex z does not have
a neighbour in its interior; so by 2.2 some vertex v of its interior is in Y2,
and therefore in Y1 ∩ Y2 by (1). But the path z-p2 · · · -pi is odd, and between
X-complete vertices, and has no more such vertices in its interior, and v has
no neighbour in its interior, contrary to 2.2. This proves (2).
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Now not both p3, pm are in Y1 ∩ Y2, for otherwise Q could be completed
to an odd antihole via p2-pm-p3-p1. Hence we may assume p3 /∈ Y1 ∩ Y2, and
so from (2), Y1 ⊆ {pm}. By (1), Y2 ⊆ {p3} ∪ Y1, and so Y1 ∪ Y2 ⊆ {p3, pm}.
We may therefore assume that Y1 ∪ Y2 = {p3, pm}, for otherwise the theorem
holds. In particular, p3 ∈ Y2. If also pm ∈ Y2, then p3-p4- · · · -pm is an odd
path between X \ {q1}-complete vertices, and none of its internal vertices are
X \ {q1}-complete, and yet the X \ {q1}-complete vertex z does not have a
neighbour in its interior, contrary to 2.2. Thus, pm /∈ Y2, and so pm ∈ Y1; but
then p3-q1-q2- · · · -qn-pm-p3 is an odd antihole, a contradiction. This proves 3.3.

4. Skew partitions

In the main proof (which starts in the next section), it happens quite
frequently that we can identify a skew partition in G, and what we really want
is to show that G admits a balanced skew partition. In this section we prove
several lemmas to facilitate that process.

4.1. Let G be Berge, and suppose that G admits a skew partition (A, B)
such that either some component of A or some anticomponent of B has only
one vertex. Then G admits a balanced skew partition.

Proof. By taking complements if necessary we may assume that for some
a1 ∈ A, {a1} is a component of A. Let N be the set of vertices of G adjacent to
a1; now N ⊆ B. Assume first that N is not anticonnected. Then (V (G)\N, N)
is a skew partition of G, and it is easy to check that it is balanced, as required.
So we may assume that N is anticonnected. Consequently N is a subset of
some anticomponent of B, say B1. Choose b2 ∈ B \ B1. Then N ′ = N ∪ {b2}
is not anticonnected, and so (V (G)\N ′, N ′) is a skew partition of G, and once
again is easily checked to be balanced. This proves 4.1.

Let us say a skew partition (A, B) of G is loose if either some vertex in B

has no neighbour in some component of A, or some vertex in A is complete to
some anticomponent of B. In the main proof later in the paper, many of the
skew partitions we construct are loose, and so the next lemma is very useful.

4.2. If G is Berge, and admits a loose skew partition, then it admits a
balanced skew partition.

Proof. Let (A, B) be a loose skew partition of G. By taking complements
if necessary, we may assume that some vertex in B has no neighbour in some
component of A. With G fixed, let us choose the skew partition (A, B) and
a component A1 of A and an anticomponent B1 of B with |B| − 2|B1| mini-
mum, such that some vertex in B1 (say b1) has no neighbour in A1. (We call
this property the “optimality” of (A, B).) Let the other components of A be
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A2, . . . , Am, and the other anticomponents of B be B2, . . . , Bn. By 4.1 we
may assume that no |Ai| or |Bj | = 1, and in this case we shall show that the
skew partition (A, B) is balanced.

(1) For 2 ≤ j ≤ n, no vertex in A is Bj-complete and not B1-complete, and
every vertex in B \ B1 has a neighbour in A1.

For the first claim, assume some vertex v ∈ A is B2-complete and not B1-
complete, say. Let A′

1 = A1 if v 	∈ A1, and let A′
1 be a maximal connected

subset of A1 \ {v} otherwise. (So A′
1 is nonempty since we assumed |A1| ≥ 2.)

Let A′ = A \ {v} and B′ = B ∪ {v}; then B2 is still an anticomponent of B′,
so (A′, B′) is a skew partition, violating the optimality of (A, B) (for since v

is not B1-complete, there is an anticomponent of B′ including B ∪ {v}). For
the second claim, assume that some vertex v ∈ B2 say has no neighbour in A1.
Then since |B2| ≥ 2, it follows that (A∪{v}, B \ {v}) is a skew partition of G,
again violating the optimality of (A, B). This proves (1).

By 2.6, the pair (A1, Bj) is balanced, for 2 ≤ j ≤ n, since b1 is complete
to Bj and has no neighbours in A1. By (1) and 2.7.1, it follows that (Ai, Bj)
is balanced for 2 ≤ i ≤ m and 2 ≤ j ≤ n. It remains to check all the pairs
(Ai, B1). Let 1 ≤ i ≤ m, and let A′

i be the set of vertices in Ai that are not
B1-complete. By (1), no vertex in A′

i is B2-complete, and (A′
i, B2) is balanced,

and hence by 2.7.2, so is (A′
i, B1), and consequently so is (Ai, B1). This proves

that (A, B) is balanced, and so completes the proof of 4.2.

4.3. Let (A, B) be a skew partition of a Berge graph G. If either :

• there exist u, v ∈ B joined by an odd path with interior in A, and joined
by an even path with interior in A, or

• there exist u, v ∈ A joined by an odd antipath with interior in B, and
joined by an even antipath with interior in B,

then (A, B) is loose and therefore G admits a balanced skew partition.

Proof. By taking complements we may assume that the first case of the
theorem applies. There is an even path P1 and an odd path P2 joining u, v,
both with interior in A. Let A1 be the component of A including the interior
of P1. Since P1 ∪ P2 is not a hole, it follows that P2 also has interior in A1.
Let A2 be another component of A. If u, v are joined by a path with interior
in A2, then its union with one of P1, P2 would be an odd hole, a contradiction;
so there is no such path. Hence one of u, v has no neighbours in A2, and hence
(A, B) is loose, and the theorem follows from 4.2. This proves 4.3.

If (A, B) is a skew partition of G, and A′ is a component of A, and B′ is
an anticomponent of B, we call the pair (A′, B′) a path pair if there is an odd
path in G with ends nonadjacent vertices of B′ and with interior in A′; and
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(A′, B′) is an antipath pair if there is an odd antipath in G with ends adjacent
vertices of A′ and with interior in B′.

4.4. Let (A, B) be a skew partition of a Berge graph G, and let A1, . . . , Am

be the components of A, and B1, . . . , Bn the anticomponents of B. Then ei-
ther :

• (A, B) is loose or balanced, or

• (Ai, Bj) is a path pair for all i, j with 1 ≤ i ≤ m and 1 ≤ j ≤ n, or

• (Ai, Bj) is an antipath pair for all i, j with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. We may assume (A, B) is not loose and not balanced.

(1) If for some i, j there is an odd path of length ≥ 5 with ends in Bj and
interior in Ai, then the theorem holds.

Assume there is such a path for i = j = 1 say. Let this path, P1 say, have
vertices b1-p1-p2- . . . -pn-b′1, where b1, b

′
1 ∈ B1 and p1, . . . , pn ∈ A1. Let 2 ≤

j ≤ n. Then P1 is an odd path of length ≥ 5 between common neighbours
of Bj , and no internal vertex of it is Bj-complete since (A, B) is not loose.
By 2.1, Bj contains a leap; so there exist nonadjacent bj , b

′
j ∈ Bj such that

bj-p1-p2- . . . -pn-b′j is a path. Hence (A1, Bj) is a path pair. Now let 2 ≤ i ≤ m

and 1 ≤ j ≤ n. Since (A, B) is not loose, bj and b′j both have neighbours in
Ai, and so there is a path P2 say joining them with interior in Ai; it is odd by
4.3, and so (Ai, Bj) is a path pair. This proves (1).

From (1) we may assume that for all i, j, every odd path of length > 1
with ends in Bj and interior in Ai has length 3; similarly, every odd antipath
of length > 1 with ends in Ai and interior in Bj has length 3. Consequently,
every path pair is also an antipath pair (because a path of length 3 can be
reordered to be an antipath of length 3). We may assume that (A1, B1) is a
path pair, and so there exist b1, b

′
1 ∈ B1 and a1, a

′
1 ∈ A1 such that b1-a1-a′1-b

′
1

is a path P1 say. Let 2 ≤ i ≤ m. Since b1 and b′1 both have neighbours in Ai,
they are joined by a path with interior in Ai, odd by 4.3 ; and so by (1) it
has length 3. Hence there exist ai, a

′
i ∈ Ai such that b1-ai-a′i-b

′
1 is a path. By

the same argument in the complement, it follows that for all 1 ≤ i ≤ m and
2 ≤ j ≤ n, there exist bj , b

′
j ∈ Bj such that bj-ai-a′i-b

′
j is a path. So every pair

(Ai, Bj) is both a path and antipath pair. This proves 4.4.

We can reformulate the previous result in a form that is easier to apply,
as follows.

4.5. Let G be Berge. Suppose that there is a partition of V (G) into four
nonempty sets X, Y, L, R, such that there are no edges between L and R, and
X is complete to Y . If either :

• some vertex in X ∪ Y has no neighbours in L or no neighbours in R, or



THE STRONG PERFECT GRAPH THEOREM 71

• some vertex in L ∪ R is complete to X or complete to Y , or

• (L, Y ) is balanced,

then G admits a balanced skew partition.

Proof. Certainly (L ∪ R, X ∪ Y ) is a skew partition, so by 4.2 we may
assume it is not loose, and therefore neither of the first two alternative hy-
potheses holds. So we assume the third hypothesis holds. Let A1, . . . , Am be
the components of L∪R, and let B1, . . . , Bn be the anticomponents of X ∪Y .
Since X, Y, L, R are all nonempty we may assume that A1 ⊆ L, and B1 ⊆ X.
By hypothesis, (A1, B1) is not a path or antipath pair, and so by 4.4 the skew
partition is balanced. This proves 4.5.

Let (A, B) be a skew partition of G. We say that an anticonnected subset
W of B is a kernel for the skew partition if some component of A contains no
W -complete vertex.

4.6. Let (A, B) be a skew partition of a Berge graph G, and let W be a
kernel for it. Let A1 be a component of A, and suppose that

• every pair of nonadjacent vertices of W with neighbours in A1 are joined
by an even path with interior in A;

• every pair of adjacent vertices of A1 with nonneighbours in W are joined
by an even antipath with interior in B.

Then G admits a balanced skew partition.

Proof. By 4.2 we may assume (A, B) is not loose. Let the components of
A be A1, . . . , Am, and the anticomponents of B be B1, . . . , Bn.

(1) (Ai, W ) is balanced for 1 ≤ i ≤ m.

This is true by 4.3 if i = 1; so assume i > 1. From 4.3 there is no odd path
between nonadjacent vertices of W with interior in Ai. Suppose there is an
odd antipath Q of length > 1, with ends in Ai and interior in W . Then it
has length ≥ 5, for otherwise it can be reordered to be an odd path that we
have already shown impossible. Now the ends of Q have no neighbours in the
connected set A1, and their internal vertices all have neighbours in A1; and
so by 2.1, there is a leap in the complement; that is, there is an antipath
with ends in A1 and with the same interior as Q, which is impossible. This
proves (1).

Since W is anticonnected, we may assume that W ⊆ B1. Since (1) re-
stores the symmetry between A1, . . . , Am, we may assume that there is no
W -complete vertex in A1. By 4.4 we may assume (A1, B2) is a path or an-
tipath pair. Suppose first that it is an antipath pair. Then there is an odd
antipath Q1 of length ≥ 3 with ends in A1 and interior in B2. Since its ends
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both have nonneighbours in W , its ends are also joined by an antipath Q2 with
interior in W , odd by 4.3, contrary to (1). So there is no such Q1. Hence there
is an odd path P with ends in B2 and interior in A1, necessarily of length ≥ 5
(since we already did the antipath case). Since the interior of P contains no
W -complete vertex, 2.1 implies that W contains a leap; and so there is a path
with ends in W with the same interior as P , a contradiction. This proves 4.6.

5. Small attachments to a line graph

We come now to the first of the major steps of the proof. Suppose that G

is Berge, and contains as an induced subgraph a substantial line graph L(H).
Then in general, G itself can only be basic by being a line graph, so 1.3 would
imply that either G is a line graph, or it has a decomposition in accordance
with 1.3. Proving a result of this kind is our first main goal, but exactly how
it goes depends on what we mean by “substantial”. To make the theorem as
powerful as possible, we need to weaken what we mean by “substantial” as
much as we can; but when L(H) gets very small, all sorts of bad things start
to happen. One is that the theorem is not true any more. For instance, when
H = K3,3 or K3,3 \ e (the graph obtained from K3,3 by deleting one edge),
then L(H) is not only a line graph but also the complement of a line graph
(indeed, it is isomorphic to its own complement). So L(H) can live happily
inside bigger graphs that are complements of line graphs, without inducing
any kind of decomposition. The best we can hope for, when L(H) is so small,
is therefore to prove that either G is a line graph or the complement of a line
graph, or has a decomposition of the kind we like. This works for L(K3,3), but
for L(K3,3 \ e) the situation is even worse, because this graph is basic in three
ways — it is a line graph, the complement of a line graph, and a double split
graph. So for Berge graphs G that contain L(K3,3 \ e), the best we can hope is
that either G is a line graph or the complement of one or a double split graph,
or it has a decomposition. And that turns out to be true, but it also explains
why the small cases will be something of a headache, as the reader will see.

The best way to partition these cases appears to be as follows. If H is a
bipartite subdivision of K4, we say that L(H) is degenerate if there is a cycle
of H of length four containing the four vertices of H that have degree three
in H, and nondegenerate otherwise. First we prove the following.

5.1. Let G be Berge, and assume some nondegenerate L(H) is an induced
subgraph of G, where H is a bipartite subdivision of K4. Then either G is a
line graph, or G admits a proper 2-join, or G admits a balanced skew partition.
In particular, 1.8.1 holds.

Now we consider the case when G contains L(H) for some bipartite sub-
division H of a 3-connected J , and yet 5.1 does not apply. It turns out that
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then either H = K3,3, or H is a subdivision of K4 and L(H) is degenerate.
The case when H = K3,3 is handled by the next theorem.

5.2. Let G be Berge, and assume it contains L(K3,3) as an induced sub-
graph. Then either :

• G = L(K3,3), or

• for some bipartite subdivision H of K4, L(H) is nondegenerate and is an
induced subgraph of one of G, G, or

• G admits a balanced skew partition.

In particular, 1.8.2 holds.

The proofs of these two theorems are similar, and we prove them both
together. The remaining case, when H is a subdivision of K4 and L(H) is de-
generate, seems to have a different character, and is best handled by a separate
argument later.

The proof of the two theorems above is roughly as follows. We choose a
3-connected graph J , as large as possible such that G contains L(H) for some
bipartite subdivision H of J . (For the first theorem, we also assume that L(H)
includes some nondegenerate L(H ′) where H ′ is a bipartite subdivision of K4,
and for the second theorem, when necessarily H = K3,3, we also assume that
passing to the complement will not give us a bigger choice of J). Now we
investigate how the remainder of G can attach onto L(H). The edges of J

correspond to edge-disjoint paths of H, which in turn become vertex-disjoint
paths of L(H), which we call “rungs” (we will do the definitions properly
later). One thing we find is that the remainder of G can contain alternative
rungs — paths that could replace one of the rungs in L(H) to give a new
L(H ′), for some other bipartite subdivision H ′ of the same graph J . We find
it advantageous to assemble all these alternative rungs in one “strip”, for each
edge of J , and to maximize the union of these strips (being careful that there
are no unexpected edges of G between strips). Each strip corresponds to an
edge of J , and runs between two sets of vertices (called “potatoes” for now)
that correspond to vertices of J . Let the union of the strips be Z, say. Again
we ask, how does the remainder of G attach onto this “generalized line graph”
Z? This turns out to be quite pretty. There are only two kinds of vertices in
the remainder of G, vertices with very few neighbours in Z, and vertices with
a lot of neighbours. For the first kind, all their neighbours lie either in one of
the strips, or in one of the potatoes; and we can show that for any connected
set of these “minor” vertices, the union of their neighbours in Z has the same
property (they all lie in one strip or in one potato). For the second kind of
vertex, they have so many neighbours in Z that all their nonneighbours in any
one potato lie inside one strip incident with the potato; and the same is true
for the union of the nonneighbours of any anticonnected set of these “major”
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vertices. In other words, every anticonnected set of these major vertices has a
great many common neighbours in Z, so many that they separate all the strips
from one another, and that is where we find skew partitions. (If there are no
major vertices then we need a different argument, but that case is basically
easy.)

In this section and the next few, we have to pay for our convention that
“path” means “induced path”, because here we need paths in the conventional
sense, and therefore need to use a different word for them. A track P is a
nonnull connected graph, not a cycle, in which every vertex has degree ≤ 2;
and its length is the number of edges in it. (Its ends and internal vertices are
defined in the natural way.) A track in a graph H means a subgraph of H

(not necessarily induced) which is a track. Note that there is a correspondence
between the tracks (with at least one edge) in a graph H and the paths in
L(H); the edge-set of a track becomes the vertex-set of a path, and vice versa.
And two tracks are vertex-disjoint if and only if the corresponding paths are
vertex-disjoint and there is no edge of L(H) between them. However, the
parity changes; a track in H and the corresponding path in L(H) have lengths
differing by one, and therefore are of opposite parity.

A branch-vertex of a graph H means a vertex with degree ≥ 3; and a
branch of H means a maximal track P in H such that no internal vertex of
P is a branch-vertex. Subdividing an edge uv means deleting the edge uv,
adding a new vertex w, and adding two new edges uw and wv. Starting with
a graph J , the effect of repeatedly subdividing edges is to replace each edge of
J by a track joining the same pair of vertices, where these tracks are disjoint
except for their ends. We call the graph we obtain a subdivision of J . Note
that V (J) ⊆ V (H). Let J be a 3-connected graph. (We use the convention
that a k-connected graph must have > k vertices.) If H is a subdivision of J

then V (J) is the set of branch-vertices of H, and the branches of H are in 1-1
correspondence with the edges of J . We say H is cyclically 3-connected if it
is a subdivision of some 3-connected graph J . (We remind the reader that in
this paper, all graphs are simple by definition.)

In general, if F, K are induced subgraphs of G with V (F∩K) = ∅, a vertex
in V (K) is said to be an attachment of F (or of V (F )) if it has a neighbour in
V (F ). We need the following lemma:

5.3. Let H be bipartite and cyclically 3-connected. Then either H =
K3,3, or H is a subdivision of K4, or H has a subgraph H ′ such that H ′ is a
subdivision of K4 and L(H ′) is nondegenerate.

Proof. There is a subgraph of H which is a subdivision of K4, and we
may assume that it does not satisfy the theorem. Hence there are tracks
p1- · · · -pm (= P say) and q1- · · · -qn (= Q say) of H, vertex-disjoint, such
that p1q1, p1qn, pmq1, pmqn are edges, and m, n ≥ 3 are odd. Suppose ev-
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ery track in H between {p1, . . . , pm} and {q1, . . . , qn} uses one of the edges
p1q1, p1qn, pmq1, pmqn. Then there are no edges between P and Q except the
given four, and for every component F of H \ (V (P ) ∪ V (Q)), the set of at-
tachments of F in V (P ) ∪ V (Q) is a subset of one of V (P ), V (Q). Since H is
cyclically 3-connected, it follows that H is a subdivision of K4 and the theorem
holds. So we may assume that there is a track R of H, say r1- · · · -rt, from
V (P ) to V (Q), not using any of p1q1, p1qn, pmq1, pmqn. We may assume that
r1 ∈ {p1, . . . , pm−1}, rt ∈ {q1, . . . , qn−1}, and none of r2, . . . , rt−1 belong to
V (P ) ∪ V (Q). The subgraph H ′ formed by the edges E(P ) ∪ E(Q) ∪ E(R) ∪
{p1qn, pmq1, pmqn} (and the vertices of H incident with them) is a subdivision
of K4, and we may assume it does not satisfy the theorem. There is therefore
a cycle of H ′ with vertex set {r1, rt, pm, qn}. Since H is bipartite and pmqn

is an edge, it follows that t = 2. Hence not both r1 = p1 and r2 = q1, and
so r1 = pm−1 and r2 = qn−1. By the same argument with p1, pm exchanged,
it follows that r1 = p2, and so m = 3, and similarly n = 3. Hence there is a
subgraph J of H isomorphic to K3,3.

It is helpful now to change the notation. Let J have vertex set {a1, a2, a3,
b1, b2, b3}, where a1, a2, a3 are adjacent to b1, b2, b3. Suppose that there is
a component F of H \ V (J). Since H is cyclically 3-connected, at least two
vertices of J are attachments of F . If say a1, b1 are attachments, choose a track
P between a1, b1 with interior in F ; then the union of P and J \ {a1b1, a2b2}
satisfies the theorem. If say a1, a2 are attachments of F , choose a track P

between a1, a2 with interior in F ; then the union of P and J \ {a1b1, a2b3}
satisfies the theorem. So we may assume there is no such F . Since H is
bipartite, it follows that H = J = K3,3 , and so the theorem holds. This
proves 5.3.

If G,J are graphs, we say that J appears in G if there is a bipartite
subdivision H of J so that L(H) is isomorphic to an induced subgraph of G.
We call L(H) an appearance of J in G. Note that if L(H) is isomorphic to
some induced subgraph K of G, there is another subdivision H ′ isomorphic
to H, made from H by replacing each edge of H by the corresponding vertex
of K; and now L(H ′) = K (rather than just being isomorphic to it). So
whenever it is convenient we shall assume that the isomorphism between L(H)
and K is just equality, without further explanation. Note in particular that
E(H) = V (K), and so some vertices of G are edges of H.

When J = K4, we have already defined what we mean by a degenerate
appearance of J . When J 	= K4, let us say that an appearance L(H) of J in
G is degenerate if J = H = K3,3, and otherwise it is nondegenerate. So all
appearances of any graph J 	= K4, K3,3 are nondegenerate. If J is 3-connected,
we say a graph J ′ is a J-enlargement if J ′ is 3-connected, and has a proper
subgraph which is isomorphic to a subdivision of J .
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Our goal remains to prove 5.1 and 5.2. Before we start on the main
argument, let us observe that it suffices to prove the following.

5.4. Let G be Berge. Let J be a 3-connected graph, such that there is
no J-enlargement with a nondegenerate appearance in G. Let L(H0) be an
appearance of J in G, such that if L(H0) is degenerate, then H0 = J = K3,3

and no J-enlargement appears in G. Then either G = L(H0), or H0 	= K3,3

and G admits a proper 2-join, or G admits a balanced skew partition.

The proof of this will take several sections, but let us see now that 5.4
implies 5.1 and 5.2.

Proof of 5.1, assuming 5.4. Let G be Berge, and assume there is a
nondegenerate appearance of K4 in G. Choose a 3-connected graph J maximal
(under J-enlargement) such that there is a nondegenerate appearance of J in
G; then the hypotheses of 5.4 are satisfied, and the claim follows from 5.4.
This proves 5.1.

Proof of 5.2, assuming 5.4. Let G be Berge, and let L(H0) be an
appearance of K3,3 in G, where H0 = K3,3. We may assume that both G, G

contain no nondegenerate L(H) where H is a bipartite subdivision of K4. By
5.3, no K3,3-enlargement appears in either G, G. By 5.4, either G = L(K3,3),
or G admits a balanced skew partition. This proves 5.2.

Now we start on the proof of 5.4. We assume that L(H) is an appearance
of J in G, and we need to study how the remaining vertices of G attach to
L(H). In the remainder of this section we examine how individual vertices
attach to L(H), and how connected sets of minor vertices attach. In the next
section we think about anticonnected sets of major vertices.

A vertex in V (G) \ V (L(H)) has a set of neighbours in V (L(H)) that we
want to investigate; but this set is more conveniently thought of as a subset of
E(H), and we begin with some lemmas about subsets of edges of a graph H.

5.5. Let H be cyclically 3-connected, and let C, D be subgraphs with C ∪
D = H, |V (C ∩ D)| ≤ 2, and V (C), V (D) 	= V (H). Then one of C, D is
contained in a branch of H.

The proof is clear.

5.6. Let c1, c2 be nonadjacent vertices of a graph H, such that H \{c1, c2}
is connected. For i = 1, 2, let the edges incident with ci be partitioned into
two sets Ai, Bi, where A1, A2 are both nonempty and at least one of B1, B2 is
nonempty. Assume that for every edge uv ∈ A1 ∪ A2, H \ {u, v} is connected,
and that no vertex of V (H) is incident with all edges in A1 ∪A2. Then one of
the following holds:
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1. There is a track in H with first edge in A1, second edge in B1 (and hence
second vertex c1), last vertex c2 and last edge in A2, or

2. There is a track in H with first edge in A2, second edge in B2 (and hence
second vertex c2), last vertex c1 and last edge in A1.

Proof. For i = 1, 2 let Xi be the set of ends (different from ci) of edges
in Ai, and define Yi similarly for Bi. By hypothesis, X1, X2 are nonempty,
|X1 ∪X2| ≥ 2, and we may assume Y1 is nonempty. Choose x1 ∈ X1 such that
X2 	⊆ {x1} (this is possible since |X1 ∪ X2| ≥ 2). Both Y1 and X2 meet the
connected graph H \ {c1, x1}, and so there is a track in H \ {c1, x1} from Y1

to X2 ∪ Y2, say P , with vertices p1, . . . , pn say. We may assume that p1 ∈ Y1,
and no other pi is in Y1; and pn ∈ X2 ∪ Y2, and no other pi is in X2 ∪ Y2.
In particular it follows that c2 	∈ V (P ). Since x1 	∈ V (P ) we may assume
that pn 	∈ X2 (for otherwise the theorem holds), so pn ∈ Y2. If any vertex
of X1 is in P then again the theorem holds (since X2 is nonempty and none
of its vertices are in P ), so we may assume that P is disjoint from X1 ∪ X2.
Since H \ {c1, c2} is connected, there is a minimal track Q in H \ {c1, c2} from
X1 ∪ X2 to V (P ), and we may assume that only its first vertex (q say) is in
X1 ∪ X2. If q ∈ X1 \ X2, choose x ∈ X2; if q ∈ X2 \ X1 choose x ∈ X1; and if
q ∈ X1 ∩ X2 choose x ∈ X1 ∪ X2 different from q. Thus we may assume that
q ∈ X1 and there exists x ∈ X2 different from q and hence not in Q. So P ∪Q

contains a path from q to B2 not containing x, and hence the theorem holds.
This proves 5.6.

If v is a vertex of H, the set of edges of H incident with v is denoted by
δ(v) or δH(v). Let H be bipartite and cyclically 3-connected, and let X be
some set. We say that X saturates L(H) if for every branch-vertex v of H,
at most one edge of δH(v) is not in X (or equivalently, for every K3 subgraph
of L(H), at least two of its vertices are in X). When H is connected and
bipartite, we speak of vertices having the same or different biparity depending
on whether every track between them is even or odd, respectively. Two edges
of G are disjoint if they have no end in common, and otherwise they meet.

5.7. Let H be bipartite and cyclically 3-connected. Let X ⊆ E(H), such
that there is no track in H of even length ≥ 4, with its end-edges in X and
with no other edge in X. Then either :

1. X saturates L(H), or

2. there is a branch-vertex b of H with X ⊆ δ(b), or

3. there is a branch B of H with X ⊆ E(B), or

4. there is a branch B of H with ends b1, b2 say, such that X \ E(B) =
δ(b1) \ E(B), or
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5. there is a branch B of H of odd length with ends b1, b2 say, such that

X \ E(B) = (δ(b1) ∪ δ(b2)) \ E(B),

or

6. there are two vertices c1, c2 of H, of different biparity and not in the same
branch of H, such that X = δ(c1) ∪ δ(c2).

In particular, either statement 1 or 6 holds, or there are at most two branch-
vertices of H incident with more than one edge in X; and exactly two only if
statement 5 holds.

Proof. The second assertion (the final sentence) follows from the first,
because if statements 2, 3 or 4 hold then there is at most one branch-vertex
incident with more than one edge in X; while if B, b1, b2 are as in statement 5,
then since B is odd, it follows that b1, b2 have no common neighbour, and
so no branch-vertex different from b1, b2 is incident with more than one edge
in X. So it remains to prove the first assertion.

(1) We may assume that there are two disjoint edges in X.

If not, then by König’s theorem, there is a vertex of H incident with every edge
in X, and then one of statements 2 or 3 of the theorem holds. This proves (1).

(2) If there is a branch B of H such that every edge in X has at least one
end in V (B) then the theorem holds.

Suppose there is a such a branch B, and let C ⊆ B be a track, minimal such
that every edge in X has an end in V (C). By (1) we may assume that C has
length ≥ 1. Let c1, c2 be the ends of C. For i = 1, 2 let Ai be the set of edges
in δ(ci) that are in X and not in C; and let Bi be the set of edges in δ(ci) that
are not in X and not in C. From the minimality of C, it follows that A1, A2

are both nonempty.
Suppose first that c1, c2 have the same biparity. Choose ciai ∈ Ai for

i = 1, 2, if possible such that a1 	= a2. Since c1, c2 belong to the same branch of
H and H is cyclically 3-connected, it follows that there is a track in H \{c1, c2}
from a1 to a2; and therefore there is a track T in H from c1 to c2 with end-
edges c1a1 and c2a2. Since c1, c2 have the same biparity, it follows that T is
even; and since only its end-edges are in X (because every edge in X either
belongs to C or is incident with one of c1, c2), it follows from the hypothesis
of the theorem that T has length 2, that is, a1 = a2. We deduce that there
is a vertex a ∈ V (H) such that Ai = {cia} for i = 1, 2. Now there is only
one branch of H containing c1 and c2, since J is simple, so a is not in the
interior of a branch, and therefore it is a branch-vertex. Moreover it does not
belong to the branch B, for the same reason, and so C = B and c1, c2 are
branch-vertices.
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Choose a branch-vertex b of H different from c1, c2, a, and choose three
paths P1, P2, P3 between b and c1, c2, a respectively, pairwise disjoint except
for b. Now, P1 and P2 have lengths of the same parity, and P3 has length of
different parity. By (1) we may assume there is an edge in X not incident
with a, and any such edge belongs to C; so for i = 1, 2 there is a minimal
subtrack Qi of C containing ci and an edge in X. If Q1 = C then (since C has
even length) P1 ∪ P2 is the interior of an even track with end-edges in X and
no internal edges in X, contrary to the hypothesis. So c2 is not a vertex of
Q1, and similarly c1 is not in Q2. From the track Q1-c1-P1-b-P2-c2-a and the
hypothesis it follows that Q1 is even; and from the track Q1-c1-P1-b-P3-a-c2

and the hypothesis it follows that Q1 is odd, a contradiction.
We may assume therefore that c1, c2 have different biparity. It follows

that no vertex of V (H) is incident with all edges in A1 ∪ A2. Let H ′ be the
graph obtained from H by deleting the internal vertices and edges of C. There
is no track T in H ′ with first edge in A1, second edge in B1 (and hence second
vertex c1), last vertex c2 and last edge in A2; for any such track would be even,
since c1, c2 have opposite biparity, and have length ≥ 4, and have only their
end-edges in X, contrary to the hypothesis. A similar statement holds with
c1, c2 exchanged. By 5.6 applied to H ′, it follows that B1 ∪ B2 = ∅, and so
one of statements 3, 4, 5 of the theorem holds. This proves (2).

(3) There do not exist three tracks of H with an end (b say) in common and
otherwise vertex-disjoint, such that each contains an edge in X, and at
least two of the three edges of the tracks incident with b do not belong
to X.

Suppose that P1, P2, P3 are three such tracks, where Pi is between ai and b,
for 1 ≤ i ≤ 3. We may assume that for each i, the only edge of Pi in X is the
edge incident with ai. Now two of P1, P2, P3 have lengths of the same parity,
say P1, P2; and their union is an even track with end-edges in X and its other
edges not in X. By hypothesis it has length 2, and so P1, P2 both have length
1. But then at most one edge of P1 ∪ P2 ∪ P3 incident with b does not belong
to X, a contradiction. This proves (3).

(4) There do not exist a connected subgraph A of H \ X and three mutually
disjoint edges x1, x2, x3 ∈ X such that each xi has at least one end in
V (A).

Suppose such A, x1, x2, x3 exist. We may assume A is a maximal connected
subgraph of H \ X. For 1 ≤ i ≤ 3 let xi have ends ai, bi, where a1, a2, a3 have
the same biparity. Let K be the graph with vertex set {a1, a2, a3, b1, b2, b3}, in
which two vertices of K are adjacent if there is a track in A joining them not
using any other vertex of K. Since A is connected and meets all of x1, x2, x3,
there is a component of K containing an end of each of these three edges. If
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some two of a1, a2, a3 are adjacent in K, then the corresponding track in A

is even, contrary to the hypothesis of the theorem; so a1, a2, a3 are pairwise
nonadjacent in K, and similarly so are b1, b2, b3, and therefore all the edges of
K join some ai to some bj . Also, by (3) it follows that a3 is not adjacent in K

to both b1 and b2, and five similar statements. Since there is a component of K

containing an end of each of x1, x2, x3, we may assume that a1b3, b2a3, a3b3 ∈
E(K), and the only other possible edges of K are a1b1, a2b2, a2b1. In particular,
there are no more edges of K incident with a3 or b3. Let the tracks in A

corresponding to a1b3, b2a3, a3b3 ∈ E(K) be P1, P2, P3 respectively. Since P3

joins the adjacent vertices a3, b3 and does not use the edge x3, it follows that
P3 has nonempty interior.

Choose a maximal connected subgraph S of A including the interior of
P3 and not containing either of a3, b3. Since there are no more edges of K

incident with a3 or b3, it follows that none of a1, b1, a2, b2 is in V (S), and
therefore S is vertex-disjoint from P1 and P2 as well. Consequently the only
edges of A between V (S) ∪ {a3, b3} and the remainder of H are incident with
a3 or b3. Since H is cyclically 3-connected and a3, b3 are adjacent, it follows
that H \{a3, b3} is connected, and therefore there is an edge sv of H such that
s ∈ V (S) and v ∈ V (H) \ (V (S) ∪ {a3, b3}). Since S is maximal, sv /∈ E(A);
and since A is maximal, sv ∈ X; and from the symmetry we may assume
v /∈ {a1, b1}. Choose a minimal track in S between s and the interior of P3;
then it can be extended via a subpath of P3 and via sv to become a track P4

in H, of length ≥ 2, from v to b3, using none of a1, b1, a3, and with only its
first edge in X. But then the tracks b1-a1-P1-b3, P4, and the one-edge track
made by x3, violate (3). This proves (4).

We may assume that statement 1 of the theorem does not hold, and so
there is a branch-vertex of H incident with ≥ 2 edges not in X. Hence there is
a connected subgraph A of H \X, containing a branch-vertex and at least two
edges incident with it. Choose such a subgraph A maximal. It follows that
V (A) is not contained in any branch of H. By (4), there is no 3-edge matching
among the edges in X that meet V (A); and since this set of edges forms a
bipartite subgraph, it follows from König’s theorem that there are two vertices
c1, c2 ∈ V (G) such that every edge in X with an end in V (A) is incident
with one of c1, c2. From the maximality of A, every edge of H between V (A)
and V (H) \ V (A) belongs to X and therefore is incident with one of c1, c2;
and so there are two subgraphs C, D of H with V (C) = V (A) ∪ {c1, c2},
V (D) = (V (H) \ V (A)) ∪ {c1, c2} and C ∪ D = H.

Now V (C) is not contained in a branch of H, because it contains V (A) and
we already saw that V (A) is not contained in a branch; and we may assume
that V (D) is not contained in a branch by (2), since every edge in X has an
end in V (D). But V (D) 	= V (G) since |V (C)| ≥ |V (A)| ≥ 3 > |V (C ∩ D)|;
and since H is cyclically 3-connected, it follows that V (C) = V (G). Hence
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every edge in X is incident with one of c1, c2. For i = 1, 2 let Ai = δ(ci) ∩ X,
and let Bi = δ(ci) \ Ai. By (2), we may assume that c1, c2 do not belong
to the same branch. Consequently c1, c2 are nonadjacent, and H \ {c1, c2}
is connected, by 5.5. By (1) we may assume that there exist disjoint edges
a1c1 ∈ A1 and a2c2 ∈ A2. Take a minimal track in H \ {c1, c2} between a1, a2;
then by the hypothesis of the theorem, this track has odd length, and so c1, c2

have opposite biparity. There is therefore no track T in H with first edge in
A1, second edge in B1 (and hence second vertex c1), last vertex c2 and last
edge in A2; and a similar statement holds with c1, c2 exchanged. By 5.6, it
follows that B1, B2 = ∅, and therefore statement 6 of the theorem holds. This
proves 5.7.

Suppose that L(H) is an appearance of J in G. We recall that H is a
subdivision of J , and L(H) is an induced subgraph of G. If X ⊆ V (L(H), we
say that X is local if either X ⊆ δH(v) for some v ∈ V (J), or X is a subset
of the edge-set of some branch of H. We say a vertex v ∈ V (G) \ V (L(H))
is major (with respect to L(H)) if the set of its neighbours in L(H) saturates
L(H).

5.8. Let G be Berge, let J be a 3-connected graph, and let L(H) be an
appearance of J in G. For each vertex v of J , let Nv be the set of edges of
H incident with v; and for each edge uv of J , let Ruv be the path of L(H)
with vertex set the set of edges of the branch of H between u and v. Let
F ⊆ V (G) \ V (L(H)) be connected, such that the set of attachments of F in
L(H) is not local. Assume that no member of F is major. Then there is a
path P of G with V (P ) ⊆ F and with ends p1 and p2, such that either :

1. There are vertices c1, c2 of H, not in the same branch of H, such that for
i = 1, 2 pi is complete in G to Nci

, and there are no other edges between
V (P ) and V (L(H)), or

2. There is an edge b1b2 of J such that one of the following holds (for i =
1, 2, ri denotes the unique vertex in Nbi

∩ V (Rb1b2)):

(a) p1 is adjacent in G to all vertices in Nb1 \ {r1}, and p2 has a neigh-
bour in Rb1b2 \ r1, and every edge from V (P ) to V (L(H)) \ {r1} is
either from p1 to Nb1 \ {r1}, or from p2 to V (Rb1b2) \ {r1}, or

(b) For i = 1, 2, pi is adjacent in G to all vertices in Nbi
\ {ri}, and

there are no other edges between V (P ) and V (L(H)) except possibly
p1r1, p2r2, and P has the same parity as Rb1b2 , or

(c) p1 = p2, and p1 is adjacent to all vertices in (Nb1 ∪ Nb2) \ {r1, r2},
and all neighbours of p1 in V (L(H)) belong to Nb1 ∪Nb2 ∪V (Rb1b2),
and Rb1b2 is even, or
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(d) r1 = r2, and for i = 1, 2, pi is adjacent in G to all vertices in Nbi
\

{ri}, and there are no other edges between V (P ) and V (L(H))\{r1},
and P is even.

Proof. We remark that the set Nv is just the set δH(v), but now we are
going to think of it as a subset of the vertex set of L(H) and it is convenient to
change notation. We may assume F is minimal such that its set of attachments
is not local. Let X be the set of attachments of F in L(H). Suppose first that
|F | = 1, F = {y} say. Apply 5.7 to H, X. Now 5.7.1 is false since by
hypothesis y is not major, and 5.7.2 and 5.7.3 are false since X is not local.
So one of 5.7.4–6 holds, and the claim follows. Consequently we may assume
that |F | ≥ 2.

(1) There exist two attachments x1, x2 of F such that {x1, x2} is not local.

Let X ⊆ E(H). If there exists x1 ∈ X not incident in H with a branch-vertex,
and in some branch B, choose any x2 ∈ X not in B; then {x1, x2} is not local.
So we may assume that every edge in X is incident with a branch-vertex of H.
Choose x1 ∈ X, in some branch B1 of H, and incident with a branch-vertex b1.
There exists x2 ∈ X not incident with b1, and we may assume that x2 ∈ E(B1),
for otherwise {x1, x2} is not local. Hence x2 is incident with the other end b2

say of B1. There exists x3 ∈ X not belonging to E(B), and it cannot share an
end both with x1 and with x2, so we may assume x3 is not incident with b1.
But then {x1, x3} is not local, as required. This proves (1).

From the minimality of F , it follows that F is minimal such that x1 and
x2 are both attachments of F , and so (since x1 and x2 are nonadjacent), F

is the interior of a path with vertices x1, p1, . . . , pn, x2 in order. Let X1 be
the set of attachments in L(H) of F \ {pn}, and let X2 be the attachments of
F \ {p1}. From the minimality of F , X1 and X2 are both local.

(2) If there is an edge uv of J such that X1 ⊆ Nu and X2 ⊆ V (Ruv) then
the theorem holds.

Let the ends of Ruv be r1, r2 where r1 ∈ Nu. Since X is not local, it follows that
p1 has a neighbour in Nu\{r1} and pn has a neighbour in V (Ruv)\{r1}. If p1 is
adjacent to every vertex in Nu \ {r1} then statement 2.a of the theorem holds,
and so we may assume p1 has a neighbour s1 and a nonneighbour s2 in Nu\{r1}.
Let Q be the path between r2 and s1 with interior in F ∪V (Ruv \{r1}). Choose
w ∈ V (J) such that s1 ∈ V (Ruw). Now H is a subdivision of a 3-connected
graph, so if we delete all edges of H incident with u except s1, the graph we
produce is still connected. Consequently there is a track of H from u to v

with first edge s1; and hence there is a path S1 of L(H) from s1 to r2, vertex-
disjoint from V (Ruv) ∪ Nu except for its ends. Indeed, if we delete from H

both the vertex w and all edges incident with u except s2, the graph remains
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connected; so there is a path S2 of L(H) between s2 and r2, vertex-disjoint
from Ruv ∪ Nu ∪ V (Ruw) ∪ Nw except for its ends. Now S1 and S2 have the
same parity since H is bipartite. Yet S1 can be completed via r2-Q-s1 and S2

can be completed via r2-Q-s1-s2, a contradiction. This proves (2).

(3) If there are nonadjacent vertices v1, v2 ∈ V (J) such that Xi ⊆ Nvi
for

i = 1, 2, then the theorem holds.

Let A1 be the set of vertices in Nv1 adjacent to p1, and B1 = Nv1 \ A1;
and let A2 be the set of vertices in Nv2 adjacent to pn, and B2 = Nv2 \A2. So
X = A1 ∪ A2. If both B1 and B2 are empty then statement 1 of the theorem
holds, so we may assume that at least one of B1,B2 is nonempty. Certainly
A1 and A2 are both nonempty, so there is a track in H from v1 to v2 with
end-edges in A1 and A2 respectively. Hence there is a path S1 in L(H) from
A1 to A2, vertex-disjoint from Nv1 ∪Nv2 except for its ends. Since X = A1∪A2

is not local, there is no w ∈ V (J) with A1 ∪ A2 ⊆ Nw. Hence we can apply
5.6, and we deduce (possibly after exchanging v1 and v2) that there is a path
S2 in L(H) with first vertex in A1, second vertex in B1, last vertex in A2,
and otherwise disjoint from Nv1 ∪ Nv2 . Since H is bipartite, S1 and S2 have
opposite parity; but they can both be completed via F , a contradiction. This
proves (3).

(4) If there are adjacent vertices v1, v2 ∈ V (J) such that Xi ⊆ Nvi
for i =

1, 2, then the theorem holds.

For i = 1, 2 let ri be the end of Rv1v2 in Nvi
. Let A1 be the set of vertices

in Nv1 \ {r1} adjacent to p1, and B1 = Nv1 \ (A1 ∪ r1); define A2, B2 similarly.
Then X ⊆ A1 ∪ A2 ∪ {r1, r2}. By (2) we may assume that both A1 and A2

are nonempty. Suppose that both B1 and B2 are empty. There is a cycle in
J of length ≥ 4 using the edge v1v2, and so there is a path in L(H) of length
≥ 2 from A1 to A2 with no internal vertex in Nv1 ∪V (Rv1v2)∪Nv2 . The union
of this path with Rv1v2 induces a hole, and so does its union with F , and
therefore these two paths have lengths of the same parity. Consequently either
statement 2.b or 2.d of the theorem holds. So we may assume that at least
one of B1, B2 is nonempty. There is a path S1 from A1 to A2 with no vertex
in Nv1 ∪ Nv2 ∪ V (Rv1v2) except for its ends. Suppose that there is no vertex
w ∈ V (J) with A1 ∪ A2 ⊆ Nw. Then we can apply 5.6 to the graph obtained
from H by deleting the edges and internal vertices of the branch between v1

and v2. We deduce (possibly after exchanging v1 and v2) that there is a path
S2 of L(H) with first vertex in A1, second vertex in B1, last vertex in A2, and
otherwise disjoint from Nv1 ∪ Nv2 ∪ V (Rv1v2). Since H is bipartite, S1 and S2

have opposite parity; but they can both be completed via F , a contradiction.
Consequently there is a vertex w ∈ V (J) with A1 ∪ A2 ⊆ Nw. Since H is
bipartite, and there is a 2-edge track of H between v1, v2 (via w), the branch
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of H with ends v1, v2 has even length, and therefore Rv1v2 has odd length, and
in particular r1 	= r2. Since |Nvi

∩ Nw| ≤ 1 (since J is simple) it follows that
|Ai| = 1, Ai = {ai} say, for i = 1, 2. Since X is not local it is not a subset
of Nw and so there is a vertex of Rv1v2 in X. Since Xi ⊆ Nvi

for i = 1, 2,
no internal vertex of Rv1v2 is in X, so that we may assume r1 ∈ X. Since
r1 /∈ Nv2 it follows that r1 /∈ X2, and hence p1 is the only vertex in F adjacent
to r1. Now the hole p1- · · · -pn-a2-a1-p1 is even, and so n is even. If we delete
the vertex v2 and the edge a1 from H, what remains is still connected, and so
contains a track from w to v1. Hence there is a path T in L(H) from some
a3 ∈ N(w) to r1, disjoint from Nv2 ∪ a1. But T can be completed to a hole via
r1-Rv1v2-r2-a2-a3 and via r1-p1- · · · -pn-a2-a3, and these two completions have
different parity, a contradiction. This proves (4).

(5) If X1 ∩ X2 is nonempty, and in particular if one of p2, . . . , pn−1 has a
neighbour in L(H), then the theorem holds.

For any neighbour in L(H) of one of p2, . . . , pn−1 belongs to X1 ∩ X2,
assume x ∈ X1 ∩ X2. Then x ∈ V (Rv1v2) for a unique edge v1v2 of J , and
x ∈ Nv for at most two v ∈ V (J), namely v1 and v2. Since both X1 and X2

are local, each is a subset of one of Nv1 , Nv2 , V (Rv1v2), and they are not both
subsets of the same one. So we may assume that X1 ⊆ Nv1 . Hence either
X2 ⊆ Nv2 or X2 ⊆ V (Rv1v2), and therefore the theorem holds by (5) or (2).
This proves (5).

(6) If there is a vertex u and an edge v1v2 of J such that X1 ⊆ Nu and
X2 ⊆ V (Rv1v2) then the theorem holds.

By (2) we may assume u is different from v1 and v2. Choose a cycle C1 of H

using the branch between v1 and v2 and not using u, and choose a minimal
track S in H \ {v1, v2} between u and V (C1). Let the ends of S be u and w

say. Hence in L(H) there are three vertex-disjoint paths, from Nv1 , Nv2 ,Nu

respectively to Nw, and there are no edges between them except in the triangle
T formed by their ends in Nw. If pn has a unique neighbour (say r) in Rv1v2 ,
then r can be linked onto the triangle T , contrary to 2.4. If pn has two
nonadjacent neighbours in Rv1v2 , then pn can be linked onto the triangle T ,
contrary to 2.4. So pn has exactly two neighbours in Rv1v2 , and they are
adjacent. If p1 is adjacent to all of Nu, then statement 1 of the theorem holds
and so we may assume that p1 has a neighbour and a nonneighbour in Nu. Let
A be the neighbours of p1 in Nu and B = Nu \ A. In H there is a cycle C2

using the branch between v1 and v2, and using an edge in A and an edge in B.
(To see this, divide u into two adjacent vertices, one incident with the edges
in A and the other with those in B, and use Menger’s theorem to deduce that
there are two vertex-disjoint paths between these two vertices and {v1, v2}.)
Hence in G, there is a path between Nv1 and Nv2 using a unique edge of N(u),
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and that edge is between a vertex a ∈ A say and some vertex in B. Hence a

can be linked onto the triangle formed by pn and its two neighbours in Rv1v2 ,
a contradiction. This proves (6).

(7) If there are edges u1v1 and u2v2 of J with Xi ⊆ V (Ruivi
) for i = 1, 2,

then the theorem holds.

In this case the edges u1v1 and u2v2 are different, and hence we may
assume that v2 is different from u1 and v1, and v1 is different from u2 and
v2; possibly u1 = u2. If p1 has exactly two neighbours in Ru1v1 and they
are adjacent, and also pn has exactly two neighbours in Ru2v2 and they are
adjacent, then statement 1 of the theorem holds; so we may assume that p1

has either only one neighbour, or two nonadjacent neighbours, in Ru1v1 . There
is a cycle in H using the branch between u1 and v1, and using u2 and not v2

(since J \ v2 is 2-connected). There correspond two paths in L(H), say P and
Q, from Nu1 and Nv1 respectively to Nu2 , disjoint from each other, and there
is a third path R say from p1 to Nu2 via F and a subpath of Ru2v2 . There
are no edges between these paths except within the triangle T formed by their
ends in Nu2 . If p1 has only one neighbour r ∈ Ru1v1 , then we may assume that
r is in the interior of Ru1v1 , by (6), and so r can be linked onto T , contrary
to 2.4. If p1 has two nonadjacent neighbours in Ru1v1 , then p1 can be linked
onto T , again a contradiction. This proves (7).

Now (2)–(7) cover all the possibilities for the local sets X1 and X2, and
so this proves 5.8.

6. Major attachments to a line graph

We continue to study appearances L(H) of a 3-connected graph J in a
Berge graph G. In this section we study anticonnected sets of major vertices,
and their common neighbours in L(H).

An appearance L(H) of J in G is overshadowed if there is a branch B

of H with odd length ≥ 3, with ends b1, b2, such that some vertex of G is
nonadjacent in G to at most one vertex in δH(b1) and at most one in δH(b2).
Thus for instance an appearance is overshadowed if there is a major vertex
and some branch has odd length at least 3. This section is devoted to proving
the following.

6.1. Let G be Berge, let L(H) be an appearance in G of a 3-connected
graph J , and let Y be an anticonnected set of major vertices. Assume that the
set of all Y -complete vertices in L(H) does not saturate L(H). Then either

• J = K3,3 or K4, and there is an overshadowed appearance of J in G, or

• J = K3,3 or K4, L(H) is degenerate, and there is an overshadowed ap-
pearance of J in G, or
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• J = K3,3, L(H) is degenerate, and there is a J-enlargement that appears
in G, or

• J = K4 and |V (H)| = 6, or

• J = K4 and L(H) is degenerate, and there exist nonadjacent y, y′ ∈ Y

with the following property. Let the 4-cycle in H formed by the branch-
vertices of H have edges a-b-c-d in order. Let p be the third edge of H such
that a, b, p have a common end, and similarly let b, c, q have a common
end, and c, d, r and d, a, s. Then (up to symmetry) the neighbours of y

in L(H) are a, b, d, q, r and possibly c, and the neighbours of y′ in L(H)
are b, c, d, p, s and possibly a.

Proof. We may assume that Y is minimal such that it is anticonnected
and its common neighbours do not saturate L(H). Let X be the set of all
Y -complete vertices in L(H). Choose two vertices of L(H), both incident in
H with the same branch-vertex of H, and both not in X. Then there is an
antipath joining them with interior in Y , and the common neighbours of the
interior of this antipath do not saturate L(H). From the minimality of Y it
follows that this antipath contains all vertices in Y . Consequently, Y is the
vertex set of an antipath with ends y1,y2, say. From the hypothesis, |Y | ≥ 2,
since the neighbours of any vertex in Y saturate L(H), so y1, y2 are distinct.
Now for i = 1, 2, Y \{yi} is anticonnected; let Xi be the set of Y \{yi}-complete
vertices in L(H) that are not in X. So X∪Xi is the set of all Y \{yi}-complete
vertices in L(H). From the minimality of Y , both X ∪X1 and X ∪X2 saturate
L(H). In terms of H, we see that X, X1, X2 are mutually disjoint subsets of
E(H), and for every branch-vertex b of H and for i = 1, 2, at most one edge
of H incident with b does not belong to X ∪ Xi.

(1) If the branch-vertices of H form a 4-cycle C and X consists of at most
three edges of C, then the theorem holds.

In this case H has only four branch-vertices and J = K4. Let the edges of C

be a, b, c, d in order, and let p, q, r, s be edges of H \ {a, b, c, d} such that the
sets of edges incident with branch-vertices of H are {a, b, p}, {b, c, q}, {c, d, r}
and {d, a, s}. Since every branch-vertex is incident with at least one edge in
X, we may assume that X = {b, d} or {b, c, d}. Since a, p /∈ X, it follows that
one is in X1 and the other in X2, say a ∈ X1 and p ∈ X2. Similarly, since
a, s /∈ X it follows that s ∈ X2. Let P be the path in L(H) between p, r whose
vertex set is the edge-set of the branch of H containing p, r, and choose Q

containing q, s similarly. Thus P is odd, and so is Q. If they both have length
1 then H has six vertices and the fourth outcome of the theorem holds. We
may therefore assume that P has length ≥ 3. The path b-p-P -r-d is odd and
has length ≥ 5; its ends are Y -complete and its internal vertices are not, so
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by 2.1, Y contains a leap. Hence there exist nonadjacent y, y′ ∈ Y such that
y-r-P -p-y′ is a path in G. Since p ∈ X2 and y is nonadjacent to p it follows
that y = y2; and since s ∈ X2 and y 	= y′, it follows that y′ is adjacent to s.
Now y-r-P -p-y′ is an odd path, and it cannot be completed to an odd hole,
and so y, y′ have no common neighbour in Q. But b-q-Q-s-d is an odd path; its
ends are {y, y′}-complete, and its internal vertices are not. Thus, by 2.1, y, y′

form a leap for this path; that is, y-q-Q-s-y′ is a path of G. (Note that this
holds even if b-q-Q-s-d has length 3, since the anticonnected set in question
has cardinality 2.) Since y′ is major and nonadjacent to q it follows that y′ is
adjacent to c, and similarly y is adjacent to a. But then the fifth outcome of
the theorem holds. This proves (1).

In the arguments to come there is a certain amount of moving from H to
L(H) and back, and to facilitate this, for every subgraph H ′ of H we denote
by L(H ′) the induced subgraph of L(H) formed by the edges of H ′. So for
any track P of H, L(P ) is a path of L(H). We say a branch-vertex b of H is
a triad if b is incident with at most one edge in X. It follows that every triad
has degree 3 in H, and is incident with exactly one edge in each of X, X1, X2.

We recall that Y is the vertex set of an antipath between y1, y2; let Q be
this antipath. There are two cases, depending on whether Q is odd or even.

(2) If Q is odd then there is no cycle of H with edge-set {h1, h2, h3, h4}
in order, such that the common end of h1 and h2 is a branch-vertex,
h1 ∈ X1, h2 ∈ X2, and h3, h4 ∈ X.

If there is such a cycle, then Q can be completed to an odd antihole via
y2-h2-h4-f -h3-h1-y1 (where f is a third edge of H such that h1, h2, f have a
common end), a contradiction. This proves (2).

(3) If Q is odd and h1 ∈ X1 meets h2 ∈ X2, then every edge in X meets at
least one of h1, h2.

If h1 ∈ X1 meets h2 ∈ X2, and f ∈ X meets neither of h1, h2, then Q

can be completed to an odd antihole via y2-h2-f -h1-y1, a contradiction. This
proves (3).

There is a branch-vertex b of H incident with at least two edges not in X.
For i = 1, 2 let ei ∈ Xi be incident with b, and let e3 be some third edge
incident with b. For i = 1, 2, 3, let Bi be the branch of H containing ei, and
let bi be its other end. If Q is odd, let fi ∈ X be incident with bi, chosen in
addition such that fi /∈ E(Bi) if possible (1 ≤ i ≤ 3). (If Q is even we choose
the fi’s a little differently, described later.)

(4) If Q is odd then b3 is a triad.

Suppose not; then f3 /∈ E(B3), and there is a second edge f ′
3 ∈ X incident

with b3. By (3), the edge f3 meets one of e1, e2, and from the symmetry we
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may assume that it meets e1. Thus f3 = b1b3 and E(B1) = {e1}. Since H is
bipartite, it follows that B3 is even. Thus f ′

3 is not incident with b, and by (3)
applied to f ′

3, e1 and e2 we deduce that f ′
3 = b2b3 and E(B2) = {e2}. But the

edges e1, e2, f
′
3, f3 contradict (2). This proves (4).

(5) If Q is odd and either B3 has length > 1 or b is not a triad, then the
theorem holds.

Assume that B3 has length ≥ 2. By (3) applied to e3 and the two edges of
E(H) \ X incident with b3 it follows that B3 has length two and f3 /∈ E(B3).
(Later we will use the shorthand “by (3) applied to e3 and b3”.) By (3) applied
to f3, e1 and e2 we deduce that f3 is incident with e1 or e2, and so from the
symmetry we may assume that f3 = b1b3 and E(B1) = {e1}. Suppose that B2

has length at least two. By (3) applied to f2, e1 and e2, it follows that either
f2 = b1b2 or E(B2) = {e2, f2}; therefore in both cases b2, b3 are nonadjacent,
since H is bipartite. But this contradicts (3) applied to f2 and b3. It follows
that B2 has length 1, and E(B2) = {e2}. From (3) applied to f2 and b3 we
deduce that b2 is adjacent to b3 and b2b3 	∈ X. The vertex b has degree 3, for a
fourth edge incident with b would violate (3) applied to that edge and b3. Since
H is cyclically 3-connected, it follows that H is the union of B1, B2, B3, the
edges b1b3, b2b3 and a branch B with ends b1 and b2. The branch B includes
f2, and its edge incident with b1, say e, is not in X by (3) applied to e and
b3. But e meets f2, by (3) applied to f2 and b1. Thus B has length two, and
hence the fourth outcome of the theorem holds. We may therefore assume that
E(B3) = {e3}. In this case e3 is the only member of X incident with b3, and
from (4) with b, b3 exchanged it follows that b is a triad. This proves (5).

(6) If Q is odd and one of B1, B2 has length > 1 then the theorem holds.

Suppose first that they both have length at least two. Then, for i = 1, 2, by
(3) applied to b and fi we deduce that E(Bi) = {ei, fi} and therefore fi is the
unique edge of X incident with bi. This contradicts (3) applied to f1 and b2.
So at least one of B1, B2 has length 1, and from the symmetry we may assume
that E(B1) = {e1} and B2 has length at least two. If f2 ∈ E(B2) then b2 is a
triad, and the theorem holds by (5) with b, b2 exchanged, so we may assume
that f2 /∈ E(B2). Let e′2 be the edge of B2 incident with b2. By (3) applied to
f2 and b we deduce that f2 = b1b2, and that no edge incident with b2 belongs
to X except f2 and possibly e′2. By (3) and (4) applied to f2 and b3, it follows
that b3 is adjacent to b2 and b2b3 	∈ X. Suppose for a contradiction that b1 is
not a triad, and choose e′1 ∈ X \ {b1b2} incident with b1. By (3) applied to
e′1 and b2, it follows that e′2 ∈ X, and from (3) applied to e′2 and b we deduce
that E(B2) = {e2, e

′
2}. But now the edges e1, e2, e

′
2, f2 contradict (2). This

proves that b1 is a triad, and from (4) with b, b1 exchanged, we deduce that
b2 is a triad. Since H is cyclically 3-connected, it follows that H is the union
of B1, B2, B3, the edges b1b2 and b2b3 and a branch B with ends b1 and b3.
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From (3) applied to b1, we deduce that no edge of B2 belongs to X, and by (3)
applied to b2 it follows that no edge of B belongs to X. But then the theorem
holds by (1). This proves (6).

(7) If Q is odd then the theorem holds.

