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From real affine geometry
to complex geometry

By Mark Gross and Bernd Siebert

Abstract

We construct from a real affine manifold with singularities (a tropical

manifold) a degeneration of Calabi-Yau manifolds. This solves a funda-

mental problem in mirror symmetry. Furthermore, a striking feature of

our approach is that it yields an explicit and canonical order-by-order de-

scription of the degeneration via families of tropical trees.

This gives complete control of the B-model side of mirror symmetry in

terms of tropical geometry. For example, we expect that our deformation

parameter is a canonical coordinate, and expect period calculations to be

expressible in terms of tropical curves. We anticipate this will lead to a

proof of mirror symmetry via tropical methods.
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Introduction

Toric geometry links the integral affine geometry of convex polytopes to

complex geometry. On the complex side this correspondence works via equi-

variant partial completions of algebraic tori. It is thus genuinely linear in

nature and deals exclusively with rational varieties. This paper provides a

nonlinear extension of this correspondence producing (degenerations of) va-

rieties with effective anti-canonical divisor. Among other things we obtain a

new and rather surprising method for the construction of varieties with trivial

canonical bundle by discrete methods. It generalizes the Batyrev-Borisov con-

struction of Calabi-Yau varieties as complete intersections in toric varieties and

a number of other, nontoric constructions. One may even hope to obtain all

deformation classes of varieties with a trivial canonical bundle which contain

maximally unipotent boundary points.

The data on the affine side consists of a topological manifold B built by

gluing integral polytopes in an affine manner along their boundaries, along

with compatible affine charts at the vertices of the resulting polyhedral de-

composition P of B. This endows B with an integral affine structure on the

complement of a codimension-two subset ∆ ⊆ B. The subset ∆ is covered

by the cells of the barycentric subdivision of P neither containing a vertex

of P nor intersecting the interiors of top-dimensional cells of P. This notion

of affine manifolds with singularities allows for many more interesting closed

examples than without singularities. For example, the two-torus is the only

closed oriented surface with a nonsingular affine structure [Ben], [Mil58], while

S2 has many affine structures with singularities, for example as a base of an
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elliptically fibred K3 surface. Furthermore, such integral affine manifolds arise

naturally from boundaries of reflexive polytopes [Gro05], [HZ05].

On the complex side we consider toric degenerations π : X→ T of complex

varieties as introduced in [GS06, Def. 4.1]; the central fibre X is a union of

toric varieties glued torically by identifying pairs of toric prime divisors, and π

is étale locally toric near the zero-dimensional toric strata of X. Beware that

in general X is not a toric variety. In the same paper it was shown how such a

degeneration gives rise to an affine manifold with singularities and polyhedral

decomposition (B,P) as before ([GS06, Def. 4.13]). Combinatorially P is the

dual intersection complex of the central fibre; that is, k-cells of P correspond

to codimension-k intersections of irreducible components. The affine structure

reflects the toric nature of the degeneration.

The main result, Theorem 1.30 of this paper, deals with the inverse prob-

lem: given (B,P), find a toric degeneration π : X→ T with dual intersection

complex (B,P).

In the case without singularities, Mumford already used toric methods

to write down such degenerations, notably for the class of abelian varieties

[Mum72].

To solve this problem in much greater generality, we need to make three

assumptions. First, we need the existence of the central fibre of the toric de-

generation as a toric log Calabi-Yau space as defined in [GS06, Def. 4.3]. Con-

structing such a space with dual intersection complex (B,P) was the chief

focus of [GS06]. This condition is necessary, as X → T induces such a log

Calabi-Yau space structure on X. Also, Theorem 5.4 in [GS06] gives natu-

ral sufficient conditions (positivity and simplicity) in terms of the local affine

monodromy around ∆ ⊆ B. Positivity is a kind of convexity property that

again is necessary, while simplicity should be viewed as a maximal degener-

ation property that implies primitivity of the local monodromy. In instances

where (B,P) is nonsimple, the existence of a log Calabi-Yau structure can

be explicitly checked by the results of Section 3.3 in [GS06], notably by Theo-

rem 3.27.

Second, we assume the existence of a polarization for (B,P). This is

a multi-valued, convex, piecewise affine function on B. If (B,P) is the dual

intersection complex of a toric log Calabi-Yau space X, this condition is closely

related to projectivity of X and is in fact equivalent to it provided H1(B,Q)

= 0; see [GS06, Th. 2.34]. This condition is clearly not necessary as in some

cases, for example in dimension two, log deformation theory gives the same

result without any projectivity assumptions. While in our algorithm different

polarizations lead to isomorphic families, the polarization is a basic ingredient

that appears to be crucial for globalizing the local deformations consistently.
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Third, we need a condition we term locally rigid (see Definition 1.26) on X.

This is a somewhat technical condition, which essentially implies that at each

step of our construction, the choices we need to make are unique. Without

this condition, nonuniqueness can lead to obstructions to solving the problem.

Simplicity implies local rigidity (Remark 1.29). As a result, the Main Theorem

implies the following reconstruction theorem.

Theorem 0.1. Any polarized affine manifold with singularities with pos-

itive and simple monodromy arises as the dual intersection complex of a toric

degeneration.

In fact, our Main Theorem (Theorem 1.30) applies more broadly when

the dual intersection complex (B,P) is noncompact, corresponding to the

case where a general fibre has only effective anti-canonical class. In principle,

one should also be able to deal with the case when (B,P) has boundary,

where the corresponding complex manifold is not complete. However, in this

situation we expect a Landau-Ginzburg potential to play an important role,

and there are additional subtleties to the argument. We have chosen not to

deal with these issues here and will consider this case elsewhere.

The proof of the Main Theorem gives far more than the existence of a

toric degeneration. It gives a canonical, explicit k-th order deformation Xk →
Speck[t]/(tk+1) of X for any k. Furthermore, this degeneration is specified

using data of a tropical nature.

Let us expand on this description. First, we explain the role the polariza-

tion plays. Given the polarization ϕ, a piecewise linear multi-valued function

on B, one can construct the discrete Legendre transform of the triple (B,P, ϕ),

which is another triple (B̌, P̌, ϕ̌). If ϕ comes from an ample line bundle on a

log Calabi-Yau space X with dual intersection complex (B,P), then (B̌, P̌) is

the intersection complex, whose maximal cells are the Newton polytopes defin-

ing the polarized irreducible components of X (see [GS06, §§1.5 and 4.2]). The

data governing the deformations of X then consist of what we call a structure,

which is a collection of slabs and walls. These are codimension-one polyhedral

subsets of B, contained locally in affine hyperplanes, along with some attached

data of a ring automorphism which is used in our gluing construction. This

structure has an important tropical interpretation. Morally, a structure can be

viewed as a union of tropical trees in B̌ with leaves on ∆. We will not define

the precise notion of tropical curves on affine manifolds with singularities, as

this is not needed for the proof and the correct general definition is not yet

entirely clear, but see [Gro09] for some further discussion of this. We induc-

tively construct structures Sk for k ≥ 0, with Sk providing sufficient data to

construct Xk → Speck[t]/(tk+1). Morally, Sk can be viewed as the union of

“tropical trees of degree k”.
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The actual degenerations Xk → Speck[t]/(tk+1) are constructed from the

structure Sk by gluing together certain canonical thickenings of affine pieces of

irreducible components of X, with the gluings specified by the automorphisms

attached to the slabs and walls of Sk. The main difficulty in the inductive

construction of Sk+1 from Sk is the need to maintain compatibility of this

gluing. For this purpose, we adapt a key lemma of Kontsevich and Soibelman

from [KS06], which essentially expresses commutators of automorphisms in a

standard form as a product of automorphisms in this standard form.