By (5) and (6) we may assume that E(Bi) = {ei} for i = 1, 2, 3. For i = 1, 2
let fi = bixi. Then x1 	= x2, for otherwise the edges e1, e2, f2, f1 violate (2).
By (3) applied to fi and b3 we deduce that xi is adjacent to b3 and xib3 	∈ X,
and therefore fi is the unique edge in X incident with bi, and bi is a triad
(i = 1, 2). By (3) applied to f2 and b1 we deduce that b1 is adjacent to x2,
and, similarly, x1 is adjacent to b2. Since H is a subdivision of a 3-connected
graph, J = K3,3, and L(H) is a degenerate appearance of J , and there is a
J-enlargement that appears in G, so the third outcome of the theorem holds.
This proves (7).

In view of (7) we may henceforth assume that Q is even.

(8) Every edge in X1 meets every edge in X2.

If h1 ∈ X1 does not meet some h2 ∈ X2, then Q can be completed to an odd
antihole via y2-h2-h1-y1, a contradiction. This proves (8).

A vertex of a track P is penultimate if it is adjacent in P to an end of P .

(9) For all W ∈ {X, X ∪ X1, X ∪ X2} and for every even track P in H of
length ≥ 4 and with both end-edges and no internal edges in W , every
edge in W is incident with a penultimate vertex of P .

Let f ∈ W . If W = X let Y ′ = Y , and if W = X ∪ Xi where i ∈ {1, 2}, let
Y ′ = Y \ {yi}. So W is the set of Y ′-complete vertices of L(H). The path
L(P ) of G is odd and has length ≥ 3; its ends are Y ′-complete, and its internal
vertices are not. By 2.2, f is adjacent (in G) to vertices in the interior of
L(P ); that is, f is incident in H with an internal vertex of P . We must show
that f is incident with a penultimate vertex. Let P have vertices p1- · · · -pn

and edges h1, . . . , hn−1, where hi is incident with pi, pi+1 for 1 ≤ i < n; so n

is odd and n ≥ 5. Suppose first that both ends of f belong to P , say f = pipj

where i < j. Since H is bipartite, j − i is odd, and so either i − 1 or n − j

is odd, and from the symmetry we may assume the former, that is, i is even.
Hence the track T with edge-set {h1, . . . , hi−1, f} has even length, at least 4
(since we may assume that i 	= 2); and yet in G the Y ′-complete vertex hn−1

has no neighbour in the interior of the odd path L(T ), contrary to 2.2. So
not both ends of f belong to P . Hence f is incident with a unique vertex
pi of P , and again we may assume that 3 ≤ i ≤ n − 2. In G, h1- · · · -hi−1-f
is a path; its ends are Y ′-complete, and its internal vertices are not, and the
Y ′-complete vertex hn−1 has no neighbour in its interior; so by 2.2, this path
is even, that is, i is odd. Since pi is a branch-vertex of H, and at least two
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of the edges incident with it do not belong to W , it follows that W = X and
Y ′ = Y ; and we may assume that hi−1 ∈ X1 and hi ∈ X2. Since every edge in
X1 meets every edge in X2, it follows that h1, . . . , hi−2 /∈ X1. In G, the path
h1- · · · -hi−1 is odd; its ends are Y -complete, its internal vertices are not, and
the Y -complete vertex hn−1 has no neighbour in its interior, so it has length 1,
that is, i = 3. Similarly n− i = 2, that is, n = 5. But then Q can be completed
to an odd antihole via y2-h3-h1-h4-h2-y1, a contradiction. This proves (9).

(10) If P1, P2, P3 are tracks in H with a common end v, say, and otherwise
vertex-disjoint, each with an edge in X, then at least two of the three
edges of P1 ∪ P2 ∪ P3 incident with v belong to X.

We may assume that for i = 1, 2, 3, Pi is between v and vi say, and the only
edge of Pi in X is the edge incident with vi. Some two of P1, P2, P3 have
lengths of the same parity, say P1, P2, and so P1 ∪P2 is a track of even length.
If it has length 2 then P1, P2 both have length 1 and the claim holds, so we
assume it has length ≥ 4. The edge of P3 incident with v3 is incident with
a penultimate vertex of this track, by (9), and so P3 and one of P1, P2 have
length 1, and again the claim holds. This proves (10).

Earlier (preceding (4)) we chose b such that at least two edges of H incident
with b did not belong to X. Let us refine this choice; now in addition we choose
b such that B3 is as long as possible.

(11) For i = 1, 2 there is an edge fi ∈ X incident with bi that does not meet e3.

It suffices to prove this for i = 1, and it clearly holds if there are at least two
members of X incident with b1. So we may assume that there is a unique
member of X incident with b1, and that this edge meets e3, and therefore is
the edge b1b3. But then b1 is a triad, and E(B3) = {e3}, and |E(B1)| > 1,
because H is bipartite. The unique edge of X1 incident with b1 meets e2 by
(8); and hence this edge is b1b2, and e2 = bb2. Suppose for a contradiction
that there is a fourth edge bv incident with b, and let f be an edge incident
with b3 different from bb2, b1b2; then v 	= b, b1, b2, b3, and there is a track of
length 4 with vertices b3-b1-b2-b-v in order; its end-edges belong to X and its
internal edges do not; and f ∈ X is not incident with any penultimate vertex
of this track, contrary to (9). This proves that b has degree three. Since H

is cycically 3-connected, H consists of B1, B2, B3, the edges b1b2, b1b3, and a
branch B with ends b2 and b3 that includes a member of X incident with b2.
Since H is bipartite, it follows that |E(B)| > 1, and hence b2 and B contradict
the choice of b and B3. This proves (11).

(12) If there exist f1, f2 as in (11) with f1, f2 	= b1b2 then the theorem holds.

It follows from (10) applied to subtracks of the tracks with edge-sets E(B1) ∪
{f1}, E(B2) ∪ {f2} and {e3} that B1, B2 include no member of X, and that
f1 meets f2. Thus b1 is not adjacent to b2. We claim that for i = 1, 2 the edge
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fi is the only edge of X incident with bi. Now, suppose that say f ′
1 ∈ X is

incident with b1. By (10) applied to the vertex b and the tracks with edge-sets
E(B1) ∪ {f ′

1}, E(B2) ∪ {f2} and {e3}, we deduce that f ′
1 meets e3. Thus B1

is even. Let P be the track obtained from B1 by adding e3 and f1; then P

and the edge f2 violate (9). This proves our claim that fi is the only edge of
X incident with bi for i = 1, 2. Consequently, b1 and b2 are triads. From (8)
we deduce that B1 and B2 have length one. For i = 1, 2 let di be the edge
incident with bi different from ei, fi; so d1 ∈ X2 and d2 ∈ X1. By (8) the edges
d1, d2 meet; let v denote their common end. Every edge g incident with v other
than d1 and d2 belongs to X. If some such g does not meet e3 then the edges
g, d2, e2, e3 form a track with end-edges in X and internal edges not in X, and
f1 is not incident with a penultimate vertex of this track, contrary to (9). So
every such edge g meets e3 and hence is incident with b3 (since H is bipartite).
Thus v has degree two or three. If v = b3, then B3 has length 2 and both its
edges belong to X, and the fourth outcome of the theorem holds. If v 	= b3

and v has degree three, then the third edge incident with v is vb3, and b is a
triad, and H consists of the vertices b, b1, b2, b3, v and a branch B with ends
b3 and u, where u is the common end of f1 and f2; but then J = K3,3, and if
B has length 1 then the second outcome of the theorem holds, and otherwise
the first outcome holds. Finally, if v 	= b3 and v has degree two, then b3 is the
common end of f1, f2, and J = K4 and the second outcome of the theorem
holds. This proves (12).

From (11) and (12) we may therefore assume that b1, b2 are adjacent, and
the edge b1b2 ∈ X. From the symmetry we may assume that B1 is even and
B2 is odd. Let T be the track formed by B1 and the edges e3, b1b2. Then T is
even. Suppose that there is an edge (say f) in X incident with b2 and different
from b1b2. By (10) no edge of B1 belongs to X, and yet f is not incident with
a penultimate vertex of T , contrary to (9). So there is no such edge f , and
therefore b2 is a triad. Let e4 be the edge incident with b2 different from b1b2

and not in B2. So e4 ∈ X1 ∪ X2, and therefore by (8), e4 meets one of e1, e2.
Since it is not incident with e1, it follows that E(B2) = {e2}, and e4 ∈ X1.
Let B4 be the branch of H containing e4, and let b4 be the other end of B4.

(13) b4 = b3, and B3 has length 1, and H is a subdivision of K4, and B4 is
even.

Note that b4 is different from b, b1, b2. Since B1 is even, and e2 is the unique
edge in X2 incident with b, it follows that no edge in X2 incident with b4 meets
e1, and therefore by (8), no edge in X2 is incident with b4. Consequently b4

is not a triad, and so there are at least two edges (say g1, g2) in X incident
with b4. By (10) (applied to three tracks with common end b2), each of them
meets either b1b2 or e3. But no edge in X is incident with both b2 and b4, since
e4 ∈ X1; so g1, g2 are either incident with b1 or meet e3.
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Suppose that b4 is not incident with e3. Then at most one of g1, g2 is
incident with b1, and at most one meets e3 (since H is bipartite), so there is
exactly one of each. Hence b1 is adjacent to b4, and b1b4 ∈ X; and (since H is
bipartite and B1 is even) b is adjacent to b4 and bb4 ∈ X, and b4 has degree 3.
Since b4 is not incident with e3, and b4 is adjacent to b, it follows that b4 	= b3;
and since H is cyclically 3-connected and b2 is a triad, this is impossible. So
b4 is incident with e3; that is, b4 = b3 and B3 has length 1. Since this holds
for every choice of e3, we deduce that b has degree 3, and therefore H is a
subdivision of K4. It follows that B4 is even. This proves (13).

Let B5 be the branch of H between b1, b3. Since no edge incident with b3

meets e1 except e3, it follows that b3 is not a triad. Suppose that no edge of
B1 is in X. Then by (9) applied to T , every edge in X is incident with one of
b, b1. In particular, no edge of B4 is in X; and since b3 is not a triad, it follows
that B5 has length 1 and its edge is in X. Thus b3 is adjacent to both b, b1,
and the edges bb3, b1b3 both belong to X; but then the theorem holds by (1).

So we may assume that some edge of B1 is in X. This edge is not incident
with a penultimate vertex of the track formed by B4 and the edges b1b2, e3,
so by (9), some edge of B4 belongs to X. By (10) applied to B1, a subtrack
of B2 ∪ B4 and the track consisting of the edge e3, we deduce that the only
edge of B4 in X is the edge incident with b3. By (10) applied to the track with
edge-set E(B2)∪ {b1b2}, a subtrack of B1 and the track consisting of the edge
e3, we deduce that the only edge of B1 in X is the edge incident with b1. But
B5 is odd, and if it has length > 1 then the first outcome of the theorem holds.
So we may assume that b1b3 is an edge. Now the tracks B1, B4 are even; their
end-edges belong to X ∪ X1, and their other edges do not (by (8)), and e3 is
not incident with a penultimate vertex of these tracks; so by (9), B1 and B4

both have length 2. But then the fourth outcome of the theorem holds. This
proves 6.1.

7. Rung replacement

Before we apply 6.1, let us simplify it a little. We can effectively eliminate
the cases of L(H) being overshadowed. We need a few lemmas.

7.1. Let c1, c2 be adjacent vertices of a 3-connected graph J , and let e, f

be edges of J incident with c1 and different from c1c2. There are three tracks
of J from c1 to c2, pairwise vertex-disjoint except for their ends, and with first
edges c1c2, e, f respectively.

Proof. Since J is 3-connected, if we delete from J all edges incident with
c1 except e and f , the graph we make is still 2-connected, and so it has a cycle
containing c1 and c2. This proves 7.1.
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A prism means a graph consisting of two vertex-disjoint triangles
{a1, a2, a3}, {b1, b2, b3}, and three paths P1, P2, P3, where each Pi has ends
ai, bi, and for 1 ≤ i < j ≤ 3 the only edges between V (Pi) and V (Pj) are aiaj

and bibj . The three paths P1, P2, P3 are said to form the prism. The prism is
long if at least one of the three paths has length > 1.

7.2. Let R1, R2, R3 form a prism in a Berge graph G; then R1, R2, R3 all
have the same parity.

The proof is clear.

7.3. Let G be Berge, let Y ⊆ V (G) be anticonnected, and for i = 1, 2, 3 let
ai-Pi-bi be a path in G\Y , forming a prism with triangles {a1, a2, a3}, {b1, b2, b3}.
Assume P1, P2, P3 all have length > 1, and that every vertex in Y is adjacent
to at least two of a1, a2, a3 and to at least two of b1, b2, b3. Then at least two
of a1, a2, a3 and at least two of b1, b2, b3 are Y -complete.

Proof. Suppose not; then there is an antipath with interior in Y , joining
two vertices either both in {a1, a2, a3} or both in {b1, b2, b3}. Let Q be the
shortest such antipath. We may assume Q joins a1 and a2 say. Since every
vertex in Y is adjacent to either a1 or a2 it follows that Q has length ≥ 3. From
the minimality of Q, a3 is Q∗-complete, and so is at least one of b1, b2, b3, say bi.
Since Q can be completed to an antihole via a1-bi-a2 it follows that Q is even.
From 3.3 applied to the hole formed by P1 ∪ P2 and hat a3, neither of b1, b2

is Q∗-complete, and so there is an antipath between b1 and b2 with interior in
Q∗. By the minimality of Q, the two antipaths have the same interior; but this
again contradicts 3.3. This proves 7.3.

In fact it is easy to find strengthenings of 7.3 in which some of the paths
Pi have length 1, but for the moment 7.3 will suffice.

7.4. Let G be Berge, and for 1 ≤ i ≤ 3 let Pi be a path of even length
≥ 2, from ai to bi, such that these three paths form a prism with triangles
A = {a1, a2, a3} and B = {b1, b2, b3}. Let P ′

1 be a path from a′1 to b1, such that
P ′

1, P2, P3 also form a prism. Let y ∈ V (G) have at least two neighbours in A

and in B. Then it also has at least two neighbours in {a′1, a2, a3}.

Proof. Suppose not. By 7.2, P ′
1 has even length. Let X be the set of

neighbours of Y in G. Then a′1 	∈ X, and a1 ∈ X, and exactly one of a2, a3 ∈ X,
say a2. Also, y cannot be linked onto the triangle A′ = {a′1, a2, a3}, by 2.4, and
since one of b2, b3 ∈ X it follows that no internal vertex of P ′

1 is in X. Hence
b1 	∈ X, for otherwise y-a2-a′1-P

′
1-b1- would be an odd hole. So b2, b3 ∈ X. Since

y-a1-a3-P3-b3-y is not an odd hole, there is a member of X in P3 \ b3. But then
y can be linked onto A′, via b2-b1-P ′

1-a1, the path a2, and the path between y

and a3 with interior in V (P3) \ {b3}, contrary to 2.4. This proves 7.4.
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We shall only need the following when J = K4 or K3,3, but we might as
well prove it in general.

7.5. Let G be Berge, and let L(H) be an overshadowed appearance of J

in G, where J is 3-connected. Then either :

• there is a J-enlargement with a nondegenerate appearance in G, or

• G admits a balanced skew partition.

Proof. For each edge uv of J , let Buv be the branch of H with ends u, v,
and let Ruv be the path L(Buv) of L(H). For each v ∈ V (J) let Nv be the
clique of L(H) with vertex set δH(v). There is an edge c1c2 of J such that
Bc1c2 has odd length ≥ 3, and some vertex of G is nonadjacent in G to at
most one vertex of Nc1 and to at most one vertex of Nc2 . We say such a
vertex v is Bc1c2-dominant with respect to L(H). Let the ends of Rc1c2 (that
is, the end-edges of Bc1c2) be r1, r2, where ri ∈ Nci

. Let Y be a maximal
anticonnected set of vertices each with at most one nonneighbour in Nc1 and
at most one nonneighbour in Nc2 . We shall prove that Y and some of its
common neighbours separate the interior of Rc1c2 from the remainder of L(H)
in G, so that will be the skew partition we are looking for. Let X be the set
of all Y -complete vertices in G.

(1) For i = 1, 2, at most one vertex of Nci
is not in X.

Let a1, a2 be any two distinct vertices in Nc1 \{r1}; we shall show that at most
one of a1, a2, r1 is not in X. By 7.1, there are two paths Q1,Q2 of H between
c1 and c2, such that Q1,Q2,Bc1c2 are vertex-disjoint except for their ends, and
for i = 1, 2, ai is the first edge of Qi. Let bi be the other end-edge of Qi. Both
Q1 and Q2 have odd length, since Bc1c2 is odd and H is bipartite; and they
have length ≥ 3 since c1, c2 are nonadjacent (for they are the ends of a branch
of length > 1). Hence there are two paths P1,P2 of L(H) from Nc1 to Nc2 , such
that P1,P2,Rc1c2 are vertex-disjoint and form a prism, and Pi is from ai to bi.
Now Bc1c2 is odd and therefore Rc1c2 is even, and similarly P1 and P2 are even.
By hypothesis, each member of Y is adjacent to at least two vertices of the
triangle {a1, a2, r1} and to two vertices of the triangle {b1, b2, r2}. By 7.3 it
follows that X contains at least two members of {a1, a2, r1}. This proves (1).

Let

X1 = X ∩ (Nc1 ∪ Nc2),

X2 = X ∩ (V (L(H)) \ (Nc1 ∪ Nc2)),

X0 = X \ V (L(H)),

S = V (Rc1c2) \ X1,

T = (V (L(H)) \ V (Rc1c2)) \ X1.
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We observe first that no vertex of S is adjacent to any vertex in T ; for
such an edge would join two vertices both in Nci

for some i, and therefore both
not in X, contradicting (1).

(2) If F ⊆ V (G) is connected and some vertex of S has a neighbour in F ,
and so does some vertex of T , and F ∩ (X0 ∪ X1 ∪ Y ) = ∅, then the
theorem holds.

We shall prove this by induction on |F |; so, we assume it holds for all smaller
choices of F (even for different choices of L(H)). Hence we may assume that
G|F is a path with vertices f1, . . . , fn say, where f1 is the only vertex of F

with a neighbour in S, and fn is the only vertex with a neighbour in T . From
the minimality of F it also follows that F is disjoint from L(H); for any vertex
of F in L(H) would be in S or T , since it is not in X1, and then we could make
F shorter by omitting this vertex. Consequently F ∩ X = ∅. Suppose some
vertex in v ∈ F is major with respect to L(H). Then since v 	∈ X it follows
that v has a nonneighbour in Y , and so Y ∪v is anticonnected; the maximality
of Y therefore implies that v ∈ Y , and hence F ∩ Y 	= ∅, a contradiction. So
we may assume that no vertex in F is major. On the other hand, the set of
attachments of F in L(H) is not local, because it has an attachment in Rc1c2 ,
and its attachments are not all contained in any of V (Rc1c2), Nc1 ,Nc2 . Let
us apply 5.8. Suppose first that 5.8.1 holds. Then we obtain an appearance
L(H ′) in G of some J-enlargement, with L(H) an induced subgraph of L(H ′).
Since Rc1c2 has even nonzero length, it follows that L(H) is not degenerate, and
therefore neither is L(H ′), and hence the theorem holds. So we may assume
that 5.8.2 holds, and there is an edge b1b2 of J , (for i = 1, 2, si denotes the
unique vertex in Nbi

∩Rb1b2) and a path P of G with V (P ) ⊆ F and with ends
p1 and p2, such that one of the following holds:

1. p1 is adjacent in G to all vertices in Nb1 \ {s1}, and p2 has a neighbour
in Rb1b2 \ s1, and every edge from V (P ) to V (L(H)) \ {s1} is either from
p1 to Nb1 \ {s1}, or from p2 to Rb1b2 \ s1, or

2. For i = 1, 2, pi is adjacent in G to all vertices in Nbi
\ {si}, and there are

no other edges between V (P ) and V (L(H)) except possibly p1s1, p2s2,
and P has the same parity as Rb1b2 , or

3. p1 = p2, and p1 is adjacent to all vertices in (Nb1 ∪ Nb2) \ {s1, s2}, and
all neighbours of p1 in V (L(H)) belong to Nb1 ∪Nb2 ∪Rb1b2 , and Rb1b2 is
even, or

4. s1 = s2, and for i = 1, 2, pi is adjacent in G to all vertices in Nbi
\ {si},

and there are no other edges between V (P ) and V (L(H)) \ {s1}, and P

is even.
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In case 1, let R′ be the (unique) path from p1 to s2 in (V (P )∪V (Rb1b2))\{s1},
and in the other cases let R′ be P . So if in L(H) we replace Rb1b2 by R′ we
obtain another appearance of J in G, say L(H ′), where H ′ is obtained from
H by replacing the branch Bb1b2 by some new branch B′ joining the same two
vertices. For each v ∈ V (J) let N ′

v be the clique in L(H ′) formed by the edges
in δH′(v). So N ′

v = Nv for all vertices v of J except for b1 and b2. Let R′ be
between r′1 and r′2, where r′i ∈ N ′

bi
for i = 1, 2.

Now suppose that b1b2 and c1c2 are different edges of J . Then Bc1c2 is still
a branch of H ′, and we claim that every y ∈ Y is Bc1c2-dominant with respect
to L(H ′). Let e, f be two edges of J incident with c1 and different from c1c2.
By 7.1 there are three tracks of J from c1 to c2, vertex-disjoint except for their
ends, and one of them is the edge c1c2, and the first edges of the other two are
e and f . There are three tracks corresponding to these in H, and their line
graph is a prism in L(H). There also correspond three tracks in H ′, yielding
a prism in L(H ′). Since Rb1b2 	= Rc1c2 , it follows that Rb1b2 is incident with
at most one of c1, c2, so that these two prisms are related as in 7.4. Hence
by 7.4, since y has two neighbours in both triangles of the first prism, it also
has two neighbours in the triangles of the second. This proves that y is Bc1c2-
dominant with respect to L(H ′). The same argument in the reverse direction
shows that Y remains a maximal anticonnected set of Bc1c2-dominant vertices.
Since there is a proper subset F ′ of F with attachments in S and in the new
set T ′ in V (H ′) corresponding to T (for T ′ contains all the vertices of R′ that
are in F , and there is at least one such vertex), it follows that we may apply
the inductive hypothesis. So F ′, and hence F , contains a vertex of X. This
completes the argument when b1b2 and c1c2 are distinct edges.

Now we assume that bi = ci for i = 1, 2. There were four cases in
the definition of P , listed above. Case 3 is impossible, since then the ver-
tex p1 would be Bc1c2-dominant with respect to L(H), and therefore would
be in either X or Y , a contradiction. Also, case 1 is impossible, by applica-
tion of 7.4 as before to show that Y remains a maximal anticonnected set of
B′-dominant vertices, and also by application of the inductive hypothesis. Case
4 is impossible since Bc1c2 has length ≥ 3. So case 2 applies; that is, p2 is ad-
jacent to all vertices in Nc2 \{r2}, and to no vertex of Rc1c2 except possibly r2.
So N ′

ci
= (Nci

\{ri})∪{r′i} for i = 1, 2. We recall that in this case R′ = P , and
P is a subpath of the path with vertices f1, . . . , fn. Choose h with 1 ≤ h ≤ n

minimum such that fh is a vertex of R′. Since both R′ and G|F are paths it
follows that fh is one end of R′, say r′1. (This is without loss of generality,
because in this case 2, there is symmetry between b1 = c1 and b2 = c2.) From
the minimality of F , r′1 has no neighbour in T , and in particular every vertex
in Nc1 \ {r1} is in X. We claim also that every vertex of Nc2 \ {r2} is in X.
For if not, then r2 ∈ X, and by 7.1 there is a prism Rc1c2 , P1, P2 say, in L(H),
where each Pi has an end ai ∈ Nc1 and an end bi ∈ Nc2 , and b2 	∈ X. (Conse-
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quently r2, b1 ∈ X.) Hence at most one vertex of the triangle {r′2, b1, b2} is in
X, and some vertex in X (namely a1) has no neighbour in this triangle, and
so by 2.8, Y cannot be linked onto this triangle. In particular, no vertex of
P2 is in X except a2. But then a2-P2-b2-r2 is an odd path between members
of X, and none of its internal vertices are in X, and a1 has no neighbour in
its interior, contrary to 2.2. This proves that every vertex of Nc2 \ {r2} is
in X. Consequently all vertices of Y are B′-dominant with respect to L(H ′).
We claim also that Y is still maximal. For suppose not, and let Y ⊂ Y ′ for
some larger anticonnected set Y ′ of B′-dominant vertices. Since r′1, r

′
2 are not

in X, they are certainly not Y ′-complete, and since by (1) applied to Y ′, at
most one vertex of N ′

ci
is not Y ′-complete for i = 1, 2, it follows that every

vertex of N ′
c1
\ {r′1} and N ′

c2
\ {r′2} are Y ′-complete. But then all the members

of Y ′ are Bc1c2-dominant with respect to L(H), contrary to the maximality of
Y . This proves that Y is a maximal anticonnected set of B′-dominant vertices
with respect to L(H ′). Hence we can apply induction on F , and the result
follows. This proves (2).

It follows from (2) that there is a partition of V (G) \ (X0 ∪ X1 ∪ Y ) into
two sets L and M say, where there is no edge between L and M , and S ⊆ L

and T ⊆ M . So (L∪M, X0 ∪X1 ∪Y ) is a skew partition of G. By 4.2 we may
assume it is not loose, and so X2 is empty; and we shall show it is balanced.

(3) For i = 1, 2, all vertices of Nci
\ {ri} belong to X1.

Suppose there is a vertex n1 of Nc1 \ {r1} not in X. Therefore all other
vertices of Nc1 belong to X, and in particular, r1 ∈ X. Suppose no other
vertex of Rc1c2 is in X; then r2 	∈ X, so X includes Nc2 \ {r2i}. Choose any
n2 ∈ Nc2 \{r2}, and any n′

1 ∈ Nc1 \{r1} different from n1. Then r1-Rc1c2-r2-n2

is an odd path between Y -complete vertices, and none of its internal vertices are
Y -complete, and yet n′

1 has no neighbour in its interior, contrary to 2.2. This
proves that some vertex of Rc1c2 different from r1 is in X; yet X2 is empty
and so the interior of Rc1c2 contains no vertex in X. Consequently r2 ∈ X.
Choose n2 ∈ Nc2 \ {r2} such that Nc2 \ {n2} ⊆ X. Since J is 3-connected,
there is a track of H from c1 to c2 with first edge n1 and last edge different
from n2. This track is odd since c1 and c2 have opposite biparity; and so
in G there is an even path, P say, from n1 to some n′

2 ∈ Nc2 \ {n2}, with no
vertex in Nc1∪Nc2 except its ends. But then r1-n1-P -n′

2 is an odd path between
Y -complete vertices, no vertex in its interior is Y -complete, and the Y -complete
vertex r2 has no neighbour in its interior, contrary to 2.2. This proves (3).

Let W = (Nc1 \ {r1}) ∪ (Nc2 \ {r2}). Then W ⊆ X1 by (3), and since
there are no edges between Nc1 and Nc2 , it follows that W has exactly two
components, both cliques. In particular, W is anticonnected. Now every
W -complete vertex is Bc1c2-dominant, and so belongs to X ∪ Y ; hence there
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are no W -complete vertices in L∪M . Consequently W is a kernel for the skew
partition.

Let us verify the hypotheses of 4.6. Suppose u1, u2 ∈ W are nonadjacent.
Then one of u1, u2 is in Nc1 \ {r1} and the other in Nc2 \ {r2}. Therefore they
are joined by a path in L(H) using no more vertices in Nc1 ∪Nc2 , which is even
(since H is bipartite). In particular, by 4.3, u1, u2 are not joined by any odd
path with interior in L. Finally, suppose there is a pair of vertices of L joined
by an odd antipath with interior in W , necessarily of length ≥ 5 (since we
already did the odd path case). Then G|W contains an antipath of length 3,
which is impossible since its components are cliques. From 4.6 it follows that
G admits a balanced skew partition. This proves 7.5.

8. Generalized line graphs

In this section we complete the proofs of 5.1 and 5.2. As we said earlier,
our strategy is to find the biggest line graph in G that we can, and then
assemble all the alternative rungs for a given edge of J into a “strip”. Let us
make that precise.

Let J be 3-connected, and let G be Berge. A J-strip system (S, N) in G

means:

• for each edge uv of J , a subset Suv = Svu ⊆ V (G),

• for each vertex v of J , a subset Nv ⊆ V (G),

satisfying the following conditions (for uv ∈ E(J), a uv-rung means a path R

of G with ends s, t say, where V (R) ⊆ Suv, and s is the unique vertex of R in
Nu, and t is the unique vertex of R in Nv):

• The sets Suv (uv ∈ E(J)) are pairwise disjoint.

• For each u ∈ V (J), Nu ⊆
⋃

(Suv : v ∈ V (J) adjacent to u).

• For each uv ∈ E(J), every vertex of Suv is in a uv-rung.

• If uv, wx ∈ E(J) with u, v, w, x all distinct, then there are no edges
between Suv and Swx.

• If uv, uw ∈ E(J) with v 	= w, then Nu ∩ Suv is complete to Nu ∩ Suw,
and there are no other edges between Suv and Suw.

• For each uv ∈ E(J) there is a special uv-rung such that for every cycle
C of J , the sum of the lengths of the special uv-rungs for uv ∈ E(C) has
the same parity as |V (C)|.

It follows that for distinct u, v ∈ V (J), Nu ∩ Nv is empty if u,v are non-
adjacent, and otherwise Nu ∩ Nv ⊆ Suv; and for uv ∈ E(J) and w ∈ V (J), if
w 	= u, v then Suv ∩Nw = ∅. The final axiom looks strange, but we shall show
immediately that the same property holds for every choice of uv-rungs.
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8.1. Let (S, N) be a J-strip system in a Berge graph G, where J is
3-connected. Then for every uv ∈ E(J), all uv-rungs have lengths of the same
parity.

Proof. Since J is 3-connected, there is a cycle C of J with |V (C)| ≥ 4 and
with uv ∈ E(C). For each xy ∈ E(C) different from uv, choose an xy-rung
Rxy. For every uv-rung R, the union of V (R) and all the V (Rxy)’s induces a
cycle in G. This has length ≥ 4 since C has length ≥ 4, so it is a hole and
therefore even. Hence all choices of R have lengths of the same parity. This
proves 8.1.

For each edge uv of J , choose a uv-rung Ruv. It follows from 8.1 and the
final axiom above that the subgraph of G induced on the union of the vertex
sets of these rungs is a line graph of a bipartite subdivision H of J . For brevity
we say that this choice of rungs forms L(H).

We need two easy observations:

8.2. Let (S, N) be a J-strip system in a Berge graph G, where J is
3-connected. If there is an edge uv of J such that some uv-rung has length
0 and another uv-rung has length ≥ 1, then there is an overshadowed appear-
ance of J in G.

Proof. For each edge ij of J choose an ij-rung Rij , arbitrarily for every
edge of J different from uv, and such that Ruv has length ≥ 1; and let this
choice of rungs form L(H). Let y be the vertex of some uv-rung of length 0.
By 8.1, Ruv has even length. Let B be the branch of H between u and v, so
that E(B) = V (Ruv). Then B is odd and has length ≥ 3 and y is nonadjacent
in G to at most one vertex of G in δH(u) and at most one in δH(v). Hence
L(H) is overshadowed. This proves 8.2.

A J-strip system is nondegenerate if there is some choice of rungs such
that the line graph L(H) formed is a nondegenerate appearance of J . Now
8.2 has the following corollary:

8.3. Let (S, N) be a nondegenerate J-strip system in a Berge graph G,
where J is 3-connected. If there is no overshadowed appearance of J in G,
then for every choice of rungs, the line graph they form is a nondegenerate
appearance of J in G.

Proof. Take a choice of rungs Rij(ij ∈ E(J)), forming L(H) say, where
L(H) is nondegenerate; and suppose there is another choice, R′

ij(ij ∈ E(J)),
forming L(H ′) say, where L(H ′) is degenerate. Then for some ij ∈ E(J), Rij

has nonzero length and R′
ij has length 0. By 8.2 there is an overshadowed

appearance of J in G. This proves 8.3.

Given a J-strip system (S, N), we define V (S, N) =
⋃

(Suv : uv ∈ E(J)).
Hence every Nv ⊆ V (S, N). If u, v ∈ V (J) are adjacent, we define Nuv =
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Nu ∩ Suv. So every vertex of Nu belongs to Nuv for exactly one v. Note
that Nuv is in general different from Nvu, but Suv and Svu mean the same
thing. We say X ⊆ V (S, N) saturates the strip system if for every u ∈ V (J),
there is at most one neighbour v of u in J such that Nuv 	⊆ X; and a vertex
y ∈ V (G) \ V (S, N) is major (with respect to the strip system) if the set of its
neighbours in V (S, N) saturates (S, N). We say X ⊆ V (S, N) is local (with
respect to the strip system) if either X ⊆ Nv for some v ∈ V (J), or X ⊆ Suv

for some edge uv ∈ E(J).

8.4. Let G be Berge, and let J be a 3-connected graph. Let (S, N) be a
J-strip system in G, nondegenerate if J = K4. Let y ∈ V (G) \ V (S, N), and
let X be the set of neighbours of y. If there is a choice of rungs forming a line
graph that is saturated by X, then either :

• X saturates the strip system, or

• there is a J-enlargement with a nondegenerate appearance in G, or

• J = K4 and there is an overshadowed appearance of J in G.

Proof. We define the fork number of a choice of rungs to be the number of
branch-vertices of H incident in H with ≥ 2 edges in X∩E(H), where L(H) is
the line graph formed by this choice of rungs. Let us say that a choice of rungs
Rij forming a line graph L(H) is saturated if X saturates L(H), and in this
case its fork number is |V (J)|. If every choice of rungs is saturated, then X

saturates the strip system as required, so we may therefore assume that there
is some choice of rungs that is not saturated. Hence there are two choices of
rungs Rij (ij ∈ E(J)) and R′

ij (ij ∈ E(J)), so that the first is saturated and
the second is not, differing only on one edge of J . Let the line graphs made by
Rij and R′

ij be L(H) and L(H ′) respectively.
Let us apply 5.7 to H ′ and X ∩ E(H ′). Then 5.7.1 is false; suppose

that 5.7.6 holds. Then G|(V (L(H ′)) ∪ {y}) = L(H ′′) say, and L(H ′′) is an
appearance in G of a J-enlargement. We may assume that L(H ′′) is degenerate,
for otherwise the theorem holds. Hence J = K4 and L(H ′) is degenerate. Since
the strip system is nondegenerate, the result follows from 8.3. So we may
assume that one of 5.7.2–5 holds. Hence the choice of rungs R′

ij (ij ∈ E(J))
has fork number ≤ 2. Since the two choices of rungs Rij (ij ∈ E(J)) and
R′

ij (ij ∈ E(J)) differ only on one edge of J , their fork numbers differ by at
most 2; and so |V (J)| = 4, and J = K4.

Let V (J) = {1, 2, 3, 4}, and Rij 	= R′
ij only for the edge 1-2. Let the

ends of each Rij be rij and rji, where {rij : j ∈ {1, . . . , 4} \ {i}} is a triangle
Ti for each i. Similarly each R′

ij is between r′ij and r′ji, where for each i,
{r′ij : j ∈ {1, . . . , 4} \ {i}} is a triangle T ′

i . Since X saturates L(H), it has at
least two members in each of T1, . . . , T4; and since X does not saturate L(H ′),
there is some T ′

i containing at most one member of X. Since T3 = T ′
3 and
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T4 = T ′
4, we may assume that |X ∩ T1| = 2 and |X ∩ T ′

1| = 1; and so r1,2 ∈ X,
r′1,2 	∈ X, and exactly one of r1,3, r1,4 ∈ X, say r1,3 ∈ X and r1,4 	∈ X.

Also, at least two vertices of T3 and T4 are in X, so there are at least two
branch-vertices of H ′ incident in H ′ with more than one edge in X. By 5.7
applied to H ′, we deduce that 5.7.5 holds, and so there is an edge ij of J such
that R′

ij is even and

(X ∩ V (L(H ′))) \ V (R′
ij) = (T ′

i ∪ T ′
j) \ V (R′

ij).

In particular, T ′
i and T ′

j both contain at least two vertices in X, and so i, j ≥ 2.
Since r1,3 ∈ X it follows that one of i, j = 3, say j = 3, and r1,3 ∈ T3; so R1,3

has length 0. Now there are two cases, i = 2 and i = 4. Suppose first that
i = 2. Then

(X ∩ V (L(H ′))) \ V (R2,3) = {r1,3, r3,4, r2,4, r
′
2,1},

and since at least two vertices of T4 are in X it follows that R2,4, R3,4 both
have length 0, a contradiction since R′

ij = R2,3 is even. So i = 4, and hence
R3,4 is even and

(X ∩ V (L(H ′))) \ V (R3,4) = {r3,1, r4,1, r3,2, r4,2}.

Since the path r3,2-R2,3-r2,3-r2,4-R2,4-r4,2 can be completed to a hole via
r4,2-r4,3-R3,4-r3,4-r3,2, the first path is even, and so exactly one of R2,3, R2,4

is odd; and since the same path can be completed to a hole via r4,2-r4,1-R1,4

-r1,4-r1,3-r3,2 it follows that R1,4 is odd. Since one of R2,3, R2,4 is odd, they
do not both have length 0, and hence at most one of r2,3, r2,4 ∈ X. Since X

saturates L(H), it follows that exactly one of r2,3, r2,4 ∈ X (and hence one of
R2,3, R2,4 has length 0), and also that r2,1 ∈ X. Since no vertex of R′

1,2 is in
X, this restores the symmetry between T ′

1 and T ′
2.

Suppose that R2,3 has length 0. Then R2,4 and R1,2 are odd, and in par-
ticular r2,1 	= r1,2. If r2,1 has no neighbour in R′

1,2, then y-r2,1-r2,4-r′2,1-R
′
1,2-r

′
1,2

-r1,4-R1,4-r4,1-y is an odd hole, a contradiction. So r2,1 has a neighbour in R′
1,2;

but then y can be linked onto the triangle T ′
1 via R′

1,2 and R1,4, contrary to
2.4. This proves that R2,3 has length ≥ 1. Hence R2,3 has odd length and R2,4

has length 0, and consequently R1,2, R3,4 have even length and R1,4 is odd. If
R3,4 has positive length then L(H) is overshadowed (because of the vertex y),
and so the theorem holds. We may therefore assume that R3,4 has length 0. If
r2,1 	= r1,2 and r2,1 has no neighbour in R′

1,2, then y-r2,1-r2,4-r′2,1-R
′
1,2-r

′
1,2-r1,3-y

is an odd hole, a contradiction; while if r2,1 	= r1,2 and r2,1 has a neighbour in
R′

1,2, then then y can be linked onto the triangle T ′
1 via R′

1,2 and R1,4, contrary
to 2.4. So r2,1 = r1,2. But then L(H) is degenerate. Since the strip system is
nondegenerate, it follows from 8.3 that there is an overshadowed appearance
of K4 in G. This proves 8.4.
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A J-strip system (S, N) in G is maximal if there is no J-strip system
(S′, N ′) in G such that V (S, N) ⊂ V (S′, N ′), and S′

uv ∩ V (S, N) = Suv for
every uv ∈ E(J), and Nv ⊆ N ′

v for every v ∈ V (J). We need to analyze
maximal strip systems. For an edge uv ∈ E(J), we call the set Suv a strip of
the strip system.

8.5. Let G be Berge, let J be a 3-connected graph, and let (S, N) be a
maximal J-strip system in G. Assume that there is no J-enlargement with a
nondegenerate appearance in G. Assume moreover that if J = K4 then (S, N)
is nondegenerate and there is no overshadowed appearance of J in G. Let
F ⊆ V (G) \ V (S, N) be connected, so that no member of F is major with
respect to (S, N). Then the set of attachments of F in V (S, N) is local.

Proof. Let X be the set of attachments of F in V (S, N), and suppose
for a contradiction that X is not local. We may assume that F is minimal
(connected) with this property.

(1) For every choice of rungs, forming L(H) say :

• for each y ∈ F , the set of neighbours of y does not saturate L(H),
and

• if J = K4 then L(H) is not degenerate.

No y ∈ F is major with respect to the strip system, and no J-enlargement
has a nondegenerate appearance in G. If J = K4 then there is no overshadowed
appearance of J in G, so the first claim follows from 8.4. For the second claim,
assume J = K4; then by hypothesis, the strip system is not degenerate, and
the claim follows from 8.3. This proves (1).

(2) There is no v ∈ V (J) such that X ⊆
⋃

(Suv : uv ∈ E(J)).

Assume that v is such a vertex. Consequently, for every vertex w ∈ V (J)
except at most one, only one strip meets both Nw and X. Since X is not local,
there exists x ∈ X ∩ Suv \ Nv for some edge uv of J . Since X 	⊆ Suv, there
exists x′ ∈ X ∩ Su′v for some edge u′v of J with u′ 	= u. For w ∈ V (J), x

belongs to Nw only if w = u, and x′ belongs to Nw only if w ∈ {v, u′}; and
since x, x′ do not belong to the same strip it follows that {x, x′} is not local
with respect to the strip system. Make a choice of rungs Rij ij ∈ E(J) such
that x ∈ V (Ruv) and x′ ∈ V (Ru′v), forming L(H). Then {x, x′} is not local
with respect to L(H), so by (1) we can apply 5.8. Suppose that 5.8.1 holds.
Then there is an appearance L(H ′) in G of some J-enlargement J ′, with L(H)
an induced subgraph of L(H ′). Moreover, if J ′ = K3,3 then J = K4, and so
L(H) is nondegenerate and therefore so is L(H ′). Since J ′ 	= K4 it follows that
L(H ′) is nondegenerate, contrary to hypothesis. So 5.8.1 does not hold, and
therefore 5.8.2 holds. Since for every vertex w ∈ V (J) except at most one,
only one strip meets both Nw and X, it follows that 5.8.2.a holds, and there is
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a branch D of H with an end d such that δH(d) \E(D) = (X ∩E(H)) \E(D).
Since x and x′ are disjoint edges in X ∩E(H), they are not both incident with
d, and so one of them is in E(D\d). The branch containing x′ does not meet x,
so D is the branch between u and v, and d = v. Hence x′ is incident with v in
H, and δH(v) ⊆ X ∪ E(D). Consequently, for all neighbours w 	= u of v in J ,
X contains the vertex of Rvw that belongs to Nv, and contains no other vertex
of Rvw. This restores the symmetry between u′ and the other neighbours of v

different from u; and since it holds for all choices of the rungs Rvw, we deduce
that X \ Suv = Nv \ Suv. The minimality of F implies that there is a path P

with V (P ) = F , with ends p1, p2 such that p1 is complete to Nv \Nvu, and no
other vertex of P has any neighbours in Nv \Nvu, and p2 is adjacent to x, and
no other vertex of P has any neighbours in Suv \ Nv. But then we can add p1

to Nv and F to Suv, contradicting the maximality of (S, N). This proves (2).

Let K = {uv ∈ E(J) : X ∩ Suv 	= ∅}.
(3) There are two disjoint edges in K.

We make a choice of rungs Ruv (uv ∈ E(J)) such that X ∩ V (Ruv) 	= ∅
for each uv ∈ K, forming L(H). If there are no two disjoint edges in K, then
by (1) and 5.8, it follows that either X ∩ V (L(H)) is local (with respect to
L(H)) or 5.8.2.a holds; in either case there is a branch D of H with an end d

such that every edge of X ∩ E(H) either is in E(D) or is incident with d. In
particular, every branch containing an edge of X is incident with d, and so d

meets all edges of J in K, contrary to (2). This proves (3).

From (3) it follows that there exists a 2-element subset of X that is not
local, and so from the minimality of F it follows that F is the vertex set of a
path, say f1, . . . , fn. Let us say a choice Ruv (uv ∈ E(J)) of rungs is broad if
there are two disjoint edges ij and hk of J such that X meets both Rij and
Rhk. From (3) there is a broad choice. We denote the ends of Ruv by ruv and
rvu, where ruv ∈ Nu and rvu ∈ Nv.

(4) For every broad choice of rungs Ruv (uv ∈ E(J)), there is a unique pair
(i, j) of adjacent vertices of J such that :

• For every w ∈ V (J) different from j and adjacent to i in J , riwf1

is the unique edge of G between V (Riw) and F .

• For every w ∈ V (J) different from i and adjacent to j in J , rjwfn

is the unique edge of G between V (Rjw) and F .

• For every edge uv of J disjoint from ij, there are no edges of G

between V (Ruv) and F .

By (1) we can apply 5.8, and since the choice of rungs is broad, the
minimality of F implies that one of 5.8.2.b, c, d holds. Hence there is an
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edge ij as in (4). Suppose there is another, say i′j′. Since i′j′ meets all edges
of J that share exactly one end with ij, and J is 3-connected, J = K4 and the
two edges ij, i′j′ are disjoint. Moreover, the unique vertex of Rii′ in X is both
rii′ and ri′i, so that Rii′ has length 0. Similarly Rij′ , Rji′ , Rjj′ all have length
0, and so L(H) is degenerate, contrary to (1). This proves (4).

(5) Every choice of rungs is broad.

From (3), there is a broad choice, and from (4) in any broad choice Ruv

(uv ∈ E(J)) there are four different edges a1b1, . . . , a4b4 of J , such that a1b1 is
disjoint from a2, and a3b3 is disjoint from a4b4, and X meets Raibi

for 1 ≤ i ≤ 4.
Consequently, if we take another choice of rungs, differing from this one on only
one edge, then it too is broad. Now, every choice is broad, proving (5).

For a given choice of rungs, let us call the edge ij as in (4) the traversal
for the choice.

(6) There are two choices of rungs with different traversals.

Take a choice of rungs, and let ij be its traversal; and suppose that all
other choices of rungs have the same traversal. Let A1 = Ni \ Sij , and A2 =
Nj \ Sij . From (4),(5), and the uniqueness of ij it follows that X ∩ (V (S, N) \
Sij) = A1 ∪ A2. Hence n ≥ 2, for if n = 1 then we can add f1 to Ni, Nj

and Sij , contrary to the maximality of the strip system. Choose x1 ∈ A1 and
x2 ∈ A2 in disjoint strips. From (4), x1 is adjacent to exactly one of f1, fn, say
f1. For any other vertex x3 ∈ A2, let Ruv (uv ∈ E(J)) be a choice of rungs
forming L(H) say, such that x1, x3 ∈ V (H). From (4) and (5) it follows that
fn is adjacent to x3; and so fn is complete to A2, and similarly f1 is complete
to A1. From the minimality of F , there are no other edges between F and
A1 ∪ A2; but then we can add f1 to Ni, fn to Nj , and F to Sij , contrary to
the maximality of the strip system. This proves (6).

Let us say a choice Ruv (uv ∈ E(J)) is optimal if Ruv has a vertex in
X for all edges uv in K. For any choice of rungs, there is an optimal choice
with the same traversal (just replace rungs that miss X by rungs that meet
X wherever possible); so (6) implies that there are two optimal choices of
rungs with different traversals. Now for any optimal choice of rungs, if hi is
its traversal, then by (4) and the optimality of the choice, it follows that K

consists precisely of the edges of J with exactly one end in common with hi,
together possibly with hi itself. In particular hi meets all edges in K. We may
assume that some other edge jk is the traversal for some other optimal choice;
and hence (since J is 3-connected) it follows that J = K4 and jk is disjoint
from hi, and neither edge is in K. Hence V (J) = {h, i, j, k}. Now since the
strip system is not degenerate, there is one of the four edges hj, hk, ij, ik whose
strip contains a rung of nonzero length; some hj-rung R has length > 0 say.
From (4) it follows that exactly one vertex of R is in X, one of its ends; say
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the end in Nh. Let Ruv (uv ∈ E(J)) be any choice of rungs such that Rhj = R.
Since the end of R in Nj does not belong to X, it follows from (4) that for each
of Rhk, Rij , Rik, its unique vertex in X is its end in Nh ∪ Ni. Since the choice
of these rungs was arbitrary, it follows that X ∩ Shk = Nhk, X ∩ Sij = Nij ,
and X ∩ Sik = Nik. If also X ∩ Shj = Nhj then hi is the traversal for every
choice of rungs, contrary to (6), so that X ∩ Shj 	= Nhj . It follows that every
ij-rung has length 0; for if one, R′ say, has length > 0, then its unique vertex
in X is its end in Ni, and by exchanging h and i it follows that X ∩Shj = Nhj ,
a contradiction. Similarly all hk and ik-rungs have length 0, and therefore all
hj-rungs have even length, since G is Berge. From (1), we may assume that
f1 is adjacent to rhj and complete to Shk, and fn is complete to Sij ∪ Sik,
and there are no other edges between F and Shk ∪ Sij ∪ Sik ∪ {rhj}. Let R′

be an hj-rung such that its vertex in Nh (r′hj , say) is not its unique vertex in
X. Consequently, its other end (r′jh) is its unique vertex in X. By the same
argument with hi and jk exchanged, it follows that one of f1, fn is complete
to Sij ∪ {r′jh} and the other to Shk ∪ Sik; and hence n = 1. But then the path
f1-rhj-Rhj-rjh-rji-f1 is an odd hole, a contradiction. This proves 8.5.

We are now ready to prove 5.4, which we restate:

8.6. Let G be Berge. Let J be a 3-connected graph, such that there is
no J-enlargement with a nondegenerate appearance in G. Let L(H0) be an
appearance of J in G, such that if L(H0) is degenerate, then H0 = J = K3,3

and no J-enlargement appears in G. Then either G = L(H0), or H0 	= K3,3

and G admits a proper 2-join, or G admits a balanced skew partition.

Proof. By 7.5, we may assume that if J = K4 or K3,3 then no appear-
ance of J in G is overshadowed. Regard L(H0) as a J-strip system in the
natural way, and enlarge it to a maximal J-strip system (S, N). If L(H0)
is nondegenerate then so is the strip system. Let Y be the set of vertices
in V (G) \ V (S, N) that are major with respect to the strip system, and let
Z = V (G) \ (V (S, N) ∪ Y ). By 8.5, for each component of Z, its set of
attachments in V (S, N) is local.

(1) If Y 	= ∅ then G admits a balanced skew partition.

Suppose not. Let Y ′ be an anticomponent of Y , and let X be the set of
all Y ′-complete vertices in V (G). For every choice of rungs, forming L(H)
say, every member of Y ′ is major with respect to L(H). We claim that X

saturates L(H); for suppose not. By 6.1, one of the five outcomes of 6.1
holds. The first we have already assumed is false. Thus 6.1 implies that L(H)
is degenerate, and consequently 8.3 implies that L(H0) is degenerate. By
hypothesis, J = K3,3, and no J-enlargement appears in G. By 6.1, there is an
overshadowed appearance of J in G, contrary to 7.5 applied in G. This proves
that X saturates L(H). Since this holds for every choice of rungs, it follows
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that X saturates the strip system. Let b1b2 be an edge of J , chosen if possible
such that Sb1b2 	⊆ X. Now the sets (Nb1v: b1v ∈ E(J)) form a partition of Nb1

into say m sets, and at least m − 1 of them are subsets of X. Choose m − 1
of them that are subsets of X, not using Nb1b2 if possible (that is, if the other
m − 1 sets are all subsets of X), and let their union be X1. Define X2 ⊆ Nb2

similarly. We note that Sb1b2 	⊆ X1 ∪ X2; for if some vertex of Sb1b2 is not in
X then this is clear, while if Sb1b2 ⊆ X then V (S, N) ⊆ X from our choice
of b1b2, and then from the way we chose X1 it follows that X1 ∩ Sb1b2 = ∅,
and similarly X2 ∩ Sb1b2 = ∅, and again our claim holds. This proves that
Sb1b2 	⊆ X1 ∪ X2. Define X3 to be the set of vertices in X ∩ V (S, N) that are
not in X1 ∪X2, and let X0 be the set of vertices of X that are not in V (S, N).
Then X0, X1, X2, X3 are four disjoint subsets of X, with union X. Note that
Y \Y ′ ⊆ X0. Let B be the union of all components of G \ (Y ′ ∪X0 ∪X1 ∪X2)
that have nonempty intersection with V (S, N) \ Sb1b2 , and let A be the union
of all the other components. We claim that B is nonempty; for there is an
edge c1c2 of J disjoint from b1b2, and no vertex of Sc1c2 is in Nb1 ∪Nb2 ∪Sb1b2 ,
and therefore no vertex of Sc1c2 is in Y ′∪X0∪X1∪X2. Suppose that A is also
nonempty. Then (A∪B, Y ′∪X0∪X1∪X2) is a skew partition of G. By 4.2 it
is not loose; and so X3 is empty (since any vertex of X3 is in A∪B and yet is
complete to Y ′). In particular, X∩V (L(H0)) ⊆ Nb1∪Nb2 . Since X∩V (L(H0))
saturates L(H0), for every vertex w of J different from b1, b2, w has at most
one neighbour in J different from b1, b2, and w is adjacent in J to both b1 and
b2, and all wb1 and wb2-rungs have length 0. Since J is 3-connected it follows
that J = K4, and L(H0) is degenerate, a contradiction. Thus A is empty. Now
we already saw that Sb1b2 	⊆ X1 ∪ X2. Since A is empty, there is a path of G

between Sb1b2 and V (S, N) \ Sb1b2 , disjoint from Y ′ ∪ X0 ∪ X1 ∪ X2. Choose
such a path, minimal. From the choice of X1 and X2 this path has a nonempty
interior; from its minimality, none of its internal vertices belong to V (S, N);
since all major vertices are in Y ′ ∪ X0, its interior contains no major vertices;
by 8.5, the set of attachments of its interior is local; yet its ends are both
attachments of its interior, so there exist u ∈ Sb1b2 and v ∈ V (S, N) \ Sb1b2 ,
such that u, v 	∈ X1 ∪ X2, and yet {u, v} is local. Now u, v do not lie in the
same strip, and therefore there is some Nw containing them both. The only
w ∈ V (J) with u ∈ Nw are b1, b2, so we may assume that u, v ∈ Nb1 . Since they
are not in X1, and not in the same strip, this is impossible. This proves (1).

We may therefore assume that Y is empty.

(2) If there is a component F of Z such that for some v ∈ V (J), all at-
tachments of F in V (S, N) belong to Nv, then G admits a balanced skew
partition.

Let F ′ = V (G) \ (F ∪ Nv); then F ′ 	= ∅, and every path in G from F to F ′

meets Nv. Since Nv is not anticonnected, (F ∪F ′, Nv) is a skew partition. By
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4.2 we may assume it is not loose, and we will prove that it is balanced. Let
the neighbours of v in J be u1, . . . , uk; then every anticomponent of Nv is a
subset of one of Nvu1 , . . . , Nvuk

. Choose a neighbour w of u1 in J different
from v, u2, choose n1 ∈ Nu1w, and choose n2 ∈ Nvu2 . Then n1, n2 belong to
strips Su1w, Svu2 , where u1w, vu2 are disjoint edges of J ; and so n1, n2 are not
adjacent in G. Let K = {n1} ∪ Svu1 \Nvu1 . Then K is connected (since every
vertex of Svu1 is in a vu1-rung and n1 is complete to Nu1v), every vertex in
Nvu1 has a neighbour in K (for the same reason), and n2 is not in K and
has no neighbour in K. (For the last claim, n2 is not in K since it is in only
one strip; and it has no neighbour in Svu1 \Nvu1 from the definition of a strip
system; and it is not adjacent to n1 as we already saw.) By 2.6, (K, Nvu1) is
balanced, and therefore by 2.7.1, so is (F, Nvu1). By 4.5, G admits a balanced
skew partition. This proves (2).

We assume therefore that there are no such components F of Z. Conse-
quently, for every component F of Z, there is an edge b1b2 of J such that all
the attachments of F in V (S, N) are in Sb1b2 . If Z is empty and for all b1b2

there is only one b1b2-rung, then G = L(H0) and the theorem holds. So we
may assume that there is an edge b1b2 of J such that either there is more than
one b1b2-rung in Sb1b2 or there is a component F of Z with all its attachments
in Sb1b2 . Let A be the union of Sb1b2 and any components of Z that have
an attachment in Sb1b2 (and which therefore have attachments only in Sb1b2),
and let B = V (G) \ A. Let A1 = Nb1b2 , A2 = Nb2b1 , B1 = Nb1 \ Nb1b2 , and
B2 = Nb2 \ Nb2b1 . Then A1, A2 ⊆ A, and B1, B2 are disjoint subsets of B, and
for i = 1, 2 Ai is complete to Bi, and there are no other edges between A and
B. Also |B1| ≥ 2, and we chose b1b2 such that if A1, A2 both have only one
vertex then A is not the vertex set of a path joining them. If A1 ∩A2 = ∅ then
H0 	= K3,3 and G admits a proper 2-join, and the theorem holds. Thus we
may assume that there exists a ∈ A1 ∩A2 	= ∅. Then a is complete to B1 ∪B2,
and since |A| ≥ 2, it follows that ((B \ (B1 ∪ B2)) ∪ (A \ {a}), B1 ∪ B2 ∪ {a})
is a skew partition of G. Since {a} is an anticomponent of B1 ∪ B2 ∪ {a}, 4.1
implies that G admits a balanced skew partition. This proves 5.4.

9. Double split graphs

In this section we handle degenerate appearances of K4. There is another
way to view them, not as line graphs but as sets of paths and antipaths with
certain properties, as we shall see.

Let P1, P2 be paths in a graph G, and let Q1, Q2 be antipaths. Suppose
that P1, P2, Q1, Q2 are pairwise disjoint, and we can label the ends of each Pi

as ai, bi, and label the ends of each Qj as xj , yj , such that:

• P1, P2, Q1, Q2 all have length ≥ 1.
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• There are no edges between P1 and P2, and Q1 is complete to Q2.

• For (i, j) = (1, 1), (1, 2) or (2, 1), the only edges between V (Pi) and
{xj , yj} are aixj and biyj , and the only edges between V (P2) and {x2, y2}
are a2y2 and b2x2.

• For (i, j) = (1, 1), (1, 2) or (2, 1), the only nonedges between V (Qj) and
{ai, bi} are aiyj and bixj , and the only nonedges between V (Q2) and
{a2, b2} are a2x2 and b2y2.

In these circumstances we call the quadruple (P1, P2, Q1, Q2) a knot in G. Note
that if (P1, P2, Q1, Q2) is a knot then so is (P2, P1, Q1, Q2), with a suitable
relabelling of the ends of the paths and antipaths.

If L(H) is a degenerate appearance of K4 in G, it can be viewed as a knot.
For, in our usual notation, let R1,3, R1,4, R2,3, R2,4 have length 0; let P1 = R1,2,
P2 = R3,4, let Q1 be the antipath r1,3-r2,4, and Q2 the antipath r1,4-r2,3. It is
easy to check that this is a knot. In fact, this and its complement are the only
knots in Berge graphs, as the next theorem shows.

9.1. Let (P1, P2, Q1, Q2) be a knot in a Berge graph G. Then all four of
P1, P2, Q1, Q2 have odd length; and either both P1, P2 have length 1, or both
Q1, Q2 have length 1.

Proof. Define ai, bi, xi, yi (i = 1, 2) as usual. Certainly P1 is odd since
x1-a1-P1-b1-y2-x1 is a hole, and similarly, the other three are odd. Suppose
one of P1, P2 has length > 1 and one of Q1, Q2 has length > 1. By exchanging
P1, P2 or Q1, Q2 we may therefore assume that P1, Q1 both have length > 1.
Let Y be the interior of Q1. Then a1, b1, a2, b2 are all Y -complete, from the
last condition in the definition of a knot, and since a2 has no neighbours in
the interior of P1 it follows from 2.2 that there is a Y -complete vertex (v say)
in the interior of P1. But x1, y1 are not Y -complete, and they are adjacent,
so that a1-x1-y1-b1 is an odd path between Y -complete vertices and v has no
neighbour in its interior, contrary to 2.2. This proves 9.1.

Nevertheless, it turns out to be advantageous to make only limited use of
9.1; it is better to preserve the symmetry between the paths and the antipaths.