We end this introduction with a number of remarks, historical and other-

wise.

(1) Our construction can be viewed as a “nonlinear” generalization of

Mumford’s and Alexeev and Nakamura’s construction of degenerations of

abelian varieties [Mum72], [AN99], [Ale02]. If B = Rn/Γ, where Γ ⊆ Zn
is a sublattice, then one obtains a degeneration of abelian varieties. Here ∆

is empty, and the structures Sk can be taken to be empty too: there are no

“corrections” to construct the deformation.

(2) Let B0 := B \ ∆. Then we can define X(B0) := TB0/Λ, where Λ is

the local system of integral flat vector fields. This is a torus bundle over B0,

and it inherits a natural complex structure from the tangent bundle TB0 . One

basic problem that arises in the Strominger-Yau-Zaslow approach to mirror

symmetry [SYZ96] is that one would like to compactify X(B0) to a complex

manifold X(B). Because of the singularities, the complex structure is in fact

not the correct one, and this compactification cannot be performed in the

complex category, even when it can be performed in the topological category

(see, e.g., [Gro09], [GS]). One needs to deform the complex structure before

this compactification can be expected to exist. Typically, one considers an

asymptotic version of this problem: consider Xε(B0) = TB0/εΛ. Then for small

ε > 0, one expects that there is a small deformation of the complex structure on

Xε(B0) which can be compactified. This problem has been discussed already

in a number of places; see [Fuk05], [KS01], [Gro01]. The results of this paper,

combined with the results of [GS] as described in [GS03], can be viewed as

giving as complete a solution to this problem as one could hope for.

This problem was first attacked directly by Fukaya in [Fuk05] in the two-

dimensional case. Fukaya gave heuristic arguments suggesting that the needed

deformation should be concentrated along certain trees of gradient lines on

B with leaves on ∆. This direct analytic approach seems to be very diffi-

cult; nevertheless, it gave a hint as to the relevant data for controlling the

deformations.

(3) In [KS06], Kontsevich and Soibelman proposed an alternative approach

to the reconstruction problem, suggesting one should construct a rigid analytic
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space rather than a complex manifold from B. They showed how to do this

in dimension two. Here, the same trees of gradient flow lines as in [Fuk05]

emerge, this time with certain automorphisms attached to the edges of the

trees. The proof relies on a group-theoretic lemma which we also use here.

The advantage of using rigid analytic spaces is that most convergence issues

become rather simple. However, there is one part of their argument which is

rather technical: to prove convergence near the singularities, one has to control

the gradient flow lines to avoid returning to some small neighbourhood of the

singularities. This technical issue, along with some other points, appears to

make this approach rather difficult to generalize directly to higher dimensions.

In a sense, we surmount these difficulties by discretizing the problem and

passing to the discrete Legendre transform (B̌, P̌). The advantage of working

with the dual affine manifold B̌ is that the gradient flow lines on B become

straight lines on B̌. These are obviously much easier to work with and control.

On the other hand, this leaves us no ability to avoid a neighbourhood of the

singularities. As a result, we have to deal with some compositions of automor-

phisms which involve terms of order 0; this introduces terms in our expressions

with denominators, which have to be controlled. This is a significant technical

problem, relatively easy in dimension two, but much harder in dimensions three

and higher, and the solution to this problem occupies Section 3 of this paper.

If one were to rewrite this paper in the dimension two case only, it would be

considerably shorter. Given our current level of understanding, it seems that a

price must be paid somewhere near the singularities, whether it be Kontsevich

and Soibelman’s genericity arguments or our algebraic arguments. It would be

nice to find a simpler solution to these problems.

It is also worthwhile making a historical remark here. We had the orig-

inal idea of constructing smoothings by gluing thickenings of affine pieces of

irreducible components of X in 2003. It was also clear to us that the gluing

maps should propagate along straight lines on B̌. However, we abandoned this

approach for a while, attempting to find a Bogomolov-Tian-Todorov argument

for smoothability. We returned to the question of explicit smoothings in 2005,

and realized that the group-theoretic Kontsevich-Soibelman lemma applied in

our situation, thus enabling us to complete the argument.

We also comment that if one is only interested in the two-dimensional case

and one does not care about the explicit smoothings, but only the existence of

a smoothing, then X can be smoothed using techniques of [Fri83] or [KN94]

directly, as was known to us in 2001.

(4) We cannot overemphasize the importance of this result to understand-

ing mirror symmetry. Our structures, in a sense, give a complete description of

the B-model side of mirror symmetry, at a much deeper level than the usual de-

scription in terms of periods. Furthermore, our description of the B-model side
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is tropical in nature. It is well known [Mik05], [NS06] that one should expect

a correspondence between tropical curves on B and families of holomorphic

curves on the corresponding degeneration X → T . Thus it is an important

point for understanding mirror symmetry that the construction of the corre-

sponding complex manifold is controlled by tropical curves on B̌, hence by

holomorphic curves on the mirror degeneration X̌ → T corresponding to B̌.

This is what one expects to see in mirror symmetry, and this gives an explicit

explanation for the connection between deformations and holomorphic curves

in mirror symmetry.

There remains the question of extracting explicit enumerative predictions

from the structures we use to build our smoothings. We have performed some

calculations in some three-dimensional examples, and from these, we feel highly

confident in the following conjectures, stated with varying degrees of precision.

Conjecture 0.2. (1) The coordinate t associated with the canonical

k-th order deformations Xk → Speck[t]/(tk+1) is a canonical coordi-

nate in the usual sense in mirror symmetry.

(2) The enumerative predictions made by calculating periods of Xk →
Speck[t]/(tk+1) can be described explicitly in terms of contributions

from each tropical rational curve on B̌ of “degree ≤ k”. The numerical

contributions are determined by the automorphisms appearing in the

structure Sk.

(3) The automorphisms attached to walls of Sk can be interpreted as “raw

enumerative data” which morally counts the number of holomorphic

disks with boundary on Lagrangian tori of the mirror dual Strominger-

Yau-Zaslow fibration. The tropical trees arising in the structures can

be viewed as a tropical version of holomorphic disks.

Ultimately, we believe it will be easier to read off enumerative information

directly from the structures and that calculation of periods should be viewed

as a crude way of extracting the much more detailed information present in

the structures.

(5) Speculating further, we expect that our structures will yield a useful

description of (higher) multiplication maps for homological mirror symmetry

on the B-model side. Our smoothings X → T come along with canonical po-

larizations by an ample line bundle L. A basis for the space of sections of

H0(X,L⊗n) as an OT -algebra is given by the set of points B
Ä

1
nZ
ä

of points

on B whose coordinates are in 1
nZ. A structure should then allow us to give

explicit descriptions of the multiplication maps H0(X,L⊗n1)⊗H0(X,L⊗n2)→
H0(X,L⊗(n1+n2)), answering a question of Kontsevich. In discussions with Mo-

hammed Abouzaid, it has become apparent that it seems likely that these mul-

tiplication maps and higher multiplication maps could be described in terms
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of a “tropical Morse category” on B, once again making the B-model side look

very much like the expected structure of the A-model (Fukaya category) side.

Hopefully, this approach will ultimately lead to a proof of Homological Mirror

Symmetry.

Further justification of these statements will have to wait for further work;

however, [GS10] lays the groundwork for computation of periods.

Conventions. We work in the category Schk of separated schemes over an

algebraically closed field k of characteristic 0. A variety is a scheme of finite

type over k. All our toric varieties are normal. A toric monoid is a finitely

generated, saturated, integral monoid. These are precisely the monoids of the

form σ∨ ∩ Zn for σ ⊆ Rn a strictly convex, rational polyhedral cone.