Let (P1, P2, Q1, Q2) be a knot in a Berge graph G; we define K to be
the subgraph of G induced on V (P1) ∪ V (P2) ∪ V (Q1) ∪ V (Q2). (For brevity
we say that the knot induces K.) Also, a subset X ⊆ V (K) is local (with
respect to the knot) if X is disjoint from one of V (P1), V (P2), and X includes
neither of V (Q1), V (Q2), and X∩(V (P1)∪V (P2)) is complete to X∩(V (Q1)∪
V (Q2)). Now, X resolves the knot if V (K) \ X is local with respect to the
knot (Q1, Q2, P1, P2) in G; that is, if X includes one of V (Q1), V (Q2), and X

meets both P1 and P2, and X contains at least one end of every edge between
V (P1) ∪ V (P2) and V (Q1) ∪ V (Q2). Conveniently, these definitions almost
agree with what we did for line graphs, because of the following.
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9.2. Let (P1, P2, Q1, Q2) be a knot in a graph G, inducing K, where Q1, Q2

both have length 1, and so K = L(H) is an appearance of K4. Let X ⊆ V (K).
Then:

• X is local with respect to the knot if and only if it is local with respect to
L(H),

• X resolves the knot if and only if X saturates L(H) and X meets both
V (P1) and V (P2).

The proof is obvious and we omit it. This allows us to unify some portions
of 5.8 and 6.1, as follows. (The expression “up to symmetry” means here
“possibly after exchanging P1 and P2 and exchanging Q1 and Q2, and renaming
the ends of P1, P2, Q1, Q2 accordingly.”)

9.3. Let (P1, P2, Q1, Q2) be a knot in a Berge graph G, inducing K. As-
sume that there is no appearance in G or in G of any K4-enlargement, and
there is no overshadowed appearance of K4 in G or in G. Let F be a connected
subset of V (G)\V (K), such that its set of attachments in K is not local. Then
either :

1. there is a vertex in F such that its neighbour set in K resolves the knot,
or

2. (up to symmetry) there is a path R in F with ends r1, r2 such that r1, a1

have the same neighbours in V (P2) ∪ V (Q1) ∪ V (Q2), and there are no
edges between R\ r1 and V (P2)∪V (Q1)∪V (Q2), and r2 has a neighbour
in P1 \ a1, and there are no edges between R \ r2 and P1 \ a1, or

3. (up to symmetry) there is an odd path R in F with ends r1, r2 such that
r1, a1 have the same neighbours in V (P2) ∪ V (Q1) ∪ V (Q2), and r2, b1

have the same neighbours in V (P2) ∪ V (Q1) ∪ V (Q2), and there are no
edges between V (R∗) and V (P2)∪ V (Q1)∪ V (Q2), and no edges between
R and P1 except possibly r1a1 and r2b1, or

4. there is a vertex f ∈ F such that (up to symmetry) f, x1 have the same
neighbours in V (P1) ∪ V (P2) ∪ V (Q2) and f is not adjacent to y1.

Proof. Define ai, bi, xi, yi (i = 1, 2) as usual. By 9.1 there are two cases,
depending on whether Q1 and Q2 have length 1 or P1 and P2 have length 1.

(1) If Q1 and Q2 have length 1 then the theorem holds.

Assume Q1 and Q2 have length 1. Then K is a degenerate appearance of K4

in G, say K = L(H). Suppose that the neighbour set of some f ∈ F saturates
L(H). If f has a neighbour in both V (P1) and V (P2) then statement 1 of
the theorem holds, so we assume it has no neighbour in V (P1). But then f

is adjacent to all four of x1, x2, y1, y2, since it has two neighbours in every
triangle of K, and then f -x1-a1-P1-b1-y1-f is an odd hole, a contradiction. So
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we assume there is no such f , and hence we may apply 5.8. If 5.8.1 holds
then there is an appearance in G of some K4-enlargement, a contradiction. So
5.8.2 holds. In the notation of 5.8.2, the edge b1b2 of J is of one of two types;
either Nb1 meets Nb2 or it does not. In the first case, we may assume from
the symmetry that those two sets are {x1, x2, a1} and {x1, y2, a2}, and there
is a path R of G with V (R) ⊆ F and with ends r1 and r2, such that r1 is
adjacent to a1, x2, and r2 is adjacent to a2, y2, and there are no other edges
between V (P ) and K \ x1. If R has length 0 then statement 4 of the theorem
holds, while if R has length > 0 then it is even and there is an overshadowed
appearance of K4 in G, a contradiction. In the second case, when the sets
called N(b1), N(b2) in the notation of 5.8.2 are disjoint, we may assume that
these sets are {x1, x2, a1} and {y1, y2, b1} respectively, and one of 5.8.2(a),
(b), (c) holds. In the first two cases statements 2 and 3 of the theorem hold,
respectively, and the last case is impossible since P1 is odd. This proves (1).

Henceforth we may therefore assume that one of Q1, Q2 has length > 1,
and therefore by 9.1, both P1 and P2 have length 1. Hence K = L(H), where
L(H) is a degenerate appearance of K4 in G.

(2) If there exists f ∈ F such that f is not major with respect to L(H) in G,
then the theorem holds.

Let f ∈ F have this property. If the set of neighbours of f in K resolves the
knot (P1, P2, Q1, Q2), then statement 1 of Theorem 9.3 holds, so we assume
not. Therefore, in G, the set of neighbours of f in K is not local with respect
to the knot (Q1, Q2, P1, P2). But this set does not saturate L(H); so we can
apply 5.8 (or, indeed, 5.7) in G, and deduce, as before, that either there is
a K4-enlargement that appears in G (a contradiction), or (up to symmetry)
f, a1 have the same neighbours in K \a1 (but then statement 2 of the theorem
holds), or (up to symmetry) f, x1 have the same neighbours in V (P1)∪V (P2)∪
V (Q2) (but then either statement 1 or statement 4 of the theorem holds). This
proves (2).

We may therefore assume that every f ∈ F is major with respect to L(H)
in G. Let X be the set of vertices of K which, in G, have no neighbours in F .
By hypothesis, V (K) \X is not local with respect to the knot (P1, P2, Q1, Q2)
in G, and hence X does not resolve the knot (Q1, Q2, P1, P2) in G. If X

does not saturate L(H) in G, then by (2) we may apply 6.1. Since Q1 has
length > 1 it follows that the last outcome of 6.1 holds, and hence statement
3 of the theorem holds. We may therefore assume that X saturates L(H)
in G. By 9.2, X is disjoint from one of V (Q1), V (Q2), say X ∩ V (Q1) = ∅.
Hence a1, a2, b1, b2 ∈ X. Since a1-y1-Q1-x1-b1 is an odd antipath in G, and its
internal vertices all have neighbours in F , and its ends do not, it follows from
2.2 applied in G that every vertex in X has a nonneighbour in V (Q1); and
hence no vertex of Q2 belongs to X. This restores the symmetry between Q1
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and Q2. Now one of Q1, Q2 has length > 1, say Q1 without loss of generality.
Hence, in G, the path a1-y1-Q1-x1-b1 is odd and has length ≥ 5; its ends are
complete to F , and its internal vertices are not. By 2.1, F contains a leap;
so there exist nonadjacent f1, f2 ∈ F such that Q1 is the interior of a path
R between them. (All this is in G - we will tell the reader when we switch
back to G.) Now f1, f2 have no common neighbour in Q2 (because R could be
completed to an odd hole through any such common neighbour), so by 2.1,
f1, f2 is also a leap for the path a1-y2-Q2-x2-b1 (this path might have length 3,
but still we get a leap by 2.1.3, since {f1, f2} cannot include the interior of
any longer antipath between x2 and y2). Hence from the symmetry we may
assume that f1 is adjacent to y1, y2, and f2 to x1, x2, and there are no other
edges between {f1, f2} and V (Q1)∪ V (Q2). Therefore, back in G, we see that
a1, f1 have the same neighbours in V (P2) ∪ V (Q1) ∪ V (Q2), and so do b1, f2,
and therefore statement 3 of the theorem holds. This proves 9.3.

9.3 suggests that we should attempt to combine paths into strips, as in the
section on “Generalized line graphs”, and combine antipaths into “antistrips”.
Let us make this precise.

Let A, B, C be disjoint subsets of V (G). We call S = (A, C, B) a strip if
A, B are nonempty, and every vertex of A∪B∪C belongs to a path between A

and B with only its first vertex in A, only its last vertex in B, and interior in C.
Such a path is called a rung of the strip S, or an S-rung. When S = (A, C, B)
is a strip, V (S) means A ∪B ∪C. The reverse of a strip (A, C, B) is the strip
(B, C, A). An antistrip is a triple that is a strip in G, and the corresponding
antipaths are called antirungs. If P is a rung with ends a ∈ A and b ∈ B, we
speak of the “rung a-P -b” for brevity; the reader can deduce which end is in
which set from the names of the ends, because we shall always use a, a′, a1 etc.
for ends in a set called something like A, and so on.

Let S = (A, C, B) be a strip and T = (X, Z, Y ) an antistrip, with V (S)∩
V (T ) = ∅. We say S, T are parallel if:

• A is complete to X ∪ Z, and B is complete to Y ∪ Z, and

• X is anticomplete to B ∪ C, and Y is anticomplete to A ∪ C.

We say S, T are co-parallel if S, T ′ are parallel, where T ′ is the reverse of T .
Now let S1, S2 be strips and T an antistrip, where S1, S2, T are pairwise

disjoint. We say that S1, S2 agree on T if either S1, T are parallel and S2, T are
parallel, or both pairs are co-parallel; and they disagree if one pair is parallel
and the other pair is co-parallel. If S is a strip and T1, T2 are antistrips,
pairwise disjoint, we define whether T1, T2 agree or disagree on S similarly.

Now let S1, S2 be strips, and let T1, T2 be antistrips, all pairwise disjoint.
We call the quadruple (S1, S2, T1, T2) a twist if S1, S2 agree on one of T1, T2 and
disagree on the other (equivalently, if T1, T2 agree on one of S1, S2, and disagree
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on the other). Note that if (S1, S2, T1, T2) is a twist, then so is (S′
1, S2, T1, T2),

where S′
1 is the reverse of S1.

A striation in a graph G is a family of strips Si = (Ai, Ci, Bi) (1 ≤ i ≤ m)
together with a family of antistrips Tj = (Xj , Zj , Yj) (1 ≤ j ≤ n), satisfying
the following conditions:

• All the strips and antistrips are pairwise disjoint, and all their rungs and
antirungs have odd length.

• m, n ≥ 2.

• For 1 ≤ i < i′ ≤ m, Si is anticomplete to Si′ , and for 1 ≤ j < j′ ≤ n, Tj

is complete to Tj′ .

• For 1 ≤ i ≤ m and 1 ≤ j ≤ n, Si and Tj are either parallel or co-parallel.

• For 1 ≤ i < i′ ≤ m there exist distinct j, j′ with 1 ≤ j, j′ ≤ n such that
(Si, Si′ , Tj , Tj′) is a twist.

• For 1 ≤ j < j′ ≤ n there exist distinct i, i′ with 1 ≤ i, i′ ≤ m such that
(Si, Si′ , Tj , Tj′) is a twist.

(Note that if we replace some (Ai, Ci, Bi) by its reverse, we obtain another
striation.) We denote the striation by L, and the union of the vertex sets of
all its strips and antistrips by V (L). By analogy with what we did for knots,
let us say that a subset X ⊆ V (L) is local with respect to L if

• at most one of X ∩ V (S1), . . . , X ∩ V (Sm) is nonempty,

• for 1 ≤ j ≤ n, every Tj-antirung has a vertex not in X, and

• X ∩ (V (S1) ∪ · · · ∪ V (Sm)) is complete to X ∩ (V (T1) ∪ · · · ∪ V (Tn)).

We say X resolves L if V (L) \ X is local with respect to the striation in G

obtained from L by exchanging the strips and antistrips; that is, if

• there is at most one of T1, . . . , Tn that is not a subset of X,

• for 1 ≤ i ≤ m, every Si-rung meets X, and

• X contains at least one end of every edge between V (S1) ∪ · · · ∪ V (Sm)
and V (T1) ∪ · · · ∪ V (Tn).

A striation L in G is maximal if there is no striation L′ in G with V (L) ⊂ V (L′).

9.4. Let G be Berge, such that there is no appearance in G or in G of
any K4-enlargement, and there is no overshadowed appearance of K4 in G or
in G. Let L be a maximal striation in G. Let f ∈ V (G) \ V (L), and let X be
the set of neighbours of f in V (L). Then either X is local with respect to L,
or X resolves L.

Proof. Let L have strips Si = (Ai, Ci, Bi) (1 ≤ i ≤ m) and antistrips
Tj = (Xj , Zj , Yj) (1 ≤ j ≤ n).
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(1) Let 1 ≤ i ≤ m, and 1 ≤ j ≤ n; let ai-Pi-bi be an Si-rung, and xj-Qj-yj

a Tj-antirung. Then either X ∩ V (Pi) 	= ∅, or V (Qj) 	⊆ X.

Suppose that X includes V (Q1) and is disjoint from V (P1) say. By reversing S2

we may assume that S1 and S2 agree on T1; and we may assume they disagree
on T2. Let a2-P2-b2 be any S2-rung, and x2-Q2-y2 any T2-antirung. Then
(P1, P2, Q1, Q2) is a knot, so by 9.1, we may assume (taking complements if
necessary) that Q1 has length 1. But then f -x1-a1-P1-b1-y1-f is an odd hole,
a contradiction. This proves (1).

From (1), taking complements if necessary, we may assume that for all
1 ≤ j ≤ n, and for all Tj-antirungs Qj , V (Qj) 	⊆ X.

(2) X meets at most one of V (S1), . . . , V (Sm).

Suppose that X meets both S1 and S2 say. We may assume that (S1, S2, T1, T2)
is a twist. For i = 1, 2 choose an Si-rung Pi such that X ∩ V (Pi) 	= ∅, and
for j = 1, 2 choose any Tj-antirung Qj . By our assumption above, f has
nonneighbours in both Q1, Q2. But then (P1, P2, Q1, Q2) is a knot, and setting
F = {f} violates 9.3, a contradiction. This proves (2).

We may assume that X is not local with respect to L, and so we may
assume that there is an S1-rung a1-P1-b1 and a T1-antirung x1-Q1-y1 containing
nonadjacent members of X. By reversing each Tj if necessary, we may assume
that S1 is parallel to each Tj . In particular, a1x1 is an edge, and so is b1y1.
Since one of P1, Q1 has length 1 by 9.1, the interior of Q1 is complete to
V (P1), we may assume that x1 ∈ X, and X ∩ V (P1 \ a1) 	= ∅. Let 2 ≤ j ≤ n,
and let xj-Qj-yj be any Tj-antirung. For definiteness we assume j = 2. Now
T1, T2 agree on S1, and so there is some Si on which they disagree, say S2. Let
a2-P2-b2 be any S2-rung. Then (P1, P2, Q1, Q2) is a knot, with union K say, and
X∩V (K) is not local with respect to K (since x1 ∈ X, and X∩V (P1\a1) 	= ∅).
By 9.3, it follows that 9.3.2 holds, and hence f, a1 have the same neighbours in
V (Q1)∪V (Q2). In particular, V (Q2)\{y2} ⊆ X. Since V (Q2) 	⊆ X, it follows
that y2 	∈ X; since this holds for all Q2, we deduce that X ∩ V (T2) = X2 ∪Z2;
and since the same holds for all antistrips of L except T1, we deduce that
X ∩ V (Tj) = Xj ∪ Zj for 2 ≤ j ≤ n. Since our only assumption about T1 was
that X ∩X1 	= ∅, and since we have shown that the same is true for all Tj , we
can replace T1 by T2 say, and deduce similarly that X ∩V (T1) = X1 ∪Z1. But
then we can add f to A1, contrary to the maximality of the striation. This
proves 9.4.

9.5. Let G be Berge, such that there is no appearance in G or in G of
any K4-enlargement, and there is no overshadowed appearance of K4 in G or
in G. Let L be a maximal striation in G. Let F ⊆ V (G) \ V (L) be connected,
such that for each f ∈ F , the set of its neighbours in V (L) is local with respect
to L. Then the set of attachments of F in V (L) is local with respect to L.
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Proof. Let L have strips Si = (Ai, Ci, Bi) (1 ≤ i ≤ m) and antistrips
Tj = (Xj , Zj , Yj) (1 ≤ j ≤ n). Suppose not, and choose a counterexample F

with F minimal. Let X be its set of attachments in V (L).

(1) X 	⊆ V (T1) ∪ - · · · - ∪ V (Tn).

Suppose (1) is not true. Since X is not local, we may assume that X includes
V (Q1) for some T1-antirung x1-Q1-y1. Let 2 ≤ j ≤ n, and let xj-Qj-yj be a
Tj-antirung. Then we can choose some Si, Si′ to make a twist, and if we
choose an Si-rung and Si′-rung and apply 9.3 to the resultant knot, we deduce
(since no vertices of Si and Si′ are in X) that 9.3.3 holds. This has several
consequences. First, it implies that there is an odd path in F with vertices
f1, . . . , fk say, which is either parallel or co-parallel to Q1, and either parallel or
co-parallel to Qj ; and there are no edges between {f2, . . . , fk−1} and Q1 ∪Qj .
Hence the set of attachments of {f1, . . . , fk} is not local with respect to L, and
so F = {f1, . . . , fk} from the minimality of F . Second, every vertex of Qj is in
X, and since this holds for all Qj it follows that V (Tj) ⊆ X. By exchanging T1

and Tj it follows that V (T1) ⊆ X. Moreover, since this holds for all j we deduce
that X = V (T1) ∪ · · · ∪ V (Tn). This restores the symmetry between T1 and
T2, . . . , Tn. Third, this shows that there are no edges between {f2, . . . , fk−1}
and V (T1)∪· · ·∪V (Tn). Fourth, for 1 ≤ j ≤ n every vertex in Zj is adjacent to
both f1, fk. Since k is even, this proves that either k = 2 or Z1 ∪ · · · ∪Zn = ∅.
Fifth, every vertex in X1 ∪Y1 · · · ∪Xn ∪Yn is adjacent to exactly one of f1, fn;
let U be the set of those adjacent to f1, and V those adjacent to fn. For the
moment fix j with 1 ≤ j ≤ n. Every Tj-antirung has one end in U and the
other in V ; let Mj be the union of the vertex sets of all Tj-antirungs xj-Qj-yj

such that xj ∈ U , and Nj the union of all those with xj ∈ V . Since there
is no Tj-antirung with both ends in Mj or both ends in Nj , it follows that
Mj ∩ Nj = ∅, and there are no nonedges between Mj and Nj except possibly
between Mj ∩Xj and Nj ∩Xj , or between Mj ∩Yj and Nj ∩Yj . Suppose there
is such a nonedge; and choose Tj-antirungs xj-Qj-yj ,x′

j-Q
′
j-y

′
j where xj ∈ U is

nonadjacent to x′
j ∈ V , say. Now xj , x

′
j have a common neighbour d1 ∈ A1∪B1,

and then d1-xj-f1- · · · -fk-x′
j-d1 is an odd hole. This proves that Mj is complete

to Nj . Now if Mj is nonempty, then (Mj ∩Xj , Mj ∩Zj , Mj ∩Yj) is an antistrip,
and similarly if Nj is nonempty it also induces an antistrip. We call these the
offspring of Tj . (If one of Mj , Nj is empty, then the other equals V (Tj), and
so the only offspring of Tj is Tj itself; and otherwise it has two.) Also, there is
a new strip S0 = ({f1}, {f2, . . . , fk−1}, {fk}). Note

• For all j with 1 ≤ j ≤ n, S0 is parallel or antiparallel with the offspring
of Tj .

• For all i with 1 ≤ i ≤ m, there exists j with 1 ≤ j ≤ n such that
S0, Si disagree on one of the offspring of Tj , and there exists j such that
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S0, Si agree on one of the offspring of Tj . For if the first were false, say,
then each of the Tj ’s has only one offspring, and we could add f1 to Ai,
{f2, . . . , fk−1} to Ci, and fk to Bi, contradicting the maximality of the
striation; while if the second were false we could do the same with f1, fk

exchanged.

• If T ′
1, T

′
2 are each the offspring of one of T1, . . . , Tn, then there exists i

with 0 ≤ i ≤ m such that T ′
1, T

′
2 agree on Si; and there exists i such that

they disagree. This is clear if they are offspring of different parents, since
their parents were in a twist together; while if they are both offspring of
the same Tj , then they disagree on S0 and agree on all of S1, . . . , Sm.

It follows from these observations that the set of strips S0, . . . , Sm, together
with the set of offspring of T1, . . . , Tn, forms a new striation, contrary to the
maximality of L. This proves (1).

(2) X meets exactly one of S1, . . . , Sm.

By (1), X meets at least one of these sets; suppose it meets two, say S1 and S2.
We may assume that (S1, S2, T1, T2) is a twist. For i = 1, 2 choose an Si-rung
ai-Pi-bi such that X meets Pi, and for j = 1, 2 let xj-Qj-yj be a Qj-antirung.
Then (P1, P2, Q1, Q2) is a knot K say, and X ∩ V (K) is not local with respect
to K. The minimality of F provides that X ∩ V (K) is not local with respect
to K. It follows from 9.3 that one of 9.3.1, 9.3.4 holds; and in either case
there is a vertex f ∈ F with neighbours in P1 and in P2. Hence the set of
neighbours of f in V (L) is not local with respect to L. But this contradicts a
hypothesis of the theorem, and hence proves (2).

(3) V (Qj) 	⊆ X, for 1 ≤ j ≤ n, and for every Tj-antirung Qj.

Suppose that V (Q1) ⊆ X for some T1-antirung x1-Q1-y1. By (2) we may
assume that X meets S1 and none of S2, . . . , Sm. Let 2 ≤ j ≤ n, and choose
i with 2 ≤ i ≤ m such that (S1, Si, T1, Tj) is a twist. Let Qj be an xj-Tj-yj-
antirung, let a1-P1-b1 be an S1-rung such that X meets P1, and let ai-Pi-bi be
an Si-rung. Hence (P1, Pi, Q1, Qj) is a knot. Let us apply 9.3. By (2) and
the minimality of F it follows that 9.3.3 holds. This has several consequences.
First, from the minimality of F , G|F is an odd path f1- · · · -fk such that f1, a1

have the same neighbours in V (Q1∪Qj), and so do fk, b1, and there are no edges
between F and V (P1) except possibly f1a1 and fkb1. Since X meets P1, at
least one of these two edges is present; therefore they both are, since f1- · · · -fk

is an odd path and so is P1 (for otherwise the union of these two paths, with
one of x1, y1, would induce an odd hole). So f1 is adjacent to a1 and to no other
vertex of P1, and fn to b1 and to no other vertex of P1. Second, V (Qj) ⊆ X.
Since this holds for all Qj it follows that V (Tj) ⊆ X; and by exchanging T1

and Tj we deduce that V (T1) ∪ · · · ∪ V (Tn) ⊆ X. Moreover {f2, . . . , fk−1}
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is anticomplete to V (T1) ∪ · · · ∪ V (Tn). Third, let x′
j-Q

′
j-y

′
j be some other

Tj-antirung. By the same argument applied to the knot (P1, Pi, Q1, Q
′
j), we

deduce that again 9.3.3 holds, and so one of f1, fk is adjacent to x′
j and the

other to y′j . Furthermore, the one adjacent to x′
j is also adjacent to a1, and so

in fact f1 is adjacent to x′
j . Since this holds for all choices of Qj and of j, it

follows that f1, a1 have the same neighbours in V (T1)∪ · · · ∪ V (Tn), and so do
fk, b1. Hence we can add f1 to A1, {f2, . . . , fk−1} to C1 and fk to B1, contrary
to the maximality of the striation. This proves (3).

Since X is not local with respect to L, we may assume from (2) and (3)
that there exist a vertex of X ∩ V (S1) and a vertex of X ∩ V (T1) that are
nonadjacent. By reversing T1, . . . , Tn we may assume that S1 is parallel to
each Tj . Since by 9.1 every vertex of Z1 is complete to V (S1), we may assume
that there is an S1-rung a1-P1-b1 and a T1-antirung x1-Q1-y1 such that x1 ∈ X

and X ∩V (P1 \a1) 	= ∅. Let 2 ≤ j ≤ n, and choose i with 2 ≤ i ≤ m such that
(S1, Si, T1, Tj) is a twist. Let Pi be an Si-rung, and let Qj be a Tj-antirung. So
(P1, Pi, Q1, Qj) is a knot, K say, and X ∩V (K) is not local with respect to K.
Let us apply 9.3; we deduce that one of the outcomes of 9.3 holds. The first
and fourth outcomes contradict (2), and the third contradicts (3), so there is a
path with vertex set in F satisfying 9.3.2. From the minimality of F , it follows
that this path has vertex set F , and so F is a path with vertices, f1- · · · -fk say.
Since x1 ∈ X, it follows that one of f1, fk is adjacent to x1, and we may assume
that f1 is adjacent to x1. By 9.3.2, f1 is also adjacent to xj and to all internal
vertices of Q1, Qj , and to neither of y1, yj ; none of f2, . . . , fk−1 have neighbours
in V (Q1 ∪Qj), and fk has a neighbour in P1 \ a1, and fk has no neighbours in
V (Q1 ∪ Qj). For any other choice of Qj the same happens, and f1, fk cannot
become exchanged since f1 has neighbours in Q1 and fk has none. We deduce
that f1 is complete to Xj ∪ Zj and anticomplete to Yj ; also {f2, . . . , fk} is
anticomplete to V (Tj). In particular there are a vertex of X ∩ V (S1) and a
vertex of X ∩ V (Tj) that are nonadjacent, and so by exchanging T1 and Tj in
the above argument, we deduce that f1 is complete to X1∪Z1 and anticomplete
to Y1; and {f2, . . . , fk} is anticomplete to V (T1). Since this holds for all j,
it follows that a1, f1 have the same neighbours in V (T1) ∪ · · · ∪ V (Tn), and
there are no edges between {f2, . . . , fk} and V (T1)∪ · · · ∪V (Tn). But then we
can add f1 to A1 and {f2, . . . , fk} to C1, contrary to the maximality of the
striation. This proves 9.5.

Now we can prove 1.8.3, which we restate.

9.6. Let G be a Berge graph, such that every appearance of K4 in G and in
G is degenerate, and there is no induced subgraph of G isomorphic to L(K3,3).
Then either G is a double split graph, or G admits a balanced skew partition,
or one of G, G admits a proper 2-join, or there is no appearance of K4 in either
G or G.
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Proof. If there is an appearance in G of some K4-enlargement, say L(H ′),
then by 5.3, either H ′ = K3,3, which is impossible by hypothesis, or there is
a subgraph H ′′ of H ′ which is a bipartite subdivision of K4, such that L(H ′′)
is nondegenerate, and again this is impossible by hypothesis. So there is no
appearance in G of a K4-enlargement, and similarly there is none in G. More-
over, by 7.5, we may assume that there is no overshadowed appearance of
K4 in G or in G. We may assume that there is an appearance of K4 in one
of G, G, and consequently |V (G)| ≥ 8; and by taking complements if neces-
sary we may assume that L(H) is an appearance of K4 in G. By hypothesis
it is degenerate, and hence there is a striation in G; choose a maximal stri-
ation L. Let L have strips Si = (Ai, Ci, Bi) (1 ≤ i ≤ m) and antistrips
Tj = (Xj , Zj , Yj) (1 ≤ j ≤ n). By 9.4 we can partition V (G) \ V (L) into two
sets M, N , where for every vertex in M its set of neighbours in V (L) is local
with respect to L, and for every vertex in N , its set of neighbours in V (L)
resolves L.

(1) If there exists f ∈ N with a nonneighbour in V (S1) ∪ · · · ∪ V (Sm) then
the theorem holds.

Let f have a nonneighbour in S1 say. Let N1 be the anticomponent of N

containing f , and let X be the set of all N1-complete vertices in V (G). From
9.5 applied in the complement, it follows that X resolves L. Since f has a
nonneighbour in V (S1), there is a vertex u of S1 not in X. Let U be the
component of V (G) \ (X ∪ N) containing u. We claim that U is disjoint from
V (L) \V (S1), and no vertex in V (S2)∪ · · · ∪V (Sm) has a neighbour in U . For
suppose not; then there is a path P say in G, from V (S1) to V (L) \ V (S1),
with (X ∪ N) ∩ V (P ) ⊆ V (S2) ∪ · · · ∪ V (Sm); choose such a path minimal.
It follows that no internal vertex of P is in V (L) or in X ∪ N ; and since X

meets every edge between V (S1) and V (L) \ V (S1), and there are no edges
between V (S1) and V (S2)∪ · · · ∪ V (Sm), it follows that P ∗ is nonempty. Now
no vertex of P ∗ is in N , since N ⊆ N1 ∪ X; and so there is a component M1

of M including P ∗. From 9.5, the set of attachments of M1 in V (L) is local
with respect to L. Since it has an attachment in V (S1) it therefore has none
in V (S2) ∪ · · · ∪ V (Sm). But the ends of P are attachments of M1, they are
nonadjacent, and one is in V (S1) and the other is not, a contradiction. This
proves that U is disjoint from V (L)\V (S1). Let X ′ be the set of vertices in X

with neighbours in U , and let V = V (G)\ (U ∪N1 ∪X ′). Then V is nonempty
because V (S2) ⊆ V ; and so U ∪ V, N1 ∪ X ′ is a skew partition of G. Since
there is a vertex of S2 in X (because X resolves L), and this vertex is in V , we
deduce that the skew partition is loose, and hence by 4.2, G admits a balanced
skew partition. This proves (1).

From (1) we may assume that N is complete to V (S1)∪ · · · ∪ V (Sm), and
by taking complements, that M is anticomplete to V (T1) ∪ · · · ∪ V (Tn).
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(2) If M, N are both nonempty then the theorem holds.

Let M1 be a component of M , and N1 an anticomponent of N . By taking
complements we may assume that there is a nonedge between M1 and N1.
Since the set of attachments of M1 in V (L) is local by 9.5, and since it has no
attachments in V (T1) ∪ · · · ∪ V (Tn), we may assume that all its attachments
are in V (S1). Let V = V (G) \ (M1 ∪ N1 ∪ V (S1)). Since every vertex of S1 is
N1-complete, it follows that (M1∪V, N1∪V (S1)) is a skew partition of G, and
since there are N1-complete vertices with no neighbours in M1 (for instance,
any vertex of V (S2)), the skew partition is loose, and by 4.2, G admits a
balanced skew partition. This proves (2).

(3) If M, N are both empty then the theorem holds.

Then by 9.1, we may assume that for 1 ≤ j ≤ n all Qj-antirungs have length 1.
If |V (S1)| > 2, then (V (S1), V (L) \ V (S1)) is a proper 2-join of G; for every
vertex in V (T1) ∪ · · · ∪ V (Tn) is either complete to A1 and anticomplete to
B1∪C1, or complete to B1 and anticomplete to A1∪C1 (since all the antirungs
have length 1). So we may assume that each Si has only two vertices. In
particular, every Si-rung has length 1, so by taking complements the same
argument shows that we may assume every V (Tj) has only two vertices. But
then G is a double split graph and the theorem holds. This proves (3).

From (2) and (3), and taking complements if necessary, we may assume
that N is empty and M is nonempty. For 1 ≤ i ≤ m let Mi be the union
of the components of M that have an attachment in V (Si), and let M0 be
the union of the components of M that have no attachments in V (L). Then
M0, M1, . . . , Mn are pairwise disjoint and have union M . If M0 is nonempty
then G is not connected, and since |V (G)| ≥ 8 it therefore admits a balanced
skew partition. So we may assume that M0 is empty. Since M is nonempty we
may assume that M1 is nonempty. We recall that T1 = (X1, Z1, Y1); suppose
that z ∈ Z1. Then z is complete to V (S1) by 9.1, and hence if we define
V = V (G)\M1∪V (S1)∪{z}, then (M1∪V, V (S1)∪{z}) is a skew partition of G,
and by 4.1 G admits a balanced skew partition. Now, we may assume that Z1 is
empty, and similarly every Zj is empty. Then (M1∪V (S1), V (G)\(M1∪V (S1))
is a proper 2-join of G. This proves 9.6.

It is convenient to combine three earlier results as follows.

9.7. Let G be a Berge graph, such that there is an appearance of K4 in G.
Then either one of G, G is a line graph, or G is a double split graph, or one of
G, G admits a proper 2-join, or G admits a balanced skew partition.

Proof. This is immediate from 9.6, 5.1 and 5.2.
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10. The even prism

We have completed the first of the main steps of the proof, handling
graphs that contain an appearance of K4. The next big step is to handle
graphs that do not contain an appearance of K4, but do contain a long prism.
For our purposes, “even” prisms are easier than odd ones, and we treat them
in this section. (Odd prisms are treated in Sections 11–13.) Incidentally, in
this section all we need is that there is no nondegenerate appearance of K4

in G, and so the results of this section are independent of those in the previous
one; these two sections could be in either order. We begin with some results
about prisms in general.

For i = 1, 2, 3 let ai-Ri-bi be a path in G, such that these three paths form
a prism K with triangles {a1, a2, a3} and {b1, b2, b3}. A subset X ⊆ V (G)
saturates the prism if at least two vertices of each triangle belong to X; and
a vertex is major with respect to the prism if its neighbour set saturates it.
A subset X ⊆ V (K) is local with respect to the prism if either X ⊆ V (Ri)
for some i, or X is a subset of one of the triangles. By 7.2, the three paths
R1, R2, R3 all have lengths of the same parity. A prism is even if the three
paths R1, R2, R3 have even length, and odd otherwise.

10.1. Let R1, R2, R3 form a prism K in a Berge graph G, with triangles
{a1, a2, a3} and {b1, b2, b3}, where each Ri has ends ai and bi. Let F ⊆ V (G) \
V (K) be connected, such that its set of attachments in K is not local. Assume
no vertex in F is major with respect to K. Then there is a path f1- · · · -fn in
F with n ≥ 1, such that (up to symmetry) either:

1. f1 has two adjacent neighbours in R1, and fn has two adjacent neighbours
in R2, and there are no other edges between {f1, . . . , fn} and V (K),
and (therefore) G has an induced subgraph which is the line graph of a
bipartite subdivision of K4, or

2. n ≥ 2, f1 is adjacent to a1, a2, a3, and fn is adjacent to b1, b2, b3, and
there are no other edges between {f1, . . . , fn} and V (K), or

3. n ≥ 2, f1 is adjacent to a1, a2, and fn is adjacent to b1, b2, and there are
no other edges between {f1, . . . , fn} and V (K), or

4. f1 is adjacent to a1, a2, and there is at least one edge between fn and
V (R3) \ {a3}, and there are no other edges between {f1, . . . , fn} and
V (K) \ {a3}.

Proof. We may assume that F is minimal such that it is connected and
its set of attachments in K is not local. Let X be the set of attachments of F

in K. For 1 ≤ i ≤ 3, if X ∩ V (Ri) 	= ∅, let ci and di be the vertices of Ri in X

closest (in Ri) to ai and to bi respectively, and let Ci, Di be the subpaths of
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Ri between ai and ci, and between di and bi respectively. Let A = {a1, a2, a3}
and B = {b1, b2, b3}.

We claim that some two-element subset of X is not local. For since X 	⊆ B

we may assume that c1 exists and c1 	= b1. Since X 	⊆ V (R1), we may assume
d2 exists. If d2 	= a2 then {c1, d2} is the desired subset; so we may assume
d2 = a2, and similarly d3 = a3 if d3 exists. Since X 	⊆ A, it follws that d1 	= a1,
and then {a2, d1} is the desired subset. So some two-element subset {x1, x2}
of X is not local. Consequently x1, x2 are not adjacent. From the minimality
of F , there is a path with vertices x1, f1, . . . , fn, x2 such that F = {f1, . . . , fn}.

(1) If n = 1 then the theorem holds.

Assume n = 1; then F = {f1}. Since X is not local it meets at least two of the
paths; suppose it only meets R1 and R2. Suppose that c1 = d1. Then we may
assume that c1 	∈ A and c2 	= b2, by exchanging A and B if necessary; but then
c1 can be linked onto the triangle A, via the paths c1-C1-a1, c1-f1-c2-C2-a2,
and c1-D1-b1-b3-R3-a3, contrary to 2.4, since f has at most one neighbour
in A. So c1 is different from d1, and similarly c2 is different from d2 (and in
particular, c2 	= b2). Suppose that c1 is nonadjacent to d1. Then since f1 is
not major, we may assume it has at most one neighbour in A, by exchanging
A and B if necessary; but it can be linked onto A, via f1-c1-C1-a1, f1-c2-C2-a2

and f1-d1-D1-b1-b3-R3-a3, contrary to 2.4. So c1, d1 are adjacent, and similarly
so are c2, d2, but then statement 1 of the theorem holds. So we may assume
that X meets all three of R1, R2, R3. Since f1 is not major, we may assume
that it has at most one neighbour in A, by exchanging A and B if necessary,
and therefore cannot be linked onto A. Since it has neighbours in all three of
R1, R2, R3, it follows that for at least two of these paths, the only neighbour
of f1 in this path is in B. We may assume therefore that c1 = b1 and c2 = b2.
Since X is not local, c3 	= b3; but then statement 4 of the theorem holds. This
proves (1).

We may therefore assume that n ≥ 2. Let X1 be the set of attachments of
F \{f1}, and X2 the set of attachments of F \{fn}. From the minimality of F ,
both X1 and X2 are local. Moreover, X = X1 ∪ X2, and for 2 ≤ i ≤ n − 1,
every neighbour of fi in K belongs to X1 ∩ X2.

(2) If X1 ⊆ A and X2 ⊆ V (R1) then the theorem holds.

Then f1 has at least one neighbour in R1 \ a1, and fn is adjacent to at least
one of a2, a3, and there are no other edges between F and V (K) \ {a1}. If
fn is adjacent to both a2, a3 then statement 4 of the theorem holds, so we
assume it is not adjacent to a3. But then a2 can be linked onto the triangle B,
via a2-fn-fn−1- · · · -f1-d1-D1-b1, a2-R2-b2, a2-a3-R3-b3, contrary to 2.4. This
proves (2).
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From (2), since both X1 and X2 are local, we may assume that either
X1 ⊆ A and X2 ⊆ B, or X1 ⊆ V (R2) and X2 ⊆ V (R1). In either case
X1 ∩ X2 = ∅, so none of f2, . . . , fn−1 has any neighbours in V (K). Therefore
X1 is the set of neighbours of fn in V (K), and X2 is the set of neighbours of
f1 in V (K).

(3) If X1 ⊆ A and X2 ⊆ B then the theorem holds.

Then we may assume that fn is adjacent to a1 and f1 to b2. Suppose first
that n has the same parity as the length of R1. Since a2-R2-b2-f1- · · · -fn-a2

is not an odd hole, it follows that fn is not adjacent to a2, and similarly f1 is
not adjacent to b1. Since a3-R3-b3-b2-f1- · · · -fn-a1-a3 is not an odd hole, either
fn is adjacent to a3 or f1 to b3, and not both, as we saw before. But then
statement 4 of the theorem holds. Now suppose that n has different parity
from the length of R1. Since a1-a2-R2-b2-f1- · · · -fn-a1 is not an odd hole, fn

is adjacent to a2, and similarly f1 to b1. If there are no more edges between F

and V (K) then statement 3 of the theorem holds, so we may assume that fn is
adjacent to a3. By the same argument as before it follows that f1 is adjacent
to b3, and then statement 2 of the theorem holds. This proves (3).

From (2) and (3) we may assume that X1 ⊆ V (R2) and X2 ⊆ V (R1).
So f1 is adjacent to the vertices of R1 that are in X, and fn to those of R2

in X. If c1 = d1, then from the symmetry we may assume that c1 	= a1, and
c2 	= b2; but then c1 can be linked onto A, via c1-C1-a1, c1-f1- · · · -fn-c2-C2-a2,
c1-D1-b1-b3-R3-a3, contrary to 2.4. So c1 	= d1 and similarly c2 	= d2; and in
particular c2 	= b2. If c1, d1 are nonadjacent, then f1 can be linked onto A

via f1-c1-C1-a1, f1- · · · -fn-c2-C2-a2, f1-d1-D1-b1-b3-R3-a3; but f1 has at most
one neighbour in A (because n ≥ 2), contrary to 2.4. So c1, d1 are adjacent,
and similarly so are c2, d2; but then statement 1 of the theorem holds. This
proves 10.1.

10.2. Let R1, R2, R3, K, F be as in 10.1, and suppose that 10.1.1 holds.
Then either R1 and R2 both have length 1, or there is a nondegenerate appear-
ance of K4 in G.

Proof. Let f1- · · · -fn be a path in F such that f1 has two adjacent neigh-
bours in R1, and fn has two adjacent neighbours in P2, and there are no other
edges between {f1, . . . , fn} and V (K). Then G|(V (K) ∪ {f1, . . . , fn} is a line
graph of a bipartite subdivision of K4. We may assume it is degenerate. Hence
the prism is odd, for all prisms contained in a degenerate appearance of K4

are odd. So R3 is odd, and therefore so is the path f1- · · · -fn, and the other
four “rungs” of this line graph have length 0. In particular, R1 and R2 both
have length 1. This proves 10.2.

There is also a tighter version of 10.1:
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10.3. Let G be a Berge graph, such that there is no nondegenerate ap-
pearance of K4 in G. Let R1, R2, R3 form a prism K in G, with triangles
{a1, a2, a3} and {b1, b2, b3}, where each Ri has ends ai and bi. Let F ⊆
V (G) \ V (K) be connected, such that no vertex in F is major with respect
to K. Let x1 be an attachment of F in the interior of R1, and assume that
there is another attachment x2 of F not in R1. Then there is a path f1- · · · -fn

in F such that (up to the symmetry between A and B) f1 is adjacent to a2, a3,
and fn has at least one neighbour in R1 \ a1, and there are no other edges
between {f1, . . . , fn} and V (K) \ {a1}.

Proof. We may assume F is minimal such that it is connected, x1 is one
of its attachments, and it has some attachment x2 in R2 ∪ R3. Hence there is
a path x2-v1- · · · -vm-x1 where F = {v1, . . . , vm}. By 10.1, there is a subpath
f1- · · · -fn of v1- · · · -vm such that one of 10.1.1–4 holds. From the minimality
of F , v1 is the only vertex of F with a neighbour in V (R2) ∪ V (R3), and
in particular, at most one vertex of f1- · · · -fn has a neighbour in V (R2) ∪
V (R3). We deduce that f1- · · · -fn does not satisfy 10.1.2 or 10.1.3. Suppose
it satisfies 10.1.1. By 10.2 the path f1- · · · -fn joins two of R1, R2, R3 that are
both of length 1, and therefore n is even. Since R1 has length ≥ 2 (because
x1 is in its interior) it follows that f1, fn are distinct vertices of F both with
neighbours in V (R2) ∪ V (R3), a contradiction. So f1- · · · -fn satisfies 10.1.4,
and therefore we may assume that for some i with 1 ≤ i ≤ 3, f1 is adjacent to
the two vertices in A \ {ai}, and fn has at least one neighbour in Ri \ ai, and
there are no other edges between {f1, . . . , fn} and V (K) \ {ai}. Suppose first
that i > 1, i = 2 say. Then both f1, fn have neighbours in V (R2) ∪ V (R3),
and so from the minimality of F it follows that n = 1 and f1 = v1. But then
f1 can be linked onto the triangle B, via the path between f1 and b1 with
interior in {v2, . . . , vm} ∪ V (R1 \ a1), the path between f1 and b2 with interior
in V (R2 \a2), and the path f1-a3-R3-b3, contrary to 2.4. Hence i = 1, and the
theorem is satisfied. This proves 10.3.

Another useful corollary of 10.1 is the following.

10.4. Let G be Berge, such that there is no nondegenerate appearance of
K4 in G. Let R1, R2, R3 form a prism K in a Berge graph G, with triangles
{a1, a2, a3} and {b1, b2, b3}, where each Ri has ends ai and bi. Let F ⊆ V (G) \
V (K) be connected, such that if the prism is even then no vertex in F is major
with respect to K. Assume that the set of attachments of F in K is not local,
but none are in V (R3). Then |F | ≥ 2, and the set of attachments of F in K

is precisely {a1, b1, a2, b2}.

Proof. If there is a major vertex v ∈ F , then since it has no neighbours in
R3, it is adjacent to a1 and b2, and since v-a1-a3-R3-b3-b2-v is a hole, it follows
that the prism is even, contrary to the hypothesis. So there is no major vertex
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in F . By 10.3 no internal vertex of R1 or R2 is an attachment of F . By 10.1,
there is a path in F satisfying one of 10.1.1–4; and since it has no attachments
in R3, it must satisfy 10.1.1 or 10.1.3, and in either case a1, b1, a2, b2 are all
attachments of F . Since no vertex in F is major it follows that |F | ≥ 2. This
proves 10.4.

The next result is a close relative of 7.5.

10.5. Let G be Berge, such that there is no nondegenerate appearance of
K4 in G. If there is an even prism K in G, such that some vertex of G is
major with respect to K, then G admits a balanced skew partition.

Proof. Any prism has six vertices of degree 3, called triangle-vertices;
choose a prism K and a nonempty anticonnected set Y ⊆ V (G) \ V (K), such
that every vertex in Y is major with respect to the prism, and as few triangle-
vertices of K are Y -complete as possible. Let the paths ai-Ri-bi(i = 1, 2, 3)
form K, where {a1, a2, a3}, {b1, b2, b3} are its triangles. We may assume that
Y is maximal with the given property. Let X be the set of all Y -complete
vertices in G. By 7.3, X saturates K. Consequently there is one of R1, R2, R3

with both ends in X, say R1. Let X0 = X \ V (K) and X1 = {a1, b1}.

(1) If F ⊆ V (G) is connected and some vertex of V (R∗
1) has a neighbour in

F , and so does some vertex of V (R2) ∪ V (R3), then F ∩ (X0 ∪ X1 ∪ Y )
is nonempty.

Suppose for a contradiction that some F exists not satisfying (1), and
choose it to be minimal. Hence G|F is a path, disjoint from K. Consequently
F ∩ X = ∅. Suppose some vertex in v ∈ F is major with respect to K. Then
since v 	∈ X it follows that v has a nonneighbour in Y , and so Y ∪ {v} is
anticonnected; the maximality of Y therefore implies that v ∈ Y , and hence
F ∩ Y 	= ∅ and the claim holds. So we may assume that no vertex in F is
major. Let x1 be an attachment of F in R∗

1. By 10.3 we may assume that
there is a path f1- · · · -fn in F such that f1 is adjacent to a2, a3, and fn has
neighbours in R1 \ a1, and f1a2, f1a3 are the only edges between {f1, . . . , fn}
and V (R2) ∪ V (R3). Now there is a path R from f1 to b1 with interior in
{f2, . . . , fn} ∪ V (R1 \ a1), and hence R, R2, R3 form a prism K ′ say. By 7.4,
every vertex in Y is major with respect to K ′, and since a1 is Y -complete and
f1 is not, it follows that the number of Y -complete triangle-vertices in K ′ is
smaller than the number in K, a contradiction. This proves (1).

It follows from (1) that there is a partition of V (G)\(X0∪X1∪Y ) into two
sets L and M say, where there is no edge between L and M , and V (R∗

1) ⊆ L

and V (R2) ∪ V (R3) ⊆ M . So (L ∪ M, X0 ∪ X1 ∪ Y ) is a skew partition of G.
Since at least two vertices of A are in X and only one is in X1, there is a vertex
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of X in M , and so the skew partition is loose. By 4.2, the result follows. This
proves 10.5.

The main result of this section is 1.8.4, which we restate.

10.6. Let G be a Berge graph, such that there is no nondegenerate appear-
ance of K4 in G. If G contains an even prism, then either G is an even prism
with |V (G)| = 9, or G admits a proper 2-join or a balanced skew partition.

Proof. Since G contains an even prism, we can choose in G a collection of
nine sets

A1 C1 B1

A2 C2 B2

A3 C3 B3

with the following properties:

• All these sets are nonempty and pairwise disjoint.

• For 1 ≤ i < j ≤ 3, Ai is complete to Aj and Bi is complete to Bj , and
there are no other edges between Ai ∪ Bi ∪ Ci and Aj ∪ Bj ∪ Cj .

• For 1 ≤ i ≤ 3, every vertex of Ai ∪Bi ∪Ci belongs to a path between Ai

and Bi with interior in Ci.

• Some path between A1 and B1 with interior in C1 is even.

We call this collection of nine sets a hyperprism. Let H be the subgraph
of G induced on the union of the nine sets. Choose the hyperprism with V (H)
maximal. For 1 ≤ i ≤ 3, a path from Ai to Bi with interior in Ci is called an
i-rung. Let us write Si = Ai ∪ Bi ∪ Ci for 1 ≤ i ≤ 3, and A = A1 ∪ A2 ∪ A3,
and B = B1 ∪ B2 ∪ B3.

(1) For 1 ≤ i ≤ 3, all i-rungs have even length.

We are given that some 1-rung R1, say, has even length. Let R2 be a 2-rung;
then the union of R1 and R2 induces a hole, and so R2 is even. Hence every
2- or 3-rung is even, and hence so is every 1-rung. This proves (1).

A subset X ⊆ V (H) is local (with respect to the hyperprism) if X is a
subset of one of S1, S2, S3, A or B.

(2) We may assume that for every connected subset F of V (G) \ V (H), its
set of attachments in H is local.

Suppose not. Choose F minimal, and let X be the set of attachments of F

in H. Suppose first that there exists x1 ∈ X ∩ C1. Since X is not local, we
may assume that there exists x2 ∈ X ∩ S2. For i = 1, 2, 3 choose an i-rung
Ri with ends ai ∈ Ai and bi ∈ Bi, such that xi ∈ V (Ri) for i = 1, 2. Then
R1, R2, R3 form an even prism K say. By 10.5 we may assume no vertex in
F is major with respect to K; so by 10.3, we may assume that there is a
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path f1- · · · -fn in F such that f1 is adjacent to a2, a3, and fn has at least
one neighbour in R1 \ a1, and there are no other edges between {f1, . . . , fn}
and V (K) \ {a1}. From the minimality of F it follows that F = {f1, . . . , fn}.
Since this holds for all choices of R3 it follows that f1 is complete to A3 and
there are no edges between {f1, . . . , fn} and B3 ∪ C3. Since a3 ∈ X the same
conclusion follows for all choices of R2, and so f1 is complete to A2 and there
are no edges between {f1, . . . , fn} and B2 ∪C2. But then we can add f1 to A1

and {f2, . . . , fn} to C1, contradicting the maximality of the hyperprism.
Now, X ∩ C1 = ∅, and similarly X ∩ C2, X ∩ C3 = ∅. We claim there is a

2-element subset of X which is also not local. For we may assume X ∩A1 	= ∅;
and hence if X meets B2 or B3 our claim holds. If not, then it meets B1 (since
it is not a subset of A) and meets A2 ∪A3 (since it is not a subset of S1), and
again the claim holds. So there is a subset {x1, x2} of X which is not local.
We may assume that x1 ∈ A1 and x2 ∈ B2. From the minimality of F , there
is a path x1-f1- · · · -fn-x2 with F = {f1, . . . , fn}.

Suppose first that n is even. For any 3-rung R3 with ends a3 ∈ A3 and
b3 ∈ B3,

x1-f1- · · · -fn-x2-b3-R3-a3-x1

is not an odd hole, and so some vertex of R3 is in X. Since X ∩C3 = ∅, and a3

has no neighbour in {f2, . . . , fn} from the minimality of F , and similarly b3 has
no neighbour in {f1, . . . , fn−1}, it follows that either f1 is adjacent to a3, or fn

to b3 (and not both, since otherwise f1- · · · -fn-b3-R3-a3 is an odd hole). From
the symmetry we may assume that fn is adjacent to b3. By exchange of S2

and S3, for every 2-rung with ends a2 ∈ A2 and b2 ∈ B2, either f1 is adjacent
to a2 or fn to b2, and not both. Suppose that fn is complete to B2 ∪B3; then
f1 has no neighbours in S2 ∪ S3, and we can add fn to B1 and f1, . . . , fn−1

to C1, contrary to the maximality of the hyperprism. So fn is not complete
to B2 ∪ B3, and hence f1 has a neighbour in one of A2, A3, say A3; and by
exchanging S1 and S2 it follows that for every 1-rung with ends a1 ∈ A1 and
b1 ∈ B1, either f1 is adjacent to a1 or fn to b1 and not both. In particular, f1

has no neighbours in B and fn has none in A. For i = 1, 2, 3 let A′
i be the set

of neighbours of f1 in Ai, and let A′′
i = Ai \A′

i; let B′′
i be the set of neighbours

of fn in Bi, and let B′
i = Bi \ B′′

i . We have shown so far that every i-rung is
either between A′

i and B′
i or between A′′

i and B′′
i . Let C ′

i be the union of the
interiors of the i-rungs between A′

i and B′
i, and C ′′

i the union of the interiors
of the i-rungs between A′′

i and B′′
i . We observe that Ci = C ′

i ∪ C ′′
i . Moreover,

C ′
i ∩ C ′′

i = ∅, for otherwise there would be an i-rung between A′
i and B′′

i . For
the same reason there are no edges between A′

i∪C ′
i and C ′′

i ∪B′′
i , and no edges

between A′′
i ∪ C ′′

i and C ′
i ∪ B′

i. We claim that A′
i is complete to A′′

i . For if
not, let R′′ be an i-rung with ends a′′ ∈ A′′

i and b′′ ∈ B′′
i , and let a′ ∈ A′

i

be nonadjacent to a′′. Since we have seen that fn has neighbours in at least
two of B1, B2, B3, it follows that at least two of A′′

1, A
′′
2, A

′′
3 are nonempty, and
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therefore we may choose a ∈ A′′
j for some j 	= i. Then

a-a′-f1- · · · -fn-b′′-R′′-a′′-a

is an odd hole, a contradiction. So A′
i is complete to A′′

i for each i, and similarly
B′

i is complete to B′′
i for each i. We showed already that we may assume that

A′
1, A

′′
2, A

′
3, A

′′
3 are all nonempty. But then the nine sets

A′
1 C ′

1 B′
1

A′
2 ∪ A′

3 C ′
2 ∪ C ′

3 B′
2 ∪ B′

3

A′′
1 ∪ A′′

2 ∪ A′′
3 ∪ {f1} C ′′

1 ∪ C ′′
2 ∪ C ′′

3 ∪ {f2, . . . , fn} B′′
1 ∪ B′′

2 ∪ B′′
3

form a hyperprism, contrary to the maximality of V (H). This completes the
argument when n is even.

Now assume n is odd. f1 has a neighbour a1 say in A1; let R1 be a 1-rung
with ends a1 and b1 say. Similarly let R2 be a 2-rung with ends a2 and b2,
where b2 ∈ B2 is adjacent to fn. Since a1-f1- · · · -fn-b2-b1-R1-a1 is not an odd
hole, it follows that b1 ∈ X, and similarly a2 ∈ X. From the minimality of F ,
one of b1, a2 is adjacent to f1 and the other to fn, and neither has any more
neighbours in F . Suppose that fn is not adjacent to b1; so f1 is adjacent to
b1, and n ≥ 2, and fn is adjacent to a2. But then b1-f1- · · · -fn-b2-b1 is an odd
hole, a contradiction. This proves that fn is adjacent to b1 and f1 to a2. Hence
for all 1 ≤ i ≤ 3, and for every i-rung with ends a ∈ A and b ∈ B, a ∈ X if and
only if b ∈ X, and if so then f1 is adjacent to a and fn to b. Consequently, for
every vertex in X ∩A, f1 is its unique neighbour in F , and for every vertex in
X ∩ B, fn is its unique neighbour in F . For 1 ≤ i ≤ 3, let

A′
i = Ai ∩ X,

B′
i = Bi ∩ X,

A′′
i = Ai \ X,

B′′
i = Bi \ X.

Let C ′
i be the union of the interior of the i-rungs between A′

i and B′
i, and C ′′

i

the union of the interior of the i-rungs between A′′
i and B′′

i . We have seen that
every i-rung is of one of these two types, and so Ci = C ′

i ∪C ′′
i . Moreover, since

there is no rung between A′
i and B′′

i , it follows that C ′
i ∩ C ′′

i = ∅, and there
are no edges between A′

i ∪ C ′
i and C ′′

i ∪ B′′
i , and similarly no edges between

A′′
i ∪ C ′′

i and C ′
i ∪ B′

i. We have seen that f1 has neighbours in at least two of
A1, A2, A3, and fn has neighbours in at least two of B1, B2, B3. We claim that
also f1 has nonneighbours in at least two of A1, A2, A3, and the same for fn.
For suppose not, and f1 is complete to A1 ∪ A2 say. Then fn is complete to
B1 ∪ B2; by 10.5 we may assume that n > 1, and so we can add f1 to A3,
fn to B3 and f2, . . . , fn−1 to C3, contrary to the maximality of V (H). This
proves that f1 has nonneighbours in at least two of A1, A2, A3, and similarly fn

has nonneighbours in at least two of B1, B2, B3. Let 1 ≤ i ≤ 3; we claim that
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A′
i is complete to A′′

i . For we may assume that i = 1; suppose that a′ ∈ A′
1

and a′′ ∈ A′′
1 are nonadjacent, and let R′′ be a 1-rung with ends a′′, b′′. Choose

a ∈ A′′
2∪A′′

3 and b ∈ B′
2∪B′

3; then a, b are not adjacent since all rungs have even
length, and so a-a′-f1- · · · -fn-b-b′′-R′′-a′′-a is an odd hole, a contradiction. This
proves that A′

i is complete to A′′
i for i = 1, 2, 3, and similarly B′

i is complete to
B′′

i . Now, we may assume that A′
1, A

′
2 are nonempty. But then

A′
1 C ′

1 B′
1

A′
2 ∪ A′

3 C ′
2 ∪ C ′

3 B′
2 ∪ B′

3

A′′
1 ∪ A′′

2 ∪ A′′
3 ∪ {f1} C ′′

1 ∪ C ′′
2 ∪ C ′′

3 ∪ {f2, . . . , fn−1} B′′
1 ∪ B′′

2 ∪ B′′
3 ∪ {fn}

is a hyperprism, contrary to the maximality of V (H). This proves (2).

Suppose F is a component of V (G) \ V (H), and all its attachments are
in A. Then (V (G) \ A, A) is a skew partition of G. We must show that
G admits a balanced skew partition. Choose b2 ∈ B2 and a3 ∈ A3. Then
B1 ∪ C1 ∪ {b2} is connected, and all vertices in A1 have neighbours in it. By
2.6, (B1 ∪ C1 ∪ {b2}, A1) is balanced, and so by 2.7.1, so is (A1, F ). By 4.5,
G admits a balanced skew partition. So we may assume there is no such F ,
and the same for B.

From (2) it follows that for every component of V (G) \ V (H), all its
attachments in H are a subset of one of S1, S2, S3. Let X be the union of
S1 and all components of V (G) \ V (H) whose attachment set is a subset of
S1, and let Y = V (G) \ X. Then |Y | ≥ 4, and so either (X, Y ) is a proper
2-join in G, or both A1, B1 have one element and X is the vertex set of a path
between these two vertices. We may assume the latter, and the same for S2

and S3; and so G is an even prism. Then either it admits a proper 2-join, or
|V (G)| = 9. This proves 10.6.

11. Step-connected strips

Our next target is the statement analogous to 10.6 for long odd prisms,
but we need to creep up on it in stages. (A warning: we shall not prove the
exact analogue, and we don’t know if it is true. We need to permit more types
of decomposition, namely proper 2-joins in G, and proper homogeneous pairs.)
The key idea is to start with a prism of three paths, R0, R1, R2, where R0 has
length ≥ 3, and to grow the union of the other two paths into a kind of strip
(one strip, not two) with a richer internal structure than we have seen hitherto,
that we call being “step-connected”. If we expand the union of these two paths
into a maximal step-connected strip, then the remainder of the graph attaches
to this structure in ways that we can exploit. In this section we introduce
step-connected strips, and prove some preliminary lemmas about them.