1. Fundamentals

1.1. Discrete data. While our construction is part of the program laid out

in [GS06], only a fraction of the techniques developed there is needed for it.

To make this paper reasonably self-contained, Sections 1.2 and 1.3 therefore

provide the relevant background. At the same time we discuss a generalization

from the projective Calabi-Yau situation to semi-positive and noncomplete

cases. For simplicity we restrict to the case without self-intersecting cells.

The treatment of self-intersections is, however, straightforward; it is merely a

matter of working with morphisms rather than inclusions and with algebraic

spaces rather than schemes, as done consistently in [GS06].

To fix notation recall that a convex polyhedron is the intersection of finitely

many closed affine half-spaces in Rn. As all our polyhedra are convex, we

usually drop the attribute “convex”. A polyhedron is rational if the affine

functions defining the half spaces can be taken with rational coefficients. The

dimension of the smallest affine space containing a polyhedron Ξ is its dimen-

sion. Its relative interior Int Ξ is the interior inside this affine space, and the

complement Ξ\Int Ξ is called the relative boundary ∂ Ξ. If dim Ξ = k, then ∂ Ξ

is itself a union of polyhedra of dimension at most k−1, called faces, obtained

by intersection of Ξ with hyperplanes disjoint from Int Ξ. Faces of dimensions

k − 1 and 0 are called facets and vertices, respectively. In contrast to [GS06],

our polyhedra are not necessarily bounded, but we require the existence of at

least one vertex (so half-spaces, for example, are not allowed). For y ∈ ∂Ξ,

the tangent cone KyΞ of Ξ at y is the cone generated by differences z − y for

z ∈ Ξ. If Ξ′ ⊆ Ξ is a face, we also define KΞ′Ξ := KyΞ for any y ∈ Int Ξ′. The

closure of the cone R≥0 ·
Ä
Ξ × {1}

ä
⊆ Rn × R = Rn+1 is denoted C(Ξ). Any

polyhedron Ξ can be written as Minkowski sum Ξ′ + C of a bounded polyhe-

dron Ξ′ and a cone C. While Ξ′ is not in general unique, C is determined as

the Hausdorff limit limε→0 εΞ and is therefore called the asymptotic cone of Ξ.
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Finally, if C ⊆ Rn is a cone, then C∨ denotes its dual as an additive monoid

Hom(C,R≥0), viewed as a cone in RdimC ' Hom(C,R).

A rational polyhedron is integral or a lattice polyhedron if all its vertices are

integral. The group of integral affine transformations Aff(Zn) = ZnoGL(n,Z)

acts on the set of integral polyhedra. Note that we require the translational

part to also be integral. Finally, if Ξ is an integral polyhedron, ΛΞ ' Zdim Ξ

denotes the free abelian group of integral tangent vector fields along Ξ. Note

that for any x ∈ Int(Ξ), there is a canonical injection ΛΞ → TΞ,x inducing an

isomorphism TΞ,x ' ΛΞ,R := ΛΞ ⊗Z R.

We consider topological manifolds with boundary built by gluing integral

convex polyhedra along their faces in an integral affine manner. To this end

consider the category LPoly with integral, convex polyhedra as objects and

integral affine isomorphisms onto faces and the identity as morphisms. An

integral polyhedral complex is gluing data for a collection of such polyhedra

given by a functor

F : P −→ LPoly

for some category P such that if Ξ ∈ F (P) and Ξ′ ⊆ Ξ is a face, then

Ξ′ ∈ F (P). To avoid self-intersections we also require that for any τ, σ ∈P,

there is at most one morphism e : τ → σ. The associated topological space is

the quotient

B =
∐
σ∈P

F (σ)
/
∼,

where two points p ∈ F (σ), p′ ∈ F (σ′) are equivalent if there exists τ ∈ P,

q ∈ F (τ) and morphisms e : τ → σ, e′ : τ → σ′ with p = F (e)(q), p′ = F (e′)(q).

(Then B is the colimit of the composition of F with the forgetful functor from

LPoly to the category of topological spaces.) By abuse of notation we usually

suppress F and consider the elements of P simply as subsets of B, called

cells, with the structure of integral convex polyhedra understood. The set

of k-dimensional cells is then denoted P [k], the k-skeleton by P [≤k], and if

n = sup{dimσ |σ ∈ P} is finite, we write Pmax := P [n]. In this language

morphisms are given by inclusions of subsets of B.

While B now has a well-defined affine structure on each cell, our con-

struction also requires affine information in the normal directions. To add this

information recall that the open star of τ ∈ P is the following open neigh-

bourhood of Int τ :

Uτ =
⋃

{σ∈P | Hom(τ,σ)6=∅}
Intσ.

Definition 1.1. Let P be an integral polyhedral complex. A fan structure

along τ ∈P is a continuous map Sτ : Uτ → Rk with the following properties:

(i) S−1
τ (0) = Int τ .
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(ii) If e : τ → σ is a morphism, then Sτ |Intσ is an integral affine submersion

onto its image; that is, it is induced by an epimorphism Λσ →W ∩Zk
for some vector subspace W ⊆ Rk.

(iii) The collection of cones Ke := R≥0 · Sτ (σ ∩ Uτ ), e : τ → σ, defines a

finite fan Στ in Rk.
Two fan structures Sτ , S

′
τ : Uτ → Rk are considered equivalent if they differ

only by an integral linear transformation of Rk.

If Sτ : Uτ → Rk is a fan structure along τ ∈P and σ ⊇ τ , then Uσ ⊆ Uτ .

The fan structure along σ induced by Sτ is the composition

Uσ −→ Uτ
Sτ−→ Rk −→ Rk/Lσ ' Rl,

where Lσ ⊆ Rk is the linear span of Sτ (Intσ). This is well defined up to

equivalence.

Definition 1.2. An integral tropical manifold of dimension n is an inte-

gral polyhedral complex P, which we assume countable, together with a fan

structure Sv : Uv → Rn at each vertex v ∈P [0] with the following properties:

(i) For any v ∈P [0], the support |Σv| =
⋃
C∈Σv C is convex with nonempty

interior (hence is an n-dimensional topological manifold with bound-

ary).

(ii) If v, w are vertices of τ ∈ P, then the fan structures along τ induced

from Sv and Sw, respectively, are equivalent.

In the case with empty boundary and with all polyhedra bounded, this

is what in [GS06] we called a “toric polyhedral decomposition of an integral

affine manifold with singularities”.

The underlying topological space B =
⋃
σ∈P σ of an integral tropical man-

ifold carries a well-defined integral affine structure outside of a closed subset of

codimension two. This discriminant locus ∆ can be taken as follows. For each

bounded τ ∈ P let aτ ∈ Int τ , and for each unbounded τ ∈ P let aτ ∈ Λτ,R
be an element of the relative interior of the asymptotic cone of τ . The choice

of aτ in the unbounded case must be made subject to the constraint that if

τ ′ ⊆ τ is a face and τ ′ and τ have the same asymptotic cone, then aτ ′ = aτ . In

this unbounded case, aτ should be viewed as a point at infinity. Then for any

chain τ1 ⊆ τ2 · · · ⊆ τn−1 with dim τi = i and τi bounded if and only if i ≤ r

(r ≥ 1),

∆τ1···τn−1 := conv
¶
aτi

∣∣∣ 1 ≤ i ≤ r©+
∑

i>r
R≥0 · aτi ⊆ τn−1

is the Minkowski sum of an (r−1)-simplex with a simplicial cone of dimension

at most n − r − 1. Define ∆ as the union of all such polyhedra. In the

unbounded case, if some unbounded edges are parallel, it might happen that
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these polyhedra are not all (n− 2)-dimensional, but they are always contained

in one of this type which is (n− 2)-dimensional.