Let (A, C, B) be a strip in G. A step is a pair a1-R1-b1, a2-R2-b2 of rungs
such that
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• V (R1) ∩ V (R2) = ∅,
• a1 is adjacent to a2, and b1 to b2, and there are no other edges between

V (R1) and V (R2).

The edges a1a2 and b1b2 such that there exists a step as above are called stepped
edges. We say that the strip is step-connected if every vertex of A ∪ B ∪ C

is in a step, and for every partition (X, Y ) of A or of B into two nonempty
sets, there is a step R1, R2 such that R1 has an end in X and R2 has an end
in Y . (This second condition is equivalent to requiring that the subgraph of G

with vertex set A and the stepped edges within A be connected, and the same
for B.)

Let (A, C, B) be a step-connected strip in a Berge graph G. A vertex
v ∈ V (G) \ (A ∪ B ∪ C) is a left-star for the strip if it is complete to A

and anticomplete to B ∪ C, and it is a right-star if it is complete to B and
anticomplete to A ∪ C. A banister (with respect to the strip) is a path a-R-b
of G \ (A∪B ∪C), such that a is a left-star, b is a right-star, and there are no
edges between the interior of R and V (S). (Here we distinguish between a-R-b
and b-R-a; we follow the convention that when describing a banister relative
to a strip, the end which is the left-star is listed first.) A banister can have
length 1.

11.1. Let G be a Berge graph, such that there is no nondegenerate ap-
pearance of K4 in G. Let S = (A, C, B) be a step-connected strip in G, and
let a0-R0-b0 be a banister. Suppose that v ∈ V (G) \ V (S) has a neighbour in
A ∪ C, and has no neighbour in B; and that P is a path in G \ (V (S) ∪ {a0})
from v to b0, such that there are no edges between P ∗ and V (S). Then v is a
left-star.

Proof. Let F be a connected subset of V (P ), containing v and disjoint
from V (R0), and with an attachment in R0 \ a0.

(1) For every step a1-R1-b1, a2-R2-b2, if v has a neighbour in R1 ∪ R2 then
v is adjacent to a1, a2 and to no other vertices of R1 ∪ R2.

Assume v has a neighbour in R1 say, and hence in R1 \ b1. Now R0, R1, R2

form a prism K say, and no vertex in F is major with respect to K since no
vertex in F is adjacent to b1 or b2. Yet F has an attachment in R0 \a0 and one
in R1 \ b1, so its set of attachments is not local. Since b1 is not an attachment
of F , it follows from 10.4 that F has an attachment in R2; and therefore v has
a neighbour in R2 \b2. If v has any neighbours in R1∪R2 different from a1, a2,
say a neighbour in the interior of R1, then v can be linked onto the triangle
b0, b1, b2, via the paths v-P -b0, from v to b1 with interior in R1 \ a1, and from
v to b2 with interior in R2; but this contradicts 2.4. This proves (1).

From (1) it follows that v has no neighbour in C (since every vertex is in
a step), and therefore v has at least one neighbour in A; and from (1) again,
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v has no nonneighbour in A (for otherwise we could choose the step in (1)
with v adjacent to a1 and not to a2, since the strip is step-connected.) This
proves 11.1.

11.2. Let G be Berge, such that there is no appearance of K4 in G. Let
S = (A, C, B) be a step-connected strip in G, and let a0-R0-b0 be a banister.
Let v ∈ V (G) \ V (S) have a neighbour in V (S), and be nonadjacent to b0.
Let P be a path in G \ (V (S) ∪ {a0}) from v to b0, and let Q be a path in
G \ (V (S) ∪ {b0}) from v to a0, such that there are no edges from P ∗ ∪ Q∗ to
V (S). Then either v is B-complete, or v is a left-star.

Proof. If v has no neighbours in B, then by 11.1 v is a left-star, so we may
assume v has a neighbour in B. Since we may assume it is not B-complete,
there is a step a1-R1-b1, a2-R2-b2 such that v is adjacent to b1 and not to b2.
Let F ⊆ V (Q) be connected, containing v and disjoint from V (R0), with an
attachment in R0 \ b0. Now R0, R1, R2 form a prism K say, and no vertex of F

is major with respect to K since none of them has two neighbours in {b0, b1, b2}.
But there is an attachment of F in R0 \ b0, and b1 is also an attachment of F ,
so its set of attachments is not local with respect to the prism. By 10.1, one
of 10.1.1–4 holds. Since there is no appearance of K4 in G, 10.1.1 does not
hold. Also 10.1.2, 10.1.3 do not hold, since v is the only vertex in F with
neighbours in A ∪ B. So 10.1.4 holds, and therefore F has an attachment
in R2, and so v has a neighbour in R2. But then v can be linked onto the
triangle {b0, b1, b2}, via v-P -b0, v-b1, and the path from v to b2 with interior
in R2, contrary to 2.4. This proves 11.2.

11.3. Let G be Berge, containing no even prism, let S = (A, C, B) be a
step-connected strip in G, and let a0-R0-b0 be a banister. Then every rung of
the strip has odd length, and so does R0.

Proof. Let a1-R1-b1, a2-R2-b2 be a step. Then these three paths form a
prism, and it is not an even prism by hypothesis. In particular R0 has odd
length, by 7.2. For any rung a-R-b, the hole a0-R0-b0-b-R-a-a0 has even length,
and so R is odd. This proves 11.3.

11.4. Let G be a Berge graph, such that there is no appearance of K4 in
G and no even prism in G. Let S = (A, C, B) be a step-connected strip in G.
Let F ⊆ V (G) \ (A∪B∪C) be connected, such that there are no edges between
F and A ∪B ∪C. There is no anticonnected set Q ⊆ V (G) \ (A ∪B ∪C ∪ F )
such that :

• some right-star has a neighbour in F and a nonneighbour in Q,

• some vertex in B has a nonneighbour in Q,

• some left-star with a neighbour in F is Q-complete,

• every vertex in Q has a neighbour in F ,
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• every vertex in Q has a neighbour in A ∪ B ∪ C, and

• no vertex in Q is a left-star.

Proof. Suppose that such a set Q exists. Let a0 be a left-star with a
neighbour in F complete to Q, and let b0 be a right-star with a neighbour in
F and a nonneighbour in Q. Let R0 be a path between a0 and b0 with interior
in F . Then a0-R0-b0 is a banister. By 11.3, R0 and every rung have odd
length. Since some vertex in B has a nonneighbour in F , there is an antipath
q1- · · · -qn in Q such that q1 is not adjacent to b0 and qn is not adjacent to some
vertex in B. Choose such an antipath with n minimum. Let B1 be the set
of neighbours of qn in B, and B2 = B \ B1. Now B2 	= ∅. Since qn is not a
left-star, and there is a path from qn to b0 with interior in F , it follows from
11.1 that B1 	= ∅. Choose a step a1-R1-b1, a2-R2-b2 with b1 ∈ B1 and b2 ∈ B2.

(1) n ≥ 2.

Suppose n = 1. Then q1 is adjacent to a0 and to b1, and not to b0; so by 10.4,
q1 has a neighbour in R2 \ b2. Since q1 also has a neighbour in F , it can be
linked onto the triangle {b0, b1, b2}, via a path from q1 to b0 with interior in
F , the path q1-b1, and the path from q1 to b2 with interior in R2, contrary to
2.4. This proves (1).

(2) (A ∪ B ∪ C, {b0, q1, . . . , qn}) is balanced.

Next, b1 ∈ B1 is complete to {b0, q1, . . . , qn} from the minimality of n. But b1

has no neighbour in F , and so by 2.6, (F, {b0, q1, . . . , qn}) is balanced. Since
F is connected and every vertex in {b0, q1, . . . , qn} has a neighbour in F , the
claim follows from 2.7.1. This proves (2).

Now the path a0-a2-R2-b2-b1 is odd, and its ends are complete to
{q1, . . . , qn}; so by (2) and 2.1, there are two adjacent vertices u, v in this
path, both complete to {q1, . . . , qn}. Since b2 is not adjacent to qn, it follows
that u, v ∈ {a0} ∪ V (R2 \ b2). Suppose that the hole a0-R0-b0-b2-R2-a2-a0 has
length ≥ 6. Then one of u, v is nonadjacent to both b0, b2, say v, and hence
n is odd, since v-b0-q1- · · · -qn-b2-v is an antihole; but b1 is adjacent to b0 and
b2, and has no other neighbours in this hole, and is complete to {q1, . . . , qn},
contrary to 3.3. So the hole has length 4, and in particular a2 is adjacent to
b2 and is complete to {q1, . . . , qn}, and a0 is adjacent to b0. Hence n is odd,
because b1-a2-b0-q1- · · · -qn-b2-a0-b1 is an antihole, and so a2-b0-q1- · · · -qn-b2 is
an odd antipath, contrary to (2). This proves 11.4.

A triple (S, F, Q) is called a 1-breaker in G if it satisfies the following.

• S = (A, C, B) is a step-connected strip in G,



THE STRONG PERFECT GRAPH THEOREM 131

• F ⊆ V (G) \ V (S) is connected, such that there are no edges between F

and V (S), and there are a left- and right-star, both with neighbours in
F ,

• Q ⊆ V (G) \ (V (S) ∪ F ) is anticonnected,

• some vertex in A has a nonneighbour in Q, and so does some vertex in
B,

• every vertex in Q has a neighbour in F and a neighbour in A ∪ B ∪ C,

• some left-star with a neighbour in F is Q-complete,

• no vertex in Q is a left-star.

11.5. Let G be a Berge graph, such that there is no appearance of K4 in G

and no even prism in G. If there is a 1-breaker in G then G admits a balanced
skew partition.

Proof. Suppose that some 1-breaker (S, F, Q) exists, and for fixed G and S,
choose F and Q with |F | + |Q| maximum such that all the hypotheses of the
theorem remain satisfied (possibly exchanging “left” and “right”). Let N be
the set of vertices of G not in F but with a neighbour in F . Hence Q ⊆ N ,
and every left- or right-star with a neighbour in F is in N . Let S = (A, C, B).

(1) Every vertex in N has a neighbour in A ∪ B ∪ C.

Suppose v ∈ V (G) \ F has a neighbour in F and has none in A ∪ B ∪ C. Let
F ′ = F ∪{v}. Certainly F ′ is connected and disjoint from A∪B∪C, and there
are no edges between F ′ and A∪B ∪C; and F ′ is disjoint from Q since every
vertex in Q has a neighbour in A ∪ B ∪ C. The hypotheses of the theorem
remain true, contrary to the maximality of |F | + |Q|. This proves (1).

(2) There is no left- or right-star in Q, and every left- and right-star with a
neighbour in F is Q-complete.

We are given that there is no left-star in Q. Suppose there is a right-star with
a neighbour in F , either in Q or with a nonneighbour in Q. Then there is an
antipath with interior in Q, between B and some right-star with a neighbour
in F ; but the set of vertices in such an antipath contradicts 11.4. So there is
no right-star in Q, and every right-star with a neighbour in F is Q-complete.
We are given that there is a right-star with a neighbour in F , and so all hy-
potheses of the theorem are true with “left” and “right” exchanged. It follows
by the same argument, therefore, that every left-star with a neighbour in F is
Q-complete. This proves (2).

Since Q ⊆ N is anticonnected, it is contained in some anticonnected com-
ponent of N , say N1. We may assume that G admits no balanced skew parti-
tion, for otherwise the theorem holds.
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(3) There is a left- or right-star in N1.

Let N2 be the union of all the anticomponents of N different from N1. Assume
that no left- and right-stars are in N1. Let Y = V (G)\ (F ∪N); then there are
no edges between F and Y , from the definition of N . Also, A ∪ B ∪ C ⊆ Y ,
so in particular Y 	= ∅, and also N2 	= ∅ since by hypothesis there is a left-star
in N . Hence (F ∪Y, N) is a skew partition of G. By (1), every vertex in N has
a neighbour in A∪B∪C and in F , and so every vertex in N1 has a neighbour in
B (since otherwise it would be a left-star by 11.1 and therefore belong to N2).
Now (B ∪C, N1) is balanced, by 2.6, since any left-star is complete to N1 and
anticomplete to B∪C. Since B∪C is connected (because every vertex of B∪C

is in a step and the strip is step-connected), it follows from 2.7.1 that (F, N1)
is balanced. From 4.5, G admits a balanced skew partition, a contradiction.
This proves (3).

From (3), N1 	= Q; and hence there is a vertex v ∈ N \Q with a nonneigh-
bour in Q. From the maximality of |F |+ |Q|, replacing Q by Q ∪ {v} violates
one of the hypotheses of the theorem. But v has a neighbour in A ∪ B ∪ C

by (1); v 	∈ F since it belongs to N ; v is not a left-star since all left-stars in
N are Q-complete by (2); and so no left-star in N is Q ∪ {v}-complete. Since
they are all Q-complete, it follows that v is nonadjacent to every left-star in N .
Similarly v is nonadjacent to every right-star in N .

(4) v is complete to A ∪ B.

Suppose not; then from the symmetry we may assume that v has a nonneigh-
bour in B. By 11.2, v is a left-star, a contradiction. This proves (4).

Choose an antipath v-q1- · · · -qk in Q, such that qk has a nonneighbour
in A ∪ B, with k minimum. From (4), k ≥ 1. From the minimality of k,
{v, q1, . . . , qk−1} is complete to A∪B. Let A1 be the set of neighbours of qk in
A, and A2 = A\A1, and define B1, B2 ⊆ B similarly. So A2 ∪B2 is nonempty.

(5) k is odd.

For A2 ∪ B2 nonempty, if there exists a2 ∈ A2, let b0 ∈ N be a right-star;
then

b0-v-q1- · · · -qk-a2-b0

is an antihole, and so k is odd. The result follows similarly if B2 is nonempty.

(6) A1 is complete to B2, and A2 is complete to B1.

Suppose that a1 ∈ A1 and b2 ∈ B2 are nonadjacent. Let b0 ∈ N be a right-star;
then by (5),

b0-v-q1- · · · -qk-b2-a1-b0

is an odd antihole, a contradiction. So A1 is complete to B2 and similarly A2

is complete to B1. This proves (6).
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(7) A1, B1, A2, B2 are all nonempty.

We may assume that A2 is nonempty. Since the strip is step-connected,
every vertex in A has a nonneighbour in B, and so by (6), B1 	= B. Hence
B2 is also nonempty. Since qk has a neighbour in A ∪ B ∪ C it follows that it
has a neighbour in B, by 11.1, and similarly it has a neighbour in A. This
proves (7).

Now the strip is step-connected, and so there is a step a1-R-b2, a2-R′-b1

with a1 ∈ A1 and a2 ∈ A2. Since a1 is not adjacent to b1 it follows that b1 ∈ B1

by (6), and similarly b2 ∈ B2. Also by (6), R and R′ both have length 1. Let
a0 ∈ N be a left-star and b0 ∈ N a right-star. Since v-a1-a0-b0-b2-v is not an
odd hole, a0 is not adjacent to b0.

For every vertex u ∈ V (G) \F , let Fu be the set of vertices in F adjacent
to u.

(8) Fa0 ∩ Fb0 = ∅, and every path in F between Fa0 and Fb0 meets both Fv

and Fqk
.

If f ∈ Fa0 ∩Fb0 , then f -a0-a1-b2-b0-f is an odd hole, so that Fa0 ∩Fb0 = ∅.
Let p1-P -p2 be a path in F between Fa0 and Fb0 , with V (P ) minimal, where
p1 ∈ Fa0 and p2 ∈ Fb0 . Then

a0-p1-P -p2-b0-b1-a2-a0

is a hole, and so P is odd. If P does not meet Fv then

v-a1-a0-p1-P -p2-b0-b1-v

is an odd hole, while if P does not meet Fqk
then

qk-a0-p1-P -p2-b0-qk

is an odd hole, in both cases a contradiction. This proves (8).

(9) Every path in F between Fv and Fqk
meets both Fa0 and Fb0.

Suppose not; then since F is connected and Fa0 ∩ Fb0 = ∅, there is a
connected subset F ′ of F meeting both Fv, Fqk

and meeting exactly one of
Fa0 , Fb0 . From the symmetry we may assume F ′ meets Fa0 and not Fb0 . Define
qk+1 = a2; then qk+1 has no neighbour in F ′, so we may choose i with 1 ≤
i ≤ k + 1 minimum such that qi has no neighbour in F ′. Note that v has a
neighbour in F ′ (because F ′ meets Fv). If i is even, then b0-v-q1- · · · -qi is an
odd antipath; its internal vertices have neighbours in F ′, and its ends do not,
and a1 is complete to its interior and has no neighbours in F ′, contrary to 2.2
in the complement. If i is odd, then b1-a0-v-q1- · · · -qi is an odd antipath, and
its internal vertices have neighbours in F ′ and its ends do not, and again a1

is complete to its interior and has no neighbours in F ′, contrary to 2.2 in the
complement. This proves (9).
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Let f1-f2- · · · -fn be a minimal path in F between Fa0 and Fb0 , where
f1 ∈ Fa0 and fn ∈ Fb0 . Then n ≥ 2 by (8), and by (8) and (9) it follows that
f1-f2- · · · -fn is also a minimal path between Fv and Fqk

, so we may assume
that f1 ∈ Fv, fn ∈ Fqk

, and no other vertex of the path is in either set. Then
f1-f2- · · · -fn-qk-a0-f1 and f1-f2- · · · -fn-b0-b1-v-f1 are both holes, of different
parity, a contradiction. This proves 11.5.

12. Attachments in a staircase

For the next step of our approach towards the long odd prism, let us
fix a little more than just the strip. Let S = (A, C, B) be a step-connected
strip in G, and let a0-R0-b0 be a banister of length ≥ 3. We call the pair
K = (S, R0) a staircase, and define V (K) = V (R0) ∪ V (S). (For brevity
we often speak of the staircase K = (S = (A, C, B), a0-R0-b0), meaning that
K = (S, R0) is a staircase, and S = (A, C, B), and R0 has ends a0, b0, where
a0 is a left-star and b0 is a right-star.) The staircase is maximal if there is no
staircase (S′ = (A′, C ′, B′), a′0-R

′
0-b

′
0) such that A ⊆ A′, B ⊆ B′, C ⊆ C ′ and

V (S) ⊂ V (S′).
Let K = (S = (A, C, B), a0-R0-b0) be a staircase in G. Some definitions

(all with respect to K):

• A subset X ⊆ V (K) is local if X is a subset of one of V (S), V (R0), A ∪
{a0}, B ∪ {b0}.

• v ∈ V (G) \ V (K) is minor if its set of neighbours in V (K) is local.

• v ∈ V (G) \ V (K) is major if it has neighbours in all of A, B and V (R0).

• v ∈ V (G) \ V (K) is left-diagonal if v is (A ∪ {b0})-complete, and right-
diagonal if it is (B ∪ {a0})-complete.

• v ∈ V (G) \ V (K) is central if it is (A ∪ B)-complete, and is nonadjacent
to both a0 and b0.

First let us examine the possible types of vertices outside the staircase.

12.1. Let G be a Berge graph, such that there is no appearance of K4 in G,
no even prism in G, and no 1-breaker in G. Let K = (S = (A, C, B), a0-R0-b0)
be a maximal staircase in G, and let v ∈ V (G) \ V (K). Then exactly one of
the following holds:

1. v is minor ; and in that case, either v is a left-star or v is not A-complete,
and either v is a right-star or v is not B-complete.

2. v is major ; and in that case, it is either left- or right-diagonal or central.

3. v is a left-star with a neighbour in R0\a0, or a right-star with a neighbour
in R0 \ b0.
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Proof. (1) If v is left- or right-diagonal then the theorem holds.

Assume v is right-diagonal. If it has no neighbours in A∪C then statement
3 of the theorem holds, so we assume there is a step a1-R1-b1, a2-R2-b2 such
that v has a neighbour in R1 \ b1. Hence it can be linked onto the triangle
{a0, a1, a2}, via v-a0, the path from v to a1 with interior in R1 \ b1, and the
path from v to a2 with interior in R2, and so by 2.4, v has a neighbour in A.
Thus it is major, and therefore statement 2 holds. This proves (1).

(2) If v is adjacent to both a0, b0 then the theorem holds.

Then it has a neighbour in R∗
0, since R0 is odd and has length ≥ 3 and v is

adjacent to both its ends; we may assume that v has a neighbour in V (S),
for otherwise statement 1 of the theorem holds. If v has no neighbour in B

then it is a left-star by 11.1, and statement 3 of the theorem holds, so we may
assume it has neighbours in B and similarly in A. Hence it is major. Since
(S, V (R∗

0), {v}) is not a 1-breaker, v does not have nonneighbours in both A

and B, so it is either left- or right-diagonal and the claim follows from (1).
This proves (2).

(3) If v is adjacent to a0 and not to b0 then the theorem holds.

We may assume v has a neighbour in V (S). If v has a neighbour in R∗
0, then

by 11.2 it is either B-complete (when it is right-diagonal and the claim follows
from (1)) or a left-star (when statement 3 holds). Also, we may assume it has
no neighbour in R∗

0 and that it has a neighbour in B ∪ C, for otherwise it is
minor and statement 1 of the theorem holds; let a1-R1-b1, a2-R2-b2 be a step
such that v has a neighbour in R1 \ a1, and in addition such that v is not
adjacent to b2 if possible. By 10.4, v has a neighbour in R2. If a2 is its only
neighbour in R2, then the strip S′ = (A ∪ {v}, C, B) is step-connected, since
v-R-b1, a2-R2-b2 is an S′-step where R is the path from v to b1 with interior
in R1 \ a1; and since v is adjacent to a0 and has no other neighbours in R0,
this is contrary to the maximality of the staircase. So v has a neighbour in
R2 \ a2, and hence v can be linked onto the triangle {b0, b1, b2} via v-a0-R0-b0,
and for i = 1, 2, onto the path from v to bi with interior in Ri \ ai. By 2.4
it follows that v is adjacent to both b1, b2; hence from our choice of the step
R1, R2, and since the strip is step-connected, v is right-diagonal, and the claim
follows from (1). This proves (3).

(4) If v is nonadjacent to both a0, b0 then the theorem holds.

Then we may assume that v has a neighbour in V (S), since otherwise it is
minor, and statement 3 of the theorem holds. Suppose first that v also has a
neighbour in R∗

0. If v is a left-star then statement 3 holds, so we assume not;
and then by 11.2, v is B-complete. Similarly v is A-complete and therefore
central, and statement 2 holds. Thus we may assume that v has no neighbour
in V (R0), and therefore v is minor. We claim that statement 1 holds, and to
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show this we may assume that v is A-complete. Let a1-R1-b1, a2-R2-b2 be a
step; then by 10.4, v has no neighbour in R1 \ a1 or in R2 \ a2, and therefore
v is a left-star, and statement 1 holds. This proves (4).

But (2)–(4) cover all the possibilities, up to symmetry, and this completes
the proof of 12.1.

Now let us do the same thing for connected sets.

12.2. Let G be a Berge graph, such that there is no appearance of K4 in G,
no even prism in G, and no 1-breaker in G. Let K = (S = (A, C, B), a0-R0-b0)
be a maximal staircase in G, and let F ⊆ V (G) \V (K) be connected, such that
its set of attachments in V (K) is not local with respect to K. Then F contains
either :

1. a major vertex, or

2. a banister u-R-v, such that there are no edges between V (R) and V (R0),
or

3. (up to symmetry) a path u-R-v, where u is a left-star, v has a neighbour
in R0 \ a0, and there are no edges between V (R \ u) and V (S).

Proof. Let X be the set of attachments of F in V (K). We may assume
that F is minimal (connected) such that X is not local. Now a subset of V (K)
is local if and only if it does not meet both A ∪ C and V (R0 \ a0) and does
not meet both B ∪ C and V (R0 \ b0); so we may assume that X meets both
A ∪ C and V (R0 \ a0), and therefore from the minimality of F , there is a
path f1- · · · -fk where F = {f1, . . . , fk} and f1 is the unique vertex of F with
a neighbour in A ∪ C, and fk is the unique vertex of F with a neighbour in
V (R0 \ a0). If k = 1 then the claim follows from 12.1, so we may assume that
k ≥ 2.

(1) If f1 is A-complete then the theorem holds.

Assume f1 is A-complete. If there is no edge between F and B∪C, then state-
ment 3 of the theorem holds, so we assume that there is such an edge. Choose
i with 1≤ i≤k minimum such that fi has a neighbour in B∪C. Suppose first
that there is no edge between {f1, . . . , fi} and V (R0). Let a1-R1-b1, a2-R2-b2

be a step such that fi has a neighbour in R1 \ a1, and in addition fi is non-
adjacent to b2 if possible. With respect to the prism formed by R0, R1, R2,
the set of attachments of {f1, . . . , fi} is not local, and so by 10.4, i ≥ 2 and
its attachments in the prism are a1, a2, b1, b2. Hence the only edges between
{f1, . . . , fi} and V (R1 ∪ R2) are f1a1, f1a2, fib1, fib2. From our choice of the
step it follows that fi is B-complete. Consequently any step satisfies the condi-
tion we imposed on R1, R2, and so the same conclusion follows for every step;
that is, statement 2 of the theorem holds. Now assume that there is an edge
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between {f1, . . . , fi} and V (R0). Suppose that i < k; then there is no edge
between {f1, . . . , fi} and R0 \ a0, from the minimality of F , and so a0 is an
attachment of {f1, . . . , fi}. But this set also has an attachment in B∪C, so its
set of attachments is not local, contrary to the minimality of F . This proves
that i = k. Since k ≥ 2, the minimality of F implies that there are no edges
between {f2, . . . , fk} and V (R0 \ b0); and so b0 is the unique neighbour of fk

in R0. Hence there are no edges between {f2, . . . , fk} and A ∪ C, from the
minimality of F . Also, there are no edges between {f1, . . . , fk−1} and B ∪ C,
from the minimality of i. Choose a step a1-R1-b1, a2-R2-b2 such that fk is ad-
jacent to b1, and in addition such that fk is nonadjacent to b2 if possible. Since
R1 is odd and a1-f1- · · · -fk-b1-R1-a1 is a hole, it follows that k is even. Since
a2-f1- . . . -fk-b0-b2-R2-a2 is not an odd hole, fk is adjacent to b2, and therefore
to all B from our choice of the step. Since a1-f1- · · · -fk-b0-R0-a0-a1 is not an
odd hole and R0 is odd, it follows that f1 is adjacent to a0. But then we can
add f1 to A, fk to B, and {f2, . . . , fk−1} to C, contrary to the maximality of
the staircase. This proves (1).

By (1), we may assume there is a step a1-R1-b1, a2-R2-b2 such that f1 has
a neighbour in R1 \ b1, and a2 is not adjacent to f1. (To see this, first choose
a step a1-R1-b1, a2-R2-b2 such that f1 has a neighbour in R1 \ b1; this satisfies
our requirements unless a2 is adjacent to f1. We may therefore assume that
f1 has a neighbour and a nonneighbour in A; but then since the strip is step-
connected, we may choose a step a1-R1-b1, a2-R2-b2 so that f1 is adjacent to
a1 and not to a2, and again our requirements are satisfied.) Then R0, R1, R2

form a prism K ′ say, and the set of attachments of F in V (K ′) is not local
with respect to K ′. Suppose that some vertex v in F is major with respect
to K ′. Then we claim v is major with respect to K. For it has a neighbour in
A and in B, and if it has none in R0 then it is adjacent to all of a1, a2, b1, b2, in
which case v-a1-a0-R0-b0-b2-v is an odd hole. So v is major with respect to K,
and hence the theorem holds. Hence we may assume that no vertex in F is
major with respect to K ′, and so we may apply 10.1. By hypothesis, 10.1.1
does not hold. Since no vertex of F is adjacent to a2, 10.1.2 does not hold.

Suppose that 10.1.3 holds. Since f1 is not adjacent to a2, it follows that f1

is adjacent to a0, a1, and there exists i with 2 ≤ i ≤ k such that fi is adjacent to
b0, b1, and there are no other edges between {f1, . . . , fi} and V (K ′). Then we
can add f1 to A, fi to B and {f2, . . . , fi−1} to C, contrary to the maximality
of the staircase. So 10.1.3 does not hold.

Hence 10.1.4 holds; that is, there is a path p1-P -p2 in F , such that for
some j with 0 ≤ j ≤ 2, either:

• p1 is adjacent to the two vertices in {a0, a1, a2} \ {aj}, and p2 has neigh-
bours in Rj \aj , and there are no other edges between V (P ) and V (K ′)\
{aj}, or
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• p1 is adjacent to the two vertices in {b0, b1, b2} \ {bj}, and p2 has neigh-
bours in Rj \bj , and there are no other edges between V (P ) and V (K ′)\
{bj}.

From the minimality of F , F = V (P ). If j > 0 then in the first case we can
add p1 to A and V (P \ p1) to C, contrary to the maximality of the staircase;
and in the second case we do the same with A and B exchanged. So j = 0. The
first case is impossible since no vertex in F is adjacent to a2; and the second
case is impossible since f1 ∈ F = V (P ) and f1 has a neighbour in R1 \b1. This
proves 12.2.

The previous result can be strengthened as follows.

12.3. Let G be a Berge graph, such that there is no appearance of K4 in G,
no even prism in G, and no 1-breaker in G. Let K = (S = (A, C, B), a0-R0-b0)
be a maximal staircase in G, and let F ⊆ V (G)\V (S) be connected, containing
a left-star and with an attachment in B ∪ C. (Note that F may intersect
V (R0).) Then F contains either a major vertex or a banister.

Proof. We may assume F is minimal (possibly exchanging A and B); so
F is the vertex set of a path f1- · · · -fk, where f1 is the unique left-star in F ,
and fk is the only vertex in F with a neighbour in B∪C. Since f1 is a left-star
and fk has a neighbour in B ∪ C it follows that k ≥ 2. We may assume there
is no major vertex in F .

(1) None of f1, . . . , fk is a right-star, and fk is not B-complete.

If there is a right-star in F , then it must be fk; and then from the minimality
of F (exchange A and B), no vertex of F different from f1 has a neighbour
in A ∪ C, and so f1- · · · -fk is a banister. So we may assume that there is no
right-star in F . Since fk is neither major nor a right-star, by 12.1 it is not
B-complete. This proves (1).

(2) F∩V (R0) = ∅, and there are no edges between {f2, . . . , fk} and V (R0\b0).

By (1), b0 /∈ F . Suppose that either {f2, . . . , fk} intersects V (R0 \ b0), or there
is an edge joining these two sets. Choose i with 2 ≤ i ≤ k maximum such
that either fi ∈ V (R0 \ b0) or fi has a neighbour in V (R0 \ b0). We claim
that fi /∈ V (R0). For if i = k this is true, since fk has neighbours in B ∪ C;
and if i < k then fi+1 has no neighbour in V (R0 \ b0) from the maximality
of i, and therefore again fi /∈ V (R0). So none of fi, . . . , fk belong to V (R0).
Since {fi, . . . , fk} has attachments in V (R0 \ b0) and in B ∪ C, and contains
no major vertex or left- or right-star, this contradicts 12.2. So {f2, . . . , fk} is
disjoint from V (R0\b0) and hence from V (R0), and there are no edges between
{f2, . . . , fk} and V (R0 \ b0). Since there is an edge between {f2, . . . , fk} and
f1 it follows that f1 /∈ V (R0), and so F ∩ V (R0) = ∅. This proves (2).
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Let a1-R1-b1, a2-R2-b2 be a step such that fk has a neighbour in R1 \ a1

and fk is nonadjacent to b2. (To see that such a step exists, we argue as follows:
since fk has a neighbour in B ∪C, there is a step a1-R1-b1, a2-R2-b2 such that
fk has a neighbour in R1 \ a1, and so we may assume that fk is adjacent to b2.
Hence fk has a neighbour and a nonneighbour in B, and the required step
exists since the strip is step-connected.)

(3) f1a2 is the only edge between F and R2.

If fk has a neighbour in R2, then its neighbour set in the prism formed by
R0, R1, R2 is not local with respect to that prism, and therefore by 10.4, fk

has a neighbour in R0; and then by 12.1 it is major, a contradiction. So
fk has no neighbours in R2. From the minimality of F , there are no edges
between F and R2 \ a2. Suppose that a2 has a neighbour in {f2, . . . , fk}, and
choose i maximum such that a2 is adjacent to fi. Since fk has a neighbour in
V (R1\a1), the set of attachments of {fi, . . . , fk} is not local with respect to the
prism formed by R0, R1, R2; and since b2 is not an attachment, it follows from
10.4 that there is an attachment of {fi, . . . , fk} in V (R0). By (2), b0 has a
neighbour in {fi, . . . , fk}; but then {fi, . . . , fk} violates 12.2. This proves (3).

(4) b0 has neighbours in {f1, . . . , fk−1}.

First suppose that b0 has no neighbour in F . Since b2 is not an attachment
of F , it follows from 10.4 (applied to F and the prism formed by R0, R1, R2)
that there is an edge between F and V (R0), and so f1 has a neighbour in R0.
But then f1 can be linked onto the triangle {b0, b1, b2}, via the path be-
tween f1 and b0 with interior in V (R0), the path between f1 and b1 with
interior in {f2, . . . , fk} ∪ (V (R1) \ {a1, b1}), and the path f1-a2-R2-b2. This
contradicts 2.4, and therefore proves that b0 has a neighbour in F . Suppose
that fk is the only neighbour of b0 in F . Then since fk is not major, its
unique neighbour in R1 is b1. From 11.3, R1, R2 are odd, and from the hole
f1- · · · -fk-b0-b2-R2-a2-f1 it follows that k is odd. If a1 has no neighbour in
{f2, . . . , fk} then f1- · · · -fk-b1-R1-a1-f1 is an odd hole, and if a1 has a neigh-
bour in {f2, . . . , fk} then {f2, . . . , fk} violates 12.2. So fk is not the unique
neighbour of b0 in F . This proves (4).

Choose i with 1 ≤ i < k minimum such that b0 is adjacent to fi, and
let R′

0 be the path f1- · · · -fi-b0. There are no edges between {f1, . . . , fi} and
B ∪ C from the minimality of F , and from 12.2 there are no edges between
{f2, . . . , fi, b0} and A ∪ C. Hence f1-R′

0-b0 is a banister, and in particular the
three paths R′

0, R1, R2 form a prism, K ′ say. Let F ′ = {fi+1, . . . , fk}. Then F ′

is connected and disjoint from V (K ′), and F ′ has attachments in R1\a1, and in
R′

0\b0, and by (3) it has no attachments in R2. By 10.4 applied to K ′, it follows
that F ′ contains a path with one end adjacent to a1, f1, the other end adjacent
to b0, b1, and with no more edges between this path and V (R′

0)∪V (R1). Since
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the only vertex of F ′ adjacent to f1 is f2, and that only if i = 1, and the only
vertex in F ′ adjacent to b1 is fk, it follows that i = 1, and the only edges
between {f2, . . . , fk} and V (R′

0) ∪ V (R1) are fkb1, fkb0, f2a1, f2f1. But then
by (2), a1 can be linked onto the triangle {b0, b1, fk}, via a1-a0-R0-b0, a1-R1-b1,
a1-f2- · · · -fk, contrary to 2.4. This proves 12.3.

Now we turn to anticonnected sets of major vertices. We have already
defined what it is for a staircase to be maximal in G. We say a staircase
K = (S = (A, C, B), a0-R0-b0) is strongly maximal if it is maximal, and in
addition, either C 	= ∅, or there is no staircase (S′, R′) in G with V (S) ⊂ V (S′).
A 2-breaker in G is a pair (K, Q) such that

• K = (S = (A, C, B), a0-R0-b0) is a strongly maximal staircase in G,

• Q ⊆ V (G) \ V (K) is anticonnected,

• some vertex of A is Q-complete, and some vertex of B is Q-complete

• a0, b0 are not Q-complete, and

• some vertex of R0 is Q-complete.

We observe that if q is a central vertex with respect to a strongly maximal
staircase K, then (K, {q}) is a 2-breaker, so it follows from the next result that
we no longer have to worry about central vertices.

12.4. Let G be a Berge graph, containing no appearance of K4, no even
prism, and no 1-breaker. If there is a 2-breaker in G then G admits a balanced
skew partition.

Proof. Choose a 2-breaker (K, Q) in G, with notation as above, such that
for fixed K the set Q is maximal. Let a0-S-s and b0-T -t be the subpaths
of R0 such that s is the unique Q-complete vertex of S, and t is the unique
Q-complete vertex of T .

(1) S, T both have odd length, and therefore s, t are different.

Choose a ∈ A and b ∈ B, both Q-complete; then a-a0-S-s has length > 1, and
its ends are Q-complete and its internal vertices are not; b is also Q-complete
and has no neighbours in the interior of a-a0-S-s. By 2.2, this path is even,
and so S is odd, and similarly T is odd. Since R0 is odd it follows that s, t are
different. This proves (1).

(2) Every vertex in A ∪ B is Q-complete.

Suppose some vertex in A say is not Q-complete. Choose a step a1-R1-b1,

a2-R2-b2 such that a1 is Q-complete and a2 is not. Since s, t are different it
follows that t is nonadjacent to both a0, a2; and so by 2.8, Q cannot be linked
onto the triangle {a0, a1, a2}. Hence there is no Q-complete vertex in R2. As-
sume s, t are nonadjacent; then the subpath of R0 between them is odd, and
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a1 has no neighbour in its interior. So by 2.2 it contains another Q-complete
vertex, u say; and then s-S-a0-a2-R2-b2-b0-T -t is an odd path, its ends are
Q-complete and its internal vertices are not, and u has no neighbour in its inte-
rior, contrary to 2.2. So s, t are adjacent. Hence the hole a0-R0-b0-b2-R2-a2-a0

has length ≥ 6, and the only Q-complete vertices in it are the adjacent vertices
s, t. By 2.10, Q contains a hat or a leap; in either case there is a vertex q ∈ Q

with no neighbours in R2. But q is adjacent to s and a1, contrary to 10.4
applied to the prism formed by R0, R1, R2. This proves (2).

(3) Every major vertex is either in Q or complete to Q.

Let v be a major vertex, and suppose v 	∈ Q, and Q′ is anticonnected, where
Q′ = Q ∪ {v}. From 12.1, v is either left- or right-diagonal, or central; and
in either case it has neighbours a1 ∈ A and b1 ∈ B that are nonadjacent.
It follows that a1-a0-R0-b0-b1 is an odd path of length ≥ 5, and its ends
are Q′-complete. From the maximality of Q, none of its internal vertices are
Q′-complete, and so by 2.1, Q′ contains a leap q1, q2 say. So neither of q1, q2

has neighbours in the interior of R0; but this is impossible since one of them
is in Q and is therefore adjacent to s. This proves (3).

(4) There is no edge uv of G\V (S) such that u is a left-star, v is a right-star,
and u, v are not Q-complete.

Suppose uv is such an edge. Since u, v have neighbours in A ∪ B, they do
not belong to R∗

0. Since u, v have nonneighbours in Q and Q is anticon-
nected, there is an antipath u-q1- · · · -qk-v with q1, . . . , qk ∈ Q. Choose a step
a1-R1-b1, a2-R2-b2. Then a1-b2-u-q1- · · · -qk-v-a1 is an antihole, and so k is
even. Hence every Q-complete vertex w say is adjacent to one of u, v, for oth-
erwise w-u-q1- · · · -qk-v-w would be an odd antihole. In particular, there are no
Q-complete vertices in C; and therefore a1-R1-b1 is an odd path with both
ends Q-complete and no internal vertex Q-complete. Since a2 is Q-complete
and has no neighbour in the interior of R1, it follows from 2.2 that R1 has
length 1, and similarly R2 has length 1. Since this step was arbitrary, and ev-
ery vertex is in a step, it follows that C = ∅. Suppose that u has no neighbour
in R∗

0. Then all Q-complete vertices in R∗
0 are adjacent to v. In particular, v

is adjacent to s, t and hence does not belong to R0 (because v is a right-star);
and s-S-a0-a1-b1 is an odd path, its ends are (Q ∪ {v})-complete, its internal
vertices are not, and the (Q∪ {v})-complete t has no neighbour in its interior,
contrary to 2.2. So u has a neighbour in R∗

0, and similarly so does v. Now
b1-u-Q-v-a1 is an odd antipath, all its internal vertices have neighbours in the
connected set R∗

0, and its ends do not. By 2.1 applied in G, there is a leap;
that is, there exist adjacent a, b ∈ R∗

0, both Q-complete, such that b-u-Q-v-a
is an antipath. Define A′ = A ∪ {a} and B′ = B ∪ {b}; then (A′, ∅, B′) is a
strip (S′ say) in G. For every edge a1b1 of G with a1 ∈ A and b1 ∈ B, the pair
a-b1, a1-b is a step of S′ (in G), and every vertex of A ∪ B is in such an edge,
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and so S′ is step-connected. Hence ((A′, ∅, B′), v-qk- · · · -q1-u) is a staircase in
G, contrary to the hypothesis that K is strongly maximal. This proves (4).

(5) Every path in G from an A-complete vertex to a vertex with a neighbour
in B ∪ C contains either a vertex in Q or a Q-complete vertex.

Suppose not, and choose a path p1- · · · -pk say, with k minimum such that p1 is
A-complete and pk has a neighbour in B ∪C, and none of p1, . . . , pk is in Q or
Q-complete. Since A∪B is complete to Q it follows that none of p1, . . . , pk is
in A∪B. Now p1 is not in C since no vertex in C is A-complete (because they
are all in steps), and if some pi ∈ C for i > 1, then p1- · · · -pi−1 is a shorter
path with the same properties, contrary to the minimality of k. So none of
p1, . . . , pk is in V (S). (Some may be in R0, however.) Since none of p1, . . . , pk

is major by (3), it follows from 12.3 and the minimality of k that p1- · · · -pk

is a banister. From (4), since none of p1, . . . , pk is Q-complete, it follows that
k > 2. Let a1-R1-b1, a2-R2-b2 be a step. From the hole a1-p1- · · · -pk-b1-R1-a1

it follows that k is even; and so a1-p1- · · · -pk-b2 is an odd path of length ≥ 5;
its ends are Q-complete, and its internal vertices are not. By 2.1, Q contains
a leap a, b; thus, a-p1- · · · -pk-b is a path. But then (A ∪ {a}, C, B ∪ {b}) is a
step-connected strip S′ say (since for every nonadjacent a′ ∈ A and b′ ∈ B,
the two paths a-b′, a′-b make a step in this strip), and so (S′, p1- · · · -pk) is a
staircase, contrary to the maximality of (S, R0). This proves (5).

Let X be the set of all Q-complete vertices in G; let M be the component
of G \ (Q∪X) that contains a0, and N the union of all the other components.
By (5), b0 ∈ N , so N is nonempty, and hence (M∪N, Q∪X) is a skew partition
of G. Choose b ∈ B; then b ∈ X, and it has no neighbour in M by (5). Hence
the skew partition is loose, and so G admits a balanced skew partition, by 4.2.
This proves 12.4.

12.5. Let G be a Berge graph, containing no appearance of K4, no even
prism, no 1-breaker and no 2-breaker. Let K = (S = (A, C, B), a0-R0-b0)
be a strongly maximal staircase in G. Let q1- · · · -qk be an antipath such that
q2, . . . , qk−1 are both left- and right-diagonal, and q1 is left- and not right-
diagonal, and qk is right- and not left-diagonal. Then q1 is a left-star and qk

is a right-star.

Proof. First, obviously k ≥ 2. Let Q = {q1, . . . , qk}.

(1) If q1 is adjacent to a0 and qk to b0 then the theorem holds.

Then both a0, b0 are Q-complete, and q1 has a nonneighbour in B (for otherwise
it would be right-diagonal), and qk has a nonneighbour in A. Since R0 has odd
length ≥ 3, each of q1, . . . , qk has a neighbour in R∗

0. Since (S, R∗
0, Q) is not

a 1-breaker, Q contains a left-star, which must be q1; and similarly qk is a
right-star. Then the theorem holds. This proves (1).
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(2) If q1 is adjacent to a0 and qk is nonadjacent to b0 then the theorem holds.

In this case, q1 has a nonneighbour in B, say b. From the antihole a0-b-q1- · · ·
· · · -qk-b0-a0 we deduce that k is odd. Now R0 is odd, of length ≥ 3, and its
ends are complete to Q \ {qk}, and so is every a ∈ A, and a has no neighbour
in the interior of R0. So by 2.2, there is a (Q \ {qk})-complete vertex in the
interior of R0, say t. Let T be the subpath of t to b0, and let us choose t with
T of minimum length; that is, such that t is the unique (Q \ {qk})-complete
vertex of T . If t is nonadjacent to qk then t-b-q1- · · · -qk-t is an odd antihole
(since k ≥ 2) , a contradiction. Hence t is Q-complete, and in particular, all of
q1, . . . , qk have neighbours in the interior of R0. By 11.4, Q contains a left-star,
which must be q1. We may assume that qk is not a right-star, for otherwise the
theorem holds. Since qk is right-diagonal, from 12.1 it follows that qk is major
and therefore has a neighbour in A. Choose a step a1-R1-b1, a2-R2-b2 such that
qk is adjacent to a1, and if possible nonadjacent to a2. Then t-T -b0-b1-R1-a1 is
a path, and both its ends are Q-complete, and none of its internal vertices are
Q-complete (since q1 is a left-star). By 3.2 applied to t-T -b0-b1-R1-a1 and the
antipath b1-q1- · · · -qk-b0, it follows that t-T -b0-b1-R1-a1 has length 4, and so R1

has length 1 and T has length 2; let its middle vertex be u say. Also from 3.2,
u is Q \ {q1}-complete, and nonadjacent to q1. Suppose that qk is nonadjacent
to a2. Then there is no Q-complete vertex in R2. If t is nonadjacent to a0 then
a0-a2-R2-b2-b0-u-t is an odd path of length ≥ 5; its ends are Q-complete and
its internal vertices are not. So by 2.1, Q contains a leap, which is impossible
since every vertex in Q is adjacent to one of b0, b2. If t is adjacent to a0, then
a0-a2-R2-b2-b0-R0-a0 is a hole of length ≥ 6, and the only Q-complete vertices
in it are a0, t, and these are adjacent. Thus by 2.10 there is a hat or a leap
in Q; and again this is impossible since every vertex in Q is adjacent to one
of b0, b2. This proves that qka2 is an edge. From our choice of the step, it
follows that qk is A-complete. But therefore any step satisfies the condition we
imposed on the step R1, R2; therefore every path in every step has length 1;
that is, C = ∅. Then S = (A ∪ {t}, ∅, B ∪ {u}) is a step-connected strip in G,
and (S′, b0-qk- · · · -q1) is a staircase in G, contradicting that (S, R0) is strongly
maximal. This proves (2).

(3) If q1 is nonadjacent to a0 and qk is nonadjacent to b0 then the theorem
holds.

Then a0-q1- · · · -qk-b0-a0 is an antihole, so k is even. Let A1 be the set of vertices
in A adjacent to qk, and A2 = A\A1; let B1 be the set of vertices in B adjacent
to q1, and B2 = B \ B1. If a1 ∈ A1 and b2 ∈ B2, then a1-b2-q1- · · · -qk-b0-a1 is
not an odd antihole, and so a1 is adjacent to b2; hence A1 is complete to B2,
and similarly A2 is complete to B1. If A1, B1 are both empty then by 12.1, the
theorem holds; so we may assume that A1 is nonempty. Choose a1 ∈ A1. Since
a1 is in a step, it has a nonneighbour in B, say b1. Since a1 is B2-complete it
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follows that b1 ∈ B1. Then a1, b1 are both Q-complete, and since (K, Q) is not
a 2-breaker, no internal vertex of R0 is Q-complete. So a1-a0-R0-b0-b1 is an
odd path of length ≥ 5, and its ends are Q-complete, and its internal vertices
are not. By 2.1, Q contains a leap. Since every vertex of Q except q1, qk has
≥ 2 neighbours in R0, it follows that k = 2 and q1, q2 both have no neighbours
in the interior of R0. Then S′ = (A ∪ {q2}, C, B ∪ {q1}) is a step-connected
strip (since a1-q1, q2-b1 is a step of it), and (S′, R0) is a staircase, contrary to
the maximality of (S, R0). This proves (3).

From (1), (2), (3), the theorem follows. This proves 12.5.

13. The long odd prism

In this section we apply the results of the previous section to prove that
a Berge graph containing a long odd prism has a decomposition unless it is a
line graph.

Let K = ((A, C, B), a0-R0-b0) be a strongly maximal staircase in a Berge
graph G. From 12.1 there are three possible kinds of B-complete vertices:
right-stars, vertices complete to both A and B, and B-complete vertices ad-
jacent to some but not all of A. The most difficult step in handling the long
odd prism is when there is a vertex of the third kind. In that case, we shall
construct a subset of B-complete vertices, including all these “mixed” vertices
and some of the others, such that they and their common neighbours form
a cutset of the graph, and thereby give us a skew partition. We define the
set recursively as follows: initially let X be the set of all B-complete vertices
adjacent to some but not all of A. Then enlarge X by repeatedly applying the
following two rules, in any order:

1. If there is an A ∪ B-complete vertex v that is not in X and not X-
complete, add v to X.

2. If there is a banister a-R-b such that a is not X-complete and b is not in
X, add b to X.

The process eventually stops with some set X. We shall prove that X and
its common neighbours (say Y ) separate A (or at least the part of A that is
not X-complete) from b0, and this will provide a balanced skew partition. To
prove that X ∪ Y separates G as described, we have to show that every path
from A to b0 meets X ∪ Y , and it turns out that there are only two kinds
of paths to worry about: banisters, and 1-vertex paths consisting of a major
vertex. Any banister a-R-b is automatically hit, because of the rule above; if
a 	∈ Y then b ∈ X. The 1-vertex paths are trickier. Let v be a major vertex. If
it is B-complete, then it is in either Y or X by the rule above; so assume it is
not B-complete. By 12.1, it is left- and not right-diagonal, and now we have
to show it belongs to Y . If only we knew that every vertex in X was adjacent
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to a0; then it follows easily that v ∈ Y , because of 12.5. So that is what we
need to do — to prove that every vertex in X is adjacent to a0.

Let us start again, more formally. Let K = ((A, C, B), a0-R0-b0) be a
staircase in a Berge graph G. We define a right-sequence to be a sequence
x1, . . . , xt, with the following properties (which we refer to as the right-sequence
axioms):

1. x1, . . . , xt are distinct and B-complete.

2. For 1 ≤ i ≤ t, if xi is A-complete then there exists h with 1 ≤ h < i such
that xh is nonadjacent to xi.

3. For 1 ≤ i ≤ t, if xi is A-anticomplete then there is a banister r-R-xi such
that r has a nonneighbour in {x1, . . . , xi−1}.

Any initial subsequence of a right-sequence is therefore another right-
sequence. We say xi is earlier than xj if i < j. Let X = {x1, . . . , xt}. For
each xi ∈ X that has an earlier nonneighbour, we define its predecessor to be
xh, where h is minimal such that 1 ≤ h < i and xh is nonadjacent to xi. From
the second axiom, every xi either has a nonneighbour in A or a predecessor,
so that we can follow the sequence of predecessors until we get to some vertex
that is not A-complete. For each xi we therefore define the trajectory of xi to
be the sequence w1- · · · -wn with the following properties:

• n ≥ 1, and w1 = xi.

• wn has a nonneighbour in A.

• For 1 ≤ j < n, wj is A-complete, and wj+1 is the predecessor of wj .

Clearly the trajectory is unique, and is an antipath. If v ∈ V (G) is A-complete,
not in X and not X-complete, we define the trajectory of v to be the antipath
v-w1- · · · -wn, where w1 is the earliest nonneighbour of v in X, and w1- · · · -wn

is the trajectory of w1.
Let a be a left-star. If it is not X-complete, we define the birth of a to

be the earliest nonneighbour of a in X. Now let b be a right-star. A banister
a-R-b is said to be b-optimal if a is not X-complete, and there is no banister
a′-R′-b such that a′ is not X-complete and the birth of a′ is earlier than the
birth of a.

13.1. Let G be Berge, containing no appearance of K4, no even prism, no
1-breaker and no 2-breaker. Let K = (S = (A, C, B), a0-R0-b0) be a strongly
maximal staircase in G, and let x1, . . . , xt be a right-sequence. Let b be a right-
star, and let a-R-b be a b-optimal banister. Let a-w1- · · · -wn be the trajectory
of a. Then n is odd, and either :

• b is the unique vertex of R which is {w1, . . . , wn}-complete, or

• R has length 1, and there exists some even m with 1 ≤ m < n such that
a-w1- · · · -wm-b is an antipath.
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Proof. We proceed by induction on t, and assume the result holds for all
smaller values of t. Hence we may assume that w1 = xt, for otherwise the
result follows from the inductive hypothesis. Let W = {w1, . . . , wn}; then
every vertex in B is W -complete.

(1) n is odd.

Choose a2 ∈ A nonadjacent to wn, and b1 ∈ B nonadjacent to a2; then
b1-a-w1- · · · -wn-a2-b1 is an antihole, so that n is odd. This proves (1).

(2) If wn has a neighbour in A then the theorem holds.

Choose a step a1-R1-b1, a2-R2-b2 such that wn is adjacent to a1 and not to
a2. Then a1,b2 are W -complete. Suppose first that there are no W -complete
vertices in R. Then a1-a-R-b-b2 is an odd path between W -complete vertices.
If R has length 1 then there is an antipath Q joining a, b with interior in W ,
and since it can be completed to an antihole via b-a1-b2-a, it has odd length
and the theorem holds. So we may assume R has length > 1, and hence by
2.1, W contains a leap. Since all vertices of W except w1 are adjacent to a,
the leap is w1, w2; hence the only edges between w1, w2 and R are w1b and
w2a. Since n is odd it follows that n > 2 and so w1, w2 are both A ∪ B-
complete. But then S′ = (A ∪ {w2}, C, B ∪ {w1}) is a step-connected strip,
and (S′, a-R-b) is a staircase, contrary to the maximality of (S, R0). So we
may assume there are W -complete vertices in R. If b is the only one then the
theorem holds, so assume there is another. But then W can be linked onto the
triangle {a, a1, a2}, via a subpath of R \ b, the 1-vertex path a1, and a subpath
of R2. Since b1 is W -complete and nonadjacent to both a, a2, this contradicts
2.8 which proves (2).

From (2) we may assume that wn has no neighbour in A. Let wn = xs

say. From the third axiom, there is a banister r′-R′-wn, such that r′ has a
nonneighbour in {x1, . . . , xs−1}, and therefore we may choose this banister to
be wn-optimal.

(3) R′ is disjoint from R, and there are no edges between V (R \ a) and
V (R′ \ wn).

Suppose that (R \a)∪ (R′ \wn) is connected. Then it contains a path between
r′ and b, with interior in the union of the interiors of R and R′, and therefore
this path is a banister. But R is b-optimal, and the birth of r′ is earlier than
the birth of a, a contradiction. So R \ a is disjoint from R′ \wn, and there are
no edges between them. Since a 	= r′ (because their births are different), and
b 	= wn (because R is optimal for b) it follows that R is disjoint from R′. This
proves (3).

Let r′-v1- · · · -vm be the trajectory of r′, and let V = {v1, . . . , vm}. By
the inductive hypothesis, either wn is the unique V -complete vertex in R′, or
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R′ has length 1 and there is an odd antipath between r′ and wn with interior
in V . Since each of v1, . . . , vm is earlier than wn, it follows from the definition
of trajectory that v1, . . . , vm are all {a, w1, . . . , wn−1}-complete.

(4) If n = 1 then the theorem holds.

Let n = 1, and choose a step a1-R1-b1, a2-R2-b2 with a1 nonadjacent to vm.
Suppose first that a has no neighbour in R′. Now a is V -complete, and either
w1 is the unique V -complete vertex in R′, or R′ has length 1 and there is
an odd antipath Q between r′ and w1 with interior in V . In the first case,
a-a1-r′-R′-w1 is an odd path, its ends are V -complete, its internal vertices are
not, and the V -complete vertex b2 has no neighbour in its interior, contrary
to 2.2. In the second case, a-r′-Q-w1-a is an odd antihole. This proves that a

has a neighbour in R′. Now suppose it has a neighbour different from r′; then
R′ has length > 1, and so w1 is the unique V -complete vertex in R′; and there
is a path P ′ say from a to w1 with interior in R′\r′. Since the ends of this path
are V -complete and its internal vertices are not, and the V -complete vertex
b1 has no neighbour in its interior, it is even by 2.2. But it can be completed
to an odd hole via w1-b1-R1-a1-a, a contradiction. This proves that r′ is the
unique neighbour of a in R′. Since a-r′-R′-w1-b1-b-R-a is not an odd hole, it
follows from (3) that w1 has a neighbour in R. If b is its unique neighbour in
R then the theorem holds, so we assume not. Then there is a path P say from
w1 to a with interior in R \ b. Since w1-P -a-r′-R′-w1 is a hole it follows that
P is even; but P can be completed via a-a1-R1-b1-w1, a contradiction. This
proves (4).

We may therefore assume that n ≥ 3 (since it is odd.)

(5) C = ∅.

Suppose not, and choose a step a1-R1-b1, a2-R2-b2 where R1 has length > 1.
Since R1 is odd, and its ends are (W \ {wn})-complete, and the (W \ {wn})-
complete vertex b2 has no neighbour in its interior, there is a (W \ {wn})-
complete vertex v in the interior of R1, by 2.2. But then v is nonadjacent
to both a and wn, since they are left- and right-stars respectively, and so
v-a-w1- · · · -wn-v is an odd antihole, a contradiction. This proves (5).

(6) If b is not (W \{wn})-complete and no edge of R is (W \{wn})-complete
then the theorem holds.

Choose a step a1-R1-b1, a2-R2-b2. Then a1-a-R-b-b2 is an odd path, its ends are
(W \{wn})-complete, and none of its edges are (W \{wn})-complete. Suppose
first that R has length ≥ 3. Then by 2.1 there is a leap in W \ {wn}; and
so there are nonadjacent vertices x, y ∈ W \ {wn} such that x-a-R-b-y is a
path. But then ((A ∪ {x}, ∅, B ∪ {y}), a-R-b) is a staircase, contrary to the
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maximality of (S, R0). So R has length 1, and there exists i with 1 ≤ i < n

such that a-w1- · · · -wi-b is an odd antipath. But then the theorem holds. This
proves (6).

(7) If no vertex in R is W -complete then the theorem holds.

By (6) we may assume that there is a vertex v of R which is (W \ {wn})-
complete. Hence v is nonadjacent to wn. Since n ≥ 3 and is odd, and
a-w1- · · · -wn-v-a is not an odd antihole, it follows that v is adjacent to a.
Consequently v is the unique (W \ {wn})-complete vertex in R. From (6) we
may assume that v = b, and R has length 1. Choose a step a1-R1-b1, a2-R2-b2.
Then b1-a-w1- · · · -wn-b is an odd antipath, of length ≥ 5. All its internal ver-
tices have neighbours in the connected set V (R′ \ wn) ∪ {a2}, and its ends do
not. By 2.1 applied in G, there are adjacent vertices x, y in V (R′ \wn)∪{a2},
such that x-a-w1- · · · -wn-y is an odd antipath. Since x is adjacent to wn, it
follows that x is the neighbour of wn in R′, and therefore either y is the second
neighbour of x in R′, or R′ has length 1 and y = a2. Assume first that R′ has
length > 1, and so both x, y belong to the interior of R′. Hence x, y are both
anticomplete to A∪B, and so ((B∪{x}, ∅, A∪{y}), a-w1- · · · -wn) is a staircase
in G, contradicting that (S, R0) is strongly maximal. Now assume that R′ has
length 1. Then x = r′ and y = a2, and ((B ∪ {r′}, ∅, A ∪ {b}), a-w1- · · · -wn) is
a staircase in G, a contradiction as before. This proves (7).

We may therefore assume that some vertex of R \ b is W -complete, for
otherwise the theorem holds by (7). Let a-P -p be the subpath of R \ b such
that p is the unique W -complete vertex of P . Choose a1 ∈ A and b1 ∈ B,
adjacent (this is possible by (5)). Let us apply 3.2 to the path p-P -a-a1-b1,
and the even antipath a-w1- · · · -wn-a1. Both ends of the path are complete
to the interior of the antipath, and so by 3.2 it follows that P has length 2,
and if q denotes its middle vertex then q is nonadjacent to wn and adjacent to
w1, . . . , wn−1. But then ((B ∪ {p}, ∅, A ∪ {q}), a-w1- · · · -wn) is a staircase in
G, a contradiction. This completes the proof of 13.1.

13.2. Let G be Berge, containing no appearance of K4, no even prism, no
1-breaker and no 2-breaker. Let K = (S = (A, C, B), a0-R0-b0) be a strongly
maximal staircase in G, and let x1, . . . , xt be a right-sequence. Then x1, . . . , xt

are all adjacent to a0.

Proof. Suppose the theorem is false, and choose t as small as possible such
that the statement of the theorem does not hold. So t ≥ 1, and x1, . . . , xt−1

are all adjacent to a0, and xt is not.

(1) a0-R0-b0 is not an optimal banister for b0.

Suppose it is, and let a0-w1- · · · -wn be the trajectory of a0. Since R0 has
length > 1 it follows from 13.1 that b0 is the unique W -complete vertex of R0,
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where W = {w1, . . . , wn}. Suppose next that n = 1. Then b0 is the unique
neighbour of w1 in R0, and w1 has a nonneighbour in A, and so by 12.1 it is
a right-star. By axiom 3 there is a banister r-R-w1 such that the birth of r is
earlier than w1. Since a0-R0-b0 is optimal for b0, it follows as in the proof of
13.1 that R is disjoint from R0, and there are no edges between R0 \ a0 and
R\w1. Choose an S-rung a1-R1-b1. Since a1-a0-R0-b0-w1-R-r-a1 is not an odd
hole, a0 has neighbours in R. If it has a neighbour different from r, then the
path from a0 to w1 with interior in R \ r can be completed via w1-b0-R0-a0

and via w1-b1-R1-a1-a0, and one of the resulting holes is odd, a contradiction.
So the unique neighbour of a0 in R is r. But then we can add r to A, w1

to B and the interior of R to C, contradicting the maximality of (S, R0). So
n ≥ 2. Now all of w1, . . . , wn−1 are left-diagonals, and all of w2, . . . , wn are
right-diagonals. But w1 is not a right-diagonal, and wn is not a left-diagonal,
and w1 is not a right-star, contrary to 12.5. This proves (1).

Now since a0 has a nonneighbour in {x1, . . . , xt}, there is an optimal
banister r-R-b0 for b0. From (1), r has a nonneighbour in {x1, . . . , xt−1}.
From the minimality of t (replacing R0 by R) it follows that R has length 1,
and so rb0 is an edge. Let r-w1- · · · -wn be the trajectory of r; so w1 is earlier
than xt. Let W = {w1, . . . , wn}; hence a0 is W -complete. By 13.1, n is odd.

(2) b0 is W -complete.

Suppose not. Then by 13.1, there exists i with 1 ≤ i < n such that
r-w1- · · · -wi-b0 is an odd antipath. Now r, w1, . . . , wi−1 are all left-diagonals;
w1, . . . , wi are all right-diagonals; r is not a right-diagonal (since it is a left-
star); and wi is not a left-diagonal (since it is nonadjacent to b0) and not a
right- or left-star (since it is A∪B-complete, because i < n). This contradicts
12.5, and so proves (2).

(3) a0 is adjacent to r, and wn is a right-star.

Let a1-R1-b1 be an S-rung with wn nonadjacent to a1. Since a0-r-w1- · · ·
· · · -wn-a1-b0-a0 is not an odd antihole it follows that a0 is adjacent to r. So
each of r, w1, . . . , wn−1 is left-diagonal, each of w1, . . . , wn is right-diagonal, r

is not right-diagonal, wn is not left-diagonal, and the claim follows from 12.5.
This proves (3).

(4) There is no (W ∪ {r})-complete vertex in the interior of R0.

Suppose there is, v say. Let a1-R1-b1 be an S-rung. Then a0-a1-R1-b1-b0 is an
odd path; both its ends are (W ∪ {r})-complete; and the (W ∪ {r})-complete
vertex v has no neighbour in its interior. Thus, by 2.2 there is a (W ∪ {r})-
complete vertex in R1. But r is a left-star and by (3), wn is a right-star, so
they have no common neighbour in R1, a contradiction. This proves (4).

(5) n = 1.
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Assume n > 1. Now R0 is odd, and both its ends are (W ∪ {r})-complete.
Suppose first that R0 has length ≥ 5. By 2.1 and (4) there is a leap; that is,
there are two nonadjacent vertices x, y ∈ W ∪ {r} joined by an odd path P

whose interior is the interior of R0. Choose b1 ∈ B; then b1-x-P -y-b1 is not
an odd hole, and so one of x, y is nonadjacent to b1. Since b1 is W -complete,
we may assume y = r; and hence x = w1 since that is the only vertex in W

nonadjacent to r. Choose a1 ∈ A; then since a1-r-P -w1-a1 is not an odd hole
it follows that a1 is not adjacent to w1 and so n = 1. Now assume that R0

has length 3, and let its internal vertices be x, y (in some order). By 2.1 there
exists an odd antipath Q joining x, y with interior in W ∪ {r}. If r 	∈ V (Q)
then b1-x-Q-y-b1 is an odd antihole, where b1 ∈ B; and if wn 	∈ V (Q) then
a1-x-Q-y-a1 is an odd antihole, where a1 ∈ A. Hence we may assume that
x-r-w1- · · · -wn-y is an antipath. We claim that C = ∅. For suppose there is an
S-rung a1-R1-b1 say of length > 1. Then a1-R1-b1-b0-r-a1 is a hole of length
≥ 6; and r-w1- · · · -wn-a1 is an even antipath of length ≥ 4; and a0 is complete
to the antipath, and has no other neighbours on the hole. At least two vertices
of the hole are complete to the interior of the antipath, namely b0 and b1. This
contradicts 3.3. So C = ∅. Hence ((B ∪ {x}, ∅, A ∪ {y}), r-w1- · · · -wn) is a
staircase in G, a contradiction. This proves (5).

From (4), (5) we may apply 2.1 to R0 and the anticonnected set {r, w1},
and since the latter has only two members, 2.1 implies that there is an odd
path P joining r and w1 with interior equal to the interior of R0. From (3),
w1 is a right-star, and from axiom 3 there is a banister r′-R′-w1 (and we may
choose it optimal for w1) such that the birth of r′ is earlier than w1. Now R′

is disjoint from R0, and there are no edges between R0 \ a0 and R′ \ w1; for
otherwise there would be a banister from r′ to b0, contradicting that r-b0 is
optimal for b0. Suppose that r has a neighbour in R′; then the path between
r and w1 with interior in R′ can be completed to holes via w1-b0-r and via
w1-P -r, a contradiction since one of these holes is odd. So r has no neighbour
in R′. Let r′-v1- · · · -vm be the trajectory of r′. Since v1, . . . , vm are earlier
than w1, and w1 is the earliest nonneighbour of r, it follows that r is adjacent
to all of v1, . . . , vm. Now by 13.1, either

• w1 is the unique {v1, . . . , vm}-complete vertex in R′; but then
w1-R′-r′-a1-r (where a1 ∈ A is nonadjacent to vm) is an odd path; its
ends are {v1, . . . , vm}-complete and its internal vertices are not; and the
{v1, . . . , vm}-complete vertex b1 (for any b1 ∈ B nonadjacent to a1) has
no neighbour in its interior, contrary to 2.2.

• R′ has length 1, and there is an odd antipath Q between r′ and w1

with interior in {v1, . . . , vm}; but then r-r′-Q-w1-r is an odd antihole, a
contradiction.

This completes the proof of 13.2.
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Now we are ready to apply 13.2 to produce a skew partition. Let us say
a 3-breaker in G is a pair (K, x) such that K = (S = (A, C, B), a0-R0-b0) is a
strongly maximal staircase in G, and x ∈ V (G)\V (K) is B-complete, and not
A-complete, and not A-anticomplete.

13.3. Let G be Berge, containing no appearance of K4, no even prism,
no 1-breaker and no 2-breaker. Suppose that there is a 3-breaker in G; then G

admits a balanced skew partition.

Proof. Let (K, x1) be a 3-breaker, where K = (S = (A, C, B), a0-R0-b0).
The 1-vertex sequence x1 is a right-sequence; so there exists a right-sequence
x1, . . . , xt of maximum length, with t ≥ 1. Let X = {x1, . . . , xt}, and let Y be
the set of all A ∪ X-complete vertices in V (G) \ V (S). Now, a0 ∈ Y by 13.2.

(1) X ∪ Y ∪ B meets the interior of every path in G from A ∪ C to b0.

Suppose P is a path from A ∪ C to b0 with no internal vertex in X ∪ Y ∪ B.
Note that b0 	∈ X by 13.2, and so b0 /∈ X ∪Y ∪B (since it is not A-complete).
We may assume P is minimal, and therefore no internal vertex of P is in
V (S). Let P be from p ∈ A ∪ C to b0. By 12.3, P \ p contains either a major
vertex or a banister. Suppose first that it contains a banister a-R-b say. Hence
a, b /∈ X∪Y ∪B. Since a is A-complete it is therefore not X-complete (because
it is not in Y ), and then we can set xt+1 = b, contradicting the maximality
of the right-sequence. So P \ p contains no banister. Now assume it contains
a major vertex v say. Since v /∈ X ∪ Y ∪ B, it follows that v is not X ∪ A-
complete. Suppose v is B-complete. Since it is major it has a neighbour in A.
If it is not A-complete we can set xt+1 = v and obtain a longer right-sequence,
a contradiction; and if v is A-complete then since it is not X ∪ A-complete, it
is not X-complete and so again we can set xt+1 = v and obtain a longer right-
sequence, a contradiction. Thus, v is not B-complete. By 12.1 and since there
is no 2-breaker in G and therefore no central vertex, v is left-diagonal, and not
right-diagonal; and since it is not X ∪ A-complete, it is not X-complete. Let
v-w1- · · · -wn be the trajectory of v. Then each of w1, . . . , wn is right-diagonal,
since they are all B ∪ {a0}-complete. Since wn has a nonneighbour in A, it is
not left-diagonal; and so there is a minimum i with 1 ≤ i ≤ n such that wi

is not left-diagonal. By 12.5 applied to the sequence v, w1, . . . , wi, we deduce
that v is a left-star, contradicting that v is major. This proves (1).

Now since S is step-connected, A∪C is connected; and therefore belongs
to a component A1 of G \ (X ∪ Y ∪ B). Let A2 be the union of all the
other components. By (1), b0 ∈ A2 , and (A1 ∪ A2, X ∪ Y ∪ B) is a skew
partition of G (since Y ∪ B is complete to X, and X is nonempty). We need
to find a balanced skew partition. By 4.2 we may assume this skew partition
is not loose; so every X-complete vertex in G either belongs to B or is also
A-complete. Every vertex in Y ∪B has a neighbour in A∪C, and so A∪C is
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a kernel for this skew partition, in G. By 4.6 it suffices to show that in G, any
two nonadjacent vertices in Y ∪ B are joined by an even path with interior in
A1∪A2, and any two adjacent vertices of A∪C are joined by an even antipath
with interior in X ∪ Y ∪ B. Now let u, v ∈ Y ∪ B be nonadjacent. If they are
both adjacent to b0, then any path joining them with interior in A ∪ C (and
there is one) is even, since it can be completed to a hole via v-b0-u. Thus we
may assume that u is nonadjacent to b0, and hence u /∈ B, so that u ∈ Y .
If they are both in Y , then they are joined by an even path u-a1-v for any
a1 ∈ A. Now we may assume that v ∈ B. Since u is nonadjacent to b0 and
to v, it is neither left- nor right-diagonal, and it is not central since there is
no 2-breaker; so from 12.1 it is a left-star. Let a1-R1-v be an S-rung; then
u-a1-R1-v is the desired even path between u and v. Now for antipaths, let uv

be an edge with u, v ∈ A ∪ C. They both therefore have nonneighbours in B,
and since B ∪ {a0} is anticonnected, they are joined by an antipath Q with
interior in B ∪ {a0}. It suffices to show that Q is even, since Q∗ ⊆ Y ∪ B. If
a0 /∈ Q∗, then Q is even since b0-u-Q-v-b0 is an antihole. So a0 is in Q∗. But
there are no edges between a0 and B, and so a0 is nonadjacent to every other
vertex in the interior of Q; and since Q is an antipath, it therefore has at most
three internal vertices, so its length is ≤ 4. If it is odd, then it has length 3,
that is, there are nonadjacent vertices u′ ∈ Y and v′ ∈ B, joined by an odd
path with interior in A ∪ C. But we have already shown that they are joined
by an even path, and the result follows from 4.3. This proves 13.3.

Now we can prove 1.8.5, the main result of this section. We restate it
(proper homogeneous pairs were defined in Section 1).

13.4. Let G be Berge, such that there is no appearance of K4 in either
G or G. Suppose that G contains a long odd prism as an induced subgraph.
Then either one of G, G admits a proper 2-join, or G admits a balanced skew
partition, or G admits a proper homogeneous pair.

Proof. We assume that G does not admit a balanced skew partition, and
G, G do not admit proper 2-joins. Since G contains a long odd prism, and
therefore G, G are not even prisms, it follows from 10.6 that G, G contain no
even prism. By 11.5, 12.4 and 13.3, G, G contain no 1-, 2- or 3-breaker.

Since G contains a long odd prism, it contains a staircase; and therefore
(possibly by replacement of G by its complement) there is a strongly maximal
staircase K = (S = (A, C, B), a0-R0-b0) say in G. Let A0 be the set of all
left-stars, B0 the set of all right-stars, and N the set of all vertices that are
A ∪ B-complete. By 12.1, every nonmajor A-complete vertex is in A0, and
since there is no 3-breaker, every major A-complete vertex is in N , so that
every A-complete vertex is in A0 ∪N . Similarly every B-complete vertex is in
B0 ∪ N . Let H = G \ (V (S) ∪ A0 ∪ B0 ∪ N).
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(1) Let F be a component of H, and let X be the set of attachments of F in
V (S) ∪ A0 ∪ B0. Then either X ∩ V (S) = ∅, or X ⊆ V (S) and X meets
both A ∪ C and B ∪ C.

We may assume that X meets V (S), and therefore from the symmetry we
may assume that X meets A ∪ C. Since no vertex in F is A- or B-complete,
and therefore no vertex in F is major or a left- or right-star, it follows from
12.3 that X is disjoint from B0. If X meets B ∪C then similarly X is disjoint
from A0, and so X ⊆ V (S) and the claim holds. We assume therefore that
X ⊆ A ∪ A0. Now if v ∈ V (G) \ F has a neighbour in F , then v /∈ V (H),
and so v ∈ V (S) ∪ A0 ∪ B0 ∪ N , and therefore v ∈ X ∪ N ⊆ A ∪ A0 ∪ N .
Hence (V (G) \ (A ∪ A0 ∪ N), A ∪ A0 ∪ N) is a skew partition of G, since F

is a component of V (G) \ (A ∪ A0 ∪ N) and b0 is in a different component,
and A, A0 ∪ N are both nonempty and complete to each other. Now by 2.6,
(B ∪ C, A) is balanced, since a0 is complete to A and anticomplete to B ∪ C;
and therefore from 2.7, (F, A) is balanced (since B ∪ C is connected and all
vertices in A have neighbours in it). Hence from 4.5, G admits a balanced
skew partition, a contradiction. This proves (1).

Let M be the union of all components of H with no attachment in V (S).
Then M is nonempty, since by (1) the component of H containing the interior
of R0 has no attachments in V (S). Let D be the union of all the compo-
nents of H that have an attachment in V (S). Hence V (G) is partitioned into
A, B, C, D, A0, B0, N, M , where possibly C, D or N may be empty.

(2) N 	= ∅.
Assume that N = ∅. Then the only edges between V (S) ∪ D and A0 ∪

B0 ∪ M are the edges from A to A0 and those from B to B0; and since R0 is
an odd path from A0 to B0 of length ≥ 3 and with V (R0) ⊆ A0 ∪B0 ∪M , and
both A and B contain at least two vertices, it follows that G admits a proper
2-join, a contradiction. This proves (2).

(3) C ∪ D = ∅.
Assume that C ∪ D is nonempty. By (1) there are no edges between

C ∪ D and A0 ∪ B0 ∪ M . Since N is complete to A ∪ B, it follows that
(C ∪ D ∪ A0 ∪ B0 ∪ M, N ∪ A ∪ B) is a skew partition of G. By 4.2, it
is not loose, and so there is no N ′-complete vertex in R0, where N ′ is an
anticomponent of N . Let a1-R1-b1, a2-R2-b2 be a step; then a1-a0-R0-b0-b2 is
an odd path of length ≥ 5; its ends are N ′-complete, and its internal vertices
are not. By 2.1, there is a leap in N ′, and so there exist nonadjacent x, y in
N such that x-a0-R0-b0-y is a path. But then ((A∪{x}, C, B ∪{y}), a0-R0-b0)
is a staircase, contradicting the maximality of (S, R0). This proves (3).

But then (A, B) is a proper homogeneous pair in G. (This is the only
place in the entire paper where we use such pairs.) This proves 13.4.
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Let us say a graph G is recalcitrant if:

• G is Berge,

• G and G are not line graphs, and G is not a double split graph,

• G and G do not admit proper 2-joins, and

• G does not admit a proper homogeneous pair or balanced skew partition.

The remainder of the paper is basically a proof of the following.

13.5. If G is recalcitrant then either G or G is bipartite.

Clearly any counterexample to 1.3 is recalcitrant, so 13.5 will imply 1.3.
On the other hand, for some future applications, it is desirable to keep

closer track of which results hold under which hypotheses, instead of just using
the blanket “recalcitrant” hypothesis. But at least, for the remainder of the
paper we shall only be concerned with Berge graphs G such that in both G, G

there is no appearance of K4 and no long prism, that is, with the members
of the class F5 introduced in Section 1. Certainly every recalcitrant graph
belongs to F5, by 10.6 and 9.7.

It turns out that for such graphs, there is a useful strengthening of 2.1 —
the second alternative of that theorem can no longer hold.

13.6. Let G ∈ F5, and let P be a path in G with odd length. Let X ⊆
V (G)\V (P ) be anticonnected, such that both ends of P are X-complete. Then
either :

1. some edge of P is X-complete, or

2. P has length 3 and there is an odd antipath joining the internal vertices
of P with interior in X.

Proof. Let P be p1- · · · -pn. By 2.1, we may assume that P has length
≥ 5 and X contains a leap u, v say; so u-p2- · · · -pn−1-v is a path. But then
the three paths p1-v, u-pn, p2- · · · -pn−1 form a long prism, contrary to G ∈ F5.
This proves 13.6.

There is an analogous strengthening of 2.9, as follows.

13.7. Let G ∈ F5, and let X, Y be disjoint nonempty anticonnected subsets
of V (G), complete to each other. Let P be a path in G with even length > 0,
with vertices p1, . . . , pn in order, such that p1 is the unique X-complete vertex
of P and pn is the unique Y -complete vertex of P . Then P has length 2 and
there is an antipath Q between p2 and p3 with interior in X, and an antipath R

between p1 and p2 with interior in Y , and exactly one of Q,R has odd length.
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Proof. Applying 2.9, we may assume that P has length ≥ 4 and there
are nonadjacent x1, x2 ∈ X such that x1-p2- · · · -pn-x2 is a path P ′ say, of odd
length ≥ 5. But the ends of P ′ are Y ∪{p1}-complete, and its internal vertices
are not, contrary to 13.6. This proves 13.7.

14. The double diamond

We are finished with prisms — we cannot dispose of the prism where all
three paths have length 1 (yet), and we have disposed of all others. Now we
turn to a different type of subgraph, the double diamond. A double diamond
means the graph with eight vertices a1, . . . , a4, b1, . . . , b4 and with the following
adjacencies: every two ai’s are adjacent except a3a4, every two bi’s are adjacent
except b3b4, and aibi is an edge for 1 ≤ i ≤ 4.

Let G be Berge. If A, B are disjoint subsets of V (G), we say a square in
(A, B) is a hole a1-b1-b2-a2-a1 of length 4, where a1, a2 ∈ A and b1, b2 ∈ B.
The pair (A, B) is square-connected if:

• |A|, |B| ≥ 2.

• For every partition (X, Y ) of A with X, Y nonempty, there is a square
a1-b1-b2-a2-a1 with a1 ∈ X and a2 ∈ Y .

• For every partition (X, Y ) of B with X, Y nonempty, there is a square
a1-b1-b2-a2-a1 with b1 ∈ X and b2 ∈ Y .

It follows that if (A, B) is square-connected then every vertex of A ∪B is in a
square. An antisquare is a square in G; that is, an antihole a1-b1-b2-a2-a1 with
a1, a2 ∈ A and b1, b2 ∈ B; and (A, B) is antisquare-connected if it is square-
connected in G. For strips in which every rung has length 1 (and from now
on, those are the only kinds of strips we shall need), being square-connected is
the same as being step-connected. We have renamed the concepts because we
wanted to improve our notation for a step.

We say a quadruple (A, B, C, D) of subsets of V (G) is a cube in G if it
satisfies the following conditions:

• A, B, C, D are pairwise disjoint and nonempty,

• A is complete to C, and B to D, and A is anticomplete to D, and B to
C,

• (A, B) is square-connected, and (C, D) is antisquare-connected.

If G contains a double diamond, then it contains a cube in which A, B, C, D

all have two elements, and that turns out to be the right approach to the
double diamond — grow the cube until it is maximal, and analyze how the
remainder of G attaches to it. That is our goal in this section. A cube
(A, B, C, D) is maximal if there is no cube (A′, B′, C ′, D′) with A ⊆ A′, B ⊆ B′,
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C ⊆ C ′, and D ⊆ D′ such that (A, B, C, D) 	= (A′, B′, C ′, D′). The subgraph
G|(A ∪ B ∪ C ∪ D) is called the graph formed by the cube. Note that if
(A, B, C, D) is a cube in G, then (C, D, B, A) is a cube in G. (This is very
convenient, because it reduces our work by half — we are going to have the
usual minor vertices and major vertices, and they switch when we take com-
plements, so that whatever we can prove about minor vertices will also give us
information about major vertices by going to the complement.)

14.1. Let G ∈ F5. Let (A, B, C, D) be a maximal cube in G, forming K,
let v ∈ V (G) \ V (K), and let X be the set of neighbours of v in V (K). Then
either

• X is a subset of one of A ∪ B, C ∪ D, A ∪ C, B ∪ D, and X ∩ (A ∪ C) is
complete to X ∩ (B ∪ D), or

• X includes one of A ∪ B, C ∪ D, A ∪ D, B ∪ C, and (A ∪ D) \ X is
anticomplete to (B ∪ C) \ X.

Proof. Note that under taking complements the two outcomes become
exchanged. If X ⊆ A ∪ B, and there exists a ∈ X ∩ A and b ∈ X ∩ B,
nonadjacent, then choose c ∈ C and d ∈ D, adjacent, and v-a-c-d-b-v is an odd
hole. So if X ⊆ A∪B then the theorem holds. Similarly it holds if X ⊆ C∪D;
and trivially it holds if X is a subset of one of A ∪ C, B ∪ D. So we may
assume that X meets both A and D. From the same argument in G, we may
also assume that none of A ∪ B, C ∪ D, A ∪ D, B ∪ C is a subset of X, that
is, either X includes neither of A,C or it includes neither of B,D. These two
cases are exchanged when we pass to the complement; so we may assume by
taking complements that X includes neither of B, D. Let A1 = A ∩ X, and
A2 = A \ A1; and define B1, B2 etc. similarly. We have shown so far that
A1, B2, D1, D2 are nonempty. Choose an antisquare c2-d1-d2-c1-c2 such that
d1 ∈ D1 and d2 ∈ D2, and choose b2 ∈ B2. Since v-c2-d2-b2-d1-v is not an
odd hole, it follows that c2 ∈ C2. Hence A1 is complete to B1; for if a1 ∈ A1

and b1 ∈ B1 are nonadjacent then v-a1-c2-d2-b1-v is an odd hole. If A1 = A,
then since (A, B) is square-connected and A1 is complete to B1 it follows that
B1 is empty; but then we can add v to C (because v-d2-d1-c2-v becomes a
new antisquare), contrary to the maximality of the cube. So A2 is nonempty.
Hence there is a square a1-b1-b2-a2-a1 with a1 ∈ A1 and a2 ∈ A2. Since a1

is nonadjacent to b2 and complete to B1, it follows that b2 ∈ B2; but then
v-a1-a2-b2-d1-v is an odd hole, a contradiction. This proves 14.1.

Say a vertex v ∈ V (G) \ V (K) is minor if the first case of 14.1 applies
to it, and major if the second case applies. Then every such vertex is either
minor or major and not both; by taking complements, the minor and major
vertices are exchanged.
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14.2. Let G ∈ F5. Let (A, B, C, D) be a maximal cube in G, forming K,
let F ⊆ V (G) \ V (K) be a connected set of minor vertices, and let X be the
set of attachments of F in V (K). Then X is a subset of one of A∪B, C ∪D,

A ∪ C, B ∪ D. Moreover, X ∩ (A ∪ C) is complete to X ∩ (B ∪ D).

Proof. Suppose the first assertion is false, and choose F minimal with this
property. We may assume that X meets both of A, D. Since all vertices in
F are minor, it follows that F is a path f1-f2- · · · -fk of length ≥ 1. We may
assume f1 is the unique vertex of F with a neighbour in A, and fk is the unique
vertex of F with a neighbour in D. Let X1, X2 be the sets of attachments in
V (K) of F \ {fk}, F \ {f1} respectively. From the minimality of F it follows
that X1 is a subset of one of A ∪ B, A ∪ C, and X2 is a subset of one of
B ∪ D, C ∪ D.

(1) Not both X1 ⊆ A ∪ B and X2 ⊆ B ∪ D .

Suppose that both of these hold. If k is even, choose a ∈ A adjacent to f1, and
d ∈ D adjacent to fk, and c ∈ C adjacent to d; then a-f1- · · · -fk-d-c-a is an
odd hole , a contradiction. So k is odd. Suppose first that f1 is complete to A.
Since it is minor, it has no neighbours in B (for no vertex in B is A-complete).
If there are no edges between B and F , let a1-b1-b2-a2-a1 be a square, and let
d ∈ D be adjacent to fk; then a1-b1, a2-b2, f1- · · · -fk-d form a long prism, a
contradiction. So there are edges between B and F . Choose i with 1 ≤ i ≤ k

minimal such that fi has a neighbour in B. If fi is not complete to B, choose a
square a1-b1-b2-a2-a1 such that fi is adjacent to b1 and not to b2; then b1 can be
linked onto the triangle {f1, a1, a2}, via b1-fi- · · · -f1, b1-a1, b1-b2-a2, contrary
to 2.4. So fi is complete to B. Let a1-b1-b2-a2-a1 be a square; then since
a1-b1, a2-b2, f1- · · · -fi do not form a long prism (because G ∈ F5), it follows
that i = 2. But k > 2 since k is odd; so we can add f1 to C and f2 to D,
contrary to the maximality of the cube. This proves (1) if f1 is A-complete.
Now assume f1 is not A-complete, and choose a square a1-b1-b2-a2-a1 such that
f1 is adjacent to a1 and not to a2. Since a1-f1- · · · -fk-d-b2-a2-a1 is not an odd
hole (where d ∈ D is adjacent to fk), it follows that b2 has a neighbour in F .
Choose i minimum such that b2 is adjacent to fi. Let c ∈ C and d ∈ D be any
adjacent pair of vertices. Then the three paths a1-b1, a2-b2, c-d form a prism,
and since the set of attachments of {f1, . . . , fi} in this prism is not local, and
does not include a2, it has an attachment in the third path c-d, by 10.4; and
hence i = k, and fk is D-complete. Again, let c ∈ C and d ∈ D be adjacent.
Then the prism formed by a1-f1- · · · -fk,a2-b2,c-d is long, contrary to G ∈ F5.
This proves (1).

(2) Not both X1 ⊆ A ∪ C and X2 ⊆ C ∪ D .

Assume these both hold. Choose a square a1-b1-b2-a2-a1 such that f1 is ad-
jacent to a1, and choose d ∈ D adjacent to fk. If a2 is adjacent to f1 then
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a1-b1, a2-b2, f1- · · · -fk-d form a long odd prism, a contradiction. If a2 is not ad-
jacent to f1 then a1 can be linked onto the triangle {b1, b2, d}, via a1-b1,a1-a2-b2,
a1-f1- · · · -fk-d, a contradiction. This proves (2).

(3) Not both X1 ⊆ A ∪ B and X2 ⊆ C ∪ D .

Assume these both hold. Then X1∩X2 = ∅, and so f1 is the unique neighbour
in F of the vertices in X1, and fk is the unique neighbour of those in X2.
From (1), X2 	⊆ B ∪D and so X2 ∩C 	= ∅; and similarly from (2), X1 ∩B 	= ∅.
Also we are given that X1 ∩ A, X2 ∩ D 	= ∅. Since a1-f1- · · · -fk-c1-a1 is a hole
(where a1 ∈ A ∩ X1 and c1 ∈ C ∩ X2) k is even. Since f1 is minor, X1 ∩ A

is complete to X1 ∩ B, and so A, B are not subsets of X1; similarly C ∩ X2 is
complete to D ∩X2 and therefore C, D are not subsets of X2. So all the eight
sets A ∩ X1, A \ X1 etc. are nonempty. Choose a square a1-b1-b2-a2-a1 such
that f1 is adjacent to a1 and not to a2; and choose an antisquare c1-d1-d2-c2-c1

such that fk is adjacent to d1 and not to d2. It follows that f1 is nonadjacent
to b2, since X1 ∩ A is complete to X1 ∩ B, and fk is not adjacent to c1 since
X2 ∩C is complete to X2 ∩D. But then a1-f1- · · · -fk-d1-b2-d2-c1-a1 is an odd
hole, a contradiction. This proves (3).

(4) Not both X1 ⊆ A ∪ C and X2 ⊆ B ∪ D .

Assume both these hold. Then again, the only edges between V (K) and F

are between X1 and f1 and between X2 and fk. By (1) and (2), again all
four of the sets A ∩ X1, B ∩ X2, C ∩ X1, D ∩ X2 are nonempty. There are two
cases, depending on the parity of k. First assume k is odd. Then A ∩ X1 is
anticomplete to B∩X2 (for if ab were an edge there, then a-f1- · · · -fk-b-a would
be an odd hole), and so A \X1, B \X2 are nonempty; and similarly C ∩X1 is
anticomplete to D∩X2, and therefore C \X1, D \X2 are nonempty. Choose a
square a1-b1-b2-a2-a1 such that f1 is adjacent to a1 and not to a2, and choose
an antisquare c1-d1-d2-c2-c1 such that fk is adjacent to d1 and not to d2. Since
A∩X1 is anticomplete to B∩X2 it follows that b1 /∈ X2, and c2 /∈ X1 similarly;
and since a1-f1- · · · -fk-d1-b2-a2-a1 is not an odd hole it follows that b2 ∈ X2.
But then the three paths a2-b2, c2-d1, a1-f1- · · · -fk form a long prism, contrary
to G ∈ F5. Now assume k is even. Then A ∩ X1 is anticomplete to B \ X2

(for if a ∈ A ∩ X1 is adjacent to b ∈ B \ X2 then a-f1- · · · -fk-d-b-a is an odd
hole, where d ∈ X2 ∩D) . Similarly A \X1 is anticomplete to B ∩X2, C ∩X1

is anticomplete to D \ X2, and C \ X1 is anticomplete to D ∩ X2. Choose
a ∈ A ∩ X1 and a neighbour b of a in B; then b ∈ X2.

Similarly choose c ∈ C ∩ X1 and d ∈ D ∩ X2, adjacent. Then the three
paths a-b, c-d, f1- · · · -fk form a prism, and so k = 2. If f1 is C-complete then
since C ∩ X1 = C is anticomplete to D \ X2, it follows that f2 is D-complete;
and then we can add f1 to A and f2 to B, contrary to the maximality of the
cube. So C 	⊆ X1. Choose an antisquare c1-d1-d2-c2-c1 such that f1 is adjacent
to c1 and not to c2. It follows that f2 is adjacent to d2 and not to d1. If f1 is
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A-complete, then as before f2 is B-complete, and we can add f1 to C and f2

to D (because f1-d1-f2-c2-f1 is a new antisquare), a contradiction. So f1 has
a nonneighbour in A, and we can choose a square a1-b1-b2-a2-a1 such that f1

is adjacent to a1 and not to a2. It follows that f2 is adjacent to b1 and not
to b2. But then a1-f1-f2-d2-b2-d1-c2-a1 is an odd hole, a contradiction. This
proves (4).

From (1)–(4), the first assertion of the theorem follows. Now let us prove
the second assertion. We may assume X meets both A∪C and B ∪D, and so
from what we just proved, either X ⊆ C ∪D or X ⊆ A∪B. Suppose first that
X ⊆ C ∪ D. If possible, choose c ∈ C ∩ X and d ∈ D ∩ X, nonadjacent, and
choose a path P joining them with interior in F . Let a1-b1-b2-a1-a1 be a square;
then the three paths a1-b1, a2-b2, c-P -d form a long prism, a contradiction. So
there are no such c, d, and the theorem holds.

Now assume that X ⊆ A ∪ B. Assume X ∩ A is not complete to X ∩ B,
and choose a path a-f1- · · · -fk-b, where a ∈ A, b ∈ B are nonadjacent and
f1, . . . , fk ∈ F , with k minimum. Since f1 is minor, its neighbours in A are
complete to its neighbours in B, and so k ≥ 2. Let A′ be the set of all
vertices a ∈ A such that a is adjacent to f1 and there is a nonneighbour b of
a in B adjacent to fk. By assumption A′ 	= ∅. Define B′ similarly in B. If
A′ = A and B′ = B, then f1 is A-complete, and so there are no edges between
{f1, . . . , fk−1} and B, from the minimality of k; similarly fk is B-complete and
there are no edges between {f2, . . . , fk} and A. Choose a square a1-b1-b2-a2-a1;
then a1-b1, a2-b2, f1- · · · -fk form a prism, so k = 2, and we can add f1 to C

and f2 to D, contrary to the maximality of the cube. Now we may assume
that A′ 	= A. Choose a square a1-b1-b2-a2-a1 such that a1 ∈ A′ and a2 /∈ A′.
Choose c ∈ C and d ∈ D, adjacent. Choose b ∈ B′ nonadjacent to a1 (this
exists from the definition of A′). From the minimality of k, a1-f1- · · · -fk-b is
a path. From the hole a1-f1- · · · -fk-b-d-c-a1 we deduce that k is even. Since
b is not adjacent to a1, b is different from b1. Suppose that fk is adjacent
to b2. Then the set of attachments of {f1, . . . , fk} with respect to the prism
formed by a1-b1, a2-b2, c-d is not local, and yet it has no attachment in c-d,
so by 10.4, both a2 and b1 are attachments. Since a2, b1 are nonadjacent, it
follows from the minimality of k and 10.1 that a2 is adjacent to f1 and b1

to fk, contradicting that a2 /∈ A′.
So fk is not adjacent to b2. Then b is different from b2. Since c has no

neighbour in the connected set F ′ = {f1, . . . , fk, b}, and the set of attachments
of F ′ is not local with respect to the prism formed by a1-b1, a2-b2, c-d, it follows
from 10.4 that F ′ has an attachment in a2-b2. If a2 is not an attachment then
b2 is, and from the minimality of k it follows that b is the unique neighbour of
b2 in F ′; but then a2-b2, c-d, a1-f1- · · · -fk-b form a long prism, a contradiction.
So a2 is an attachment of F ′. Since a2-a1-f1- · · · -fk-b-a2 is not an odd hole, a2

has a neighbour in {f1, . . . , fk}. If b1 also has a neighbour in {f1, . . . , fk}, then
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(since a2, b1 are nonadjacent) from the minimality of k and 10.1 it follows that
a2 is adjacent to f1 and b1 to fk, and hence a2 ∈ A′, a contradiction. So b1

has no neighbour in {f1, . . . , fk}. Since a1-f1- · · · -fk-b-b1-a1 is not an odd hole
it follows that b1 is not adjacent to b, and therefore has no neighbours in F ′.
Let P be the path between a2 and b with interior in F ′. From 10.4, a1 has a
neighbour in P \ a2. But the only neighbour of a1 in F ′ is f1, so that f1 is in
P \a2, and therefore f1 is adjacent to a2, and there are no other edges between
a2 and F ′. Since a2 /∈ A′ it follows that a2 is adjacent to b. But then the set
of neighbours of b in the prism formed by a1-b1, a2-b2, c-d is not local, and yet
none are in the path a1-b1, contrary to 10.4. This proves 14.2.

The main result of this section is 1.8.6, which we restate:

14.3. Let G ∈ F5. If G contains a double diamond as an induced subgraph,
then either one of G, G admits a proper 2-join, or G admits a balanced skew
partition. In particular, every recalcitrant graph belongs to F6.

Proof. We may assume that G, G do not admit proper 2-joins, and G

does not admit a balanced skew partition. Suppose for a contradiction that G

contains a double diamond; then it contains a cube, and so there is a maximal
cube (A, B, C, D) in G, forming K. Let F be the set of all minor vertices in
V (G) \ V (K), and Y the set of all major ones.

(1) Every anticomponent Y1 of Y is complete to one of A ∪ B, C ∪ D,

A ∪ D, B ∪ C, and every edge from A ∪ D to B ∪ C has a Y1-complete
end.

This is immediate from 14.2 by taking complements.

(2) There is no anticomponent of Y that is complete to A ∪ D or B ∪ C.

Suppose such a component exists, say Y1. From the symmetry we may
assume it is complete to A ∪ D. Define L to be the union of C and all com-
ponents of F with an attachment in C, and M to be the union of B and all
other components of F ; and define X to be the set of all Y1-complete vertices
of G not in L ∪ M . So all major vertices belong to Y1 ∪ X, and the four sets
L, M, X ∪ A ∪ D, Y1 are nonempty and partition V (G); since Y1 is complete
to X ∪ A ∪ D, and there are no edges between L, M by 14.2, it follows that
(L ∪ M, X ∪ A ∪ D ∪ Y1) is a skew partition of G. By 4.2 it is not loose.
We claim it is balanced. For by 2.6, (L, D) is balanced, since any vertex in
B is D-complete and L-anticomplete. Let u, v ∈ L be adjacent, and suppose
they are joined by an odd antipath Q1 with interior in Y1. If they both have
nonneighbours in D, then since D is anticonnected they are also joined by an
antipath Q2 with interior in D, which is also odd since its union with Q1 is an
antihole, contradicting that (L, D) is balanced. So we may assume that u is
D-complete. Hence u /∈ C, and so u belongs to some component F1 of F with
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an attachment in C. Since u is minor, all its neighbours in C are adjacent
to all its neighbours in D, and hence it has no neighbours in C; so v ∈ F1.
Since F1 has an attachment in C and in D (because u has neighbours in D)
it follows that F has no attachments in A, and so u, v have no neighbours in
A. But then a-u-Q1-v-a is an odd antihole (where a ∈ A), a contradiction.
Next suppose there exist nonadjacent u, v ∈ Y1, joined by an odd path P with
interior in L. By what we just proved about odd antipaths, it follows that P

has length ≥ 5. Now A ∪ D is anticonnected, and there is no A ∪ D-complete
vertex in L, since every vertex in L is minor or belongs to C. Hence the ends
of P are A ∪ D-complete and its internal vertices are not. But this contra-
dicts 13.6. By 4.5, G admits a balanced skew partition, a contradiction. This
proves (2).

(3) There is no component of F such that its set of attachments in K is a
subset of one of A ∪ C, B ∪ D.

This follows from (2) by taking complements.

(4) There do not exist both a component F1 of F with set of attachments
contained in A ∪ B and an anticomponent Y1 of Y complete to A ∪ B;
and the same holds with A ∪ B replaced by C ∪ D.

For the first assertion, assume that such F1, Y1 exist. Define M = C ∪ D ∪
(F \ F1), and X to be the set of all Y1-complete vertices in V (G) \ (M ∪ F1).
Now, A ∪ B ⊆ X, and the four sets F1, M, Y1, X are all nonempty and form a
partition of V (G). Since Y1 is complete to X and there are no edges between
F1 and M , it follows that (F1 ∪ M, Y1 ∪ X) is a skew partition of G. Choose
a ∈ A and b ∈ B, nonadjacent. By 14.2, not both a, b are attachments of F1,
and therefore the skew partition is loose, and so by 4.5 G admits a balanced
skew partition, a contradiction. This proves the first assertion and the second
is proved similarly. This proves (4).

Now if Y = ∅, then by (3) it follows that G admits a proper 2-join, a
contradiction. So Y is nonempty, and by taking complements, F is nonempty.
By (4), passing to the complement if necessary, we may assume that there is no
anticomponent of Y that is complete to A∪B. Hence Y is complete to C ∪D,
by (1) and (2). Since Y is nonempty, (4) shows that there is no component F1

of F with a set of attachments contained in C ∪ D; so by (3), all attachments
of F belong to A∪B. Choose an anticomponent Y1 of Y . By (3) and 14.2, Y1

is not A-complete or B-complete. Let X be the set of Y1-complete vertices in
A∪B∪C∪D. Let L be the union of A\X and all components of F that have an
attachment in A\X; and let M be the union of B\X and all other components
of F . By (1) there are no edges between A \ X and B \ X; therefore by 14.2,
no component of F has attachments in both A \X and B \X. Hence there is
no edge between L and M . Since L, M, X ∪ (Y \Y1), Y1 is a partition of V (G),
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and Y1 is complete to X ∪ (Y \Y1), it follows that (L∪M, X ∪ (Y \Y1)∪Y1) is
a skew partition of G. No vertex of D has a neighbour in L, and so it is loose,
contrary to 4.2. Hence there is no such graph G. This proves 14.3.

15. Consequences

Disposal of the long prism and double diamond has a number of conse-
quences that we develop in this section. First, since we have shown that every
minimum imperfect graph is recalcitrant and therefore belongs to F6, the next
result (together with 1.5) implies that that no minimum imperfect graph G

admits a skew partition. This is essentially Chvátal’s skew partition conjecture
[6]. (Chvátal actually conjectured that no minimal imperfect graph admits a
skew partition, which is slightly stronger.)

15.1. If G ∈ F6 admits a skew partition, then G admits a balanced skew
partition.

Proof. Let (A, B) be a skew partition in G, which by 4.2 we may assume is
not loose. We may assume that there is an odd path P of length ≥ 3 with ends
in B and with interior in A. Let P have ends b1, b

′
1, and let their neighbours in

P be a1, a
′
1 respectively. Let A1 be the component of A including the interior

of P , and let B1 be the anticomponent of B containing b1, b
′
1. Let A2 be a

second component of A, and B2 a second anticomponent of B. Now the ends
of P are B2-complete, and its internal vertices are not, since the skew partition
is not loose; suppose that P has length at least 5. Then by 2.1, B2 contains
a leap x, y for P , and then the subgraph induced on V (P ) ∪ {x, y} is a long
prism, a contradiction since G ∈ F6. So no such path has length ≥ 5; and
similarly no odd antipath with ends in A and interior in B has length ≥ 5.
Hence P has vertices b1-a1-a′1-b

′
1 in order.

Now a1, a
′
1 both have nonneighbours in B2, and hence are joined by an

antipath with interior in B2; this antipath is odd, since its union with b1, b
′
1

induces an antihole, and since all such antipaths have length 3 it follows that
there exist nonadjacent b2, b

′
2 ∈ B2 such that b2-a1-a′1-b

′
2 is a path. Now b1, b

′
1

both have neighbours in A2, since the skew partition is not loose, and hence
are joined by a path with interior in A2, and it is odd as usual, and hence has
length 3; so there exist adjacent a2, a

′
2 ∈ A2 such that b1-a2-a′2-b

′
1 is a path.

Since b2-b1-a2-a′2-b
′
1-b2 is not an odd hole, b2 is adjacent to one of a2, a

′
2, and

similarly so is b′2. But b2, b
′
2 have no common neighbour in A2, for if v ∈ A2

were adjacent to them both then v-b2-a1-a′1-b
′
2-v would be an odd hole. So

there are exactly two edges between {a2, a
′
2} and {b2, b

′
2}, forming a 2-edge

matching. There are two possible pairings; in one case the subgraph induced
on these eight vertices is a double diamond, and in the other it is L(K3,3 \ e).
In both cases this contradicts that G ∈ F6. This proves 15.1.
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Consequently we have the following:

15.2. Let G ∈ F6, and assume that G admits no balanced skew partition.
Let X, Y ⊆ V (G) be nonempty, disjoint, and complete to each other.

• If X ∪ Y = V (G), then either G is complete, or G has exactly two
components, both with ≤ 2 vertices (and hence |V (G)| ≤ 4).

• If X ∪ Y 	= V (G), then V (G) \ (X ∪ Y ) is connected, and if in addition
|X| > 1, then every vertex in X has a neighbour in V (G) \ (X ∪ Y ).

Proof. By 15.1, G admits no skew partition. Assume first that X ∪ Y =
V (G). Then G is not connected; let the anticomponents of G be B1, . . . , Bk

say, where k ≥ 2. We may assume that G is not complete, and therefore
we may assume that some Bi, say B1, has cardinality > 1. Choose x, y ∈
B1, nonadjacent. Then ({x, y}, V (G) \ {x, y}) is not a skew partition, and so
G \ {x, y} is anticonnected. Hence k = 2 and B1 = {x, y}. Similarly B2 has
cardinality ≤ 2, and so |V (G)| ≤ 4 and the theorem holds. Now assume that
G \ (X ∪ Y ) is nonnull. Suppose that V (G) \ (X ∪ Y ) is not connected; then
(V (G)\(X∪Y ), X∪Y ) is a skew partition, a contradiction. So V (G)\(X∪Y )
is connected. Now suppose some x ∈ X has no neighbour in V (G) \ (X ∪ Y ).
Then V (G) \ ((X \ {x}) ∪ Y ) is not connected, and since G admits no skew
partition it follows that X = {x}. This proves 15.2.

Here is another consequence:

15.3. Let G ∈ F6. Let C be a cycle in G of length ≥ 6, with vertices
p1, . . . , pn in order, and let 1 < h < i and i + 1 < j < n. Let C be induced
except possibly for an edge phpj. Let Y ⊆ V (G) \ V (C) be anticonnected, such
that the only Y -complete vertices in C are pn, p1, pi, pi+1. Suppose there is a
path F of G\Y from ph to pj (possibly of length 1), such that there are no edges
between its interior and V (C)\{ph, pj}. Then some vertex of F is Y -complete.

Proof. Assume no vertex of F is Y -complete. Since the hole

p1- · · · -ph-F -pj- · · · -pn-p1

is even, and the path p1- · · · -ph- · · · -pi is even (by 2.2), it follows that the path

pi-pi−1- · · · -ph-F -pj- · · · -pn

is odd, and therefore has length 3 by 13.6. So F has length 1, and i = h+1 and
n = j+1. Similarly h = 2 and j = i+2, and so n = 6. Then p2, p5 are adjacent,
and so there is an antipath Q joining them with interior in Y . But then in G,
the three paths p1-p4,p5-p2, p3-Q-p6 form a long prism, a contradiction. This
proves 15.3.
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There is a variant of 3.2:

15.4. Let G ∈ F6, and let p1- · · · -pm be a path in G. Let 2 ≤ s ≤ m − 2,
and let ps-q1- · · · -qn-ps+1 be an antipath, where n ≥ 2. Assume that p1, pm are
both adjacent to all of q1, . . . , qn. Then n is even and m = 4.

Proof. If n is even then ps-q1- · · · -qn-ps+1 is an odd antipath, and p1, pm

are complete to its interior; hence p1, pm are both adjacent to one of ps, ps+1.
So s = 2 and m = s + 2, and therefore m = 4. Now assume n is odd; then
ps-q1- · · · -qn-ps+1 is an even antipath of length ≥ 4, contrary to 13.7 applied in
G to this antipath and the sets {p1, . . . , ps−1},{ps+2, . . . , pn}. This proves 15.4.

There is a strengthening of 2.3:

15.5. Let G ∈ F6, let C be a hole in G, and let X ⊆ V (G) \ V (C)
be anticonnected. Let P be a path in C of length > 1 such that its ends are
X-complete and its internal vertices are not. Then P has even length.

Proof. The claim is trivial if C has length 4, so we assume it has length
≥ 6. Let the vertices of C be p1, . . . , pn in order, and let P be p1- · · · -pk say,
where 3 ≤ k < n. Assume k is even. Then by 13.6 applied to P we deduce that
P has length 3, so k = 4. By 2.2 every X-complete vertex is adjacent to one
of p2, p3, so there are none in the interior of the odd path p4-p5- · · · -pn-p1. By
13.6 this path also has length 3, so that n = 6. Let Q be the shortest antipath
with interior in X, joining either p2, p3 or p5, p6. From the symmetry we may
assume its vertices are p2-q1- · · · -qm-p3 say. Then Q is odd since it can be
completed to an antihole via p3-p1-p4-p2; and since p5-p2-Q-p3-p5 is therefore
not an antihole, it follows that p5 (and similarly p6) has a nonneighbour in the
interior of Q. From the choice of Q it follows that p5, p6 each has exactly one
nonneighbour in the interior of Q; one is nonadjacent to q1 and the other to
qm. Suppose that m > 2. If p5 is nonadjacent to q1 then the three antipaths
q1- · · · -qm, p5-p3, p2-p6 for a long prism in G, contrary to G ∈ F6; while if p5

is nonadjacent to qm then q1- · · · -qm, p6-p3, p2-p5 form a long prism, again a
contradiction. So m = 2. But then G|{p1- · · · -p6, q1, q2} is L(K3,3 \ e) if p5

is nonadjacent to q1, and a double diamond if p5 is nonadjacent to q2, again
contrary to G ∈ F6. This proves 15.5.

There is also a strengthening of 3.3; we no longer need the vertex z.

15.6. Let G ∈ F6, let C be a hole in G of length ≥ 6, with vertices
p1, . . . , pm in order, and let Q be an antipath with vertices p1, q1, . . . , qn, p2,
with length ≥ 4 and even. There is at most one vertex in {p3, . . . , pm} complete
to either {q1, . . . , qn−1} or {q2, . . . , qn}, and any such vertex is one of p3, pm.

Proof. Suppose first that one of q1, . . . , qn belongs to the hole. Since it
is adjacent to at least one of p1, p2 (since Q is an antipath), we may assume
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that it is pm; and since it is nonadjacent to p2, it follows that pm = qn. So
p3 	= q1 (since q1 is adjacent to qn), and therefore no more of q1, . . . , qn belong
to C. Suppose that there exists i with 3 ≤ i < m such that pi is complete to
either {q1, . . . , qn−1} or {q2, . . . , qn}. If i < m − 1 then pi is not adjacent to
pm = qn, so pi is complete to {q1, . . . , qn−1}; but then pi-p1-q1- · · · -qn-pi is an
odd antihole. So i = m − 1. By 15.5 applied to the path pm−1-pm-p1-p2 it
follows that pm−1 is not complete to {q1, . . . , qn−1}, and therefore it is complete
to {q2, . . . , qn} and nonadjacent to q1. But then p2-pm−1-q1- · · · -qn-p2 is an odd
antihole, a contradiction. So there is no such i, and therefore the theorem holds
in this case.

So we may assume that none of q1, . . . , qn belong to C. Let X =
{q1, . . . , qn}, and let Y1, Y2 be the sets of vertices in {p3, . . . , pm} complete
to X \ {qn}, X \ {q1} respectively.

(1) Y1 ⊆ Y2 ∪ {pm}, and Y2 ⊆ Y1 ∪ {p3}.

This is proved as in the proof of 3.3.

(2) If Y1 	⊆ {pm} then p3 ∈ Y1 ∩ Y2, and if Y2 	⊆ {p3} then pm ∈ Y1 ∩ Y2.

Assume Y1 	⊆ {pm}, and choose i with 3 ≤ i ≤ m−1 minimum so that pi ∈ Y1.
By (1), pi ∈ Y2, so we may assume i > 3, for otherwise the claim holds. By
15.5 applied to the anticonnected set X \ {qn}, i is even. The path p1- · · · -pi

is odd, and between X \ {q1}-complete vertices, so by 15.5 it contains another
in its interior, say ph. From the minimality of i, ph /∈ Y1, so by (1) h = 3,
and 15.5 applied to the path p3- · · · -pi implies that i = 4. Choose j with
4 ≤ j ≤ m maximum such that pj ∈ Y2. By (1), pj is X-complete. By 15.4
applied to pj- · · · -pm-p1- · · · -p4 we deduce that j ≤ 5, and so j 	= m. By 15.5
applied to the path pj- · · · -pm-p1 and anticonnected set X \ {q1}, it follows
that j is odd, and so j = 5. From 15.5 applied to the path p5- · · · -pm-p1-p2

and anticonnected set X \ {qn}, we deduce that there exists k with 6 ≤ k ≤ m

such that pk ∈ Y1. Since it is not in Y2, it follows from (1) that k = m, and so
pm ∈ Y1 \ Y2. But then p3-q1- · · · -qn-pm-p3 is an odd antihole, a contradiction.
This proves (2).

Now not both p3, pm are in Y1 ∩ Y2, for otherwise Q could be completed
to an odd antihole via p2-pm-p3-p1. Hence we may assume p3 /∈ Y1 ∩ Y2, and
so from (2), Y1 ⊆ {pm}. By (1), Y2 ⊆ {p3} ∪ Y1, and so Y1 ∪ Y2 ⊆ {p3, pm}.
We may therefore assume that Y1 ∪ Y2 = {p3, pm}, for otherwise the theorem
holds. In particular, p3 ∈ Y2. If also pm ∈ Y2, then p3-p4- · · · -pm is an odd
path between X \ {q1}-complete vertices, and none of its internal vertices are
X \ {q1}-complete, contrary to 15.5. So pm /∈ Y2, and so pm ∈ Y1; but then
p3-q1-q2- · · · -qn-pm-p3 is an odd antihole, a contradiction. This proves 15.6.
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This implies a strengthening of 3.1:

15.7. Let G ∈ F6. Let C be a hole of length > 4 and D an antihole of
length > 4. Then |V (C) ∩ V (D)| ≤ 2.

Proof. Assume that |V (C) ∩ V (D)| ≥ 3; then by taking complements if
necessary, we may assume that there are three vertices in V (C) ∩ V (D) such
that exactly one pair of them is adjacent. Hence we can number the vertices
of C as p1, . . . , pm in order, and the vertices of D as p1, q1, . . . , qn, p2, pk for
some k with 4 ≤ k ≤ m − 1. (Possibly the hole and antihole also share some
fourth vertex.) Hence the antipath p1-q1- · · · -qn-p2 has length ≥ 4 and even.
The vertex pk is complete to {q1, . . . , qn}, and different from p3, pm, contrary
to 15.6. This proves 15.7.

16. Odd wheels

Now we begin the third of the major parts of the proof, handling Berge
graphs that do not contain appearances of K4, long prisms or double diamonds,
but do contain wheels. A wheel in a graph G is a pair (C, Y ), satisfying:

• C is a hole of length ≥ 6.

• Y is a nonnull anticonnected set disjoint from C.

• There are two disjoint Y -complete edges of C.

We need to study how the remainder of a recalcitrant graph can attach onto
a wheel. (Conforti, Cornuéjols, Vušković and Zambelli [11] also made such a
study, and their paper contains results related to ours.) We call C the rim and
Y the hub of the wheel. A maximal path in a path or hole H whose vertices are
all Y -complete is called a segment or Y -segment of H. A wheel (C, Y ) is odd
if some segment has odd length. Odd wheels are much easier to handle than
general wheels, and in this section we prove that there are no odd wheels in a
recalcitrant graph. (Gérard Cornuéjols informs us that he and his co-workers
proved the same result, independently, but, like us, assuming the truth of 13.4
— see [11].)

Let us say that distinct vertices u, v of the rim of a wheel (C, Y ) have
the same wheel-parity if there is a path of the rim joining them containing
an even number of Y -complete edges (and hence by 2.3, so does the second
path, if u, v are nonadjacent); and opposite wheel-parity otherwise. In any odd
wheel (C, Y ), there are vertices u, v in C of opposite wheel-parity that are
not Y -complete, and we shall show that, if the odd wheel has been chosen
optimally, then Y and its common neighbours separate u, v and thereby give
us a balanced skew partition.

16.1. Let G ∈ F6, and let (C, Y ) be a wheel in G. Let v ∈ V (G) \
(V (C) ∪ Y ) be such that v is not Y -complete. Suppose that there exist neigh-
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bours of v in C with opposite wheel-parity. Then in every path of C between
them there is a Y ∪ {v}-complete edge. Moreover, either :

• v has only two neighbours in C, and they are adjacent and both
Y -complete, or

• there is a 3-vertex path p1-p2-p3 in C, such that p1, p2, p3 are all Y ∪{v}-
complete, and every other neighbour of v in C has the same wheel-parity
as p1, or

• (C, Y ∪ {v}) is a wheel.

Proof.

(1) Let P be a path in C of length ≥ 1, such that its ends are adjacent to v

and have opposite wheel-parity. Then either some internal vertex of P is
a neighbour of v, or P has length 1.

Let C have vertices p1, . . . , pn in order, and let P be the path p1- · · · -pj

say, where j < n. We assume no internal vertex of P is a neighbour of v, and
that j ≥ 3. From the hole v-p1- · · · -pj-v it follows that j is odd. Since p1, pj

have opposite wheel-parity with respect to (C, Y ), there are an odd number of
Y -complete edges in P . Choose Y ′ ⊆ Y minimal such that Y ′ is anticonnected
and there are an odd number of Y ′-complete edges in P . From 2.3 applied
to the hole v-p1- · · · -pj-v, it contains just one Y ′-complete edge and only two
Y ′-complete vertices. Hence there exists i with 1 ≤ i < j such that pi, pi+1 are
the only Y ′-complete vertices in P . Since j is odd, exactly one of i − 1, j − i

is even; so (by replacing P by its reverse if necessary) we may assume that i

is odd. So pj is different from pi+1, and hence pj is not Y ′-complete. There
are two disjoint Y ′-complete edges in C, so one of them does not use pi; and
therefore it does not use p1 either (for p1 is not Y ′-complete unless i = 1).
Hence both its ends are in {pj+1, . . . , pn}. Consequently n ≥ j + 2, and since
n is even and j is odd, n ≥ j + 3. Therefore there is a Y ′-complete vertex in
{pj+2, . . . , pn−1}.

Suppose that v has a neighbour in {pj+2, . . . , pn−1}. Then there is a path
Q from v to a Y ′-complete vertex u, say, with V (Q) ⊆ {v, pj+2, . . . , pn−1},
such that no internal vertex of Q is Y ′-complete. The path pi- · · · -p1-v-Q-u
has both ends Y ′-complete, and no internal vertex Y ′-complete, and the
Y ′-complete vertex pi+1 has no neighbour in its interior. Thus this path is even;
that is, Q is odd. Hence the path pi+1- · · · -pj-v-Q-u is odd, and so by 13.6 has
length 3; hence j = i+2 and Q has length 1. Also, every Y ′-complete vertex is
adjacent to one of pj , v, by 2.2; so pi is adjacent to v, and so i = 1, j = 3; also v

is adjacent to every Y ′-complete vertex in C except p2 and possibly p4 (for no
others are adjacent to p3). In particular, there are two nonadjacent Y ′ ∪ {v}-
complete vertices in C, and so by 2.3 there are an even number of Y ′ ∪ {v}-
complete edges in C. But all Y ′-complete edges of C are Y ′ ∪ {v}-complete
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except p1p2 and possibly p4p5; and since there are also an even number of
Y ′-complete edges in C, it follows that p4, p5 are Y ′-complete, and v is adja-
cent to p5 and not to p4. But then the vertices v, p1, p2, p3, p4, p5 violate 15.3.