Now if ρ ∈ P [n−1], then the connected components of ρ \ ∆ are in one-

to-one corespondence with the vertices of ρ. This is clear for bounded cells,

while an unbounded cell together with its discriminant locus retracts onto a

union of bounded cells. Thus the polyhedral structures on interiors of n-cells

and the fan structures near the vertices define an atlas of integral affine charts

on B \∆. For x ∈ ρ\∆, write v[x] for the unique vertex in the same connected

component of ρ \∆ as x.

The fan structures and the polyhedral structure of the cells can be read off

from this affine structure together with the decomposition into closed subsets

provided by P. This motivates the notation (B,P) for an integral tropical

manifold. In particular, we have a flat, torsion-free connection on TB\∆, which

we use to parallel transport tangent vectors along homotopy classes of paths.

By integrality there is also a locally constant sheaf Λ of integral tangent vectors

on B\∆. For x ∈ (σ∩B)\∆, we have a canonical isomorphism Λσ → Λx∩Tσ,x
that we will use liberally. If ω ⊆ τ , then this identification for σ = ω, τ and

x ∈ ω is compatible with the inclusion Λω → Λτ .

For bounded polyhedra a canonical choice of aτ is the barycenter of τ ,

and this canonical choice, exhibiting ∆ as a subcomplex of the barycentric

subdivision, has been used in [GS06]. However, with this choice, ∆ is not in

sufficiently general position for our construction in this paper. We need the

fact that the intersection of any proper rational affine subspace of an (n− 1)-

cell with ∆ is transverse. The following lemma shows that in the bounded

case, for a sufficiently general choice of the aτ the corresponding discriminant

locus ∆ = ∆({aτ}) does not contain any rational point. This implies that ∆

intersects any proper rational affine subspace of an (n − 1)-cell transversally,

for otherwise it would contain a nonempty open subset of it, hence a rational

point. We leave it to the reader to supply the more general unbounded case.

For the formulation of the lemma note that any a ∈ B has a well-defined

field of definition κ(a) ⊆ R generated over Q by its coordinate entries in any

integral affine chart.

Lemma 1.3. Given (B,P) compact, assume that for all 1 ≤ r ≤ n− 1,

∀τ1 ( · · · ( τr : trdegQ
Ä
κ(aτ1) · . . . · κ(aτr)

ä
=

r∑
i=1

dim τi.

Then ∆ = ∆({aτ}) contains no rational point.

Proof. It suffices to check the claim on one (n − 2)-simplex Ξ ⊆ ∆, say

defined by τ1 ( · · · ( τn−1, dim τi = i. Let e1, . . . , en−1 be a Q-basis for

Λτn−1,Q adapted to the flag of Q-vector subspaces Λτ1,Q ( · · · ( Λτn−1,Q; that
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is, Λτi,Q = Qe1 + · · ·+ Qei. Then in the corresponding coordinate system,

aτi = α1
i e1 + · · ·+ αiiei, i = 1, . . . , n− 1

for αµi ∈ R. Then κ(aτi) = Q(α1
i , . . . , α

i
i), and by assumption the αµi are all

algebraically independent over Q.

Now assume that the convex hull of the aτi contains a rational point. Then

there exist λi ∈ [0, 1] with
∑
i λi = 1 such that

∑
i

λiaτi =

Ü
λ1α

1
1 + · · ·+ λn−1α

1
n−1

. . .
...

λn−1α
n−1
n−1

ê
∈ Qn−1.

Solving inductively expresses each λi as a rational function in αµi with coeffi-

cients in Q, and
∑
i λi = 1 gives an algebraic relation between the αµi . Now it is

not hard to see that in solving inductively for λn−1, . . . , λ1, any two occurring

monomials are different. Moreover, the coefficients can only all vanish if λi = 0

for all i, which is impossible since
∑
i λi = 1. We have thus found a nontrivial

algebraic relation among the αµi , contradicting algebraic independence. �

To explain the meaning of ∆ we now introduce the concept of local mon-

odromy. Let ω ∈ P [1], ρ ∈ P [n−1] with ω ⊆ ρ, ρ 6⊆ ∂B and ω bounded.

Then ρ is contained in two n-cells σ±, and ω contains two vertices v±. Fol-

lowing the change of affine charts given by (i) the fan structure at v+, (ii) the

polyhedral structure of σ+, (iii) the fan structure at v−, (iv) the polyhedral

structure of σ−, and back to (v) the fan structure at v+ defines a transforma-

tion Tωρ ∈ SL(Λv+). It is shown in [GS06, §1.5] that this transformation has

the following form:

Tωρ(m) = m+ κωρ〈m, ďρ〉dω.(1.1)

Here dω ∈ Λω ⊆ Λv+ and ďρ ∈ Λ⊥ρ ⊆ Λ∗v+ are the primitive integral vectors

pointing from v+ to v− and, in the chart at v+, evaluating positively on σ+,

respectively. The constant κωρ ∈ Z is independent of the choices of v± and

σ±. Geometrically meaningful integral tropical manifolds fulfill κωρ ≥ 0.

Definition 1.4 ([GS06, Def. 1.54]). An integral tropical manifold is positive

if κωρ ≥ 0 for all ω ⊆ ρ with ω bounded and ρ 6⊆ ∂B.

Slightly more generally one can consider an analogous sequence of changes

of charts for two arbitrary vertices v, v′ contained in an (n − 1)-cell ρ 6⊆ ∂B.

Since v and v′ can be connected by a sequence of 1-cells contained in ρ, the

corresponding monodromy transformation takes the form

m 7−→ m+ 〈m, ďρ〉mρ
vv′(1.2)



AFFINE AND COMPLEX GEOMETRY 1313

for a well-defined mρ
vv′ ∈ Λρ. In particular, mρ

v+v− = κωρdω. In the pos-

itive case this monodromy information can be conveniently gathered in the

monodromy polytope for ρ:

∆(ρ) = conv{mρ
vv′ | v

′ ∈ ρ}.(1.3)

Here v ∈ ρ is a fixed vertex, and a different choice of v leads to a translation

of ∆(ρ). Hence ∆(ρ) is a lattice polytope in Λρ ⊗Z R that is well defined up

to translation. Note that ∆(ρ) can have any dimension between 0 and n − 1,

and hence for fixed v, the map from vertices v′ of ρ to vertices of ∆(ρ) needs

not be injective.

Remark 1.5. One can show that the affine structure extends to a neigh-

bourhood of τ ∈ P if and only if, for every ω ∈ P [1], ρ ∈ P [n−1], with

ω ⊆ τ ⊆ ρ, it holds that κωρ = 0. This has been used in [GS06, Prop. 1.27]

to find a smaller discriminant locus. In this paper we choose to work with the

larger discriminant locus, as it slightly simplifies the presentation later on.

Integral tropical manifolds arise algebro-geometrically from certain degen-

erations of algebraic varieties whose central fibres are unions of toric varieties

and which are toroidal (“log smooth”) morphisms near the zero-dimensional

toric strata of the central fibre. In the following we generalize the relevant

definitions in [GS06] to pairs consisting of a variety and a divisor. Recall that

an algebraic variety is called algebraically convex if there exists a proper map

to an affine variety [GL73]. A toric variety is algebraically convex if and only

if the defining fan has convex support.