This proves that v has no neighbour in {pj+2, . . . , pn−1}. Choose k with
j ≤ k ≤ n minimum such that pk is Y ′-complete. Since there is a Y ′-complete
vertex in {pj+2, . . . , pn−1}, it follows that k < n. From 2.3 it follows that the
path pi+1- · · · -pk is even, and so k is even. Suppose that v is not adjacent
to pj+1. Since v-pj- · · · -pn-v is not an odd hole, v is not adjacent to pn,
and so p1, pj are its only neighbours in C. But pi- · · · -p1-v-pj- · · · -pk is odd,
and therefore has length 3 by 13.6; and by 2.2, every Y ′-complete vertex
in C is adjacent to v except possibly pj−1, pj+1, a contradiction since there
is a Y ′-complete vertex in {pj+2, . . . , pn−1}. So v is adjacent to pj+1. Since
v-pj+1- · · · -pn-p1-v is not an odd hole, v is also adjacent to pn, so it has exactly
four neighbours in C. Choose m with k ≤ m ≤ n maximal such that pm

is Y ′-complete. It follows that m ≥ j + 2. If m = n then a Y ′-complete
vertex in {pj+2, . . . , pn−1} has no neighbours in the interior of the odd path
pi+1- · · · -pj-v-pn, and the ends of this path are Y ′-complete and its internal
vertices are not, contrary to 2.2. So m < n. Then 2.3 applied to the path
pm- · · · -pn-p1- · · · -pi implies that m is odd, and therefore m > k. Suppose that
m > k + 1. Then pm- · · · -pn-v-pj+1- · · · -pk is an odd path, and pi+1 has no
neighbour in its interior, contrary to 2.2. So m = k+1, and there is symmetry
between the paths p1- · · · -pj and pj+1- · · · -pn. Both these paths have length
≥ 2; suppose they both have length 2. Then n = 6, and the only Y ′ ∪ {v}-
complete vertices in C are p1, p4, contrary to 15.5. So one of the paths has
length > 2, and from the symmetry we may assume that j ≥ 4. Hence the
hole H = v-p1- · · · -pj-v has length ≥ 6, and the only Y ′-complete vertices in it
are pi, pi+1. By 2.10, Y ′ contains a hat or a leap. But pk+1 has no neighbour
in this hole, so that the pair (V (H), Y ′) is balanced by 2.6, and hence there
is no leap. So there is a hat; that is, there exists y ∈ Y ′ with no neighbours
in H except pi, pi+1. From the minimality of Y ′ it follows that Y ′ = {y}. But
then G|(V (C) ∪ {v, y}) is the line graph of a bipartite subdivision of K4, a
contradiction. This proves (1).

From (1) the first assertion of the theorem follows. Now we prove the
second assertion. Suppose that v has at least four neighbours in C, two with
the same wheel-parity, and two others with the opposite wheel-parity. Then
there are two disjoint paths as in (1), and therefore from (1) there are two
disjoint Y ∪ {v}-complete edges in C, and so (C, Y ∪ {v}) is a wheel and the
theorem holds. Now, we may assume that C has vertices p1, . . . , pn in order,
and v is adjacent to p1, and v has no other neighbour in C with the same
wheel-parity as p1. Since v has at least one other neighbour, we may assume
it has a neighbour in V (C) \ {p1, pn}. Choose i > 1 minimum such that v is
adjacent to pi; then i < n, and so by (1), i = 2. So p2 is Y ∪ {v}-complete.
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If v has a third neighbour in C then similarly pn is Y ∪ {v}-complete and the
theorem holds; and if not then again the theorem holds. This proves 16.1.

16.2. Let G ∈ F6, and let (C, Y ) be a wheel in G. Let F ⊆ V (G) \
(V (C) ∪ Y ) be connected, such that no vertex in F is Y -complete. Let X ⊆
V (C) be the set of attachments of F in C. Suppose that there exist vertices in
X with opposite wheel-parity, and there are two vertices in X that are nonad-
jacent. Then either :

• there is a vertex v ∈ F such that (C, Y ∪ {v}) is a wheel, or

• there is a vertex v ∈ F with at least four neighbours in C, and a 3-vertex
path p1-p2-p3 in C, such that p1, p2, p3 are all Y ∪{v}-complete, and every
other neighbour of v in C has the same wheel-parity as p1, or

• the vertices of C may be numbered as p1, . . . , pn in order, such that
p1, p2, p3 are all Y -complete, and there is a path p1-f1- · · · -fk-p3 with
interior in F , such that there are no edges between {f1, . . . , fk} and
{p4, . . . , pn}.

Proof. We may assume that F is minimal. If |F | = 1 then the result
follows from 16.1, so we assume |F | ≥ 2.

(1) If there do not exist nonadjacent vertices in X with different wheel-parity,
then the theorem holds.

There exist vertices in X with different wheel-parity, which are therefore ad-
jacent; say p1, p2, where C has vertices p1, . . . , pn in order. So p1, p2 are both
Y -complete, since they have different wheel-parity. There is a third attach-
ment of F , since there are two that are nonadjacent, say pi where 3 ≤ i ≤ n.
Since p1, p2 have different wheel-parity, we may assume that p2, pi have dif-
ferent wheel-parity; and therefore p2, pi are adjacent, that is, i = 3, and p3 is
Y -complete. Suppose F has a fourth attachment pj say, where 4 ≤ j ≤ n.
From the symmetry we may assume j 	= n; and so pj is nonadjacent to both
p1, p2, and one of these has different wheel-parity from pj , a contradiction. So
p1, p2, p3 are the only attachments of F , and then the theorem holds. This
proves (1).

From (1) we may assume there are nonadjacent vertices in X with opposite
wheel-parity, say x1, x2, and therefore F is the interior of a path between x1, x2,
from the minimality of F . Let C have vertices p1, . . . , pn in order; then we may
assume that there exists m with 3 ≤ m ≤ n− 1 such that p1, pm have opposite
wheel-parity, and there is a path p1-f1- · · · -fk-pm where F = {f1, . . . , fk}. Let
X1 be the set of attachments in C of F \ {fk}, and X2 the set of attachments
of F \ {f1}. From the minimality of F , for i = 1, 2 either all members of Xi

have the same wheel-parity, or there are at most two members of Xi, adjacent
if there are two. Since k ≥ 2 it follows that X1 ∪ X2 = X.
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(2) X1 and X2 do not both have members of opposite wheel-parity.

Suppose they do; then X1, X2 both consist of exactly two adjacent ver-
tices of opposite wheel-parity, say X1 = {p1, p2} and X2 = {pm′ , pm′+1}. So
p1, p2, pm′ , pm′+1 are all Y -complete, and all distinct since two of them are
nonadjacent and of opposite wheel-parity. So the only edges between F and
{p1, p2} are incident with f1, and similarly for fk. But then G contains a long
prism since n ≥ 6, a contradiction. This proves (2).

(3) If X1 has members of opposite wheel-parity then the theorem holds.

Assume X1 has members of opposite wheel-parity. Then we may assume its
only members are p1, p2, and they are both Y -complete. From (2) we may
assume that all members of X2 have the same wheel-parity as p2. In particular,
p1 has no neighbour in F \ {f1}. So the only edges between F and C are f1p1,
edges incident with p2, and edges incident with fk. Suppose that p2 also has
no neighbour in F \ {f1}, and therefore p2 is adjacent to f1. If fk has a unique
neighbour x in C, then x can be linked onto the triangle {p1, p2, f1}; if fk has
two nonadjacent neighbours in C then fk can be linked onto the same triangle;
and if it has exactly two neighbours and they are adjacent, then G contains a
long prism, in each case a contradiction. So p2 has a neighbour in F \{f1}. Let
R1 be the path p1-f1- · · · -fk, and let R2 be the path from p2 to fk with interior
in F \{f1}. Then p1 has no neighbours in R2\p2. Let Q1 be the path from fk to
pn with interior in C \p1. Now p1-R1-fk-Q1-pn-p1 is a hole, so that R1 and Q1

have lengths of opposite parity; and since this hole contains an odd number of
Y -complete edges (since all neighbours of fk have wheel-parity opposite from
that of p1) it follows from 2.3 that it contains exactly one such edge and only
two Y -complete vertices. Since p1 is Y -complete, the other is therefore pn. The
path p2-R2-fk-Q1-pn is between Y -complete vertices, and no internal vertex is
Y -complete, and the Y -complete vertex p1 has no neighbour in its interior;
so it is even by 2.2, that is, R1, R2 have opposite parity. Now there is a Y -
complete vertex in {p4, . . . , pn−1}; for there are two disjoint Y -complete edges
in C, and an even number of Y -complete edges in C. Let ps be such a vertex,
where 4 ≤ s ≤ n− 1. We claim that fk has a neighbour in {p4, . . . , pn−1}. For
if not, then since X 	= {pn, p1, p2} (because there are nonadjacent vertices in
X of opposite wheel-parity), it follows that fk is adjacent to p3. Since ps is not
in Q1, it follows that p3 is not in Q1, and so fk has another neighbour, which
must be pn; but then fk-p3-p4- · · · -pn-fk is an odd hole. So fk has a neighbour
in {p4, . . . , pn−1}; and therefore there is a path Q2 from fk to some x, such that
x is the unique Y -complete vertex in Q2, and V (Q2 \ {fk}) ⊆ {p4, . . . , pn−1}.
Now the path p2-R2-fk-Q2 has both ends Y -complete, and no internal vertex
Y -complete, and the Y -complete vertex p1 has no neighbour in its interior, so
it is even by 2.2. Therefore the path p1-R1-fk-Q2 is odd, since R1, R2 have
opposite parity; and again its ends are Y -complete and its internal vertices are
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not. So it has length 3, by 13.6, and so k = 2; and every Y -complete vertex
is adjacent to one of f1, f2. Consequently there is no Y -complete vertex in
C different from p1 with the same wheel-parity as p1, a contradiction. This
proves (3).

From (3) we may assume that all members of X1 have the same wheel-
parity, and all members of X2 have the opposite wheel-parity. It follows that
X1 ∩ X2 = ∅, and so there are no edges between the interior of F and C. So
X1 is the set of neighbours of f1 in C, and X2 is the set of neighbours of fk

in C.

(4) At least one of f1, fk has only one neighbour in C.

Assume they both have at least two. Then there are disjoint paths Q, R

of C, both containing neighbours of both f1, fk. Choose Q, R minimal, and let
Q have ends q1, q2; then from the minimality of Q, q1 is the unique neighbour
of one of f1, fk in Q, and q2 is the unique neighbour of the other. Let f1q1

and fkq2 be edges say. Similarly let R have ends r1, r2, where f1r1, fkr2 are
edges. Since q1, q2 have opposite wheel-parity, it follows that there are an odd
number of Y -complete edges in the hole f1- · · · -fk-q2-Q-q1-f1; so by 2.3 there
is exactly one, and just two Y -complete vertices. If there are no edges between
Q and R this contradicts 15.3, applied to the cycle f1-q1-Q-q2-fk-r2-R-r1-f1.
Since Q, R are disjoint subpaths of C, all the edges between them join their
ends; so we may assume that q1 is adjacent to one of r1, r2. From the hole
f1- · · · -fk-q2-Q-q1-f1 it follows that Q has parity k−1, and similarly so does R.
Suppose first that q1 is adjacent to r1. Since q1-Q-q2-fk-r2-R-r1-q1 is not an
odd hole, q2 is adjacent to r2, and hence G contains a long prism, since C has
length ≥ 6, a contradiction. So q1 is adjacent to r2. Since q1 is a neighbour of
f1 and r2 of fk, it follows that q1, r2 have opposite wheel-parity, and since they
are adjacent, they are both Y -complete. Let q′ be the neighbour of q1 in Q,
let Q′ = Q \ q1, let r′ be the neighbour of r2 in R, and let R′ = R \ r2. Since in
the hole f1- · · · -fk-q2-Q-q1-f1 there are only two Y -complete vertices and they
are adjacent, it follows that the second is q′, and similarly r′ is Y -complete.
If q2 is adjacent to r1 then not both q2, r1 are Y -complete since C has length
≥ 6; and so there are exactly three Y -complete edges in C, contrary to 2.3. It
follows that q2 is not adjacent to r1. From the hole q1-Q-q2-fk-r2-q1 it follows
that Q has odd length, and therefore so does R and k is even. But then the
path q′-Q′-q2-fk- · · · -f1-r1-R′-r′ has odd length, its ends are Y -complete and
its internal vertices are not, and so by 13.6 it has length 3; that is, Q,R have
length 1 and k = 2. Hence the path r1-f1-f2-q2 is odd, its ends are Y -complete,
and its internal vertices are not, so every Y -complete vertex is adjacent to one
of f1, f2. Let ab, a′b′ be two Y -complete edges of C, disjoint and such that
there are no edges from {a, b} to {a′, b′}. Then each of a, b, a′, b′ is adjacent
to one of f1, f2, and since all neighbours of f1 in C have opposite wheel-parity
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from all neighbours of f2 in C, we may assume that a, a′ are adjacent to f1

and b, b′ to f2. But this contradicts 15.3, applied to the cycle a-f1-a′-b′-f2-b-a.
This proves (4).

From (4) we assume that X1 has only one member, say p1. Choose i, j

with 2 ≤ i, j ≤ n, such that pi, pj are adjacent to fk, with i minimum and j

maximum. From the hole p1-f1- · · · -fk-pi-pi−1- · · · -p1 (= H1 say) we deduce
that i, k have the same parity, and from the hole p1-f1- · · · -fk-pj-pj+1- · · · -pn-p1

(= H2 say) that j, k have the same parity. (So either pi = pj or pi, pj are
nonadjacent.) Since p1, pi have different wheel-parity, and so do p1, pj , there
is an odd number of Y -complete edges in each of H1, H2; and therefore there
is exactly one Y -complete edge and exactly two Y -complete vertices in each of
the holes, by 2.3. Suppose that i = j. Then there are only two Y -complete
edges in C, and therefore they are disjoint, and p1, pi are not Y -complete (since
H1, H2 both have only two Y -complete vertices), contrary to 15.3 applied to C.
So j > i, and hence j ≥ i + 2. If p1 is not Y -complete, then the Y -complete
edge in H1 is disjoint from the path p1-f1- · · · -fk, and so is the one in H2;
but this contradicts 15.3 applied to the hole p1- · · · -pi-fk-pj- · · · -pn-p1. So p1

is Y -complete. Since H1 contains only two Y -complete vertices and they are
adjacent, the other is p2, and similarly pn is Y -complete.

(5) fk has no neighbour in {p3, . . . , pj−2}.

Assume it does. We claim there is also a Y -complete vertex in this set; for
otherwise the only Y -complete vertices in C are pn, p1, p2 and possibly pj−1,
which is impossible since there are two disjoint Y -complete edges and an even
number of Y -complete edges in C. Hence there is a path P say from fk to
some x such that x is the unique Y -complete vertex in P and V (P \ fk) ⊆
{p3, . . . , pj−2}. The path pn-pn−1- · · · -pj-fk-P -x is even, since its ends are Y -
complete, no internal vertex is Y -complete, and the Y -complete vertex p1 has
no neighbour in its interior. The path p1-f1- · · · -fk-P -x is therefore odd (since
k, j have opposite parity), and also its ends are Y -complete and no internal
vertex is Y -complete; so it has length 3 by 13.6, and hence k = 2 and every
Y -complete vertex is adjacent to one of f1, f2, by 2.2. Thus, there is no Y -
complete vertex in C \ p1 with the same wheel-parity as p1, a contradiction.
This proves (5).

Since fk is adjacent to pi, and i < j and j − i is even, it follows from (5)
that i = 2, and similarly fk has no neighbours in {pi+2, . . . , pn−1} and j = n.
So fk has no neighbours in

{p3, . . . , pj−2} ∪ {pi+2, . . . , pn−1} = {p3, . . . , pn−1},

and therefore p2, pn are its only neighbours, contradicting that there are non-
adjacent vertices in X of opposite wheel-parity. This proves 16.2.
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The main result of this section is 1.8.7, which we restate:

16.3. Let G ∈ F6. If there is an odd wheel in G then G admits a balanced
skew partition. In particular, every recalcitrant graph belongs to F7.

Proof. Suppose (C, Y ) is an odd wheel with Y maximal, and subject to
the fact that the number of Y -complete edges in C is minimal. (We refer to
these conditions as the “optimality” of (C, Y ).)

(1) There is no vertex v ∈ V (G) \ (V (C)∪ Y ) such that v is not Y -complete
and has nonadjacent neighbours in C of opposite wheel-parity.

Suppose there is such a vertex v. Suppose first that there is an odd Y ∪ {v}-
segment in C. From the maximality of Y , (C, Y ∪{v}) is therefore not a wheel,
and so there is a unique Y ∪ {v}-complete edge in C. By 2.10, either v has
only two neighbours in C, or some vertex of Y has only three, in either case a
contradiction. So there is no odd Y ∪ {v}-segment in C. Define a “line” to be
a maximal subpath of C with no internal vertex adjacent to v. It follows that
every edge of C is in a unique line. Let C have vertices p1, . . . , pn in order,
and let S be an odd Y -segment.

Since there are no odd Y ∪{v}-segments, it follows that an even number of
edges of S are Y ∪{v}-complete. Hence an odd number are not, and therefore
there is a line L containing an odd number of edges of S that are not Y ∪{v}-
complete. In particular L contains at least one edge that is Y -complete and
not Y ∪{v}-complete, so L has length > 1. Let the ends of L be p, q. By 16.1,
p and q have the same wheel-parity with respect to (C, Y ), and so L contains
an odd number of edges of some other Y -segment S′ 	= S. In particular, there
are two disjoint Y -complete edges in the hole v-p-L-q-v ( = H say); so H has
length ≥ 6 (because v is not Y -complete) and so (H, Y ) is a wheel. Moreover
it is an odd wheel, for it contains an odd number of edges of S, and those
edges form either one or two Y -segments in H, and one of these segments
is odd. Since there is a Y ∪ {v}-complete edge in C (by 16.1, since v has
neighbours in C of opposite wheel-parity) which therefore does not belong to
L, this contradicts the optimality of (C, Y ). This proves (1).

Since (C, Y ) is an odd wheel, C has at least two segments, and therefore
there are vertices u, v in C with different wheel-parity and neither of them
Y -complete. Let X be the set of all Y -complete vertices in V (G). Then
|X| > 1, since |X∩V (C)| ≥ 4; so by 15.2, we may assume that V (G)\(X∪Y )
is nonempty and connected ( = Z say), and every vertex in X has a neighbour
in it, for otherwise G admits a balanced skew partition and the theorem holds.
In particular u, v ∈ Z, so there is a minimal connected subset F of Z such that
there are two vertices of C \ X (say p, q) of opposite wheel-parity, both with
neighbours in F . Since p, q have opposite wheel-parity and are not Y -complete,
they are not adjacent. Since F is minimal it is a path, and no vertex of F is
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in C. By 16.2 and (1), there is a 3-vertex path p1-p2-p3 in C, all Y -complete,
and a path p1-f1- · · · -fk-p3 with interior in F , such that there are no edges
between {f1, . . . , fk} and {p4, . . . , pn}. But then C \ p2 can be completed to a
hole C ′ say, via p1-f1- · · · -fk-p3; and C ′ has length ≥ 6. For every odd segment
S of (C, Y ), either it contained both or neither of the edges p1p2, p2p3; and so
in either case an odd number of edges of S belong to C ′. Since (C, Y ) has an
odd segment and there are an even number of Y -complete edges in C, it has
at least two odd segments. It follows that there are two disjoint Y -complete
edges in C ′, and so (C ′, Y ) is a wheel. Since an odd number of edges of the
odd segment S belong to C ′, it follows that (C ′, Y ) is an odd wheel, contrary
to the optimality of (C, Y ). This proves 16.3.

17. Another extension of the Roussel-Rubio lemma

A “pseudowheel” is a variant of an odd wheel, defined in the next section,
and we want to show that Berge graphs containing pseudowheels and nothing
better admits balanced skew partitions. The main result of this section is a
lemma about graphs in F7, that will be used when we handle pseudowheels in
Section 18.

Let {a1, a2, a3} be a triangle in G. A reflection of this triangle is another
triangle {b1, b2, b3} of G, disjoint from the first, such that a1b1, a2b2, a3b3 are
edges, and these are the only edges between the two triangles. Hence these
six vertices induce a prism. A subset F of V (G) is said to catch the triangle
{a1, a2, a3} if it is connected and disjoint from that triangle and a1, a2, a3 all
have neighbours in F . We begin with the following extremely useful little fact.

17.1. Let A be a triangle in a graph G ∈ F7, and let F ⊆ V (G) \ A

catch A. Then either F contains a reflection of A, or some vertex of F has
≥ 2 neighbours in A.

Proof. Suppose not, and choose F minimal such that it catches A. Let
A = {a1, a2, a3} say, and for i = 1, 2, 3, let Bi be the set of neighbours of ai

in F . Then the three sets B1, B2, B3 are pairwise disjoint and nonempty.

(1) There is no path in F meeting all of B1, B2, B3.

Assume there is, and choose it to be minimal. Then we may assume there is a
path P from b1 ∈ B1 to b2 ∈ B2, such that some vertex of P is in B3, and for
i = 1, 2, bi is the only vertex of P in Bi. Since B3 is disjoint from B1∪B2, every
vertex of B3 in P is an internal vertex of P ; and so P has length ≥ 2. But
then (C, {a3}) is an odd wheel, where C is the hole a1-b1-P -b2-a2-a1, contrary
to G ∈ F7. This proves (1).

Choose b1 ∈ F such that F \ {b1} is connected; then from the minimality
of F , F \ {b1} does not catch A, and so we may assume that B1 = {b1}. Since
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F is connected and |F | ≥ 2, there is a second vertex b2 	= b1 in F such that
F \ {b2} is connected, and so similarly we may assume B2 = {b2}. Let P be a
path in F between b1, b2. By (1) no vertex of P is in B3, so that F contains a
connected subset F ′ including V (P ) which contains exactly one vertex of B3.
From the minimality of F , |B3| = 1; let B3 = {b3} say. Let Q be a minimal
path in F such that b3 ∈ V (Q) and some vertex of P has a neighbour in Q.
From the minimality of Q it follows that Q is vertex-disjoint from P , and Q has
ends b3, x say, where x is the unique vertex of Q with neighbours in P . From
the minimality of F , x either has one neighbour in P , or just two neighbours
and they are adjacent; for if it has two nonadjacent neighbours, any vertex of
P between them could be deleted from F , contrary to the minimality of F . If
x has just one neighbour (y say) in P , then y can be linked onto the triangle A,
contrary to 2.4; so it has two adjacent neighbours. Since G does not contain a
long prism it follows that Q has length 0 and P has length 1, and so F contains
a reflection of A, as required. This proves 17.1.

We did not use the full strength of G ∈ F7 in proving 17.1; we just
used that there were no odd wheels with hubs of cardinality 1. This suggests
that there should be some generalization of 17.1 whose proof does use the full
strength of the hypothesis that there are no odd wheels, and that is true, but
not easy to prove. It will be a consequence of the main result of this section.

Before we start on that, let us give a strengthening of 2.10 for graphs
in F7.

17.2. Let G ∈ F7, and let F, Y ⊆ V (G) be disjoint, such that F is
connected and Y is anticonnected. Let a0, b0 ∈ V (G) \ (F ∪ Y ) and a, b ∈ F

such that a-a0-b0-b is a 3-edge path in G. Suppose that :

• a0, b0 are both Y -complete, and a, b are not Y -complete,

• the only neighbours of a0, b0 in F are a and b respectively,

• F \ {a} and F \ {b} are both connected.

Then either :

1. There is a vertex in Y with no neighbour in F , or

2. There are two nonadjacent vertices y1, y2 ∈ Y , such that a is the only
neighbour of y1 in F , and b is the only neighbour of y2 in F .

Proof. We may assume that every vertex in Y has a neighbour in F , for
otherwise statement 1 of the theorem holds.

(1) There exist nonadjacent y1, y2 in Y , such that y1 is adjacent to a and
not b, and y2 is adjacent to b and not a.

Choose a path P between a and b with V (P ) ⊆ F . Then the hole a0-a-P -b-b0-a0

(= C, say) has length ≥ 6. If there are any Y -complete vertices in P , then
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they belong to the interior of P since a, b are not Y -complete, and there is
an odd number of Y -complete edges in P , by 2.3; but then (C, Y ) is an odd
wheel (the path a0-b0 is an odd Y -segment), a contradiction. So there are
no Y -complete vertices in P . By 2.10 applied to C, Y contains either a hat
or a leap. Suppose first it contains a hat, that is, there is a vertex y ∈ Y

with no neighbour in P . By the assumption above, y has a neighbour in F .
Consequently F catches the triangle {a0, b0, y}. But y is not adjacent to a or
b since it has no neighbour in P , and a is the only vertex in F adjacent to a0,
and the same for b, b0; and a, b are nonadjacent, so F contains no reflection of
the triangle. This contradicts 17.1. Hence there is no such y, and so there is
a leap. This proves (1).

(2) There is no path in F between a and b such that y1 or y2 has a neighbour
in its interior.

Suppose there is such a path, P ′ say. Then the set {y1, y2} contains neither a
leap nor a hat for the hole a0-a-P ′-b-b0-a0 ( = C say), and so by 2.10 there
is a vertex in P adjacent to both y1, y2. By 2.3 there is an even number of
{y1, y2}-complete edges in this hole, and since a, b are not {y1, y2}-complete,
(C, {y1, y2}) is an odd wheel, a contradiction. This proves (2).

Now if neither of y1, y2 has any more neighbours in F then statement 2 of
the theorem holds; so we assume at least one of them has another neighbour
in F . Since F \ {a}, F \ {b} are both connected, there is a connected subset
F ′ of F \ {a, b}, such that both a and b have neighbours in F ′, and at least
one of y1, y2 has a neighbour in F ′. Choose F ′ minimal with these properties.
At least one of y1, y2 has a neighbour (say x) in F ′. We claim that F ′ \ {x}
is connected. For if not, let L be a component of it, and M the union of the
other components. From the minimality of F , not both a, b have neighbours
in L ∪ {x}, and not both have neighbours in M ∪ {x}; so we may assume all
neighbours of a in F ′ are in L, and all neighbours of b are in M . But then
there is a path from a to b with interior in F and with x in its interior, contrary
to (2). This proves that F ′ \{x} is connected. There is a path from a to b with
interior in F ′, and x is not in it, by (2), and it has length > 1 since a, b are
nonadjacent. So a,b both have neighbours in F ′ \ {x}. From the minimality
of F ′, y1 and y2 both have no neighbours in F ′ \ {x}. We claim that x is
adjacent to both y1 and y2. For it is adjacent to at least one, say y1; let Q be
a path from x to b with interior in F ′. Then y1-x-Q-b is a path, since y1 has
no more neighbours in F ′. Since b0-y1-x-Q-b-b0 is a hole it follows that Q is
odd. Therefore a0-y1-x-Q-b-y2-a0 is not a hole, and so y2 has neighbours in Q.
Since it has no neighbours in F ′ \ {x}, this proves our claim that x is adjacent
to both y1, y2.

With Q as before, and therefore odd, it follows that y2-x-Q-b-y2 is not
a hole, and therefore Q has length 1, that is, x is adjacent to b. Similarly x
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is adjacent to a; but then x-a-a0-b0-b-x is an odd hole, a contradiction. This
proves 17.2.

The following is a variant of 17.2, not so symmetrical, but more useful.

17.3. Let G ∈ F7, and let F, Y ⊆ V (G) be disjoint, such that F is
connected and Y is anticonnected. Let a0, b0 ∈ V (G) \ (F ∪ Y ) and a, b ∈ F

such that a-a0-b0-b is a 3-edge path in G. Suppose that :

• a0, b0 are both Y -complete, and a, b are not Y -complete,

• the only neighbours of a0, b0 in F are a and b respectively,

• F \ {a} is connected.

Then there is a vertex y ∈ Y with no neighbour in F \ {a}.
Proof. If F \{b} is connected, the result follows from 17.2. So assume it is

not, and let F ′
1 be the component of F \ {b} that contains a, and F ′

2 the union
of all the other components. For i = 1, 2 let Fi = F ′

i ∪ {b}. Then F1 \ {a},
F1 \ {b} are both connected; so by 17.2 either there exists y ∈ Y with no
neighbour in F1, or there exist nonadjacent y1, y2 ∈ Y with no neighbours in
F1 except a, b respectively. Suppose the first. If y has a neighbour in F2 then
b can be linked onto the triangle {y, a0, b0}, a contradiction to 2.4; and if not
then y satisfies the theorem. Now suppose the second. If y1 has neighbours in
F2 then (F \ {a}) ∪ {y2} catches the triangle {a, a0, y1}; the only neighbours
of a, a0, y1 belong to the disjoint sets F ′

1, {y2}, F ′
2; and there is no reflection

since there are no edges between y2 and F ′
1, contrary to 17.1. So y1 has no

neighbours in F2. This proves 17.3.

The next result is just a technical lemma for use in proving the main result
of this section, which is 17.5.

17.4. Let G ∈ F7 and let P be a path in G with length > 1, with vertices
p1, . . . , pn in order. Let X, Y ⊆ V (G) \ V (P ) be anticonnected sets, such that
X ∪ Y is anticonnected, p1 is X-complete, and pn is the unique Y -complete
vertex in P . (Note that X, Y need not be disjoint .) Let z ∈ V (G) \ (X ∪ Y ∪
V (P )), complete to X ∪Y and with no neighbours in P . Assume that pn is not
X-complete. Let pn-x1- · · · -xk-y be an antipath with interior in X from pn to
some y ∈ Y . Then pn−1 is nonadjacent to x1.

Proof. Let F = {pn−1, x1, . . . , xk} ∪ Y . Since pn−1 is not Y -complete it
follows that F is anticonnected, and both F\{pn−1}, F\{x1} are anticonnected.
The only nonneighbour of z in F is pn−1, and the only nonneighbour of pn in
F is x1; we may assume that pn−1 is adjacent to x1. Now pn−1-z-pn-x1 is a
path in G, and F is connected in G, and {p1, . . . , pn−2} is anticonnected in G.
Also, z and pn are {p1, . . . , pn−2}-complete in G, and pn−1, x1 are not. We may
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therefore apply 17.2 in G, and deduce that there is a vertex in {p1, . . . , pn−2}
which is complete (in G) to F \ {pn−1}. But then this vertex is Y -complete, a
contradiction. This proves 17.4.

We gave in 2.9 an extension of the Roussel-Rubio lemma to two anticon-
nected sets instead of one (we have not had much use for that theorem yet,
but its time is coming). In that extension the two sets had to be complete to
each other. Now we prove a similar result where the two sets are not complete
to each other. Incidentally, unlike 2.9, what we are going to prove here is not
true for general Berge graphs — we need the hypothesis that G ∈ F7.

17.5. Let G ∈ F7 and let P be an odd path in G with length > 1, with
vertices p1, . . . , pn in order. Let X, Y ⊆ V (G) \ V (P ) be anticonnected sets,
such that X ∪ Y is anticonnected, p1 is X-complete, and pn is the unique
Y -complete vertex in P . (Note that X, Y need not be disjoint .) Let z ∈ V (G)\
(X ∪ Y ∪ V (P )), complete to X ∪ Y and with no neighbours in P . Then an
odd number of edges of P are X-complete.

Proof. If possible choose a counterexample P, X, Y such that

1. P is minimal,

2. subject to condition 1, X ∪ Y is minimal, and

3. subject to conditions 1 and 2, |X| + |Y | is minimal.

We refer to this property as the “optimality” of P, X, Y .

(1) No vertex of P \ p1 is X-complete.

If pn is X-complete, then since P has odd length > 1, and the X-complete
vertex z has no neighbour in P , it follows from 2.2 and 2.3 that there are an
odd number of X-complete edges in P , and the theorem holds, a contradic-
tion. So pn is not X-complete. By 17.4, pn−1 is not X-complete. Since p1 is
X-complete, we can choose i with 1 ≤ i ≤ n maximal such that pi is
X-complete. So i ≤ n − 2. Since z has no neighbour in the path p1- · · · -pi, if
i is even then there is an odd number of X-complete edges in this path and
hence in P , by 2.2 and 2.3. So we may assume that i is odd. Hence the
theorem is also false for X, Y and the path pi- · · · -pn. From the optimality of
P, X, Y it follows that i = 1. This proves (1).

In view of (1), there is symmetry between X and Y .

(2) Suppose that x1, x2 ∈ X are distinct and such that X \ {xi} is anticon-
nected for i = 1, 2. Then X ∩ Y = ∅, and one of x1, x2 is the unique
vertex of X with a nonneighbour in Y .
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If (X\{xi})∪Y is not anticonnected for some i, then Y is disjoint from X\{xi}
(since both these sets are anticonnected), and Y is complete to X \ {xi}; and
therefore xi /∈ Y (since xi has a nonneighbour in X \ {xi}), so X ∩ Y = ∅.
But then the statement of (2) holds. So we may assume that (X \ {xi})∪Y is
anticonnected for i = 1, 2. From the optimality of P, X, Y it follows that the
theorem holds for X \ {xi}, Y, P ; and so, since pn is the unique Y -complete
vertex in P , it follows that there are an odd number of X \{xi}-complete edges
in P , for i = 1, 2. For i = 1, 2 let Wi be the set of X \ {xi}-complete vertices
in P . So W1 ∩W2 = {p1}. Let Q be an antipath in X between x1 and x2. We
claim that Q is odd. For since W1 ∩W2 = {p1}, there are nonadjacent vertices
pi, pj of P , such that pi ∈ W1\W2 and pj ∈ W2\W1; and since pi-x1-Q-x2-pj-pi

is an antihole Q is odd. Let us say a line is a minimal subpath of P \p1 meeting
both W1 and W2. Now, every line has length ≥ 1, and has one end in W1

and the other in W2, and has no more vertices in either W1 or W2. If some
line L has odd length > 1, then the triple L, X \ {x1}, X \ {x2} is another
counterexample to the theorem, contrary to the optimality of P, X, Y ; and if
some line has length 1, say pi-pi+1 where pi ∈ W1, then z-pi-x1-Q-x2-pi+1-z
is an odd antihole, a contradiction. Hence every line is even. Choose i to be
minimal with 2 ≤ i ≤ n such that {p2, . . . , pi} includes a line. (This is possible
since both W1, W2 meet P \ p1.) Since all lines have length ≥ 2 it follows that
i ≥ 4. From the minimality of i, {p2, . . . , pi−1} does not include a line, and
so for some k ∈ {1, 2}, the path p1- · · · -pi has both ends X \ {xk}-complete
and no internal vertex X \ {xk}-complete. But this path has length ≥ 2, and
z has no neighbour in it, so by 2.2 it is even, that is, i is odd. Choose j with
j ≥ 2 maximum such that {pj , . . . , pn} includes a line. Since every line has
length ≥ 2 it follows that 2 ≤ j ≤ n − 2. From the maximality of j it follows
that for some k ∈ {1, 2}, Wk ∩ {pj , . . . , pn} = {pj}. If the path pj- · · · -pn has
odd length, then pj , . . . , pn, X \ {xk}, Y is a counterexample to the theorem,
contrary to the optimality of P, X, Y . So n − j is even, and hence j is even.
Now i is odd, so if i ≥ j then pj- · · · -pi is an odd line, a contradiction. Hence
i < j, and j− i is odd. Now the edges pi−1pi, pjpj+1 are in lines. Consequently
we may choose r, s with i ≤ r < s ≤ j such that pr, ps ∈ W1 ∪ W2, and the
edges pr−1pr, psps+1 are in lines, and s−r is odd; and therefore we may choose
such r, s with s− r minimal. If there is a line contained in the path pr- · · · -ps,
say ph- · · · -pk, then since k−h is even, one of the paths pr- · · · -ph or pk- · · · -ps

is odd, contrary to the minimality of s − r. So we may assume that none of
pr, . . . , ps belong to W2, and in particular pr, ps ∈ W1. Since pr−1pr, psps+1

are in lines, and pr, ps ∈ W1, there exist q, t with 2 ≤ q < r < s < t ≤ n such
that pq- · · · -pr and ps- · · · -pt are lines. All lines are even, so that r − q and
t − s are even, and therefore t − q is odd. Moreover pq, pt ∈ W2, and none
of pq+1, . . . , pt−1 belongs to W2, and the path pq- · · · -pt is odd, and z has no
neighbour in it, contrary to 2.2. This proves (2).
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(3) There is an antipath x1- · · · -xs-y1- · · · -yt such that s, t > 1 and X =
{x1, . . . , xs}, and Y = {y1, . . . , yt}.

If |X| = 1, X = {x} say, then z-x-p1- · · · -pn is an odd path of length ≥ 5
between Y -complete vertices, and none of its internal vertices are Y -complete,
contrary to 13.6. So |X| ≥ 2, and similarly |Y | ≥ 2. Hence there are at least
two vertices x ∈ X such that X\{x} is anticonnected, and from (2), X∩Y = ∅,
and there is a unique vertex x ∈ X with nonneighbours in Y . By (2), there do
not exist two vertices x′ ∈ X \ {x} such that X \ {x′} is anticonnected; and
therefore X is an antipath with one end x′. Because of the symmetry between
X, Y , the same applies for Y , and this proves (3).

Choose t′ with 1 ≤ t′ ≤ t minimal such that p1 is nonadjacent to yt′ .
(This is possible since p1 is not Y -complete.) So x1- · · · -xs-y1- · · · -yt′-p1 is an
antipath. Define W = (X \ {x1}) ∪ {y1, . . . , yt′−1}.

(4) For every subpath P ′ of P , if the ends of P ′ are adjacent to x1, then there
are an even number of W -complete edges in P ′.

Suppose not; then we may choose P ′ such that no internal vertex of P ′ is
adjacent to x1. Let P ′ be ph- · · · -pk say, where 1 ≤ h < k ≤ n. Choose i, j

with h ≤ i ≤ j ≤ k such that pi, pj are W -complete, with i minimal and j

maximal. Since pk is not X-complete it follows that pk is not W -complete
(because it is adjacent to x1), and so j < k. Since there are an odd number of
W -complete edges in ph- · · · -pk, it follows that k ≥ h + 2, and x1-ph- · · · -pk-x1

is a hole (so k − h is even), containing an odd number of W -complete edges.
By 2.3 it contains exactly one, and only two W -complete vertices; so j = i+1.
The path z-x1-ph- · · · -pi has both ends W -complete, and no internal vertex
W -complete, and the W -complete vertex pj has no neighbour in its interior
(since j < k); so it is even, by 2.2, and hence i − h is even. Since k − h

is even, it follows that pj- · · · -pk-x1-z is an odd path; and again its ends are
W -complete and its internal vertices are not. By 13.6 it has length 3, so that
k = j + 1; and by 2.2, every W -complete vertex is adjacent to one of pk, x1.
But no W -complete vertex in P is adjacent to x1 except p1, since no other
vertex of P is X-complete. So every W -complete vertex in P \ p1 is adjacent
to pk, and so must be one of pk−1, pk+1. In particular, since i < k−1 it follows
that i = 1, and so j = 2, k = 3, and the W -complete vertices in P are p1, p2

and possibly p4.
By 17.4 (with X and Y exchanged), p2 is nonadjacent to yt′ . Choose d

with 1 ≤ d ≤ n minimal such that yt′ is adjacent to pd; then d ≥ 3. Then
the path p1- · · · -pd-yt′-z has length ≥ 4, and its ends are W ∪ {x1}-complete,
and its internal vertices are not; so it is even by 13.6. Hence d is odd, and
the path p1- · · · -pd-yt′ is odd. None of its internal vertices are X-complete,
and the X-complete vertex z has no neighbour in its interior, and one end p1
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is X-complete, so the other end yt′ is not; and hence t′ = 1, since all other
vertices of Y are X-complete. Now, W = X \{x1}. Let V = X \{xs}. Now the
path p1- · · · -pd-y1 is between V -complete vertices, and is odd and has length
> 1, and the V -complete vertex z has no neighbour in its interior; so by 2.2,
there is a V -complete edge in its interior. Choose c with 2 ≤ c ≤ d minimal
such that pc is V -complete. Since p2 is nonadjacent to x1 it follows that c ≥ 3.
Since p1- · · · -pc is between V -complete vertices and its internal vertices are not
V -complete and z has no neighbour in it, it is even by 2.2, and so c is odd. We
already saw that p1, p2 and possibly p4 are W -complete, and c ≥ 3, so we may
choose b with 2 ≤ b ≤ c maximal such that pb is W -complete. Hence b = 2
or 4. The path pb- · · · -pc is odd, and pb is W -complete, and pc is V -complete,
and no other vertices of the path are either W - or V -complete. If c − b > 1
then pb- · · · -pc, W, V is a counterexample to the theorem, contradicting the
optimality of X, Y, P . So c = b + 1. Then z-pb-x1- · · · -xs-pc-z is an antihole,
so s is odd. But then p2-x1- · · · -xs-y1-p2 is an odd antihole, a contradiction.
This proves (4).

Choose h with 1 ≤ h ≤ n maximum such that x1 is adjacent to ph.
Since x1-ph- · · · -pn is between Y -complete vertices (since s ≥ 2) and none
of its internal vertices are Y -complete, and the Y -complete vertex z has no
neighbour in its interior, this path either has length 1 or even length by 2.2.
So either h = n or h is odd. From the optimality of P, X, Y , it follows that
P, W, Y is not a counterexample to the theorem, and so there are an odd
number of W -complete edges in P . Since x1 is adjacent to p1, from (4) there
are an even number of W -complete edges between p1 and ph, so there are an
odd number in the path ph- · · · -pn, and in particular h < n, so h is odd. Choose
i, j with h ≤ i ≤ j ≤ n such that pi, pj are W -complete, with i minimum and j

maximum. Hence j > i. Since z-x1-ph- · · · -pi is a path of length ≥ 2 between
W -complete vertices, and its internal vertices are not W -complete, and the
W -complete vertex pj has no neighbour in its interior, it follows from 2.2 that
i − h is even.

(5) h > 1.

Assume h = 1; also p1 is the only neighbour of x1 in P . Let S be the
antipath

x1- · · · -xs-y1- · · · -y′t-p1.

Now x1-S-p1-z is an antipath, of length ≥ 4; all its internal vertices have
neighbours in P \ p1, and its ends do not. By 13.6 applied in G, it follows
that this antipath has even length and so S has odd length. Its ends have
no neighbours in P \ {p1, p2}, and z is complete to its interior and also has
no neighbours in P \ {p1, p2}; so by 2.2 applied in G, some internal vertex
of S has no neighbour in P \ {p1, p2}. But they are all adjacent to pj or to
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pn, so j = 2. By 17.4, p2 is nonadjacent to yt′ , and also to x1 since it is not
X-complete. Therefore p2-x1- · · · -xs-y1- · · · -yt′-p2 is an antihole, D say. Choose
d with 1 ≤ d ≤ n minimal such that yt′ is adjacent to pd; then d ≥ 3, and
so x1-p1- · · · -pd-yt′-x1 is a hole of length ≥ 6, with three vertices in common
with D, namely p2, x1, yt′ . From 15.7, D has length 4, and so t′ = 1 and s = 2.
Since W = {x2} and j = 2, it follows that the only edges between x1, x2 and
P are x1p1, x2p1, x2p2. But then the three paths p1-x1, x2-z, p2- · · · -pd-y1 form
a long prism, a contradiction. This proves (5).

From (5), since ph is adjacent to x1, it follows that ph is not complete
to X \ {x1}, and therefore h < i < j. Choose s′ with 1 ≤ s′ ≤ s minimal
such that ph is nonadjacent to xs′ . Now pj-x1- · · · -xs′-ph-pj is an antihole,
and so s′ is even. Hence x1- · · · -xs′-ph-z is an odd antipath; all its internal
vertices have neighbours in {ph+1, . . . , pn}, and its ends do not, so by 13.6 it
has length 3, that is, s′ = 2. The set F = {x2, ph, . . . , pn} is connected; the
only neighbour of x1 in F is ph; the only neighbour of z in F is x2. Since x1, z

are (X\{x1, x2})∪Y -complete, and ph, x2 are not (for ph is not Y -complete), it
follows from 17.2 that there is a vertex in (X \{x1, x2})∪Y with no neighbour
in F except possibly x2. But every vertex in (X \ {x1, x2}) ∪ Y is adjacent to
either pj or to pn, a contradiction. This proves 17.5.

18. Pseudowheels

A pseudowheel in a graph G is a triple (X, Y, P ), satisfying:

• X, Y are disjoint nonempty anticonnected subsets of V (G), complete to
each other,

• P is a path p1- · · · -pn of G \ (X ∪ Y ), where n ≥ 5,

• p1, pn are the only X-complete vertices of P ,

• p1 is Y -complete, and so is at least one other vertex of P ; and p2, pn are
not Y -complete.

A wheel (C, Y ) with a Y -segment S of length one can be viewed as a
pseudowheel, taking X to consist of one of the vertices of S. We recommend
that the reader think of a general pseudowheel as such an odd wheel, where a
vertex of S has “blown up” to become the anticonnected set X.

Our current goal is to prove an analogue of 16.3 for pseudowheels. Fortu-
nately we don’t need to generalize 16.3 completely, just the case when there
is a segment of the wheel of length 1, and one of its vertices has blown up. We
did in fact try to generalize 16.3 completely, but were unable to so, and it give
us a lot of trouble; so eventually we found a way to make do with this special
case.

We begin with an even more special case, a form of 15.3 when one vertex
is replaced by an anticonnected set.
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18.1. Let G ∈ F7, and let X, Y be disjoint nonempty anticonnected subsets
of V (G), complete to each other. Let p1-p2-p3-p4-p5 be a track in G \ (X ∪ Y ),
induced except possibly for the edge p2p5. Let X be complete to p1, p5 and not
to p2, p3, p4. If p1, p3, p4 are Y -complete then so is one of p2, p5.

Proof. Assume not. Then in G, {p1, p3, p5} is a triangle, and the connected
set F = X ∪ Y ∪ {p2, p4} catches it. In G, the only neighbours of p5 in F are
in Y ∪ {p2}, the only neighbours of p3 in F are in X, and the only neighbour
of p1 in F is p4. Hence no vertex of F has two neighbours in the triangle; so
by 17.1, F contains a reflection of the triangle. Now (back in G), there are
vertices b1 ∈ X and b2 ∈ Y ∪{p2} such that b1, b2, p4 are pairwise nonadjacent,
and b1 is adjacent to p1, p5 and not p3, and b2 is adjacent to p1, p3 and not p5.
Since p4 is Y -complete and b2, p4 are nonadjacent, b2 /∈ Y , and so b2 = p2, and
p2 is not adjacent to p5. Then Y and the six vertices p1, . . . , p5, b1 form an odd
wheel, a contradiction. This proves 18.1.

There is a reformulation of 13.7 that we sometimes need:

18.2. Let G ∈ F7, and let X, Y be disjoint, nonempty, anticonnected
subsets of V (G), complete to each other. Let P be a path in G with even length
> 0, with vertices p1, . . . , pn in order, such that p1 is X-complete, pn is not
X-complete and is the unique Y -complete vertex of P . Suppose that there is a
Y -complete vertex in G nonadjacent to both pn−1, pn−2. Then either :

• there is an odd number of X-complete edges in P , or

• n = 3 and there is an odd antipath joining pn−1 and pn with interior
in X.

Proof. Choose an X-complete vertex pi in P with i maximum. Suppose
first that i is even. Then the path p1- · · · -pi is odd, and we may assume that
an even number of its edges are X-complete. So it has length > 1; by 2.3,
none of its internal vertices are X-complete; and by 13.6 it has length 3 (that
is, i = 4), and there is an odd antipath Q joining p2, p3 with interior in X.
Let R be an antipath joining p2, p3 with interior in Y . Since n ≥ i = 4 and n

is odd, it follows that n ≥ 5, and so one of p2-R-p3-Q-p2, pn-p2-R-p3-pn is an
odd antihole, a contradiction.

Thus i is odd. Hence the path pi- · · · -pn is even, and by 13.7 it has
length 2, that is, i = n − 2. Let Q be the antipath between pn−2, pn−1 with
interior in Y , and R the antipath between pn−1, pn with interior in X. By hy-
pothesis there is a Y -complete vertex nonadjacent to pn−1, pn−2, and therefore
Q is even, so R is odd by 13.7. Hence R cannot be completed to an antihole
via pn-p1-pn−1; and so n = 3 and the theorem holds. This proves 18.2.

We need the following extension of 2.3.
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18.3. Let G ∈ F7, and let X, Y be disjoint nonempty anticonnected subsets
of V (G), complete to each other. Let P be a path p1- · · · -pn of G \ (X ∪ Y ),
where n ≥ 5, such that p1, pn are the only X-complete vertices of P . Then P

has even length. Assume that at least two vertices of P are Y -complete, and
let P ′ be a maximal subpath of P such that none of its internal vertices are
Y -complete. Then the length of P ′ has the same parity as the number of ends
of P ′ that belong to {p1, pn} and are not Y -complete. Moreover, the number
of Y -complete edges of P has the same parity as the number of elements of
{p1, pn} that are Y -complete.

Proof. Since P is a path of length ≥ 4, and its ends are X-complete and
its internal vertices are not, P has even length, by 13.6. Let us say a line is
a maximal subpath P ′ of P such that no internal vertex of P ′ is Y -complete.
Let P ′ be a line of length ≥ 2, and assume first that both ends of P ′ are
Y -complete. Suppose P ′ has odd length, and let its ends be pi, pj where i < j.
Then 13.6 implies that j − i = 3, and there is an odd antipath Q joining
pi+1, pi+2 with interior in Y . Since n ≥ 5, either n > j or 1 < i, and from the
symmetry between p1 and pn we may assume the latter. Since pi+1, pi+2 are
not X-complete, they are joined by an antipath Q′ with interior in X. Since
Q ∪ Q′ is an antihole it follows that Q′ is odd. But then p1-pi+1-Q′-pi+2-p1 is
an odd antihole, a contradiction. So in this case P ′ has even length. We may
therefore assume that an end of P ′ is not Y -complete, and from the maximality
of P ′, any such end is either p1 or pn, and we may assume it is pn from the
symmetry. The other end of P ′ is therefore not p1 since at least two vertices
of P are Y -complete, and so it is pi, where i is maximal with 2 ≤ i ≤ n such
that pi is Y -complete. Since i > 1, no vertex of P ′ is X-complete except pn.
Suppose that P ′ is even; then we may apply 13.7. We deduce that P ′ has
length 2, and so i = n − 2. Now the antipath joining pn−2, pn−1 with interior
in X is even since it can be completed to an antihole via pn−1-p1-pn−2; and the
antipath joining pn−1, pn with interior in Y is even since it can be completed to
an antihole via pn-ph-pn−1, where ph is some Y -complete vertex with 1 ≤ h < i.
But this contradicts 13.7. Consequently P ′ is odd, as required.

We have shown therefore that a line has odd length if and only if either it
has length 1, or one of its ends is one of p1, pn and is not Y -complete. It follows
that the number of odd lines equals y+z, where y is the number of Y -complete
edges in P , and z is the number of ends of P that are not Y -complete. But
since every edge of P belongs to a unique line and P has even length, it follows
that the number of odd lines is even, and so y, z have the same parity. This
proves the final claim of the theorem, and so proves 18.3.

18.4. Let (X, Y, P ) be a pseudowheel in a graph G ∈ F7, where P is
p1- · · · -pn. Then P contains an odd number, at least 3, of Y -complete edges,
and P has length ≥ 6.
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Proof. By 18.3, P contains an odd number of Y -complete edges, since an
odd number of ends of P are Y -complete. Suppose it only contains one, say
pipi+1. Since p2, pn are not Y -complete it follows that 3 ≤ i ≤ n− 2. So there
is an antipath joining pi, pi+1 with interior in X, and by 15.4 applied to the
path P , this antipath has length 2, that is, there exists x ∈ X nonadjacent to
both pi, pi+1. Let C be a hole containing x, pi, pi+1 and with C \ x ⊆ P . Then
(C, Y ) is an odd wheel, since C contains the Y -complete vertices x, pi, pi+1 and
it also contains pi−1, pi+2 which are not Y -complete, contrary to G ∈ F7. So
at least three edges of P are Y -complete, and therefore P has length ≥ 6. This
proves 18.4.

A pseudowheel (X, Y, P ) in G is optimal if

• there is no pseudowheel (X ′, Y ′, P ′) in G such that the number of
Y ′-complete vertices in P ′ is less than the number of Y -complete ver-
tices in P , and

• there is no pseudowheel (X, Y ′, P ) in G such that Y ⊂ Y ′.

18.5. Let G ∈ F7, and let (X, Y, P ) be an optimal pseudowheel in G,
where P is p1- · · · -pn. Let v ∈ V (G) \ (X ∪ Y ∪ V (P )), not Y -complete. Then
there is a subpath P ′ of P such that

• V (P ′) contains all the neighbours of v in P ,

• there is no Y -complete vertex in the interior of P ′, and

• if v is X-complete, then either V (P ′) = {p1}, or pn ∈ V (P ′).

Proof. Choose h, k with 1 ≤ h ≤ k ≤ n such that v is adjacent to ph, pk,
with h minimal and k maximal. (If this is impossible then the theorem holds.)
Choose i, j with 2 ≤ i ≤ j ≤ n such that pi, pj are Y -complete, with i minimal
and j maximal. By 18.3 it follows that i is odd and j is even, and j − i ≥ 3
by 18.4, since all Y -complete edges in P lie in the path pi- · · · -pj .

(1) If v is both adjacent to p1 and X-complete then the theorem holds.

From the optimality of (X, Y, P ) it follows that (X, Y ∪ {v}, P ) is not a pseu-
dowheel, and so p1 is the only Y ∪ {v}-complete vertex in P . By 2.11 (with
X, Y replaced by Y ∪ {v}, X), we deduce that either there exists y ∈ Y ∪ {v}
nonadjacent to all p2, . . . , pn, or there exist nonadjacent y1, y2 ∈ Y ∪ {v} such
that y1-p2- · · · -pn-y2 is a path. But pi is Y -complete and 3 ≤ i ≤ n − 1, so
the second statement does not hold; and the first holds only if y = v. This
proves (1).

(2) Assume that there is a path Q from v to some vertex q, such that q is the
only Y -complete vertex in Q, and V (Q \ v) ⊆ {pi+1, . . . , pj−1}.
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By 18.3 and the fact that there is a Y -complete edge in P , there is a
Y -complete vertex in {pi+1, . . . , pj−1}. If v has a neighbour in this set then
the claim holds; so suppose it does not. We may assume v has a neighbour in
{p1, . . . , pi}, for otherwise the theorem holds. Suppose it also has a neighbour
in {pj , . . . , pn}. Then there is a hole C containing v, with C \v ⊆ P , such that
pi- · · · -pj is a path of C. Since all Y -complete edges in P belong to this path,
and there are an odd number of them, it follows that there is an odd number
(≥ 3) of Y -complete edges in C, contrary to 2.3. So v has no neighbours in
{pj , . . . , pn}, and hence k ≤ i. We may therefore assume that v is X-complete
and so k > 1 by (1). The path v-pk- · · · -pn has length ≥ 4, and its ends are
X-complete, and its internal vertices are not; so by 13.6 it has even length,
and therefore the path v-pk- · · · -pi is even. But v is the only X-complete vertex
in v-pk- · · · -pi, and pi is its only Y -complete vertex (since k > 1); so by 13.7,
this path has length 2, and so k = i−1. There is no odd antipath joining v, pk

with interior in Y , since the Y -complete vertex pj is nonadjacent to v, pk; and
there is no odd antipath joining pk, pi with interior in X, since the X-complete
vertex pn is nonadjacent to pk, pi, contrary to 13.7. This proves (2).

(3) If v is X-complete then the theorem holds.

Then we may assume that v is nonadjacent to p1 by (1). If h is odd then
p1- · · · -ph-v is an odd path with ends X-complete and its internal vertices not,
so it has length 3 by 13.6; but the X-complete vertex pn has no neighbour in
its interior (since n ≥ 5), contrary to 2.2. So h is even. Suppose that one of
p2, . . . , ph is Y -complete. Then h 	= 2 since p2 is not Y -complete; so h ≥ 4, and
h < j by (2). Hence (X, Y, p1- · · · -ph-v) is a pseudowheel, not containing pj ,
contrary to the optimality of (P, X, Y ). So there are no Y -complete vertices
in {p2, . . . , ph}, and so i > h. Let Q, q be as in (2). Since the X ∪ Y -complete
vertex p1 has no neighbours in Q, the pairs (V (Q), X), (V (Q), Y ) are balanced
by 2.6; so by 2.9, Q has odd length. Hence the path p1- · · · -ph-v-Q-q has odd
length, and its ends are Y -complete, and its internal vertices are not. By 13.6
it has length 3; so h = 2 and v is adjacent to q. Also every Y -complete vertex
in P is adjacent to one of v, p2, by 2.2, so they are all adjacent to v except
p1 and possibly p3. Suppose pi is adjacent to v, and is therefore Y ∪ {v}-
complete. The path p1- · · · -pi has even length; the only X-complete vertex
in it is p1; and the only Y ∪ {v}-complete vertex in it is pi. By 13.7 it has
length 2. But pn is an X-complete vertex nonadjacent to both p2, p3, and pj

is a Y ∪ {v}-complete vertex nonadjacent to both p1, p2, since j − i ≥ 3 and
therefore pj is necessarily adjacent to v as we already saw. Hence both pairs
({p1, p2}, Y ∪ {v}) and ({p2, p3}, X) are balanced by 2.6, contrary to 13.7.
This proves that pi is not adjacent to v, and therefore i = 3. Choose h′ > i

minimal such that v is adjacent to ph′ . From the hole v-p2- · · · -ph′-v it follows
that h′ is even. From 18.2 applied to the even path p3- · · · -ph′-v, and using
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the fact that the X ∪ Y -complete vertex p1 has no neighbour in this path, we
deduce that there is a Y -complete edge in p3- · · · -ph′-v. Since v is adjacent to
every Y -complete vertex in P except p1, p3, it follows that the only such edge
is p3p4, and therefore h′ = 4. But then the track p1- · · · -p4-v violates 18.1.
This proves (3).

Henceforth we may therefore assume that v is not X-complete. If k ≤ h+1
then the theorem holds, so we assume k ≥ h + 2.

(4) If v is not adjacent to p1 then the theorem holds.

Let P ′ be the path p1- · · · -ph-v-pk- · · · -pn. Suppose that any of p2, . . . , ph,

pk, . . . , pn is Y -complete. Then P ′ has length ≥ 4, since h > 1 and p2, pn

are not Y -complete, and so (X, Y, P ′) is a pseudowheel. By the optimality
of (X, Y, P ), there are no Y -complete vertices among {ph+1, . . . , pk−1}; but
then the claim holds. So we may assume that none of p2, . . . , ph, pk, . . . , pn

is Y -complete, and therefore h < i ≤ j < k, and since j − i ≥ 3 it follows
that k − h ≥ 5. Let Q, q be as in (2). Then q-Q-v-pk- · · · -pn is a path, R

say; the only Y -complete vertex in R is q; the only X-complete vertex in R

is pn; and the X ∪ Y -complete vertex p1 has no neighbour in its interior. By
2.9, R is odd. Therefore the paths p1- · · · -ph-v-Q-q and p1- · · · -ph-v-pk- · · · -pn

have lengths of opposite parity. For the first path, its ends are Y -complete and
its internal vertices are not. For the second, its ends are X-complete and its
internal vertices are not. So by 13.6, one of them has length 3, and so h = 2,
and there is an odd antipath joining v, p2 with interior in one of X, Y . Since
v, p2 are joined by an antipath with interior in X and by another with interior
in Y , and all such pairs of antipaths have the same parity (since their union is
an antihole), it follows that v, p2 are joined by an odd antipath with interior in
each of X,Y . Hence every X-complete vertex is adjacent to one of v, p2, and
so is every Y -complete vertex. In particular k = n, and v is adjacent to every
Y -complete vertex in P except p1 and possibly p3. But then R has length 2,
contradicting that it has odd length. This proves (4).

Henceforth, we assume that v is adjacent to p1 and not X-complete.

(5) pn−1 is not Y ∪ {v}-complete.