Definition 1.6. A totally degenerate CY-pair is a reduced variety X to-

gether with a reduced divisor D ⊆ X fulfilling the following conditions. Let

ν : ‹X → X be the normalization and C ⊆ ‹X its conductor locus. Then ‹X is a

disjoint union of algebraically convex toric varieties, and C is a reduced divisor

such that [C] + ν∗[D] is the sum of all toric prime divisors, ν|C : C → ν(C) is

unramified and generically two-to-one, and the square

C −−−−→ ‹Xy yν
ν(C) −−−−→ X

is cartesian and cocartesian.

In other words, if (X,D) is a totally degenerate CY-pair, then X is built

from a collection of toric varieties by identifying pairs of toric prime divisors

torically. The remaining toric prime divisors define D. Note that by the toric

nature of the identification maps it makes sense to define a toric stratum of X

as a toric stratum of any irreducible component.
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Definition 1.7. Let T be the spectrum of a discrete valuation k-algebra

with a closed point O and a uniformizing parameter t ∈ O(T ). Let X be

a k-scheme and D, X ⊆ X reduced divisors. A log smooth morphism π :

(X, X;D) → (T,O) is a morphism π : (X, X) → (T,O) of pairs of k-schemes

with the following properties. For any x ∈ X there exists an étale neigh-

bourhood U → X of x such that π|U fits into a commutative diagram of the

following form:

U
Φ−−−−→ Speck[P ]

π|U

y yG
T

Ψ−−−−→ Speck[N].
Here P is a toric monoid, Ψ and G are defined respectively by mapping the

generator z1 ∈ k[N] to t and to a nonconstant monomial zm0 ∈ k[P ], and Φ is

étale with preimage of the toric boundary divisor equal to the pull-back to U

of X ∪D.

This definition just rephrases that if we endow X and T with the log

structures MX and MT defined by X ∪D ⊆ X and O ⊆ T , respectively, then

the map of log spaces (X,MX) → (T,MT ) is (log) smooth and integral. We

refer to [GS06, §3.1] for a quick survey of the relevant log geometry. However,

we will largely avoid the terminology of log structures here.

Definition 1.8. (cf. [GS06, Def. 4.1].) Let T be the spectrum of a dis-

crete valuation k-algebra and O ∈ T its closed point. A toric degeneration of

CY-pairs over T is a flat morphism π : X→ T together with a reduced divisor

D ⊆ X, with the following properties:

(i) X is normal.

(ii) The central fibre X := π−1(O) together with D = D ∩X is a totally

degenerate CY-pair.

(iii) Away from a closed subset Z ⊆ X of relative codimension two not

containing any toric stratum of X, the map π : (X, X;D) → (T,O) is

log smooth.

In this definition we dropped the requirement that π be proper from

[GS06]. In the nonproper case the deformation theory of (X,D) does not

appear to be very well behaved, but it still makes sense to talk about formal

toric degenerations of CY-pairs as in the following definition.

Definition 1.9. Let T be the spectrum of a discrete valuation k-algebra

and “O the completion of T at its closed point. A formal toric degeneration of

CY-pairs over “O is a flat morphism π̂ : “X → “O of formal schemes together

with a reduced divisor “D ⊆ “X, with the following properties:

(i) “X is normal.
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(ii) The central fibre X = π̂−1(O) ⊆ “X together with D = “D ∩ X is a

totally degenerate CY-pair.

(iii) Away from a closed subset Z ⊆ X of relative codimension two and not

containing any toric stratum of X, the map π̂ : (“X,X; “D) → (“O,O)

is étale locally on “X isomorphic to the completion of a log smooth

morphism along the central fibre.

Clearly, a toric degeneration of CY-pairs induces a formal toric degenera-

tion of CY-pairs by completion along the central fibre.

Remark 1.10. While this is not possible with our ad hoc definition of log

(smooth) structures, it does make sense to talk about abstract log structures

also on the codimension-two loci Z ⊆ X and Z ⊆ X in Definitions 1.8 and 1.9,

respectively. Then Z or Z contain the locus where this extension fails to be

fine, that is, where the log structure fails to possess a chart locally. By abuse of

notation, we therefore refer to Z or Z as the singular locus of the log structure.

Before explaining how a toric degeneration defines an integral tropical

manifold we would like to review the basic duality between convex piecewise

linear functions and their Newton polyhedra, including the unbounded case;

see [Roc70]. Let Σ be a not necessarily complete fan defined on NR, where

as usual N is a finitely generated, free abelian group. Then, as a matter of

convention, an (integral) piecewise linear function on Σ is a map

ϕ : NR −→ R ∪ {∞}

that is an ordinary (integral) piecewise linear function on |Σ| and that takes

value∞ everywhere else. The graph Γϕ ⊆ NR×R is the union of the ordinary

graph of ϕ||Σ| with ¶
(n, h) ∈ NR ⊕ R

∣∣∣n ∈ ∂|Σ|, h ≥ ϕ(n)
©
.

Now given an integral polyhedron Ξ ⊆MR, M = Hom(N,Z), define

ϕ : NR −→ R ∪ {∞}, ϕ(n) = sup(−n|Ξ) = − inf(n|Ξ).

Then ϕ is a strictly convex piecewise linear function on the normal fan Σ of Ξ.

For the normal fan we use the convention that its rays are generated by the

inward normals to the facets of Ξ. The signs are chosen in such a way that if

C(Ξ) ⊆ MR × R denotes the closure of the cone generated by Ξ × {1}, then

C(Ξ)∨ ⊆ NR ×R is the convex hull of Γϕ. This description readily shows that

|Σ| is convex.

Conversely, if ϕ : NR → R ∪ {∞} is a strictly convex piecewise linear

function on a fan Σ on NR with convex support, then its Newton polyhedron

Ξ = {x ∈MR |ϕ+ x ≥ 0}
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is an integral polyhedron. It is unbounded if and only if Σ is not complete.

An alternative description is

Ξ = C∨ϕ ∩
Ä
MR × {1}

ä
for Cϕ the convex hull of Γϕ.

These two constructions set up a one-to-one correspondence between in-

tegral, strictly convex piecewise linear functions on fans in NR with convex

support on one side and integral polyhedra in MR on the other side.

We are now ready to explain the first method of constructing an integral

tropical manifold out of a toric degeneration of CY-pairs.

Example 1.11 (The fan picture [GS06, §4.1]). If (π : X→ T,D) is a toric

degeneration of CY-pairs, we can define an integral tropical manifold as follows.

For simplicity we assume that the irreducible components of X = π−1(O) do

not self-intersect; that is, they are normal. Let Strata(X) be the finite category

consisting of toric strata of X, with inclusions defining the morphisms. For

S ∈ Strata(X), let ηS ∈ X be the generic point and let Y1, . . . , Yr be the

irreducible components of X∪D containing S. Choose the order in such a way

that Yi ⊆ X if and only if i ≤ s. Define the monoid

PS :=
¶

(m1, . . . ,mr) ∈ Nr
∣∣∣∑mi[Yi] is a Cartier divisor at ηS ∈ X}.

If Φ : U → Speck[P ] is as in Definition 1.7 with ηS lifting to η̃S ∈ U , then PS is

isomorphic to the monoid localization of P by A := {m ∈ P |Φ∗(zm) ∈ O×U,η̃S},
that is, the quotient of the monoid P − A ⊆ P gp by its invertible elements.