Suppose it is. Since n ≥ 7, from 13.6 applied to P \ pn and Y ∪ {v} there is a
Y ∪ {v}-complete vertex in {p2, . . . , pn−2}; choose such a vertex, pj′ say, with
j′ maximum. Now j = n− 1. If j′ < j − 1 then j − j′ is even from 2.2 applied
to pj′- · · · -pj , since p1 is Y ∪{v}-complete and has no neighbours in the interior
of pj′- · · · -pj ; but then the odd path pj′- · · · -pn contains no Y ∪ {v}-complete
edges, and p1 is X-complete, Y ∪ {v}-complete and has no neighbours in the
path pj′- · · · -pn, contrary to 17.5. So j′ = j − 1. Let F = X ∪ Y ∪ {v, pn−1}.
Then F is anticonnected, and each of p1, pn−2, pn has a nonneighbour in F ; the
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only nonneighbour of p1 in F is pn−1; all nonneighbours of pn−2 in F belong
to X; and all nonneighbours of pn in F belong to Y ∪ {v}. So in G, the
connected set F catches the triangle {p1, pn−2, pn}, and by 17.1 it contains a
reflection of the triangle, which is impossible since pn−1 is complete (in G) to
Y ∪ {v}. This proves (5).

(6) v is not adjacent to pn.

Suppose it is. By 18.4 there are at least three Y -complete edges in P , and
so there is a Y -complete vertex pa in P with a ≥ 3, even and different from
pn−1. Thus j−a is even, and so by 2.3 there is an even number of Y -complete
edges in the even path pa- · · · -pj , and hence in the odd path pa- · · · -pn. But
pa is Y -complete, and pn is the unique X ∪ {v}-complete vertex in this path,
contrary to 17.5. This proves (6).

(7) There is no neighbour pm of v in P with 1 ≤ m ≤ n such that v, pm are
joined by an odd antipath with interior in Y .

Suppose such a neighbour exists. So 1 < m < n by (6), and there is an antipath
joining v, pm with interior in X, which therefore is also odd, since its union
with the antipath through Y is an antihole. Since it cannot be completed to
an odd antihole via pm-pn-v, it follows that m = n − 1, and in particular m

is even. Since j is even, either pj = pm or pj is nonadjacent to pm; in either
case, pj is adjacent to v, since every Y -complete vertex is adjacent to one of
v, pm. By (5), n− j ≥ 3 and odd, and the path pj- · · · -pn (with anticonnected
sets X and Y ∪ {v}) violates 17.5. This proves (7).

Suppose that j ≥ k, and let P ′ be the path p1-v-pk- · · · -pn. Then P ′

has length ≥ 4, since pn−1 is not Y ∪ {v}-complete, and so (X, Y, P ′) is
a pseudowheel; by the optimality of (X, Y, P ) it follows that there are no
Y -complete vertices in p2- · · · -pk−1, contrary to (2). So j < k. Let Q, q be
as in (2), and assume first that Q is even. Then the path p1-v-Q-q has odd
length; its ends are Y -complete, and its internal vertices are not, so by 13.6
it has length 3, and its internal vertices are joined by an odd antipath with
interior in Y , contrary to (7). So Q is odd.

Next assume that k is even. Then the path p1-v-pk- · · · -pn is odd, and
its ends are X-complete, and its internal vertices are not, so by 13.6 it has
length 3, and k = n − 1, and its internal vertices v, pn−1 are joined by an odd
antipath with interior in X. Since pn−1 is not Y ∪ {v}-complete, they are also
joined by an odd antipath with interior in Y , contrary to (7). This proves that
k is odd. Hence the path q-Q-v-pk- · · · -pn is even, and by (6) it has length > 2
contrary to 13.7. This proves 18.5.

18.6. Let G ∈ F7, and let (X, Y, P ) be an optimal pseudowheel in G,
where P is p1- · · · -pn. Let F ⊆ V (G) \ (X ∪Y ∪V (P )) be connected, such that
no vertex in F is Y -complete. Then there is a subpath P ′ of P such that
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• V (P ′) contains all the attachments of F in P ,

• there is no Y -complete vertex in the interior of P ′, and

• if some vertex of F is X-complete then either V (P ′) = {p1} or pn ∈
V (P ′).

Proof. Suppose the theorem is false, and choose a minimal counterexam-
ple F . From 18.5, |F | ≥ 2.

(1) Some vertex in F is X-complete.

Suppose not. Since F is a counterexample, it has attachments pa, pc such that
there is a Y -complete vertex pb with a < b < c. From the minimality of F ,
F is the interior of a path pa-f1- · · · -fk-pc. Let W1 be the set of attachments
of F \ {fk} in P , and W2 the set of attachments of F \ {f1} in P . From the
minimality of F , for i = 1, 2 there is a subpath pai

- · · · -pbi
of P ( = Pi say),

such that no internal vertex of Pi is Y -complete, and Wi ⊆ V (Pi). Choose
P1, P2 minimal; then pa1 is a neighbour of some member of F \ {fk}, and
therefore of f1 from the minimality of F , and similarly pb2 is a neighbour of
fk, and p1- · · · -pa1-f1- · · · -fk-pb2- · · · -pn is a path P ′ say. Suppose that there
is a Y -complete vertex in P ′ different from p1. Then P ′ has length ≥ 4, and
(X, Y, P ′) is a pseudowheel, contrary to the optimality of (X, Y, P ). So there
are no Y -complete vertices in P ′ different from p1. But also there are none
in {pa1+1, . . . , pb1−1} and none in {pa2+1, . . . , pb2−1}, so all the Y -complete
vertices of P belong to {pb1 , . . . , pa2}, except for p1. By 18.4 there is an odd
number, at least 3, of Y -complete edges in this path. From the minimality of F ,
f1- · · · -fk-pa2-pa2−1- · · · -pb1-f1 is a hole, which therefore also contains an odd
number ≥ 3 of Y -complete edges. But this contradicts 2.3 which proves (1).

(2) There do not exist a, b with 1 < a < b ≤ n such that pa is an attachment
of F and pb is Y -complete.

Suppose that such a, b exist. From (1), there is an X-complete vertex in F ;
and from the minimality of F , there is a path pa-f1- · · · -fk such that F =
{f1, . . . , fk} and fk is the unique X-complete vertex in F . Let W1 be the set
of attachments of F \ {fk} in P , and W2 the set of attachments of F \ {f1}
in P . From the minimality of F , for i = 1, 2 there is a subpath pai

- · · · -pbi
of P

(= Pi say), such that no internal vertex of Pi is Y -complete, and Wi ⊆ V (Pi),
and either b2 = n or a2 = b2 = 1.

First assume that b2 = n. Choose P1, P2 minimal; then pa1 is a neigh-
bour of f1, and p1- · · · -pa1-f1- · · · -fk is a path P ′ say. Suppose that there is
a Y -complete vertex in P ′ different from p1. Then P ′ has length ≥ 4, and
(X, Y, P ′) is a pseudowheel, contrary to the optimality of (X, Y, P ). So there
are no Y -complete vertices in P ′. But also there are none in {pa1+1, . . . , pb1−1}
and none in {pa2+1, . . . , pb2−1}; so all the Y -complete vertices of P belong to
{pb1 , . . . , pa2}, except for p1. By 18.4 there is an odd number, at least 3, of



190 M. CHUDNOVSKY, N. ROBERTSON, P. SEYMOUR, AND R. THOMAS

Y -complete edges in this path. From the minimality of F , f1- · · · -fk-pa2-pa2−1-
· · · -pb1-f1 is a hole, which therefore also contains an odd number ≥ 3 of
Y -complete edges. But this contradicts 2.3.

So we may assume that a2 = b2 = 1, and that p1 ∈ W2, and therefore
b1 > 1. From the minimality of F there are no edges between F \ {f1} and
V (P \ p1). Choose P1 minimal. So pb1 is adjacent to f1, and either a1 = 1 or
pa1 is adjacent to f1. Suppose first that an odd number of edges of the path
p1- · · · -pa1 are Y -complete. Hence p1 has no neighbours in F \ {fk}, and so
f1- · · · -fk-p1- · · · -pa1-f1 is a hole. It contains an odd number of Y -complete
edges, and at least three Y -complete vertices, because p1 is Y -complete and
p2 is not, a contradiction to 2.3. So there is an even number of Y -complete
edges in the path p1- · · · -pa1 , and therefore an odd number in pb1- · · · -pn, since
there is an odd number in P , and none in P1. Therefore there is an odd
number in the path fk- · · · -f1-pb1- · · · -pn (= R say). But an edge of pb1- · · · -pn

is Y -complete and pn is not, so b2 ≤ n − 2; and since k ≥ 2, it follows that
R has length ≥ 4. Also, at least two vertices of R are Y -complete, and its
ends are not Y -complete, and its ends are its only X-complete vertices. This
contradicts 18.3, So there is no such F . This proves (2).

Choose b with 1 ≤ b ≤ n maximum such that pb is Y -complete. By (2),
none of p2, . . . , pb−1 are attachments of F , and since F is a counterexample, it
follows that p1 is an attachment of F and also there exists c with b ≤ c ≤ n

such that pc is an attachment of F . Choose c with c minimum, and let Q be a
path between p1, pc with interior in F . Then p1- · · · -pc-Q-p1 is a hole, and the
Y -complete edges in it are precisely the Y -complete edges in P . But there is
an odd number of such edges and at least 3, by 18.4, contrary to 2.3. Thus
there is no such F . This proves 18.6.

Now we come to the main result of this section, 1.8.8, which we restate:

18.7. Let G ∈ F7. If it contains a pseudowheel then it admits a balanced
skew partition. In particular, every recalcitrant graph belongs to F8.

Proof. Suppose G contains a pseudowheel; then it contains an optimal
pseudowheel, say (X, Y, P ), where P is p1- · · · -pn. Let Z be the set of all
Y -complete vertices in G. Now, Y, Z are disjoint, nonempty, and complete to
each other, and |Z| ≥ 2. Let F0 = V (G) \ (Y ∪ Z). By 15.2, we may assume
that F0 is connected and every vertex in Z has a neighbour in F0, for otherwise
the theorem holds. Choose i > 1 such that pipi+1 is Y -complete, and let A,B
be the two components of V (P \ pi). Since p1, pi+1 both have neighbours in
F0, it follows that F0 contains a minimal connected set F such that there are
vertices in A and in B with neighbours in F . Since F is minimal, it is disjoint
from V (P ); and disjoint from X ∪ Y since X ⊆ Z, contrary to 18.6. This
proves 18.7.
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19. Wheel systems

Henceforth, therefore, we can exclude pseudowheels, and so our graph G

belongs to F8. Please note that G might still contain wheels; not every wheel
can be converted to a pseudowheel. Our next goal is to show that if there is
a wheel in a member of F8 then the graph admits a balanced skew partition,
and in particular that there is no wheel in a recalcitrant graph. Assuming
there is no balanced skew partition, the strategy is to show that there is no
anticonnected set which is maximal such that there is a wheel of which it is a
hub. In other words, we want to show that given any wheel, there is a second
wheel whose hub is a proper superset of the hub of the first wheel. The proof
of this is quite complex, and we begin with an overview before we launch into
the details. But before the overview we need some definitions.

Let G be a graph. A frame in G is a pair (z, A0), where z ∈ V (G), and
A0 is a nonnull connected subset of V (G) \ {z}, containing no neighbours of z.
For the moment, fix a frame (z, A0). With respect to the given frame, a wheel
system in G of height t ≥ 1 is a sequence x0, . . . , xt of distinct vertices of
G \ (A0 ∪ {z}), satisfying the following conditions:

1. A0 contains neighbours of x0 and of x1, and no vertex in A0 is {x0, x1}-
complete.

2. For 2 ≤ i ≤ t, there is a connected subset of V (G) including A0, con-
taining a neighbour of xi, containing no neighbour of z, and containing
no {x0, . . . , xi−1}-complete vertex.

3. For 1 ≤ i ≤ t, xi is not {x0, . . . , xi−1}-complete.

4. z is adjacent to all of x0, . . . , xt.

Note that this definition is symmetric between x0, x1, so that x1, x0, x2, . . . , xt

is another wheel system.
A wheel system is defined with respect to a given frame, but it is con-

venient usually to leave the dependence on the frame implicit. Until 23.3 we
shall always be working with a fixed frame, and all wheel systems are with
respect to that frame.

Let x0, . . . , xt be a wheel system of height t. For 1 ≤ i ≤ t we define Xi =
{x0, . . . , xi}, and we define Ai to be the maximal connected subset of V (G)
that includes A0, contains no neighbour of z, and contains no Xi-complete
vertex. So for each i, Ai−1 ⊆ Ai. Note that condition 2 above just says that
xi has a neighbour in Ai−1.

Let x0, . . . , xt be a wheel system, and let Y be a nonempty anticonnected
subset of V (G) \ (A0 ∪ {z}). We say Y is a hub for the wheel system if
z, x0, . . . , xt−1 are all Y -complete and xt is not.
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Now we can begin the overview. Suppose there is a wheel system with
hub Y . We would like to infer that there is a wheel with hub Y . This is not in
general true, but our main theorem about wheel systems, the following, asserts
that this is true under some mild extra hypotheses:

19.1. Let G ∈ F8, let (z, A0) be a frame, and let x0, . . . , xt+1 be a wheel
system with hub Y , and with t ≥ 1. Define Ai, Xi as usual, and assume that
at most one member of Y has no neighbour in A1. Suppose that for all r with
1 ≤ r ≤ t, if x0, x1, . . . , xr, xt+1 is a wheel system, then every member of Y

has a neighbour in Ar ∪ {xt+1}. Then there is a wheel with hub Y .

The proof of this is lengthy, but here is the idea. Choose r with 1 ≤ r ≤ t,
minimal such that xt+1 has a neighbour in Ar and a nonneighbour in Xr. By
hypothesis, every member of Y has a neighbour in Ar ∪ {xt+1}. From the
minimality of r, either

• r = 1, or

• r > 1 and xt+1 has a neighbour in Ar−1, and xt+1 is Xr−1-complete, or

• r > 1 and xt+1 has no neighbour in Ar−1.

We handle these three cases separately; they are the results 19.2, 20.1, and
21.2 respectively. In the second case, we call the wheel system x0, x1, . . .

. . . , xr, xt+1 a “Y -diamond”, and prove the claim by induction on its height;
and in this case, it turns out that the hypothesis that every member of Y

has a neighbour in Ar ∪ {xt+1} is redundant (and indeed, so is the hypothesis
that z is Y -complete), and there is an advantage to relaxing these hypotheses,
to strengthen the inductive hypothesis. The proof of 19.1 is completed in
Section 21.

Now let us sketch how 19.1 will be applied. The first application is to
prove that no recalcitrant graph contains a wheel. For suppose that (C, Y )
is a wheel, with Y maximal. Since it is not an odd wheel, there are three
consecutive Y -complete vertices x0, z, x1 of C. Let A0 = V (C) \ {x0, z, x1};
then (z, A0) is a frame, and x0, x1 is a wheel system with respect to it. Since
G admits no balanced skew partition, there is a path T from z to A0 so that
no internal vertex of T belongs to Y or is Y -complete. Let y be the neighbour
of z in T . If we choose the rim C carefully, then because G contains no
pseudowheels, it can be shown (in the proof of 23.2) that y is adjacent to
x0, x1. Enlarge x0, x1 to a wheel system x0, . . . , xt such that x0, . . . , xt are all
Y ∪ {y}-complete, with t maximum. Since we may assume that G admits no
balanced skew partition, there is a path P from z to A0 so that no internal
vertex of T is in Xt or is Xt-complete. Let xt+1 be the neighbour of z in P ;
then x0, . . . , xt+1 is a wheel system, and so from the maximality of t, xt+1

has a nonneighbour in Y ∪ {y}. Hence Y ∪ {y} is a hub for the wheel system
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x0, . . . , xt+1. From the maximality of Y , there is no wheel with hub Y ∪ {y},
and since every member of Y has a neighbour in A0, we deduce from 19.1
that there exists r with 1 ≤ r ≤ t, such that x0, x1, . . . , xr, xt+1 is a wheel
system, and y has no neighbour in Ar ∪{xt+1}. In particular, y has only three
neighbours in C. On the other hand, recall that y was the second vertex of
the path T between z and A0. We deduce that the other neighbour of y in T

does not belong to Ar ∪ {xt+1}, and therefore there are vertices of T \ {y, z}
that are Xr-complete. Since G contains no pseudowheels, this turns out to be
impossible, as we show in the proof of 22.4.

There is another application of 19.1, to prove that in a recalcitrant graph,
if C is a hole of length at least 6 then no vertex has three consecutive neighbours
in C. But this application (in the proof of 23.3) is much less convoluted, since
at that stage we know there are no wheels, and we do not sketch it here.

The result of this section is the following. (Incidentally, we will not need
the hypothesis that there is no pseudowheel in G for several more sections.
What we are proving here is true also for graphs in F7, and we formulate it
that way, although we only need it for graphs in F8.)

19.2. Let G ∈ F7, and let (z, A0) be a frame. Let x0, x1, x2 be a wheel
system with respect to this frame, and define A1 as usual. Let Y ⊆ V (G) \
{z, x0, x1, x2} be anticonnected, such that

• x0, x1 are Y -complete and x2 is not, and

• every vertex in Y that is nonadjacent to x2 has a neighbour in A1 and is
adjacent to z.

Then z is Y -complete and there is a wheel (C, Y ) in G with x0, x1, z ∈ V (C) ⊆
{x0, x1, z} ∪ A1.

Proof. If possible, choose Y not satisfying the theorem, with |Y | minimal.
For fixed Y choose A ⊆ A1 minimal with the properties that

• A is connected

• x0, x1, x2 all have neighbours in A, and

• every vertex in Y that is nonadjacent to x2 has a neighbour in A.

It follows from the hypotheses that A, Y are both nonempty.

(1) There exists y ∈ Y adjacent to z and with a neighbour in A, such that
Y \ {y} is empty or anticonnected.

If |Y | = 1, let Y = {y}; then since x2 is not Y -complete it follows that y

is nonadjacent to x2, and therefore is adjacent to z and has a neighbour in
A and the claim holds. So assume |Y | > 1, and choose distinct y1, y2 ∈ Y
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such that Y \ {yi} is anticonnected (i = 1, 2). Neither y1 nor y2 is the unique
nonneighbour of x2 in Y ; so we may assume that x2 is not Y \ {y2}-complete.
By the minimality of |Y |, z is Y \{y2}-complete and there is a Y \{y2}-complete
vertex in A; and in particular, y1 is adjacent to z and has a neighbour in A,
so we may set y = y1. This proves (1).

Let y be as in (1), and let Y ′ = Y \ {y}.
(2) Either x2 is Y ′-complete and nonadjacent to y, or z is Y -complete and

there is a path x0-p1- · · · -pn-x1 from x0 to x1 with interior in A, con-
taining at least two Y ′-complete edges.

If x2 is Y ′-complete the first assertion holds, so we assume not; and in
particular Y ′ is nonempty. From the minimality of |Y |, z is Y ′-complete and
therefore Y -complete, and there is a path as in the claim. This proves (2).

(3) There is no connected F ⊆ A containing neighbours of all of x0, x1, x2, y

except A itself.

Suppose there is. From the minimality of A, some member of Y has no
neighbour in F and is nonadjacent to x2. In particular, x2 is not Y ′-complete,
so Y ′ is nonempty and by (2), at least two vertices of A are Y ′-complete. Since
F 	= A, there exists f ∈ A \ F such that A \ {f} is connected. But every
vertex in Y ∪ {x0, x1, x2} has a neighbour in A \ {f}; for all members of Y ′

have at least two neighbours in A (since A contains two Y ′-complete vertices),
and x0, x1, x2, y have neighbours in F . This contradicts the minimality of A,
and therefore proves (3).

Let x0-p1- · · · -pn-x1 be a path from x0 to x1 with interior in A, and let C

be the hole z-x0-p1- · · · -pn-x1-z.

(4) If any vertex of p1, . . . , pn is Y ∪ {x2}-complete then z is Y -complete;
and if z is Y -complete then no edge of x0-p1- · · · -pn-x1 is Y -complete.
In particular, neither of p1, pn is Y ∪ {x2}-complete.

Let pi be Y ∪ {x2}-complete, say, and suppose z is not Y -complete. By (2),
x2 is Y ′-complete and nonadjacent to y. Let Q be an antipath between z, y

with interior in Y ′, and let R be an antipath between x2, pi with interior in
{x0, x1}. Then z-Q-y-x2-R-pi-z is an antihole, meeting the hole C in at least
three vertices, contrary to 15.7. This proves the first assertion. The second is
immediate, for otherwise (C, Y ) satisfies the theorem. For the third, note that
if say pn is Y ∪{x2}-complete, then pnx1 is a Y -complete edge, a contradiction.
This proves (4).

(5) With p1, . . . , pn and C as in (4), if x0 is adjacent to x2, then x2 is non-
adjacent to all of p2, . . . , pn.

Suppose x2 is adjacent to one of p2, . . . , pn, and choose i with 2 ≤ i ≤ n

maximum such that x2 is adjacent to pi. Suppose first that i = n. Since
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x0, x1, pn belong to C, there is no antihole of length ≥ 5 containing them by
15.7. By (4), pn is not Y -complete, and hence there is an antipath between
pn, x2 with interior in this set, and it can be completed via x2-x1-x0-pn to an
antihole of length ≥ 5 containing x0, x1, pn, a contradiction. So i < n.

Since the hole C is even, it follows that n is odd. From the hole z-x2-pi- · · ·
· · · -pn-x1-z it follows that i is odd. Since i > 1, x0-x2-pi- · · · -pn-x1 is an odd
path of length ≥ 5. Its ends are Y ∪{z}-complete, and its internal vertices are
not, so by 13.6, Y ∪ {z} is not anticonnected. Hence z is Y -complete. The
ends of the same path are both Y -complete, so by 13.6, some edge of the path
is Y -complete. Since x2 is not Y -complete, this edge belongs to C, contrary
to (4). This proves (5).

Let us choose p1, . . . , pn and C such that either x2 is Y ′-complete or (C, Y ′)
is a wheel (this is possible by (2)).

(6) If x0 is adjacent to x2, then not both x2, y have neighbours in {p1, . . . , pn}.
If they do, then by (5) p1 is the only neighbour of x2 in {p1, . . . , pn}. Suppose
first that x2 is adjacent to y. By (2), z is Y -complete, and (C, Y ′) is a wheel,
and so every vertex in Y ′ has a neighbour in {p2, . . . , pn}. By (4) p1 is not
Y -complete. Therefore z, x0 are the only Y ∪{x2}-complete vertices in C, and
by 2.10 there is a hat or a leap. Since all vertices in Y ′ have a neighbour in
{p2, . . . , pn}, and y is adjacent to x1, it follows that there is no hat, and so y, x2

form a leap, a contradiction since they are adjacent. So x2 is nonadjacent to y.
Choose j with 1 ≤ j ≤ n minimum such that y is adjacent to pj . From the hole
z-x2-p1- · · · -pj-y-z we deduce that j is odd, and therefore x0-p1- · · · -pj-y-x0 is
not a hole, that is, j = 1, and hence p1 is adjacent to y. By (4) p1 is not
Y ′-complete. If x2 is Y ′-complete, then an antipath between p1 and y with
interior in Y ′ can be extended to an antihole via y-x2-x1-p1 which shares the
vertices p1, x1, x2 with the hole z-x2-p1- · · · -pn-x1-z, contrary to 15.7. So x2

is not Y ′-complete. By (2), z is Y -complete, and (C, Y ′) is a wheel. By 16.1
applied to the wheel (C, Y ′) and vertex x2, it follows that p1 is Y ′-complete
and therefore Y ∪ {x2}-complete, contrary to (4). This proves (6).

(7) Not both x2, y have neighbours in {p1, . . . , pn}.
By (6) we may assume that x2 is nonadjacent to x0, and similarly nonadjacent
to x1. Choose i with 1 ≤ i ≤ n maximal such that x2 is adjacent to pi. From
the hole z-x2-pi- · · · -pn-x1-z it follows that i is odd. Suppose first that x2 is not
Y ′-complete. By (2), z is Y -complete and (C, Y ′) is a wheel. By 16.1, pi, z have
the same wheel-parity, and so there are an odd number of Y ′-complete edges
in pi- · · · -pn-x1. By (4) no edge of the path x0-p1- · · · -pn-x1 is Y -complete.
Consequently zx1 is the unique Y -complete edge of the hole z-x2-pi- · · · -pn-x1-z
(= C1 say). Suppose that y is nonadjacent to all x2, pi, . . . , pn. Now y has a
neighbour in {p1, . . . , pn} by hypothesis, so {p1, . . . , pn, x2} (= F say) catches
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the triangle {z, x1, y}. The only neighbour of z in F is x2; the only neighbour
of x1 in F is pn; and y is nonadjacent to both x2, pn by assumption. By 17.1,
F includes a reflection of the triangle; but then i = n and there is an antihole
of length 6 using z, x1, pn, contrary to 15.7. This proves that y is adjacent to
one of x2, pi, . . . , pn.

Since there is an odd number of Y ′-complete edges in the path pi- · · · -pn-x1,
every member of Y is adjacent to one of x2, pi, . . . , pn. Consequently Y contains
no hat for C1. Assume that C1 has length ≥ 6. By 2.10, Y contains a leap, so
there are nonadjacent y1, y2 ∈ Y such that y1-x2-pi- · · · -pn-y2 is a path, of odd
length ≥ 5. But the ends of this path are {x0, x1}-complete and its internal
vertices are not, contrary to 13.6. So C1 has length 4; that is, i = n, and pn

is Y ′-complete. By (4), pn is nonadjacent to y, and therefore y is adjacent to
x2 (since we already showed that y is adjacent to one of x2, pi, . . . , pn).

From the symmetry between x0, x1 we deduce that the same holds for p1,
that is, p1 is Y ′ ∪ {x2}-complete and nonadjacent to y. Let Q be an antipath
between x2, y with interior in Y ′; then the three antipaths p1-x1, pn-x0 and
y-Q-x2 form a long prism in G with triangles {p1, pn, y} and {x1, x0, x2}, a
contradiction. This proves (7) assuming that x2 is not Y ′-complete.

We therefore assume that x2 is Y ′-complete, and consequently nonadja-
cent to y. Now {x2, p1, . . . , pn} is connected and catches the triangle {z, x1, y}.
By 15.7, it contains no reflection of the triangle, since as before that would give
an antihole of length 6 with three vertices in C. So by 17.1, there is a vertex
in {x2, p1, . . . , pn} with two neighbours in the triangle. The only neighbour of
z in it is x2, which is nonadjacent to both x1, y. The only neighbour of x1 in it
is pn, and therefore y is adjacent to pn. We recall that i is maximal such that
x2 is adjacent to pi. Since y is adjacent to pn, we may choose j with i ≤ j ≤ n

minimal such that y is adjacent to pj . From the hole z-x2-pi- · · · -pj-y-z we
see that j is odd. Suppose j 	= i. Then the path x2-pi- · · · -pj-y is even and
has length ≥ 4. By 13.7 with anticonnected sets {x0, x1}, Y ′ ∪ {z} we deduce
that Y ′ ∪ {z} is not anticonnected, and hence z is Y -complete. Consequently,
by (4), no edge of x0-p1- · · · -pn-x1 is Y -complete, and in particular pn is not
Y -complete, and therefore not Y ′-complete (since pn is adjacent to y). Be-
cause there is no Y -complete edge in the odd path pj- · · · -pn-x1, and the Y -
complete vertex z has no neighbour in its interior, it follows from 2.2 that pj

is not Y -complete and hence not Y ′-complete. By 18.2 with sets {x0, x1}, Y ′,
since the {x0, x1} ∪ Y ′-complete vertex z has no neighbours in A, there are an
odd number of Y ′-complete edges in the path x2-pi- · · · -pj-y. Since y is not
Y ′-complete, they all belong to the path x2-pi- · · · -pj . Since x2z, zx1 are both
Y ′-complete edges and x1pn is not, pj , pn have opposite wheel-parity with re-
spect to the wheel (C1, Y

′), where C1 is z-x2-pi- · · · -pn-x1-z. But pj , pn are
both not Y ′-complete, and so (C1, Y

′) is an odd wheel, contrary to G ∈ F7.
This proves that j = i, that is, y is adjacent to pi.
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Suppose that i < n. If pi is not Y -complete then an antipath between pi

and y with interior in Y ′ can be extended via y-x2-x1-pi to an antihole sharing
the vertices pi, x1, x2 with the hole z-x2-pi- · · · -pn-x1-z (= C1 say), contrary to
15.7. So pi is Y -complete, and therefore so is z, by (4). But then (C1, Y ) is an
odd wheel, since z, x1, pi are Y -complete and x2, pn are not (by (4)), contrary
to G ∈ F7. So i = n, and hence pn is adjacent to both x2, y. From the
symmetry between x0, x1 it follows that p1 is adjacent to both x2, y. By (4),
p1, pn are not Y -complete. So in G, the connected set Y ∪ {p1, pn} catches
the triangle {x0, x1, x2}; x0, x1, x2 all have unique neighbours in G, namely
pn, p1, y respectively; and these three vertices do not form a triangle since yp1

is not an edge (of G), contrary to 17.1. This proves (7).

(8) If x2 is nonadjacent to y then it is nonadjacent to both x0, x1.

Assume x2 is nonadjacent to y and adjacent to x0 say. Now A ∪ {x1} catches
the triangle {z, x0, x2}; it contains no reflection of this triangle, since x0, x1

have no common neighbour in A; the unique neighbour of z in this set is
nonadjacent to both x0, x2. So by 17.1, there is a vertex in A adjacent to
both x0, x2. Also, A∪x2 catches the triangle {z, x1, y}. Suppose that A∪{x2}
contains a reflection of this triangle; then there exists f ∈ A adjacent to x1, x2

and not to y. Since f ∈ A, f is nonadjacent to x0; but then f -x2-x0-y-x1-f is
an odd hole, a contradiction. Hence by 17.1 there is a vertex in A adjacent
to both x1, y. Consequently from (3), A is the vertex set of a path f1- · · · -fk,
where f1 is adjacent to x0, x2, and fk to x1, y. Since f1 ∈ A, f1 is not adjacent
to x1.

Now assume that f1 is not the unique neighbour of x2 in A. From (3), f1

is the unique neighbour of x0 in A. By (7), fk is not the unique neighbour of
x1 in A, and so from (3) it is the unique neighbour of y in A. In particular y

is not adjacent to f1. Both x0, z have unique neighbours in A ∪ {x1} = F say,
namely f1, x1 respectively. Now x0, z are both {x2, y}-complete, and f1, x1 are
not. Since F \ {x1} is connected, this contradicts 17.3. So f1 is the unique
neighbour of x2 in A. Suppose that fk is the unique neighbour of y in A.
Then both z, y have unique neighbours in A∪{x2}, namely x2, fk respectively;
and z, y are {x0, x1}-complete, and x2, fk are not. Once again this contradicts
17.3. So fk is not the unique neighbour of y in A, and therefore it is the
unique neighbour of x1 in F .

Suppose that fk is Y -complete. Since fk = pn, it follows from (4) that z is
not Y -complete; and so x2 is Y ′-complete by (2), and an antipath between z, y

with interior in Y ′ can be extended to an antihole via y-x2-fk-z, which shares
the vertices z, x2, fk with the hole z-x2-f1- · · · -fk-x1-z (= C1 say), contrary to
15.7. So fk is not Y -complete and therefore not Y ′-complete (and in particular,
Y ′ is nonempty).
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Suppose that z is not Y -complete; and therefore Y ′∪{z} is anticonnected,
and x2 is Y ′-complete by (2). Choose h with 1 ≤ h < k minimal such that fh

is adjacent to y (this exists since fk is not the unique neighbour of y in A).
The path x2-f1- · · · -fh-y is even, since it can be completed to a hole via y-z-x2,
and therefore the path x2-f1- · · · -fh-y-x1 is odd (this is a path since fk is the
unique neighbour of x1 in A). The ends of this path are Y ′ ∪ {z}-complete,
and its internal vertices are not. By 13.6 it has length 3. So f1 is adjacent to
y and x2. If f1 is not Y ′-complete, then an antipath between f1, y with interior
in Y ′ can be completed to an antihole via y-x2-x1-f1, which shares the vertices
x1, x2, f1 with the hole C1, contrary to 15.7; while if f1 is Y -complete, then
an antipath between z, y with interior in Y ′ can be completed to an antihole
via y-x2-x1-f1-z, again contrary to 15.7. This proves that z is Y -complete.

In the hole C1, z, x1 are Y -complete and x2, fk are not; so since G ∈ F7,
no other vertex of C1 is Y -complete. By 2.10, Y contains a leap or hat
for C1. From a hypothesis of the theorem, every vertex in Y has a neighbour
in A ∪ {x2}, so there is no hat, and hence there exist nonadjacent y1, y2 in
Y such that y1-x2-f1- · · · -fk-y2 is a path. Since both ends of this path are
{x0, x1}-complete, and no internal vertex is {x0, x1}-complete, this contradicts
13.6 and proves (8).

(9) There is no connected F ⊆ A containing neighbours of all of x0, x1, x2

except A itself.

Suppose that such a set F exists with F 	= A, and choose f ∈ A \ F such that
A\{f} is connected. From the minimality of A, there exists y′ ∈ Y nonadjacent
to x2 with no neighbour in A \ {f}, and therefore f is the unique neighbour
of y′ in A. If y′ ∈ Y ′, then x2 is not Y ′-complete, and therefore by (2) there
are two Y ′-complete vertices in A, a contradiction. So y′ = y, and therefore y

is not adjacent to x2. Suppose that x2 is not adjacent to f . Then both z, y

have unique neighbours in A ∪ {x2}, namely x2, f ; z, y are {x0, x1}-complete,
and x2, f are not; f -y-z-x2 is a path; and x0, x1 both have neighbours in A,
contrary to 17.3. So x2 is adjacent to f . By (8) x2 is nonadjacent to both
x0, x1. Since f is not {x0, x1}-complete, we may assume from the symmetry
that f is nonadjacent to x1. Now A ∪ {x2} catches the triangle {z, y, x1}; the
only neighbour of z in A∪{x2} is x2; the only neighbour of y in A∪{x2} is f ;
x2, f are both nonadjacent to x1; and so by 17.1, A∪{x2} contains a reflection
of the triangle. Hence there exists f1 ∈ A\{f}, adjacent to x1, x2, f and not to
y (and therefore not to x0). Since every path between x0, x1 with interior in A

has length ≥ 4 it follows that x0 is nonadjacent to f, f1, and this restores the
symmetry between x0, x1. Consequently by the same argument there exists
f0 ∈ A \ {f} adjacent to x2, f, x0 and not to y, x1. Since z-x0-f0-f1-x1-z is not
an odd hole, f0 is nonadjacent to f1; but then x0-f0-f -f1-x1 violates (7). This
proves (9).
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From (7) and (9), there exists f ∈ A such that A \ {f} is connected, f

does not belong to C, and f is the unique neighbour of x2 in A.

(10) x2 is nonadjacent to both of x0, x1.

Suppose that x2 is adjacent to x0 say. Suppose first that x0 is not adjacent
to f . Then A ∪ {x1} catches the triangle {z, x2, x0}; the only neighbour of z

in A ∪ {x1} is x1; the only neighbour of x2 in A ∪ {x1} is f . Both x1 and
f are nonadjacent to x0, and A ∪ {x1} contains no reflection of the triangle
since that would give a 6-antihole with 3 vertices in common with C, contra-
dicting 17.1. So x0 is adjacent to f , and therefore x1 is nonadjacent to both
x2, f . By (8) x2 is adjacent to y, and therefore not Y ′-complete. By (2) z is
Y ′-complete and (C, Y ′) is a wheel. Let x2-q1- · · · -qk-x1 be a path between
x1, x2 with interior in A (so f = q1) and let C1 be the hole z-x2-q1- · · · -qk-x1-z.
From (9), A = {q1, . . . , qk}. Since qk = pn and z is Y -complete, it follows from
(4) that qk is not Y -complete. Since (C1, Y ) is not an odd wheel, (C1, Y ) is
not a wheel, and so z, x1 are the only Y -complete vertices in C1, by 2.3. By
2.10, Y contains a leap or hat for C1. But y is adjacent to x2, and all other
vertices of Y have at least two neighbours in {p1, . . . , pn}, which is a subset of
{q1, . . . , qk}, a contradiction. This proves (10).

From (9) one of x0, x1 has a unique neighbour in A, and from the symmetry
we may assume it is x1. Let its neighbour be f1. By (7) and (9), x2 has no
neighbour in {p1, . . . , pn}, and in particular f 	= f1. Let Q be a path in A

between f, f1, say f = q1- · · · -qk = f1, so that z-x2-q1- · · · -qk-x1-z is a hole (C1

say).

(11) z is not Y ′-complete, and x2 is Y ′-complete and nonadjacent to y.

Assume z is Y ′-complete. Now, z, x1 both have unique neighbours in A∪{x2},
namely x2, f1. By (4), f1 is not Y -complete. So z, x1 are Y -complete, and
x2, f1 are not. By 17.3, some vertex in Y has no neighbour in A. But y

has a neighbour in A by (1), and so some vertex in Y ′ has no neighbour in
A. In particular, there is no Y ′-complete vertex in A, and so by (2), x2 is
Y ′-complete and nonadjacent to y. From 17.3 applied to the path x2-z-x1-f1

and the anticonnected set {y}, it follows that y is adjacent to f1. Since (C1, Y )
is not an odd wheel, it follows from 2.10 that Y contains a leap or a hat for C1.
Since all members of Y ′ are adjacent to x2 and y is adjacent to f1, there is no
hat, and the leap must use y; so we may assume y, y′ is a leap for some y′ ∈ Y ′.
Hence y-f1-Q-f -x2-y′ is a path. Since this path has odd length ≥ 5, and its
ends are {x0, x1}-complete and its internal vertices are not, this contradicts
13.6. So z is not Y ′-complete. The claim follows from (2). This proves (11).

(12) y is nonadjacent to all of q1, . . . , qk−1.
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Suppose not, and choose i with 1 ≤ i < k minimum such that y is adjacent
to qi. From the hole z-x2-q1- · · · -qi-y-z it follows that i is odd. So by (10)
x2-q1- · · · -qi-y-x1 is an odd path. Its ends are Y ′ ∪ {z}-complete, its internal
vertices are not, and Y ′ ∪ {z} is anticonnected by (11); so it has length 3
by 13.6, that is, i = 1 and y is adjacent to f . If f is not Y ′-complete, an
antipath between f, y with interior in Y ′ can be completed to an antihole via
y-x2-x1-f , sharing the vertices x1, x2, f with C1, contrary to 15.7. Thus, f

is Y ′-complete. Since z is not, an antipath between z, y with interior in Y ′

can be completed to an antihole via y-x2-x1-f -z, again contrary to 15.7. This
proves (12).

To conclude, A ∪ {x2} catches {y, z, x1}, and so by 17.1, y is adjacent to
f1 = qk. Suppose that x0 is adjacent to one of q1, . . . , qk. Then {p1, . . . , pn} ⊆
{q1, . . . , qk} from the minimality of A, and so the neighbours of y in C are
precisely x0, z, x1, qk = pn, contrary to 2.3 applied to C and y. So x0 is
nonadjacent to all of q1, . . . , qk; but then x2-q1- · · · -qk-y-x0 is an odd path of
length ≥ 5, its ends are Y ′ ∪ {z}-complete, and its internal vertices are not,
contrary to 13.6. Thus there is no such choice of Y . This proves 19.2.

20. Diamond and square wheel systems

Now we turn to the second of the three steps of the proof of 19.1. We
need two special kinds of wheel systems. Let x0, . . . , xt be a wheel system, and
define Xi, Ai as usual. Let Y ⊆ V (G) be nonempty and anticonnected, such
that Y is disjoint from {z, x0, . . . , xt}, and x0, . . . , xt−1 are all Y -complete and
xt is not. We say x0, . . . , xt is a

• Y -diamond if t ≥ 3, xt is Xt−2-complete, and xt has a neighbour in At−2,

• Y -square if t ≥ 3, xt is adjacent to xt−1, xt has no neighbour in At−2,
and there is a vertex in At−1 adjacent to xt with a neighbour in At−2.

A Y -diamond x0, . . . , xt is said to be polished if t ≥ 4, xt−1 is not Xt−3-
complete, xt has no neighbour in At−3, xt−1 has a neighbour in At−3, and
there is a vertex in At−2 adjacent to both xt, xt−1 with a neighbour in At−3.

We need four lemmas to prove the main result of this section, which is the
following.

20.1. Let G ∈ F7 and let (z, A0) be a frame. For all Y ⊆ V (G)\(A0∪{z}),
if Y is nonempty and anticonnected, and there is either a Y -diamond or a
Y -square in G, then z is Y -complete and G contains a wheel with hub Y .

Proof of 20.1, assuming 20.2, 20.3, 20.4, and 20.5. We shall prove by
induction on t that for any nonempty anticonnected Y ⊆ V (G) \ (A0 ∪ {z}),
if there is a Y -diamond or a Y -square in G of height t, then z is Y -complete
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and G contains a wheel with hub Y . Certainly t ≥ 3, and if t = 3 then the
result holds by 20.2, so we may assume that t ≥ 4. By 20.3 and 20.4, we
may assume that there is an anticonnected set Y ′ with Y ′ ⊆ V (G)\ (A0 ∪{z})
such that either Y ⊆ Y ′ or z is not Y ′-complete, and such that either:

• there is a Y ′-diamond in G of height t − 1, or

• there is a Y ′-square in G of height t − 1, or

• there is a polished Y ′-diamond in G of height t.

In the first two cases, it follows from the inductive hypothesis that z is
Y ′-complete, and there is a wheel with hub Y ′. Since z is Y ′-complete, Y ⊆ Y ′,
and so z is Y -complete and there is a wheel with hub Y , as required. Thus we
may assume that the third case holds. By 20.2 it follows that t ≥ 5; and by
20.5, there is an anticonnected set Y ′′ with Y ′′ ⊆ V (G) \ (A0 ∪ {z}) such that
either Y ′ ⊆ Y ′′ or z is not Y ′′-complete, and either

• there is a Y ′′-diamond in G of height t − 2, or

• there is a Y ′′-square in G of height t − 2, or

• there is a polished Y ′′-diamond in G of height t − 1.

In each case from the inductive hypothesis, z is Y ′′-complete and there is a
wheel with hub Y ′′. Consequently Y ′ ⊆ Y ′′, and so z is Y ′-complete; and
therefore Y ⊆ Y ′, and so z is Y -complete, and there is a wheel with hub Y .
This proves 20.1.

Now we turn to the proofs of the lemmas. First we show:

20.2. Let G ∈ F7, let (z, A0) be a frame, and let Y ⊆ V (G) \ (A0 ∪ {z})
be nonempty and anticonnected. There is no Y -square of height 3 or polished
Y -diamond of height 4 in G; and if x0, . . . , x3 is a Y -diamond of height 3, then
z is Y -complete and G contains a wheel (C, Y ∪ {x3}).

Proof. Let x0, . . . , xt be a wheel system in G, and let Xi, Ai be defined
as before. Suppose first that x0, . . . , xt is a Y -square of height 3. So t = 3,
x3 is adjacent to x2, x3 has no neighbour in A1, and there is a vertex q in A2

adjacent to x3 with a neighbour in A1. From the maximality of A1 it follows
that q is X1-complete, and therefore nonadjacent to x2 (since it belongs to A2

and so is not X2-complete). Let Q be a path from q to x2 with interior in A1

where Q has length ≥ 2. But Q is even since it can be completed to a hole
via x2-x3-q, and so q-Q-x2-z is an odd path; its ends are X1-complete, and its
internal vertices are not. By 13.6 it has length 3, and there is an antipath with
interior in X1, joining its middle vertices (x2 and r say). This antipath can be
completed via r-z-q-x2 to an antihole of length ≥ 6, containing x0, x1 and z.
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But let P be a path from x0 to x1 with interior in A0; then it has length ≥ 3
since A0 contains no vertex adjacent to both x0, x1, and hence z-x0-P -x1-z is a
hole of length ≥ 6 containing x0, x1 and z. This contradicts 15.7, as required.

Now suppose x0, . . . , xt is a polished Y -diamond of height 4. So t = 4,
x4 is X2-complete, x3 is not X1-complete, x4 has no neighbour in A1, x3 has
a neighbour in A1, and there is a vertex q in A2 adjacent to both x4, x3 with
a neighbour in A1. As before q is X1-complete, and therefore not adjacent to
x2; let Q be a path from q to x2 with interior in A1. The proof is completed
exactly as in the previous paragraph.

Now we may assume that x0, . . . , xt is a Y -diamond of height 3. Also
t = 3, x3 is X1-complete (and therefore nonadjacent to x2), and x3 has a
neighbour in A1. But then from 19.2 with A = A1, v = x2 and anticonnected
set Y ∪ {x3}, the result follows. This proves 20.2.

We remark that the pieces of this jigsaw do not seem to fit well together.
There is some annoying wastage in 20.2; we produce a wheel with hub Y ∪{x3},
and all we use in proving 20.1 is that there is a wheel with hub Y . Perhaps
there is a better way to organize it, but so far it eludes us.

20.3. Let G ∈ F7, let (z, A0) be a frame, and let Y ⊆ V (G) \ (A0 ∪ {z})
be nonempty and anticonnected. Let x0, . . . , xt be a Y -diamond in G of height
t ≥ 4. Suppose that there is no anticonnected set Y ′ with Y ⊆ Y ′ ⊆ V (G) such
that either :

• there is a Y ′-diamond in G of height t − 1, or

• there is a Y ′-square in G of height t − 1, or

• there is a polished Y ′-diamond in G of height t.

Then z is Y -complete and G contains a wheel (C, Y ).

Proof. Assume that either z is not Y -complete or G contains no wheel
(C, Y ). Define Xi, Ai as usual. So xt is Xt−2-complete, and xt has a neighbour
in At−2, and Y is complete to Xt−1 and not to xt.

(1) Not both xt and xt−1 have neighbours in At−3.

Suppose they do. If xt−1 is Xt−3-complete, then

x0, . . . , xt−1

is a Y ∪ {xt}-diamond of height t− 1, while if xt−1 is not Xt−3-complete, then

x0, . . . , xt−3, xt−1, xt

is a Y -diamond of height t− 1, in both cases a contradiction. This proves (1).
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(2) There is a vertex q in At−2 adjacent to both xt and xt−1, and a path R

in At−2 from q to At−3 such that not both xt and xt−1 have neighbours
in At−3 ∪ V (R \ q).

Let F be a minimal connected subgraph of At−2 including At−3 and containing
neighbours of both xt and xt−1. If xt, xt−1 have a common neighbour in F ,
then the claim is satisfied (from the minimality of F ), and so we assume not.
Let P be a path between xt and xt−1 with interior in F , say xt-p1- · · · -pn-xt−1.
Then P has length > 2, and the hole z-x1-P -x2-z (= C say) exists, it follows
that P is even. The only Xt−2-complete vertices in C are z and xt, so by
2.10, Xt−2 contains a leap or a hat for C. Suppose it contains a leap; then
there are nonadjacent xi, xj ∈ Xt−2 such that xi-p1- · · · -pn-xt−1-xj is an odd
path. Since xi, xj are Y ∪ {xt}-complete, it follows from 13.6 that this path
contains another Y ∪ {xt}-complete vertex, which must be p1 since no others
are adjacent to xt. Its ends are also Y ∪{xt, z}-complete, and no internal vertex
is Y ∪{xt, z}-complete, so that by 13.6, Y ∪{xt, z} is not anticonnected; that
is, z is Y -complete. But when C1 is the hole z-xi-p1- · · · -pn-xt−1-z then (C1, Y )
is a wheel, a contradiction.

So Xt−2 contains a hat for C; that is, there exists xi ∈ Xt−2 with no
neighbours in C except xt, z. Hence the path xi-xt-p1- · · · -pn-xt−1 is odd and
has length ≥ 5, and its ends are Y ∪ {z}-complete, and no internal vertex is
Y ∪{z}-complete; so by 13.6, z is Y -complete. Let S be a path between xi and
xt−1 with interior in F . Then V (S ∪P ) \ {xi, xt} ( = F ′ say) is connected and
catches the triangle {z, xi, xt}. The only neighbour of z in F ′ is xt−1, which is
nonadjacent to both xi, xt. If F ′ contains a reflection of the triangle, there is
an antihole of length 6 containing z, xt−1, xt, which is impossible by 15.7 since
these three vertices belong to C. Thus by 17.1, there is a vertex in F ′ adjacent
to both xi, xt. Since xi has no neighbour in P \xt, both xt, xt−1 have neighbours
in the interior of S, and so there is a path P ′ between xt, xt−1 with P ′ \ xt a
subpath of S \ xi. As before P ′ has length ≥ 4, and so S has length ≥ 4, and
P ′, S both have even length since they can be completed to holes through z.
Since the Xt−2-complete vertex z has no neighbours in the interior of P ′, from
18.2 (applied to P ′ with anticonnected sets Y and Xt−2) it follows that there
is a Y -complete edge in P ′, and since xt is not Y -complete, there is therefore
one in S. But since the edges zxt−1, zxi are also Y -complete, we deduce that
there are at least three Y -complete edges in the hole z-xi-S-xt−1-z, such that
the hole is the rim of a wheel with hub Y , a contradiction. This proves (2).

Choose q, R as in (2) with R minimal, and let R be r1- · · · -rn, where r1 = q

and rn is the only vertex of R in At−3 .

(3) xt−1 has neighbours in At−3.

Assume not. It follows that q /∈ At−3, and so R has length > 0. Suppose
first that every antipath between xt−1 and q with interior in Xt−2 is odd, and
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let Q be such an antipath. Since all internal vertices of Q have neighbours in
At−3, and z is complete to its interior and anticomplete to At−3, it follows from
2.2 applied in G that one end of Q has a neighbour in At−3. By hypothesis,
xt−1 does not, so q does. From the maximality of At−3 it follows that q is
Xt−3-complete; and since q ∈ At−2 and is therefore not Xt−2-complete, q is
nonadjacent to xt−2. Now by assumption, every antipath between xt−1 and q

with interior in Xt−2 is odd, and so xt−2 is adjacent to xt−1. But then

x0, . . . , xt−1

is a Y ∪ {xt}-square of height t − 1, a contradiction. Now, we may assume
some antipath Q between xt−1 and q with interior in Xt−2 is even.

From (2), not both xt, xt−1 have neighbours in At−3 ∪ V (R \ q). Suppose
that xt−1 has such a neighbour, and so xt does not. Since by assumption xt−1

has no neighbours in At−3, it follows that all neighbours of xt−1 in At−3 ∪
V (R \ q) lie in the interior of R, and in particular R has length ≥ 2. The
antipath xt-xt−1-Q-q is odd, and its ends have no neighbours in the connected
set At−3 ∪ {r3, . . . , rn}. Since z is complete to its interior and anticomplete to
At−3∪{r3, . . . , rn}, it follows from 2.2 applied in G that some internal vertex of
this antipath has no neighbours in At−3∪{r3, . . . , rn}. But all internal vertices
of Q lie in Xt−2 and therefore have neighbours in At−3; so xt−1 has no neighbour
in At−3∪{r3, . . . , rn}. Hence r2 is its only neighbour in At−3∪V (R\q). Suppose
that every antipath between xt−1 and r2 with interior in Xt−2 is odd, and let
Q′ be such an antipath. All internal vertices of Q′ have neighbours in the
connected set At−3, and z is complete to the interior of Q′ and anticomplete
to At−3; so by 2.2 applied in G, it follows that r2 has neighbours in At−3.
From the maximality of At−3, r2 is Xt−3-complete, and therefore not adjacent
to xt−2. Since by assumption every antipath between xt−1 and r2 with interior
in Xt−2 is odd, xt−1 is adjacent to xt−2. But then

x0, . . . , xt−1

is a Y ∪ {xt}-square of height t − 1, a contradiction. So some antipath
Q′ between xt−1 and r2 with interior in Xt−2 is even. Hence the antipath
xt−1-Q′-r2-z is odd. All its internal vertices have neighbours in the connected
set At−3∪{r3, . . . , rn} and its ends do not, so by 13.6 this antipath has length 3;
that is, Q′ has length 2. Let xi be its middle vertex. Then the connected set
At−3∪V (R\{r1, r2})∪{xi, xt, z} ( = F say) catches the triangle {r1, r2, xt−1};
the only neighbours of r1 in F are xt and possibly xi; the neighbours of r2 in
F lie in At−3∪{r3}; and the only neighbour of xt−1 in F is z. This contradicts
17.1, since z has no neighbour in At−3 ∪ {r3}.

So xt−1 has no neighbours in At−3∪V (R\q). Now the antipath z-q-Q-xt−1

is odd, and all its internal vertices have neighbours in At−3 ∪ V (R \ q), and
its ends do not. Thus, by 13.6 it has length 3; that is, Q has length 2 (let
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its middle vertex be xi); there is an odd path P between q, xi with interior in
At−3 ∪ V (R \ q). Let C be the hole z-xt−1-q-P -xi-z; then C has length ≥ 6.
By 15.7 there is no antihole of length ≥ 6 containing q, xi, xt−1. If q is not
Y -complete then an antipath between q, xt with interior in Y can be completed
to such an antihole via xt-xt−1-xi-q. Now q is Y -complete; and if z is not
Y -complete, an antipath between z and xt with interior in Y can be extended
to such an antihole, via xt-xt−1-xi-q-z. So z is also Y -complete. Hence the
hole C contains at least three Y -complete edges, namely xiz, zxt−1 and xt−1q,
a contradiction. This proves (3).

From (3) and the choice of R it follows that xt has no neighbours in
At−3 ∪ V (R \ q). Let Q be an antipath between q and xt−1 with interior in
Xt−2. Then z-q-Q-xt−1-xt is an antipath of length ≥ 4, and its ends have no
neighbours in the connected set At−3 ∪ V (R \ q), and its internal vertices do;
so by 13.6 it has even length; that is, Q is even. The antipath xt-xt−1-Q-q
is therefore odd, and its internal vertices have neighbours in At−3, and z is
complete to its interior and anticomplete to At−3; so by 2.2 applied in G, it
follows that one of its ends, and hence q, has a neighbour in At−3. From the
maximality of At−3 it follows that q is Xt−3-complete and therefore nonadjacent
to xt−2. If xt−1 is not Xt−3-complete, then

x0, . . . , xt

is a polished Y -diamond of height t; while if xt−1 is Xt−3-complete, then

x0, . . . , xt−1

is a Y ∪{xt}-diamond of height t−1, in both cases a contradiction. This proves
20.3.

20.4. Let G ∈ F7, let (z, A0) be a frame, and let Y ⊆ V (G)\ (A0∪{z}) be
nonempty and anticonnected. Let x0, . . . , xt be a Y -square in G of height t ≥ 4.
Then there is a nonempty anticonnected set Y ′ with Y ′ ⊆ V (G) \ (A0 ∪ {z})
such that either Y = Y ′ or z is not Y ′-complete, and such that either :

• there is a Y ′-diamond in G of height t − 1, or

• there is a Y ′-square in G of height t − 1, or

• there is a polished Y ′-diamond in G of height t.

Proof. Assume that no such Y ′ exists. Define Xi, Ai as usual. Now, xt

is adjacent to xt−1, xt has no neighbour in At−2, there is a vertex q in At−1

adjacent to xt with a neighbour in At−2, and Y is complete to Xt−1 and not
to xt. From the maximality of At−2 it follows that q is Xt−2-complete. Since
q ∈ At−1, it is not Xt−1-complete, and so q is nonadjacent to xt−1.

(1) xt−1 has neighbours in At−3.



206 M. CHUDNOVSKY, N. ROBERTSON, P. SEYMOUR, AND R. THOMAS

Suppose not. Let R be a path between q and xt−1 with interior in At−2.
Then R has length ≥ 2, and from the hole q-R-xt−1-xt-q it follows that R has
even length. So the path q-R-xt−1-z is odd, and its ends are Xt−2-complete,
and its interior vertices are not; so by 13.6 it has length 3; that is, R has
length 2. Let its middle vertex be r. Since xt−1 has no neighbour in At−3,
it follows that r ∈ At−2 \ At−3. Let Q be an antipath between r and xt−1

with interior in Xt−2. Since r-Q-xt−1-q-z-r is an antihole, Q is odd. All its
internal vertices have neighbours in At−3, and one end xt−1 does not, and z

is complete to its interior and anticomplete to At−3. By 2.2 applied in G, r

has neighbours in At−3. Hence r is Xt−3-complete, and nonadjacent to xt−2.
Since z-xt−1-r-q-xt−2-z is not an odd hole, xt−2 is adjacent to xt−1. But then

x0, . . . , xt−1

is a {q}-square of height t − 1, and yet z is not {q}-complete, a contradiction.
This proves (1).

(2) q has neighbours in At−3.

Suppose not. Let S be an antipath between xt and xt−1 with V (S) ⊆ Xt, that
is, with interior in Xt−2. Then xt-S-xt−1-q is an antipath with length ≥ 3; by
(1), all its internal vertices have neighbours in At−3, and its ends do not, and
z is complete to its interior and anticomplete to At−3; so by 2.2 applied in G

it follows that S has odd length. But then xt-S-xt−1-q-z has odd length ≥ 5,
and its internal vertices have neighbours in At−2 and its ends do not, contrary
to 13.6 applied in G. This proves (2).

If xt−1 is Xt−3-complete, then

x0, . . . , xt−1

is a {q}-diamond of height t−1, and yet z is not {q}-complete, a contradiction.
So xt−1 is not Xt−3-complete. It follows from (2) that if xt is Xt−3-complete
then

x0, . . . , xt−3, xt−1, xt−2, xt

is a polished Y -diamond of height t, while if xt is not Xt−3-complete then

x0, . . . , xt−3, xt−1, xt

is a Y -square of height t− 1, in either case a contradiction. This proves 20.4.

20.5. Let G ∈ F7, let (z, A0) be a frame, and let Y ⊆ V (G) \ (A0 ∪ {z})
be nonempty and anticonnected. Let x0, . . . , xt+1 be a polished Y -diamond in
G of height t + 1 ≥ 5. Then there is a nonempty anticonnected set Y ′ with
Y ′ ⊆ V (G) \ (A0 ∪ {z}) such that either Y ⊆ Y ′ or z is not Y ′-complete, and
such that either :
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• there is a Y ′-diamond in G of height t − 1, or

• there is a Y ′-square in G of height t − 1, or

• there is a polished Y ′-diamond in G of height t.

Proof. Suppose that no such Y ′ exists. Let x0, . . . , xt+1 be a polished
Y -diamond in G, and define Xi, Ai as usual. Now, xt+1 is Xt−1-complete, xt

is not Xt−2-complete, xt+1 has no neighbour in At−2, xt has a neighbour in
At−2, there is a vertex q in At−1 adjacent to both xt+1, xt with a neighbour in
At−2, and Y is complete to Xt and not to xt+1. From the maximality of At−2

it follows that q is Xt−2-complete, and therefore nonadjacent to xt−1.
Choose a path v1- · · · -vs with s minimum such that v1, . . . , vs ∈ At−2, and

v1 is adjacent to q, and vs ∈ At−3. (If q has a neighbour in At−3 then s = 1.)
Let R be a path between q and xt−1 with interior in At−2, and if possible with
interior in At−3 ∪ {v1, . . . , vs}. Then R has length ≥ 2, and from the hole
q-R-xt−1-xt+1-q it follows that R has even length. So the path q-R-xt−1-z is
odd, and its ends are Xt−2-complete, and its internal vertices are not; so by
13.6 it has length 3; that is, R has length 2. Let its middle vertex be r.

(1) xt−1 has neighbours in At−3.

Suppose not. It follows that r ∈ At−2 \At−3. Let Q be an antipath between r

and xt−1 with interior in Xt−2. Since r-Q-xt−1-q-z-r is an antihole, Q is odd.
All its internal vertices have neighbours in At−3, and one end xt−1 does not,
and z is complete to its interior and anticomplete to At−3. By 2.2 applied
in G, it follows that r has neighbours in At−3. Hence r is Xt−3-complete,
and nonadjacent to xt−2. Since z-xt−1-r-q-xt−2-z is not an odd hole, xt−2 is
adjacent to xt−1. But then

x0, . . . , xt−1

is a {q}-square of height t − 1, and yet z is not {q}-complete, a contradiction.
This proves (1).

From (1), it is possible to choose R with interior in At−3 ∪ {v1, . . . , vs},
and therefore we have done so.

(2) q has neighbours in At−3, and therefore r ∈ At−3.