This shows that PS is a toric monoid. Hence PS is the set of integral points

of a rational polyhedral cone in Rr. Define the polyhedron F (S) ⊆ (Rr)∗
by intersecting the dual cone with the hyperplane 〈 . , ρS〉 = 1, where ρS =

(1, . . . , 1, 0, . . . , 0) ∈ PS is the vector with entry 1 at the first s places:

F (S) :=
¶
λ ∈ Hom(PS ,R≥0)

∣∣∣λ(ρS) = 1
©
.

In this definition R≥0 is viewed as additive monoid. The fact that the central

fibre X of the degeneration is reduced says that the integral distance of each

facet of PS to ρS equals 0 or 1. This implies that the vertices of F (S) are

integral. Note also that F (S) is unbounded if and only if ρS lies in the boundary

of the cone generated by PS , which is the case if and only if S ⊆ D. Moreover,

if S1 ⊆ S2, generization maps PS1 surjectively to PS2 , and this induces an

inclusion of F (S2) as a face of F (S1). Thus

F : Strata(X)op −→ LPoly, S 7−→ F (S)

defines an integral polyhedral complex, the dual intersection complex P̌ of

X (denoted P in [GS06]). Finally, the toric irreducible components define

compatible fan structures at the vertices, which by assumption on X have
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convex support. This makes B̌ =
∐
σ∈P̌ F (σ)/ ∼ into an integral tropical

manifold.

Because the irreducible components correspond to the fans at the vertices,

we refer to this relation of integral tropical manifolds with toric degenerations

as the fan picture. In this picture the maximal cells specify local models for X

at the zero-dimensional toric strata of X.

Note that this construction depends only on X and on the completion of

OX along X ∪D. Hence it works also for formal toric degenerations.

Example 1.12. [GS06], [Gro05] give many examples of affine manifolds

obtained from toric degenerations of proper Calabi-Yau varieties. Here we

give an example in the Fano case. Consider the equation f3(u0, u1, u2, u3) +

tu0u1u2 = 0 defining X ⊆ P3 × Speck[t], with f3 a general choice of cubic

form. Then X → Speck[t] is a toric degeneration. The corresponding dual

intersection complex (B,P) looks like Figure 1.1. This picture is slightly

misleading. The three unbounded rays are in fact parallel. The bounded two-

cell is just a standard simplex. The discriminant locus ∆ consists of the three

points marked with crosses.

Figure 1.1.

The other method for producing an integral tropical manifold, which is

even more relevant to this paper, requires a polarized central fibre.

Example 1.13 (The cone picture [GS06, §4.2]). Let (π : X → T,D) be a

toric degeneration of CY-pairs, and let L be an ample line bundle on X =

π−1(O). Again we make the simplifying assumption that no components self-

intersect. Then any S ∈ Strata(X) together with the restriction of L is a (not

necessarily complete) polarized toric variety. The sections of powers of the

line bundle define the integral points of the cone C(σ) ⊆ Rn+1 over a (not

necessarily bounded) integral polyhedron σ ⊆ Rn × {1}. Now σ is determined

uniquely up to integral affine transformations, and inclusions of toric strata

define integral affine inclusions of polyhedra as faces. Hence we have an integral

polyhedral complex

F : Strata(X) −→ LPoly,
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the intersection complex P of (X,L). Note that the boundary of this polyhe-

dral complex is covered by the cells corresponding to the toric strata of D∩X.

The fan structures at the vertices this time come from log smoothness

as follows. At a zero-dimensional toric stratum {x} ⊆ X the degeneration is

étale locally described by a toric morphism Speck[C ∩ Zn+1] → Speck[N] for

some rational polyhedral cone C ⊆ Rn+1. Denote by ρS ∈ C ∩Zn+1 the image

of 1 ∈ N. Then the images of the faces of C not containing ρS under the

projection Rn+1 → Rn+1/RρS ' Rn define an n-dimensional fan. Its support

is convex because it is the image of a convex cone by a linear map. The cones

in this fan are equal to tangent wedges of F ({x}) ⊆ F (S) for S ∈ Strata(X)

containing x. This defines the fan structure at F ({x}). This construction

again works also for formal toric degenerations of CY-pairs.

In this construction an irreducible component of X is defined by the cone

over a maximal cell σ ⊆ Rn of P by Proj
Ä
k[C(σ)∩Zn+1]

ä
. This is why we call

this correspondence the cone picture. In contrast to the fan picture, (B,P)

now carries information about the polarization, but we have lost some infor-

mation about the local embedding into X by projecting C down to Rn+1/RρS .

See Remark 1.15 for how to keep this information.

Note that in the construction we used a little less than an ample line

bundle on X. It suffices to have an ample line bundle on each irreducible

component with isomorphic restrictions on common toric prime divisors. We

call such data a pre-polarization of X. If H2(B,Z) 6= 0, then a pre-polarization

might not arise from a polarization; cf. [GS06, Th. 2.34].

Example 1.14. Returning to the degeneration of a cubic in Example 1.12,

polarizing the degeneration with the restriction of OP3(1), one obtains the

intersection complex (B,P) which looks like

Again, this figure is misleading. There are three standard simplices, and the

boundary is in fact a straight line with respect to the affine structure.

Let (B,P) be an integral tropical manifold. Define an (integral) affine

function on an open set U ⊆ B to be a continuous map U → R that is

(integral) affine on U \ ∆. Similarly, an (integral) PL-function (“piecewise

linear”) on U is a continuous map ϕ : U → R such that if Sτ : Uτ → Rk is the

fan structure along τ ∈ P, then ϕ|U∩Uτ = λ + S∗τ (ϕ̄) for an (integral) affine

function λ : Uτ → R and a function ϕ̄ : Rk → R that is piecewise (integral)
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linear with respect to the fan Στ [GS06, Def. 1.43]. The integral affine functions

and integral PL-functions define sheaves Aff (B,Z) and PLP(B,Z) on B.

Remark 1.15. In the cone picture, the boundary of the cone C with

Speck[C ∩ Zn+1] → Speck[N] describing π : X → T locally can be viewed

as the graph of an integral PL-function on Σv, well defined up to integral

affine functions. These glue to a section ϕ of the sheaf PLP(B,Z)/Aff (B,Z)

of multi-valued, integral PL-functions. This is additional information about

étale models of the degeneration near the zero-dimensional strata, or in other

words, about the log smooth morphism to (T,O).

Note that a local representative of ϕ as a PL-function is strictly convex,

so it induces a strictly convex, integral affine function on each fan Στ , τ ∈P.

We call such a ϕ a polarization of (B,P) and (B,P, ϕ) a polarized, integral

tropical manifold.

Construction 1.16 (The discrete Legendre transform [GS06, §1.4]). There

is a duality transformation on the set of polarized, integral tropical manifolds,

the discrete Legendre transformation (B,P, ϕ) 7→ (B̌, P̌, ϕ̌), which is at the

heart of our mirror symmetry construction. It works by defining P̌ as the

opposite category of P. Thus any τ ∈ P is also an object of P̌, denoted τ̌

for clarity. Then F̌ : P̌ → LPoly maps τ̌ to the Newton polyhedron of ϕ̄,

where ϕ = λ + S∗τ (ϕ̄) is as in the definition of PL-functions above. If σ ∈ P
is a maximal cell, then σ̌ ∈ P̌ is a vertex. In this case, the boundary of the

dual of the cone over σ × {1} defines the graph of ϕ̌ at σ̌, hence also the fan

structure at σ̌. Applying this transformation again retrieves the original polar-

ized tropical manifold ([GS06, Prop. 1.51]). Moreover, the discrete Legendre

transformation preserves positivity ([GS06, Prop. 1.55]). With the above cor-

respondence between strictly convex piecewise linear functions on noncomplete

fans and unbounded cells, the proofs of these facts for closed B in [GS06, §1.4]

extend in a straighforward manner to the general case.

One important remark is that there is a homeomorphism of B \ ∂B and

B̌ \ ∂B̌ mapping the discrimant loci onto each other. If B is closed, the

homeomorphism can be constructed by piecewise affine identifications of the

(perturbed) barycentric subdivisions. This is really just a homeomorphism and

certainly does not in general preserve the affine structures. The general case is

a little more subtle, and we leave the details to the interested reader because

we do not need this result here. What we do use, however, is the consequence

that we can view a local system on B \ ∆ as a local system on B̌ \ ∆̌ and

vice versa. In fact, a local system F on B \ ∆̌ is nothing but a collection of

groups Fv, Fσ, one for each vertex v and maximal cell σ of P, together with

a generization isomorphism

ψσv : Fv −→ Fσ,
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whenever v ∈ σ. The corresponding local system on B̌ then has the generiza-

tion isomorphisms ψ−1
v̌σ̌ .

By construction it should also be clear that the discrete Legendre trans-

form of the cone picture (B,P, ϕ) of a toric degeneration of CY-pairs with

pre-polarized central fibre X leads to the fan picture (B̌, P̌) of the same de-

generation. The polarization ϕ̌ on (B̌, P̌) thus obtained is directly related to

the polarization of the irreducible components of X via the usual description of

ample line bundles on a toric variety by strictly convex, integral PL-functions

on the associated fan, well defined up to linear functions. This interpretation

of a strictly convex, multi-valued, integral PL-function is what motivates us to

call it a polarization of (B,P).

1.2. Algebraic data. Our aim in this paper is to construct a toric degenera-

tion of CY-pairs starting from a polarized, integral tropical manifold (B,P, ϕ),

using the cone picture. This process requires additional, generally nondiscrete

input that we now describe.

Let v ∈ P be a vertex. Choose a PL-function ϕv near v with ϕv(v) = 0

representing the polarization ϕ. The convex hull of the graph of ϕv defines

a strictly convex, rational polyhedral cone Cv ⊆ TB,v ⊕ R and the associated

toric monoid Pv = Cv ∩ (Λv ⊕ Z). Then, according to Example 1.13 and

Remark 1.15,

k[t] −→ k[Pv], t 7−→ z(0,1)

is an étale local model for any pre-polarized toric degeneration of CY-pairs

with cone picture (B,P, ϕ) near the zero-dimensional toric stratum {x} ⊆ X

corresponding to v. By integrality of ϕ it follows that the central fibre of this

local model is the union of affine toric varieties⋃
K

Speck[K ∩ (Λv ⊕ Z)],

where the union runs over all facets K ⊆ Cv not containing (0, 1). These

are indexed by maximal cells σ containing v. Now the projection Cv → TB,v
defines integral affine isomorphisms of these facets of Cv with the maximal

cones in the fan Σv. Hence this union depends only on Σv, and we use the

notation Spec k[Σv] for it. The justification for this is that if Σ is a fan on MR
of convex, but not necessarily strictly convex cones, with |Σ| convex, then

m+m′ :=

®
m+m′, ∃K ∈ Σ : m,m′ ∈ K,
∞, otherwise

defines a monoid structure on (M ∩ |Σ|) ∪ {∞}. By formally putting z∞ = 0

this yields a monoid k-algebra generated by monomials zm, m ∈ M ∩ |Σ|,
which we denote as k[Σ]. In the case of Σ = Σv it is clearly isomorphic to
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k[Pv]/(z
(0,1)), and hence k[Σv] is indeed the coordinate ring of our local model

of X.

Since the central fibre X of any toric degeneration is a union of toric

varieties, open subspaces isomorphic to Speck[Σv] for v ∈ P [0] cover X, and

their mutual intersections have similar descriptions as unions of affine toric

varieties. We thus arrive at the following gluing construction of X.

Construction 1.17 ([GS06, §2.2]). First define certain open subsets of

Speck[Σv] as follows. If τ ∈ P and v ∈ τ is a vertex, define the fan of

convex, but not necessarily strictly convex, cones

τ−1Σv := {Ke + Λτ,R |Ke ∈ Σv, e : v → σ factors through τ}.

Recall Λτ = Λv∩Tτ,v. The quotient of τ−1Σv by the linear space spanned by τ

equals the fan Στ defining the fan structure along τ . The fan τ−1Σv depends

only on τ . For a different choice of v′ ∈ τ , we can identify τ−1Σv and τ−1Σv′

canonically. This is done via a piecewise linear identification of Λv and Λv′

which identifies the cones Ke + Λτ,R and Ke′ + Λτ,R for e : v → σ, e′ : v′ → σ,

via parallel transport between v and v′ through σ ∈Pmax. While the induced

bijection Λv → Λv′ is not in general linear due to the effect of monodromy, the

scheme

V (τ) := Spec k[τ−1Σv]

is well defined up to unique isomorphism, independently of the choice of vertex

v ∈ τ ; see [GS06, Construction 2.15]. Note that in [GS06], which mostly uses

the fan picture, this space was denoted as V (τ̌). The toric strata of V (τ) are

in bijection with the cones in τ−1Σv, hence to morphisms e : τ → σ. The

notation is Ve ⊆ V (τ).

Moreover, if ω ⊆ τ , there is a well-defined map of fans¶
Ke + Λω,R ∈ ω−1Σv

∣∣∣ e : v → σ factors through ω → τ
©
−→ τ−1Σv,

which defines an open embedding

V (τ) = Spec k[τ−1Σv] −→ Speck[ω−1Σv] = V (ω).

We can compose this embedding with any toric automorphism of V (τ). These

are in bijection with maps

µ : Λv ∩ |τ−1Σv| −→ k×(1.4)

which are piecewise multiplicative with respect to τ−1Σv, meaning that the

restriction to any cone in τ−1Σv is a homomorphism of monoids. In other

words, for each σ ∈Pmax with τ ⊆ σ, we have a homomorphism µσ : Λσ → k×
such that for any σ, σ′ containing τ , the restrictions µσ|Λσ∩σ′ and µσ′ |Λσ∩σ′
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coincide. On the irreducible component Ve ⊆ V (τ), e : τ → σ, the toric

automorphism of V (τ) associated to µ is given by

zm 7−→ µσ(m) · zm.

This description also shows that there is a space PM(τ) of piecewise multiplica-

tive functions along τ that depends only on the embedding of τ in B (P̌M(τ̌)

in the notation of [GS06]). A choice of vertex v ∈ τ gives a representation

of PM(τ) by maps Λv ∩ |τ−1Σv| → k× that are piecewise multiplicative with

respect to τ−1Σv.

To explain how piecewise multiplicative functions can be used to change

the gluing of our affine pieces V (v) we translate the definition of “open gluing

data for the fan picture” ([GS06, Def. 2.25]) to the cone picture.

Definition 1.18. Open gluing data for (B,P) are data s = (se)e∈Hom P

with the following properties:

(1) se ∈ PM(τ) for e : ω → τ .

(2) sidτ = 1 for every τ ∈P.

(3) If e ∈ Hom(τ, τ ′), f ∈ Hom(τ ′, τ ′′), then sf◦e = sf ·se wherever defined:

sf◦e,σ = sf,σ · se,σ for all σ ∈Pmax with σ ⊇ τ ′′.

Two open gluing data s, s′ are cohomologous if there exist tτ ∈ PM(τ),

τ ∈P with s′e = tτ t
−1
ω · se for any e : ω → τ .