Suppose it does not. Then s ≥ 2 and r = v1. Let Q be an antipath between
xt−1 and r with interior in Xt−2. From the antihole xt−1-Q-r-z-q-xt−1 it follows
that Q is odd. Hence the antipath q-xt−1-Q-r-xt+1 is odd with length ≥ 5;
and its internal vertices have neighbours in At−3 ∪ {v2, . . . , vs}, and its ends
do not, contrary to 13.6 applied in G. This proves (2).

(3) xt−1 is not Xt−3-complete.
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If it is, then
x0, . . . , xt−1

is a {q}-diamond of height t−1, and yet z is not {q}-complete, a contradiction.
This proves (3).

(4) xt has no neighbour in At−3.

Suppose xt has a neighbour in At−3. If xt is Xt−3-complete then since it is not
Xt−2-complete, it is nonadjacent to xt−2, and therefore

x0, . . . , xt−2, xt

is a Y ∪ {xt+1}-diamond of height t− 1; while if xt is not Xt−3-complete then

x0, . . . , xt−3, xt−1, xt, xt+1

is a polished Y -diamond of height t, in either case a contradiction. This
proves (4).

In particular, xt is not adjacent to r. Since z-xt-q-r-xt−1-z is not an odd
hole, xt is adjacent to xt−1. If xt is Xt−3-complete, then

x0, . . . , xt−3, xt−1, xt−2, xt

is a polished Y ∪ {xt+1}-diamond of height t, while if xt is not Xt−3-complete,
then

x0, . . . , xt−3, xt−1, xt

is a Y ∪ {xt+1}-square of height t − 1, in either case a contradiction. This
proves 20.5.

21. From wheel systems to wheels

Now we complete the proof of 19.1. First we need a lemma.

21.1. Let G ∈ F7, and let X, Y be disjoint nonempty anticonnected subsets
of V (G), complete to each other. Let p1, . . . , pn be a path in G \ (X ∪ Y ) of
length ≥ 4, such that p1, pn are X-complete and p2, . . . , pn−1 are not. Suppose
that either :

1. p1, p2, p3 are Y -complete, or

2. there exists i with 1 ≤ i ≤ n − 3 such that pi, pi+1, pi+2, pi+3 are all
Y -complete, or

3. there exists i with 1 ≤ i ≤ n− 3 such that pi+1, pi+2 are Y -complete and
pi, pi+3 are not.

Then there is a wheel in G with hub Y .
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Proof. In the second and third case let i be as given, and in the first
case let i = 1. Let Q be an antipath joining pi+1, pi+2 with interior in X.
Since 1 < i + 1, i + 2 < n, and n ≥ 5, and p1, pn are both complete to the
interior of Q, it follows from 15.4 that Q has length 2; that is, there exists
x ∈ X nonadjacent to both pi+1, pi+2. Choose h with 1 ≤ h ≤ i maximal
such that x is adjacent to ph, and choose j with i + 3 ≤ j ≤ n minimum such
that x is adjacent to pj . Then x-ph- · · · -pj-x is a hole of length ≥ 6, say C,
and x, pi, pi+1, pi+2, pi+3 are all vertices of it, and x, pi+1, pi+2 are Y -complete.
In the first case xp1, p1p2, p2p3 are all Y -complete edges of the hole, so that
(C, Y ) is a wheel. In the second case, the three edges of pi-pi+1-pi+2-pi+3 are
all Y -complete edges of C, and so again (C, Y ) is a wheel. In the third case,
2.3 implies that (C, Y ) is a wheel (and in this case it is in fact an odd wheel,
a contradiction). This proves 21.1.

The final step of the proof of 19.1 is given by the following. (In this paper
we only apply 2.12 to graphs containing no pseudowheels, that is, graphs in
F8, and so the first hypothesis could be simplified; but it is convenient to
present it this way for a future application.)

21.2. Let G ∈ F7, and let Y ⊆ V (G), be such that there do not exist X, P

so that (X, Y, P ) is a pseudowheel. Let (z, A0) be a frame, and let x0, . . . , xt+1

be a wheel system with hub Y , and with t ≥ 2. Define Xi, Ai as usual. Suppose
that xt+1 has no neighbour in At−1; and moreover that at most one member
of Y has no neighbour in At−1 ∪ {xt+1}, and any such vertex has a neighbour
in At. Then there is a wheel in G with hub Y .

Proof. (1) There do not exist xi, xj ∈ Xt joined by an odd path xi-xt+1-P -xj

of length ≥ 5 such that xi, xj ∈ Xt and P has interior in At.

Assume such a path exists, and let P have vertices xt+1-p1- · · · -pn-xj ,
n ≥ 4. There is an even path S between xi and xj with interior in At−1.
Since xi-xt+1-P -xj-S-xi is not an odd hole, and xt+1 has no neighbours in
At−1, it follows that {p1, . . . , pn} ∪ At−1 is connected. Since p1 /∈ At−1, there
exists k such that pk /∈ At−1 and pk has a neighbour in At−1; and since pk is not
adjacent to z, it follows from the maximality of At−1 that pk is Xt−1-complete.
Since at least one of xi, xj is in Xt−1, it follows that k = n and i = t. But
{p1, . . . , pn, xj} ∪ At−1 (= F say) catches the triangle {z, xt+1, xt}; the only
neighbour of z in F is xj ; the only neighbour of xt+1 in F is p1; and xj , p1 are
nonadjacent (since n ≥ 4), and are both nonadjacent to xt, contrary to 17.1.
This proves (1).

Since xt+1 has a neighbour in At and none in At−1, there is a path from
xt+1 to At−1 with interior in At \ At−1. Hence there is a path xt+1-p1- · · · -pm

such that p1, . . . , pm ∈ At \ At−1 and pm is the unique vertex of this path
with a neighbour in At−1. (Hence m ≥ 1, and pm is Xt−1-complete.) Choose
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such a path such that if possible, every member of Y has a neighbour in
At−1 ∪ {xt+1, p1, . . . , pm}.

(2) Assume that one of x0, . . . , xt is nonadjacent to both xt+1, p1.

Certainly there is an antipath Q joining xt+1, p1 with interior in Xt, since
xt+1, p1 are not Xt-complete. Suppose that Q is odd. Every vertex of the
interior of Q has neighbours in the connected set At−1, and xt+1 does not,
and z is complete to the interior of Q and anticomplete to At−1; so by 2.2
applied in G it follows that p1 has a neighbour in At−1. Hence m = 1, and p1

is Xt−1-complete, and therefore not adjacent to xt. If xt is also nonadjacent
to xt+1 then the claim holds, and if xt is adjacent to xt+1, then

x0, . . . , xt+1

is a Y -square, and the theorem holds by 20.1. Now assume that Q is even.
The antipath z-p1-Q-xt+1 is therefore odd and has length ≥ 3; all its internal
vertices have neighbours in the connected set At−1∪{p2, . . . , pm}, and its ends
do not. So it has length 3, by 13.6 applied in G, and hence Q has length 2.
This proves (2).

(3) Every vertex in Y has a neighbour in At−1 ∪ {xt+1, p1, . . . , pm}.

On the contrary, suppose some y ∈ Y has no such neighbour. By hypothesis
y has a neighbour in At. Consequently there is a connected subset F of At

including At−1 ∪ {p1, . . . , pm} which contains a neighbour of y, and we may
choose F minimal with this property. Since y has no neighbour in At−1 ∪
{p1, . . . , pm}, it follows from the minimality of F that y has a unique neighbour
in F , say f , and therefore f ∈ At \ At−1. There is a path R between y and
xt+1 with interior in F , and therefore z-xt+1-R-y-z is a hole (C say), and so
R has even length. Suppose it has length ≥ 4. The only Xt-complete vertices
in C are z, y, so by 2.10, Xt contains a hat or leap. By (1) there is no leap,
so there exists x ∈ Xt with no neighbours in C except y, z. But F ∪ {xt+1}
catches the triangle {x, y, z}; the only neighbour of z in F ∪{xt+1} is xt+1; the
only neighbour of y in F ∪ {xt+1} is f ; and xt+1, f are nonadjacent, and both
nonadjacent to x, contrary to 17.1. So R has length 2, and therefore xt+1 is
adjacent to f .

Since y has no neighbour in {xt+1} ∪At−1, it follows from the hypothesis
that all other members of Y have neighbours in {xt+1} ∪ At−1. We recall
that initially we chose the path xt+1-p1- · · · -pm such that pm is the unique
vertex of it with a neighbour in At−1, and if possible every member of Y

has a neighbour in At−1 ∪ {xt+1, p1, . . . , pm}. Since f is adjacent to both of
y, xt+1, it follows that f has no neighbours in At−1, and f is nonadjacent to
p2, . . . , pm, since otherwise there would be a better choice of path using f . Let
Q be an antipath between f, xt+1 with interior in Xt. Every internal vertex
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of Q has a neighbour in At−1, and its ends do not, and z is complete to the
interior of Q and anticomplete to At−1; so by 2.2 applied in G, it follows
that Q is even. Now, the antipath y-xt+1-Q-f is odd, and all its internal
vertices have neighbours in At−1 ∪ {p1, . . . , pm}, and y does not; z is complete
to the interior of the antipath and anticomplete to At−1 ∪ {p1, . . . , pm}. By
2.2 applied in G, it follows that f has a neighbour in At−1 ∪ {p1, . . . , pm},
and therefore f is adjacent to p1. By (2) there exists x ∈ Xt nonadjacent
to xt+1, p1. Consequently, {z, y, x, p2, . . . , pm} ∪ At−1 (= F ′ say) catches the
triangle {xt+1, f, p1}. The only neighbour of xt+1 in F ′ is z; the only neighbours
of f in F ′ are y and possibly x; and x, y, z are all nonadjacent to p1. By 17.1, F ′

contains a reflection of the triangle, and hence there is a vertex in F ′ adjacent
to both of z, p1. But the only neighbours of z in F ′ are x, y, and they are both
nonadjacent to p1, a contradiction. This proves (3).

Since pm is Xt−1-complete it follows that x0, . . . , xt−1 all have neighbours
in p1, . . . , pm. Since xt, pm have neighbours in At−1 and none of xt+1, p1, . . .

. . . , pm−1 have neighbours in At−1, we can extend the path xt+1-p1- · · · -pm to
a path xt+1-p1- · · · -pm-pm+1- · · · -pn containing neighbours of all members of
Xt. By (2), we can choose i with 2 ≤ i ≤ n maximum such that some vertex
of Xt is nonadjacent to all of xt+1, p1, . . . , pi−1; and choose s with 0 ≤ s ≤ t

such that xs is nonadjacent to all of xt+1, p1, . . . , pi−1. Since every vertex in
Xt has a neighbour in {xt+1, p1, . . . , pn}, it follows from the maximality of i

that every vertex in Xt is adjacent to one of xt+1, p1, . . . , pi, and in particular,
xs is adjacent to pi. Note that if i > m then s = t, since pm is Xt−1-complete.

(4) i is odd, and pi is Y -complete.

Note that z-xt+1-p1- · · · -pi-xs-z is a hole C say, and so i is odd. Suppose pi

is not Y -complete. Now C has length ≥ 6, and z, xs are Y -complete (since
Y is a hub), and xt+1, pi are not. Since (C, Y ) is not an odd wheel, 2.10
implies that Y contains a leap or hat for C. Suppose it contains a leap; then
there are nonadjacent y1, y2 ∈ Y such that y1-xt+1-p1- · · · -pi-y2 is a path.
This path is odd and has length ≥ 5, and its ends are Xt-complete and its
internal vertices are not, contrary to 13.6. So Y contains a hat, that is, there
exists y ∈ Y nonadjacent to xt+1, p1, . . . , pi. By (3), y has a neighbour in
At−1 ∪ {pj : i + 1 ≤ j ≤ m}.

Suppose first that i ≤ m, and let pi-r1- · · · -rk-y be a path from pi to y with
interior in At−1∪{pi+1, . . . , pm}. Then z-xt+1-p1- · · · -pi-r1- · · · -rk-y-z is a hole
of length ≥ 6, and the only Xt-complete vertices in this hole are z, y. Since
this hole is not the rim of an odd wheel, 2.10 implies that X contains a hat
or leap, and so some x ∈ Xt has no neighbour in {xt+1, p1, . . . , pi}, contrary to
the choice of i.

Now suppose that i > m, and so s = t. Let pm-r1- · · · -rk-y be a path from
pm to y with interior in At−1. Again, z-xt+1-p1- · · · -pm-r1- · · · -rk-y-z is a hole
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of length ≥ 6, and its only Xt-complete vertices are z, y. By 2.10 Xt contains
a hat or leap. By (1) it contains no leap, so there exists x ∈ Xt nonadjacent
to all xt+1, p1, . . . , pm, r1, . . . , rk. Since pm is Xt−1-complete, x = xt. Now
{xt+1, p1, . . . , pi, r1, . . . , rk} (= F say) is connected, and catches the triangle
{y, z, xt}; the only neighbour of z in F is xt+1; the only neighbour of y in F is
rk (because y is nonadjacent to xt+1, p1, . . . , pi); and the only neighbour of xt

in F is pi (because xt is a hat). Since xt+1 is not adjacent to pi, this contradicts
17.1 which proves (4).

(5) Let R be a path from xt to some vertex r, such that r is the unique Xt−1-
complete vertex in R, and V (R \ xt) ⊆ At−1 ∪ {p1, . . . , pm}. Then R is
odd, and has length ≥ 3. In particular, xt is nonadjacent to pm, pm−1.

Assume that R is even. Then the path z-xt-R-r is odd, and its ends are Xt−1-
complete, and its internal vertices are not, so by 13.6, it has length 3, that is, R

has length 2. Let q be the middle vertex of R. By 13.6 there is an odd antipath
Q joining q, xt with interior in Xt−1. Now pm is Xt−1-complete and nonad-
jacent to xt, and since Q cannot be completed to an antihole via xt-pm-q, it
follows that pm is adjacent to q. Suppose first that q ∈ {p1, . . . , pm}; then it fol-
lows that q = pm−1. Hence q-Q-xt-pm is an even antipath of length ≥ 4; q is its
only vertex that is anticomplete to At−1, and pm is its only vertex that is anti-
complete to {z, xt+1, p1, . . . , pm−2}. Since the sets At−1, {z, xt+1, p1, . . . , pm−2}
are each connected and anticomplete to each other, this contradicts 13.7 ap-
plied in G. So q ∈ At−1, and in particular xt is nonadjacent to pm, pm−1.
Let R′ be a path between xt, pm with interior in {z, xt+1, p1, . . . , pm}; then
xt-R-pm-R′-xt is a hole of length ≥ 6 sharing the vertices xt, q, pm with the
antihole q-Q-xt-pm-z-q, contrary to 15.7. So R is odd. Since r is not Xt-
complete, R has length ≥ 3. The last assertion of the claim is immediate. This
proves (5).

(6) We may assume that none of xt+1, p1, . . . , pi−1 is Xt−1-complete, and in
particular i ≤ m.

Suppose first that one of p1, . . . , pi−1 is Xt−1-complete, and choose h with
1 ≤ h < i maximum such that ph is Xt−1-complete. Since ph is not adjacent
to xs it follows that s = t, and therefore pi is not Xt−1-complete (because pi

is not Xt-complete and is adjacent to xs). By (5), i − h is even, and so the
path ph- · · · -pi-xt-z is even and has length ≥ 4. Since its only Xt−1-complete
vertices are its ends, and since z, xt, pi are Y -complete by (4), it follows from
21.1 that there is a wheel with hub Y , and the theorem holds. So we may
assume that none of p1, . . . , pi−1 is Xt−1-complete, and in particular i ≤ m,
since pm is Xt−1-complete. Now assume that xt+1 is Xt−1-complete. Since
xt+1 is nonadjacent to xs it follows that s = t. Let R be a path between xt, pm

with interior in At−1. By (5), R is odd, and so the path xt+1-p1- · · · -pi-xt-R-pm
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is odd, of length ≥ 5, its ends are Xt−1-complete, and its internal vertices are
not, contrary to 13.6. This proves (6).

Choose k with i ≤ k ≤ m minimum such that pk is Xt−1-complete.

(7) None of xt+1, p1, . . . , pk−1 is Xt−1-complete, and k is odd.

The first assertion follows from (6) and the choice of k. Hence the path
z-xt+1-p1- · · · -pk has length ≥ 4, and its ends are Xt−1-complete, and its in-
ternal vertices are not; so by 13.6, it has even length. This proves (7).

(8) xt is adjacent to one of p1, . . . , pk.

Suppose xt is nonadjacent to all of p1, . . . , pk. From the definition of i it follows
that xt is adjacent to xt+1. Let S be a path between xt, pk with interior in
At−1 ∪ {pk+1, . . . , pm}, and let C be the hole xt-xt+1-p1- · · · -pk-S-xt. Since C

is even and k is odd, S is even, and so by (5), some internal vertex of S is
Xt−1-complete. The path z-xt-S-pk is odd, and its ends are Xt−1-complete,
so that by 2.3 it contains an odd number of Xt−1-complete edges. Since xt is
not Xt−1-complete, all these Xt−1-complete edges belong to S and hence to C,
and there are no further Xt−1-complete edges in C. Thus an odd number of
edges of C are Xt−1-complete, and so by 2.3 there is exactly one, and exactly
two Xt−1-complete vertices. Since pk is Xt−1-complete, the second such vertex
is the neighbour of pk in S. This therefore does not belong to At−1, and so
k < m, and pk+1 is the second Xt−1-complete vertex of C. By 2.10 applied to
C, Xt−1 contains a leap or hat, and in either case some x ∈ Xt−1 is nonadjacent
to all of xt, xt+1, p1, and adjacent to pk. Hence (V (C) \ {xt, xt+1})∪ {x} (= F

say) catches the triangle {z, xt, xt+1}; the only neighbour of z in F is x; the
only neighbour of xt+1 in F is p1; and x, p1 are nonadjacent, and are both
nonadjacent to xt, contrary to 17.1. This proves (8).

(9) pk is Y -complete.

Suppose not. Then i < k, by (4). But then z, Xt−1 are Y -complete and xt+1, pk

are not, and some vertex of the path xt+1-p1- · · · -pk is Y -complete (namely pi);
thus (Xt−1, Y, z-xt+1-p1- · · · -pk) is a pseudowheel, contrary to G ∈ F8. This
proves (9).

By (8), we may choose j with 1 ≤ j ≤ k maximal such that xt is adjacent
to pj . By (5), k − j is even and ≥ 2. Suppose that pj is Y -complete. The
path z-xt-pj- · · · -pk has even length ≥ 4, and its only Xt−1-complete vertices
are its ends, and z, xt, pj , Xt−1 are all Y -complete, so that by 21.1, there is
a wheel with hub Y and the theorem holds. We may assume that pj is not
Y -complete. Now the path xt-pj- · · · -pk has odd length ≥ 3, and both its ends
are Y -complete, and the Y -complete vertex z has no neighbour in its interior.
By 2.2 and 2.3, an odd number of the edges of z are Y -complete. Since
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pj is not Y -complete, an odd number of edges of pj- · · · -pk are Y -complete.
The path z-xt+1-p1- · · · -pk (= P say) is even, by (7), and since its ends are
Y -complete, an even number of its edges are Y -complete, by 2.3. We deduce
that an odd number of edges of z-xt+1-p1- · · · -pj are Y -complete. There is
therefore a Y -segment P ′ of this path that has odd length. Since pj is not
Y -complete, it follows that P ′ is also a Y -segment of P . If P ′ has length > 1
then 21.1 applied to P implies that there is a wheel with hub Y , and the
theorem holds. So we may assume that P ′ has length 1. But both vertices of
P ′ are internal vertices of P , since xt+1, pj are not Y -complete, and again 21.1
applied to P implies there is a wheel with hub Y . This proves 21.2.

Now we can deduce our main theorem about wheel systems, 19.1, which
we restate:

21.3. Let G ∈ F8, let (z, A0) be a frame, and let x0, . . . , xt+1 be a wheel
system with hub Y , and with t ≥ 1. Define Ai, Xi as usual, and assume that
at most one member of Y has no neighbour in A1. Suppose that for all r with
1 ≤ r ≤ t, if x0, x1, . . . , xr, xt+1 is a wheel system, then every member of Y

has a neighbour in Ar ∪ {xt+1}. Then there is a wheel with hub Y .

Proof. Suppose there is no such wheel. Choose r with 1 ≤ r ≤ t, minimal,
such that xt+1 has a neighbour in Ar and a nonneighbour in Xr. By hypothesis,
every member of Y has a neighbour in Ar ∪ {xt+1}. By 19.2, r > 1. Since
at most one member of Y has no neighbour in Ar−1 (because at most one has
no neighbour in A1), it follows from 21.2 that xt+1 has a neighbour in Ar−1.
Since no wheel has hub Y , 20.1 implies that

x0, . . . , xr, xt+1

is not a Y -diamond, and so xt+1 is not Xr−1-complete. But that contradicts
the minimality of r. Thus there is a wheel with hub Y . This proves 19.1.

22. Wheels and tails

We continue with the proof that recalcitrant graphs do not contain wheels.
Now we come to apply 19.1, as explained at the start of Section 19. We use
the following lemma.

22.1. Let G ∈ F8, not admitting a balanced skew partition, let (z, A0)
be a frame, and let x0, . . . , xs be a wheel system. Let Y ⊆ V (G) \ (A0 ∪
{z, x0, . . . , xs}) be nonempty and anticonnected, such that z, x0, . . . , xs are
Y -complete. Then there is a sequence xs+1, . . . , xt+1 with t ≥ s such that
x0, . . . , xt+1 is a wheel system with respect to the frame (z, A0), with hub Y .

Proof. Choose a sequence xs+1, . . . , xt, all Y -complete and such that
x0, . . . , xt is a wheel system with respect to (z, A0), with t maximum. So
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t ≥ s ≥ 1. Define Xi and Ai as usual. From 15.2, there is a path P from z

to At, disjoint from Xt and containing no Xt-complete vertex except z. Let
v be the neighbour of z in this path. From the maximality of At, it follows
that P has length 2. So v has a neighbour in At, and therefore x0, . . . , xt, v is
a wheel system. From the maximality of t it follows that v is not Y -complete,
and therefore Y is a hub for this wheel system. This proves 22.1.

We combine 19.1 and 22.1 to prove the following.

22.2. Let G ∈ F8, not admitting a balanced skew partition, let (z, A0)
be a frame, and let x0, . . . , xs be a wheel system. Let Y ⊆ V (G) \ (A0 ∪
{z, x0, . . . , xs}) be nonempty and anticonnected, such that z, x0, . . . , xs are
Y -complete. Define Ai, Xi as usual, and assume that every member of Y

has a neighbour in As, and at most one member of Y has no neighbour in A1.
Suppose there is no wheel with hub Y . Then there exists r with 1 ≤ r < s,
and a member y ∈ Y , and a vertex v /∈ Y ∪ {z, x0, . . . , xs} with the following
properties:

• y has no neighbour in Ar ∪ {v},

• v is adjacent to z, and has a neighbour in Ar, and a nonneighbour in Xr.

Proof. By 22.1, there is a sequence xs+1, . . . , xt+1 with t ≥ s such that
x0, . . . , xt+1 is a wheel system with respect to the frame (z, A0), with hub Y .
By 19.1, there exists r with 1 ≤ r ≤ t, and a member y ∈ Y , such that y has no
neighbour in Ar ∪{xt+1}, and xt+1 has a neighbour in Ar, and a nonneighbour
in Xr. Since every member of Y has a neighbour in As, it follows that r < s,
and the result holds (taking v = xt+1). This proves 22.2.

If (C, Y ) is a wheel in G, and there is no wheel (C ′, Y ′) with Y ⊂ Y ′, we
say (C, Y ) is an optimal wheel. Let (C, Y ) be a wheel in G. A kite for (C, Y )
is a vertex y ∈ V (G) \ (Y ∪ V (C)), not Y -complete, that has at least four
neighbours in C, three of which are consecutive and Y -complete.

22.3. Let G ∈ F8, not admitting a balanced skew partition, and let (C, Y )
be an optimal wheel in G. Then there is no kite for (C, Y ).

Proof. Assume y is a kite for (C, Y ). Let x0-z-x1 be a subpath of C, all
Y -complete and adjacent to y. Let A0 = V (C) \ {z, x0, x1}, so that x0, x1 is a
wheel system with respect to (z, A0), and x0, x1 are Y ∪ {y}-complete. Thus
every member of Y ∪{y} has a neighbour in A0, and yet there is no wheel with
hub Y ∪ {y}, contrary to 22.2 with s = 1. This proves 22.3.

Let (C, Y ) be a wheel in G, let z ∈ V (C), and let x0, x1 be the neighbours
of z in C. A path T of G \ {x0, x1} from z to V (C) \ {z, x0, x1} is called a tail
for z (with respect to the wheel (C, Y )) if
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• x0, z, x1 are all Y -complete, and there is a Y -complete edge in C \
{x0, z, x1},

• the neighbour of z in T is adjacent to x0, x1, and

• no internal vertex of T is in Y or is Y -complete.

22.4. Let G ∈ F8, and let (C, Y ) be an optimal wheel, such that no
vertex is a kite for (C, Y ). Let z ∈ V (C), and let x0, x1 be the neighbours
of z in C. Let T be a tail for z, and let y be the neighbour of z in T . Let
A0 = V (C) \ {z, x0, x1}, and let x0, . . . , xt+1 be a wheel system with respect to
the frame (z, A0), with hub Y ∪{y}. Define A1, . . . , At+1 as usual. Then y has
a neighbour in At ∪ {xt+1}.

Proof. We assume for a contradiction that y has no neighbour in At ∪
{xt+1}. Let y-u1- · · · -un be a minimal subpath of T \ z such that un has a
neighbour in At; so n > 0. From the maximality of At it follows that un is
Xt-complete and therefore X1-complete since t ≥ 1; since T is a tail, none of
u1, . . . , un are Y -complete. Let P be a path with vertex set in At ∪{un}, from
un to some Y -complete vertex p say, such that no vertex of P \p is Y -complete.

(1) P is odd.

P has length ≥ 1 since no vertex of T \ z is Y -complete; and the only
Xt-complete vertex of P is un, and the only Y -complete vertex of P is p.
Since z is complete to Xt and to Y , and anticomplete to V (P ), it follows from
2.9 that P has odd length. This proves (1).

Since y, u1, . . . , un−1 have no neighbours in At, z-y-u1- · · · -un-P -p is a
path, Q say.

(2) Q has even length ≥ 4, and so n is even.

The ends of Q are Y -complete, and since none of y, u1, . . . , un are Y -complete,
no internal vertex of Q is Y -complete. Suppose that Q has length 3 with n = 1;
then there is an odd antipath joining y, u1 with interior in Y . Hence every
Y -complete vertex in G is adjacent to one of y, u1. In particular, since y has
no neighbour in At, it follows that u1 is adjacent to all the Y -complete vertices
in C except z (for we already showed that u1 is Xt-complete and therefore
adjacent to x0, x1). Since (C, Y ) is not an odd wheel, u1 is a kite for (C, Y ), a
contradiction. Now, we may assume that Q does not have length 3. Hence by
13.6, Q has even length. From (1), it follows that n is even. This proves (2).

(3) xt+1 is adjacent to one of u1, . . . , un−1.

Suppose not. Choose a path N from xt+1 to un with interior in At (possibly
of length 1). Then z-y-u1- · · · -un-N -xt+1-z is a hole, and since n is even, N is
even. Hence z-xt+1-N -un is an odd path; its ends are Xt-complete, its internal
vertices are not, and the Xt-complete vertex y has no neighbour in its interior,
contrary to 2.2. This proves (3).
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(4) xt+1 is not Y -complete.

Suppose it is. Since G ∈ F8, the triple (Y, Xt+1, Q) is not a pseudowheel. Since
y, p are not Xt+1-complete, no internal vertex of Q is Xt+1-complete. By 2.11
applied to Q, Y and Xt+1, there exists x ∈ Xt+1 with no neighbour in Q \ z

except possibly p. But xt+1 is adjacent to one of u1, . . . , un−1 by (3), and all
other members of Xt+1 are adjacent to y, a contradiction. This proves (4).

Since xt+1 has a neighbour in At, there is a path R from xt+1 to some
Y -complete vertex r in At with V (R \ xt+1) ⊆ At such that no vertex of R \ r

is Y -complete.

(5) R has odd length.

For certain, R has length ≥ 1; suppose it has length 2, and let its middle vertex
be a say. There is an antipath joining xt+1, a with interior in Y , and it is odd
since it can be completed to an antihole via a-z-r-xt+1. Now xt+1, a are not
Xt-complete (since a ∈ At) and so there is an antipath joining xt+1, a with
interior in Xt, which is therefore also odd, since its union with the antipath
with interior in Y is an antihole. But y is Xt-complete and nonadjacent to
both xt+1 and a (since it has no neighbour in At), and so this antipath can be
completed to an odd antihole via a-y-xt+1, a contradiction. This proves that
R does not have length 2. Hence the path z-xt+1-R-r does not have length 3;
its ends are Y -complete and its internal vertices are not, and it has length > 1,
so by 13.6 it has even length, that is, R has odd length. This proves (5).

(6) If xt+1 is adjacent to u1 then u1 is Xt-complete.

Suppose not; then there is an antipath L, say, joining xt+1, u1 with interior in
Xt. So z-u1-L-xt+1-y is an antipath of length ≥ 4; all its internal vertices have
neighbours in At ∪ {u2, . . . , un}, and its ends do not. By 13.6 applied in G,
it has even length, and so u1-L-xt+1-y is an odd antipath. But all its internal
vertices have neighbours in At, and its ends do not (for n ≥ 2 since n is even),
and z is complete to its interior and has no neighbours in At, contrary to 2.2
applied in G. This proves (6).

(7) None of u1, . . . , un−1 is Xt-complete.

Suppose that one of u1, . . . , un−1 is Xt-complete, and let S be a path from xt+1

to some Xt-complete vertex s say, with V (S\xt+1) ⊆ {u1, . . . , un−1}, such that
s is the only Xt-complete vertex in S. Certainly S has length ≥ 1. Suppose
it has even length. Then the path z-xt+1-S-s is odd, and its ends are Xt-
complete, and its internal vertices are not; so by 2.2, the Xt-complete vertex y

has a neighbour in its interior, contrary to (6). So S has odd length. The path
s-S-xt+1-R-r therefore has even length; its only Xt-complete vertex is s, and
its only Y -complete vertex is r, so by 13.7, the path has length 2, that is, both
R, S have length 1. Moreover, either xt+1, r are joined by an odd antipath with
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interior in Xt, or xt+1, s are joined by an odd antipath with interior in Y . The
first is impossible since the antipath could be completed to an odd antihole
via r-y-xt+1, so the second holds. In particular, every Y -complete vertex is
adjacent to one of xt+1, s, and therefore all such vertices in At are adjacent to
xt+1. In particular, xt+1 is adjacent to all the Y -complete vertices in C except
possible x0, x1. Since there is a Y -complete edge in C \ {x0, z, x1} from the
definition of a tail, xt+1 has two adjacent neighbours in C of opposite wheel-
parity, and at least one other neighbour in C; but it is not a kite, and the
wheel is optimal, contrary to 16.1. This proves (7).

By (3) we may choose i with 1 ≤ i ≤ n − 1 minimum such that xt+1 is
adjacent to ui. By (7), the only Xt-complete vertices in the hole z-y-u1- · · ·
· · · -ui-xt+1-z are z,y, and therefore by (6) this hole has length ≥ 6. By 2.10,
Xt contains a leap or a hat. If it contains a leap, there are nonadjacent vertices
in Xt, joined by an odd path of length ≥ 5 with interior in {u1, . . . , ui, xt+1},
and consequently with no internal vertex Y -complete. Since both its ends are
Y -complete, this contradicts 13.6. So there is a hat, that is, there exists x ∈ Xt

with no neighbours in {u1, . . . , ui, xt+1}. Then At ∪ {u1, . . . , un, xt+1} (= F

say) catches the triangle {z, y, x}; the only neighbour of z in F is xt+1; the only
neighbour of y in F is u1 and both xt+1, u1 are nonadjacent to x. Moreover
xt+1 is nonadjacent to u1, and so F contains no reflection of the triangle. This
contradicts 17.1, and therefore proves 22.4.

We combine the previous result with 19.1 to prove the following.

22.5. Let G ∈ F8, not admitting a balanced skew partition, and let (C, Y )
be an optimal wheel in G. Then no vertex of C has a tail.

Proof. Suppose z ∈ V (C) has a tail T ; let y be the neighbour of z in T ,
and let x0, x1 be the neighbours of z in C. Let A0 = V (C) \ {z, x0, x1}, so
that x0, x1 is a wheel system with respect to (z, A0), and x0, x1 are Y ∪ {y}-
complete. By 22.1 there exist x2, . . . , xt+1 with t ≥ 1 such that x0, . . . , xt+1

is a wheel system with respect to (z, A0), with hub Y ∪ {y}. Define Ai, Xi

as usual. From the construction, all members of Y have a neighbour in A0.
By 19.1, there exists r with 1 ≤ r ≤ t, such that x0, . . . , xr, xt+1 is a wheel
system and y has no neighbour in Ar ∪ {xt+1}. But Y ∪ {y} is a hub for this
wheel system, and T is a tail for z. By 22.3, there is no kite for (C, Y ); and
so by 22.4 applied to this wheel system, y has a neighbour in Ar ∪ {xt+1}, a
contradiction, which proves 22.5.

23. The end of wheels

In this section we complete the proof that there is no wheel in a recalcitrant
graph. We need the following:
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23.1. Let G ∈ F8, not admitting a balanced skew partition, and let (C, Y )
be an optimal wheel in G. Then there is a subpath c1-c2-c3 of C such that
c1, c2, c3 are all Y -complete, and a path c1-p1- · · · -pk-c3 such that none of
p1, . . . , pk are in V (C) ∪ Y , none of them is Y -complete, and none of them
has a neighbour in V (C) \ {c1, c2, c3}.

Proof. There are two nonadjacent Y -complete vertices in C with opposite
wheel-parity, say a, b, and by 15.2, there is a path P in G joining them such
that none of its interior vertices is in Y or is Y -complete. There may be internal
vertices of P that belong to C, but we may choose a subpath P ′ of P , with
ends a′, b′ say, such that a′, b′ ∈ V (C) have opposite wheel-parity and P ′ has
minimal length. It follows that no vertex of the interior of P ′ is in C. Suppose
a′, b′ are adjacent; then since they are in C and have opposite wheel-parity,
they are both Y -complete, and therefore neither is in the interior of P , and
so a, b are adjacent, a contradiction. So a′, b′ are nonadjacent. Let F be the
interior of P ′; then no vertex of F is in Y ∪V (C), no vertex of F is Y -complete,
and there are attachments of F in C which are nonadjacent and have opposite
wheel-parity. The result follows from 22.3 and 16.2 applied to F . This proves
23.1.

Now we can prove 1.8.9, which we restate.

23.2. Let G ∈ F8, not admitting a balanced skew partition; then there is
no wheel in G. In particular, every recalcitrant graph belongs to F9.

Proof. Suppose there is a wheel in G, and choose an optimal wheel (C, Y )
such that C contains as few Y -complete edges as possible.

(1) Exactly four edges of C are Y -complete.

By 23.1 there is a subpath c1-c2-c3 of C such that c1, c2, c3 are all Y -complete,
and a path c1-p1- · · · -pk-c3 such that none of p1, . . . , pk are in V (C) ∪ Y , none
of them is Y -complete, and none of them has a neighbour in V (C)\{c1, c2, c3}.
Let C ′ be the hole formed by the union of the paths C \ c2, c1-p1- · · · -pk-c3.
Then C ′ has length ≥ 6, and it contains fewer Y -complete edges than C. From
the choice of (C, Y ) it follows that (C ′, Y ) is not a wheel, and since C has at
least four Y -complete edges, and C ′ has only two fewer, it follows that exactly
four edges of C are Y -complete. This proves (1).

Since (C, Y ) is not an odd wheel, there are vertices x0, z, x1, c1, c2, c3 of
C, in order, and all distinct except possibly x1 = c1 or c3 = x0, such that the
Y -complete edges in C are x0z, zx1, c1c2, c2c3. Let A0 = V (C) \ {z, x0, x1}.
Since G does not admit a skew partition, there is a path T of G\{x0, x1} from
z to A0, such that no vertex in its interior is in Y or Y -complete. Let y be the
neighbour of z in T .

(2) y is not adjacent to both x0, x1.
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Assume it is. By 22.3 there is no kite for (C, Y ), and with respect to the wheel
(C, Y ), T is a tail for z (because at least one of the Y -complete edges c1c2, c2c3

belongs to C \ {x0, z, x1}). This contradicts 22.5, and therefore proves (2).

(3) y has no neighbour in A0.

Suppose first that it has a neighbour in A0 \ {c2}, say c. Then c, z are non-
adjacent and have opposite wheel-parity in the wheel (C, Y ); it is not the case
that c and both its neighbours in C are Y -complete, by (1) and the fact that
c ∈ A0; not both neighbours of z in C are adjacent to y, by (2); so 16.1 im-
plies that (C, Y ∪ {y}) is a wheel, a contradiction. Also, y has no neighbour
in A0 \ {c2}. Next suppose that y is adjacent to c2. From the symmetry we
may assume that x0 	= c3. Let Q be the path of C \ z between x0, c3; so Q has
length > 0, and even length by 2.3. Since x0-Q-c3-c2-y-x0 is not an odd hole,
y is not adjacent to x0. But then the hole x0-Q-c3-c2-y-z-x0 is the rim of an
odd wheel with hub Y , contrary to G ∈ F8. So y is not adjacent to c2. This
proves (3).

Let T have vertices z-y-v1- · · · -vn+1, where vn+1 ∈ A0. From (3), n ≥ 1.
By choosing T of minimal length we may assume that none of y, v1, . . . , vn−1

have neighbours in A0.

(4) If n = 1 then no neighbour of v1 in A0 is Y -complete.

Otherwise we may assume v2 is Y -complete. From the symmetry we may
assume that x0 	= c3. Let Q be the path of C \ z between x0, c3 having
length > 0, and even length by 2.3. Since y, v1 are not Y -complete, there is an
antipath joining them with interior in Y , and it is odd since it can be completed
to an antihole via v1-z-v2-y. Hence every Y -complete vertex is adjacent to one
of y, v1, and since c2, c3 are Y -complete and not adjacent to y by (3), v1 is
adjacent to c2, c3. By (2), v1 is adjacent to one of x0, x1, and so it has two
nonadjacent neighbours in C, and two neighbours in C of opposite wheel-
parity. By 16.1, there are three consecutive vertices in C, all Y -complete and
adjacent to v1. By 22.3, v1 has no other neighbours in C. Hence x1 = c1 and
the neighbours of v1 in C are c1, c2, c3. Consequently x0 is adjacent to y; but
then x0-Q-c3-v1-y-x0 is an odd hole, a contradiction. This proves (4).

(5) One of x0, x1 has no neighbours in {y, v1, . . . , vn}.

Let P be a path y-p1- · · · -pk from y to some Y -complete vertex pk ∈ A0, with
interior in A0 ∪ {v1, . . . , vn}, such that pk is the only Y -complete vertex in P .
Since none of y, v1, . . . , vn−1 have neighbours in A0 it follows
that {y, v1, . . . , vn} ⊆ {y, p1, . . . , pk−1}. From (4), k ≥ 3. Since G ∈ F8,
(Y, {x0, x1}, z-y-p1- · · · -pk) is not a pseudowheel. But the ends of the path
z-y-p1- · · · -pk are Y -complete and its internal vertices are not; the path has



THE STRONG PERFECT GRAPH THEOREM 221

length ≥ 4 (and therefore has even length by 13.6); Y, z are {x0, x1}-complete,
and y, pk are not. So no other vertices of the path are {x0, x1}-complete. By
2.11, applied to the same path and the same anticonnected sets, it follows that
one of x0, x1 is nonadjacent to all of y, p1, . . . , pk−1. Since {y, v1, . . . , vn} ⊆
{y, p1, . . . , pk−1}, this proves (5).

Let F = {y, v1, . . . , vn}. From the symmetry we may assume that x0 has
no neighbours in F . Let S be a path from y to x0 with interior in F ∪ A0. It
follows that S has length ≥ 3. Let C ′ be the hole z-y-S-x0-z; so C ′ has length
≥ 6. Suppose that x0 is different from c3. Since (C ′, Y ) is not an odd wheel, it
follows that (C ′, Y ) is not a wheel, and so x0, z are the only Y -complete vertices
in C ′. By 2.10, Y contains a leap or a hat. A leap would imply there are two
vertices in Y , joined by an odd path of length ≥ 5 with interior in F ∪ A0.
Hence its ends are {x0, x1}-complete, and its internal vertices are not, contrary
to 13.6. So Y contains a hat; that is, there exists y′ ∈ Y with no neighbour in
C ′ except z, x0. But F ∪A0 catches the triangle {x0, y

′, z}; the only neighbour
of x0 in F ∪A0 is its neighbour in S, say s; the only neighbour of z in F ∪A0

is y; and s, y are nonadjacent, and both nonadjacent to y′, contrary to 17.1.
This proves that x0 = c3, and therefore x1 	= c1. By exchanging x0, x1, we
deduce that x1 has a neighbour in F . There are therefore two attachments
of F in C with opposite wheel-parity, and two that are nonadjacent. By (1),
16.2, 22.3 and the optimality of the wheel, and since x0 = c3 has no neighbour
in F , it follows that there is a path R between z, c2 with interior in F , and no
vertex of C has neighbours in the interior of R except z, c2. But then the hole
formed by the union of R and the path C \ x0 is the rim of an odd wheel with
hub Y , a contradiction. This proves 23.2.

23.3. Let G ∈ F9, admitting no balanced skew partition, let (z, A0) be
a frame and x0, . . . , xs a wheel system with respect to it ; define Xi, Ai as
usual. Then there is no vertex y ∈ V (G)\{z, x0, . . . , xs} that is {z, x0, . . . , xs}-
complete and has a neighbour in As.

Proof. Suppose there is such a frame, wheel system, and y, and choose
them with s minimal (it is important here that we minimize over all choices of
the frame, not just of the wheel system); say (z, A0), x0, . . . , xs and y respec-
tively. By 22.2, there exists r with 1 ≤ r < s, and a vertex v such that y has no
neighbour in Ar∪{v}, and v is adjacent to z, and has a neighbour in Ar, and a
nonneighbour in Xr. Then (y, A0) is a frame, and x0, . . . , xr is a wheel system
with respect to it, and z is {y, x0, . . . , xr}-complete, and has a neighbour in
A′

r (namely v), where A′
r is the maximal connected subset of V (G) including

A0 and containing no neighbour of y and no Xr-complete vertex. But this
contradicts the minimality of s proving 23.3.

Now we can prove 1.8.10:
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23.4. Let G ∈ F9, admitting no balanced skew partition, and let C be
a hole in G of length ≥ 6. Then there is no vertex of G \ V (C) with three
consecutive neighbours in C. In particular, every recalcitrant graph belongs
to F10.

Proof. Suppose that there is such a vertex, say y, and let it be adjacent
to x0, z, x1 ∈ V (C), where x0-z-x1 is a path. Let A0 = V (C) \ {z, x0, x1}. By
23.3 applied to (z, A0) and x0, x1, it follows that y has no other neighbour
in C. Choose t maximum such that there is a sequence x2, . . . , xt with the
following properties:

• For 2 ≤ i ≤ t, there is a connected subset Ai−1 of V (G) including Ai−2,
containing a neighbour of xi, containing no neighbour of z or y, and
containing no {x0, . . . , xi−1}-complete vertex.

• For 1 ≤ i ≤ t, xi is not {x0, . . . , xi−1}-complete, and

• x0, . . . , xt are {y, z}-complete.

Since G admits no skew partition by 15.1, there is a path P from {z, y} to
A0, disjoint from {x0, . . . , xt} and containing no {x0, . . . , xt}-complete vertex
in its interior. Choose such a path of minimum length. From the symmetry
between z, y we may assume its first vertex is y; say the path is y-p1- · · · -pk+1,
where pk+1 ∈ A0. From the minimality of the length of P it follows that z

is not adjacent to any of p2, . . . , pk. If z is adjacent to p1 then we may set
xt+1 = p1, contrary to the maximality of t. So p1, . . . , pk+1 are all nonadjacent
to z. Hence (z, A0) is a frame, and x0, . . . , xt is a wheel system with respect
to it, and y is adjacent to all of z, x0, . . . , xt, and there is a connected subset
of V (G) including A0, containing a neighbour of y, containing no neighbour of
z, and containing no {x0, . . . , xt}-complete vertex. But this contradicts 23.3.
This proves 23.4.

This has the following useful corollary, which is 1.8.11.

23.5. Let G ∈ F10; then G does not contain both a hole of length ≥ 6 and
an antihole of length ≥ 6. In particular, for every recalcitrant graph G, one of
G, G belongs to F11.

Proof. Let C be a hole and D an antihole, both of length ≥ 6. Let
W = V (C) ∩ V (D), A = V (C) \ W , and B = V (D) \ W . Let W, A, B have
cardinality w, a, b respectively. Let there be p edges between A and W , q edges
between B and W , r edges between A and B, and s edges with both ends in
W . Let there be p′ nonedges between A and W , q′ nonedges between B and
W , r′ nonedges between A and B, and s′ nonedges with both ends in W . By
2.3, and since G ∈ F10, every vertex in B has at most 1

2(a + w) neighbours in
C, so q + r ≤ 1

2(a + w)b. Also, every vertex in W has at most two neighbours
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in A ∪ W , so that p + 2s ≤ 2w. Summing, we obtain

p + q + r + 2s ≤ 1
2
ab +

1
2
bw + 2w.

By the same argument in the complement we deduce that

p′ + q′ + r′ + 2s′ ≤ 1
2
ab +

1
2
aw + 2w.

But

p + p′ + q + q′ + r + r′ + 2s + 2s′ = ab + aw + bw + w(w − 1),

and so
4w ≥ 1

2
aw +

1
2
bw + w(w − 1);

that is,
w(a + b + 2w − 10) ≤ 0.

Since a+w, b+w ≥ 6, it follows that w = 0, and so C, D are disjoint. Moreover,
equality holds throughout this calculation, so that every vertex in D is adjacent
to exactly half the vertices of C and vice versa. By 2.3, and since G ∈ F10, for
each v ∈ D, its neighbours in C are pairwise nonadjacent. Let C have vertices
c1, . . . , cm in order, and let D have vertices d1, . . . , dn. So for every vertex of
D, its set of neighbours in V (C) is either the set of all ci with i even, or the
set with i odd, and the same with C, D exchanged. We may assume that c1

is adjacent to d1. Hence the edges between {c1, c2, c4, c5} and {d1, d2, d4, d5}
are c1d1, c1d5, c2d2, c2d4, c4d2, c4d4, c5d1, c5d5; and so the subgraph induced on
these eight vertices is a double diamond, contrary to G ∈ F10. This proves
23.5.

Let us mention a theorem of [12], which could be applied at this stage
as an alternative to the next section, the following (and see also [8] for some
related material):

23.6. Let G ∈ F5. Suppose that for every hole C in G of length ≥ 6, and
every vertex v ∈ V (G) \ V (C), either :

• v has fewer than three or an equal number of neighbours in C, or

• v has exactly four neighbours in C, say a, b, c, d, where ab and cd are
edges, or

• v is V (C)-complete, or

• no two neighbours of v in C are adjacent.

Suppose also that the same holds in G. Then either one of G, G is bipartite or
a line graph of a bipartite graph, or G admits a loose skew partition.

The method we give below is somewhat shorter than the proof of 23.6 in
[12], however.
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24. The end

Recall that we are trying to prove 13.5. In view of 23.5, it suffices to
show the following, which is 1.8.12, and the objective of the remainder of the
paper:

24.1. Let G ∈ F11; then either G is complete, or G is bipartite, or G

admits a balanced skew partition.

We begin with a further strengthening of 13.6, as follows.

24.2. Let G ∈ F11, and let P be a path in G with odd length. Let
X ⊆ V (G) be anticonnected, such that both ends of P are X-complete. Then
some edge of P is X-complete.

Proof. Suppose not; then from 13.6, P has length 3 (let its vertices be
p1, p2, p3, p4 in order) and p2, p3 are joined by an antipath Q with interior in
X. But then p2-Q-p3-p1-p4-p2 is an antihole of length > 4, a contradiction.
This proves 24.2.

24.3. Let G ∈ F11. Let X ⊆ V (G) be nonempty and anticonnected, and
let p1- · · · -pn be a path of G \ X with n ≥ 4, such that p1, pn are X-complete
and p2, . . . , pn−1 are not. There is no vertex y ∈ V (G) \ (X ∪ {p1, . . . , pn})
such that y is X-complete and adjacent to p1, p2.

Proof. Suppose such a vertex y exists. By 24.2, n is odd, and therefore
n ≥ 5. Let Q be an antipath joining p2, p3 with interior in X. Since Q can
be completed to an antihole via p3-pn-p2, it follows that Q has length 2, and
so there exists x ∈ X nonadjacent to p2, p3. Since x is adjacent to pn, we
may choose i with 2 ≤ i ≤ n minimal such that x is adjacent to pi. Hence
x-p1- · · · -pi-x is a hole of length ≥ 6, and y has three consecutive neighbours
in it, contrary to G ∈ F11. This proves 24.3.

Next is a strengthening of 17.1.

24.4. Let G ∈ F11. Let X1, X2, X3 be disjoint nonempty anticonnected
sets, complete to each other. Let F ⊆ V (G) \ (X1 ∪ X2 ∪ X3) be connected,
such that for i = 1, 2, 3 there is an Xi-complete vertex in F . Then there is a
vertex in F complete to two of X1, X2, X3.

Proof. Suppose not; then we may assume F is minimal with this property.

(1) If p1, . . . , pn is a path in F , and p1 is its unique X1-complete vertex and
pn is its unique X2-complete vertex then n is even.

For n > 1, since no vertex is both X1-complete and X2-complete, assume
n is odd; then by 13.7, n = 3. But there is an antipath Q1 between p2, p3

with interior in X1, and an antipath Q2 between p1, p2 with interior in X2;
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and then p2-Q1-p3-p1-Q2-p2 is an antihole of length > 4, a contradiction. This
proves (1).

From the minimality of F , there are (up to symmetry) three cases:

1. For i = 1, 2, 3 there is a unique Xi-complete vertex vi ∈ F ; there is a
vertex u ∈ F different from v1, v2, v3, and three paths P1, P2, P3 in F , all
of length ≥ 1, such that each Pi is from vi to u, and for 1 ≤ i < j ≤ 3,
V (Pi \ u) is disjoint from V (Pj \ u) and there is no edge between them.

2. For i = 1, 2, 3 there is a unique Xi-complete vertex vi ∈ F ; there are
three paths P1, P2, P3 in F , where each Pi is from vi to some ui say,
possibly of length 0; and for 1 ≤ i < j ≤ 3, V (Pi) is disjoint from V (Pj)
and the only edge between V (Pi), V (Pj) is uiuj .

3. For i = 1, 2 there is a unique Xi-complete vertex vi ∈ F , and there is a
path P in F between v1, v2 containing at least one X3-complete vertex.

Suppose that the first holds, and let P1, P2, P3 be as in the first case.
Then some two of P1, P2, P3 have lengths of the same parity, and their union
violates (1).

Now suppose the second holds, and for i = 1, 2, 3 let ui, vi, Pi be as in
the second case. Let Q1 be an antipath joining u2, u3 with interior in X1,
and define Q2, Q3 similarly. If P1, P2, P3 all have length 0, then the union of
Q1, Q2, Q3 is an antihole of length > 4, a contradiction. So we may assume that
P1 has length > 0, and hence u1 	= v1. Since v1-u2-Q1-u3-v1 is an antihole, Q1

has length 1. Since u1, u3 are not X1-complete, they are joined by an antipath
with interior in X1, and its union with Q2 is an antihole; so Q2 has length 2,
and similarly so does Q3. For i = 1, 2, 3 let xi be the middle vertex of Qi.
Then

V (P1 \ u1) ∪ V (P2 \ u2) ∪ V (P3 \ u3) ∪ {x1, x2, x3}
is connected, and catches the triangle {u1, u2, u3}; and none of its vertices have
two neighbours in the triangle, and it contains no reflection of the triangle since
there is no antihole of length 6. This is contrary to 17.1.

Now suppose the third holds, and let v1, v2, P be as in the third case. Let
P have vertices p1, . . . , pn where v1 = p1 and v2 = pn. Since one of its vertices
is X3-complete and p1, pn are not, it follows that n ≥ 3; and by (1), n is odd,
so that n ≥ 4. Choose i minimum and j maximum with 1 ≤ i, j ≤ n such that
pi, pj are X3-complete. So i > 1, and i is even by (1), and similarly j < n

and j is odd. So the path pi- · · · -pj has odd length, and so by 24.2 one of
its edges is X3-complete, say pkpk+1 where 2 ≤ k ≤ n − 2. Now pk, pk+1 are
joined by an antipath with interior in X1, and by another with interior in X2,
and the union of these is an antihole; so they both have length 2. Hence for
i = 1, 2 there exist xi ∈ Xi nonadjacent to both pk, pk+1. Let R be a path



226 M. CHUDNOVSKY, N. ROBERTSON, P. SEYMOUR, AND R. THOMAS

between pk+2, pk−1 with interior in (V (P ) \ {pk, pk+1}) ∪ {x1, x2}. Then R

can be completed to a hole C via pk−1-pk-pk+1-pk+2, and C has length ≥ 6,
and at least one edge of C is X3-complete, namely pkpk+1, and at least one
more vertex of C is X3-complete, since R uses at least one of x1, x2. But this
contradicts 2.3, and the hypothesis that G ∈ F11.

This proves 24.4.

24.5. Let G ∈ F11, admitting no balanced skew partition. Let X, Y be dis-
joint anticonnected subsets of V (G), complete to each other, and let p1- · · · -pn

be a path of G \ (X ∪ Y ), with n ≥ 2, such that p1 is the unique X-complete
vertex in the path, and pn is the unique Y -complete vertex. Then there is no
z ∈ V (G)\(X∪Y ∪{p1, . . . , pn}), complete to X∪Y and nonadjacent to p1, pn.

Proof. Suppose that z exists, and choose X maximal. By 15.2, there is a
path Q in G from z to p1, such that none of its internal vertices is in X or is
X-complete. Since no vertex of {p2, . . . , pn} is X-complete, we may choose Q

such that if z has a neighbour in {p2, . . . , pn} then V (Q) ⊆ {z, p1, . . . , pn}. The
connected subset V (Q \ z) ∪ {p1, . . . , pn} (= F say) contains an X-complete
vertex, a Y -complete vertex, and a {z}-complete vertex. The only X-complete
vertex in F is p1, and that is not Y -complete or {z}-complete; so by 24.4
some vertex in F is Y -complete and adjacent to z. If z has a neighbour in
{p1, . . . , pn}, then V (Q) ⊆ {z, p1, . . . , pn}, and so pn is the only vertex of F

that is Y -complete; and it is not adjacent to z, a contradiction. So z has no
neighbour in {p1, . . . , pn}, and therefore only one vertex in F is adjacent to z,
the neighbour of z in Q, say q. Hence q is nonadjacent to p1, for otherwise
we could add q to X, contrary to the maximality of X. Consequently Q has
length > 2. This contradicts 24.3 applied to Q,X and any vertex y ∈ Y . This
proves 24.5.

24.6. Let G ∈ F11, admitting no balanced skew partition, and let C be a
hole. If z ∈ V (G) \ V (C) has two neighbours in C that are adjacent, then C

has length 4 and z has a third neighbour in C. In particular, G has no antipath
of length 4.

Proof. Let C be the hole with vertices p1, . . . , pn+2 in order, and assume
some z ∈ V (G) \ V (C) is adjacent to pn+1, pn+2. By 24.5, taking X = {pn+1}
and Y = {pn+2} we deduce that z is adjacent to at least one of p1, pn. Since
G ∈ F11 it follows that C has length 4. This proves 24.6.

24.7. Let G ∈ F11, admitting no balanced skew partition. Let X1, X2, X3

be pairwise disjoint, nonempty, anticonnected subsets of V (G), complete to
each other. Let F ⊆ V (G) \ (X1 ∪X2 ∪X3) be connected, such that for at least
two values of i ∈ {1, 2, 3}, every member of Xi has a neighbour in F . Then
some vertex of F is complete to two of X1, X2, X3.
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Proof. Assume not, and choose a counterexample with X1 ∪X2 ∪X3 ∪ F

minimal. Suppose F contains an Xi-complete vertex for two values of i ∈
{1, 2, 3}, say i = 1, 2; and choose a path p1- · · · -pn of F such that p1 is X1-
complete and pn is X2-complete, with n minimal. So n ≥ 2. From the min-
imality of F , F = V (P ), and there is a vertex x1 ∈ X1 such that p1 is its
only neighbour in F , and there exists x2 ∈ X2 such that pn is its only neigh-
bour in F . By 24.6 applied to the hole x2-x1-p1- · · · -pn-x2 and any x3 ∈ X3,
n = 2. Let Q be an antipath between p1, p2 with interior in X3; since p1 has
a nonneighbour x2 ∈ X2, and p2 has a nonneighbour x1 ∈ X1, it follows that
x1-p2-Q-p1-x2 is an antipath of length ≥ 5, contrary to 24.5.

So there is at most one i such that F contains Xi-complete vertices, and
from the symmetry we may assume that F contains no X1- or X2-complete
vertices. We may also assume that all members of X1 have neighbours in F , and
therefore |X1| ≥ 2; choose distinct x1, x

′
1 ∈ X1 such that X1 \ {x1}, X1 \ {x′

1}
are both anticonnected. From the minimality of X1, there is a vertex f of F

complete to two of X1 \ {x1}, X2, X3, and therefore complete to X1 \ {x1} and
X3, and similarly a vertex f ′ of F complete to X1 \ {x′

1} and X3. Let P be
a path in F between f, f ′. Since all vertices of X1 ∪ X3 have neighbours in
V (P ), the minimality of F implies that F = V (P ); moreover, since all vertices
of (X1 \ {x1}) ∪ X3 are adjacent to f , the minimality of F implies that f ′ is
the unique neighbour of x1 in F . Similarly f is the unique neighbour of x′

1

in F . Let Q be an antipath in X1 joining x1, x
′
1. Since f has a nonneighbour

x ∈ X2, x-f -x1-Q-x′
1 is an antipath, and so Q has length 1, and hence x1, x

′
1

are nonadjacent. From the minimality of F , there exists x2 ∈ X2 with no
neighbour in F \{f}. If x2 is also nonadjacent to f , then x2-x1-f ′-P -f -x′

1-x2 is
a hole of length ≥ 6, and any member of X3 has three consecutive neighbours
on it, contrary to G ∈ F11. But then x1 has two consecutive neighbours on the
hole x′

1-f -P -f ′-x1-x2-x′
1, and this hole has length > 4, contrary to 24.6. This

proves 24.7.

Now we can complete the proof of 24.1, and hence of 13.5 and therefore
of 1.3 and 1.2, as follows.

Proof of 24.1. Let G ∈ F11, admitting no balanced skew partition. We
may assume that G is not bipartite, and therefore has a triangle. Consequently
we may choose disjoint nonempty anticonnected sets X1, . . . , Xk, complete to
each other, with k ≥ 3, with maximal union. Suppose first that X1∪· · ·∪Xk 	=
V (G), and let F = V (G) \ (X1 ∪ · · · ∪ Xk). By 15.2 (applied to Xk and
X1 ∪ · · · ∪Xk−1), F is connected and every vertex of X1 ∪X2 has a neighbour
in it. By 24.7, some vertex v ∈ F is complete to two of X1, X2, X3. We may
assume that for some i with 2 ≤ i ≤ k, v is Xj-complete for 1 ≤ j ≤ i and not
Xj-complete for i < j ≤ k. Define

X ′
i+1 = Xi+1 ∪ · · · ∪ Xk ∪ {v};

then the sets X1, . . . , Xi, X
′
i+1 violate the optimality of the choice of X1, . . . , Xk.
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Hence X1 ∪ · · · ∪ Xk = V (G), and therefore G has at least three compo-
nents. From 15.2 it follows that G is complete. This proves 24.1.
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