“Open” refers to the fact that we glue the open sets V (v) := Spec k[Σv]

rather than their respective irreducible components. If s are open gluing data,

then se for e : ω → τ defines an automorphism of V (τ) = Speck[τ−1Σv] that

we denote by the same symbol se. Thus, for any e : ω → τ , we obtain an open

embedding by composing V (τ) → V (ω) with s−1
e . (For consistency we need

to work with s−1
e instead of se; see [GS06, proof of Lemma 2.29] for how this

arises.) This yields a category of affine schemes and open embeddings, and

saying that the open sets glue means that there is a scheme X = X0(B̌, P̌, s),

together with an open morphism

p :
∐
ω∈P

V (ω) −→ X0(B̌, P̌, s)

that is a colimit for this category. The existence of X0(B̌, P̌, s) is shown in

[GS06, §2.2]. Moreover, two open gluing data give rise to isomorphic schemes

if and only if they are cohomologous ([GS06, Prop. 2.32]).

Conversely, according to [GS06, Th. 4.14], any central fibre of a toric de-

generation of CY-varieties with a pre-polarization arises in this way. All these

results extend in a straightforward manner to CY-pairs. This ends Construc-

tion 1.17.
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Remark 1.19. Our notation here differs somewhat from [GS06] since s

are in fact open gluing data for the fan picture expressed in the cone picture,

rather than gluing data for the cone picture as in [GS06, Def. 2.3]. In particular,

according to [GS06, Th. 2.34], there is an obstruction to gluing the given ample

line bundles on the irreducible components of X0(B̌, P̌, s), which in turn needs

not be projective.

The effect of monodromy on open gluing data s = (se) (Definition 1.18)

gives rise to a set of elements in k× that we now introduce for later use.

Definition 1.20 (Cf. [GS06, Def. 3.25]). Given µ ∈ PM(τ) for some τ ∈P,

for any ρ ∈ P [n−1] containing τ and any vertex v ∈ τ , we can measure the

change of µ along ρ with respect to v as follows. Let σ, σ′ be the unique maximal

cells with ρ = σ ∩ σ′. Let m ∈ Λσ map to a generator of Λσ/Λρ ' Z, pointing

from σ to σ′. Let m′ ∈ Λσ′ be obtained by parallel transport of m through v.

Then

(1.5) D(µ, ρ, v) :=
µσ(m)

µσ′(m′)
∈ k×

does not depend on the choice of m and is also invariant under changing µ by

a homomorphism Λv → k×.

Remark 1.21. Formula 1.2 readily computes the dependence of D(µ, ρ, v)

on v:

D(µ, ρ, v′) = µ(mρ
v′v)
−1 ·D(µ, ρ, v);(1.6)

see [GS06, Rem. 3.26] for details.

Apart from open gluing data, which specify the central fibre as a scheme,

we need some weak algebraic information about the embedding into X. This is

what the log structure does, and it is more than just the discrete information

retained by the polarization ϕ on (B,P) in the cone picture. For the purposes

of this paper it seems appropriate to explain this structure in an explicit,

nonabstract form, following [GS06, p. 263f]. Let X = X0(B̌, P̌, s) be a scheme

obtained from open gluing data in the cone picture as just described. As seen

in Construction 1.17, X has a covering by open sets isomorphic to V (v) =

Speck[Σv], and V (v) can be viewed as the toric Cartier divisor z(0,1) = 0

in the affine toric variety Speck[Pv]. For m ∈ Λv ∩ |Σv|, the closure of the

complement of the zero locus of zm,

Vm(v) = cl{x ∈ V (v) | zm ∈ O×X,x},

is a union of irreducible components. Now a chart (for a log smooth structure

on X = X0(B̌, P̌, s) of type given by ϕ) is an open set U ⊆ V (v) for some

vertex v, together with hm ∈ Γ(U ∩ Vm(v),O×V (v)) for m ∈ Λv ∩ |Σv| that
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behaves piecewise multiplicatively with respect to Σv in the following sense:

m,m′ ∈ Λv ∩ |Σv| =⇒ hm · hm′ = hm+m′ on Vm+m′(v).(1.7)

The vertex v is part of the data defining a chart, and p(U) ⊆ X is the support of

the chart. Note that if there is no cone in Σv containing m,m′, then Vm+m′(v)

= ∅ and this condition is empty. Two charts (hm), (h′m) defined on the same

open subset U ⊆ V (v) are equivalent if there exists a homomorphism λ : Λv →
Γ(U,O×X) with

h′m = λ(m) · hm
for any m ∈ Λv ∩ |Σv|.

In log geometry, a chart (for a fine, saturated log structure on X) is just

a morphism from an (étale) open subset of X to an affine toric variety. This

relates to our definition as follows: For any m ∈ Λv ∩ |Σv| consider hm · zm as

function on U by continuation by zero. Then

zm 7−→ hm · zm

defines an étale morphism U → Speck[Σv]; the composition with the closed em-

bedding into Speck[Pv] is the associated chart in log geometry. Together with

the distingushed monomial z(0,1) ∈ Speck[Pv] this is a chart for a log smooth

morphism to the standard log point. It provides our local model for a toric

degeneration (X→ T,D) of CY-pairs with central fibre X as in Definition 1.8.

Remark 1.22. There is an important implicit dependence of our log-geo-

metric chart on ϕ, which we suppress in our notion of charts. We can do this

because ϕ fixes the type of log structure as explained in [GS06, Defs. 3.15 and

3.16].

A chart defined on U ⊆ V (v) can be restricted to U ′ ⊆ U simply by

restricting the hm. To compare arbitrary charts it remains to explain how

to change the reference vertex. So let (hm)m∈Λv∩|Σv | be a chart defined on

a nonempty U ⊆ V (v), and assume v′ ∈ P is another vertex with p(U) ⊆
p
Ä
V (v′)

ä
. Let σ be a maximal cell containing v and v′. If no such cell exists,

p
Ä
V (v)

ä
∩ p
Ä
V (v′)

ä
= ∅. Otherwise let Φv′v(s) : U → U ′ be the gluing iso-

morphism, that is, the composition of p|U with the inverse of p|V (v′). Write

e : v → σ, e′ : v′ → σ, and denote by Ke ∈ Σv, Ke′ ∈ Σv′ the tangent wedges of

σ at v and v′, respectively. Then for any m ∈ Ke∩Λv, it holds that Ve ⊆ Vm(v).

Hence, by (1.7), the map

Ke ∩ Λv −→ Γ(U ∩ Ve,O×Ve), m 7−→ hm|Ve∩U

is a homomorphism. Note that the collection of these homomorphisms for all

σ determine the chart. Now let τ ⊆ σ denote the minimal cell containing v
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and v′. Then parallel transport through σ gives the identification

Ke′ + Λτ,R = Ke + Λτ,R.

Moreover, since the tangent wedge to v in τ is contained in Ke, the above

homomorphism extends to (Ke ∩ Λv) + Λτ . Let hσm denote the image of m ∈
(Ke ∩ Λv) + Λτ under this extension. We are then able to define a chart on

U ′ ⊆ V (v′) by pulling back the hσm to U ′:

Ke′ ∩ Λv −→ Γ(U ∩ Ve′ ,O×Ve′ ), m 7−→
Ä
Φv′v(s)

−1
ä∗

(hσm).

Finally define two charts, (hm) on U ⊆ V (v) and (h′m) on U ′ ⊆ V (v′), to be lo-

cally equivalent if any x ∈ U has an open neighbourhoodW such that (hm|W ) is

equivalent to the pull-back of (h′m|W ′) to V (v), where W ′ = (p|V (v′))
−1(p(W )).

Definition 1.23. An atlas (for a log smooth structure on X = X0(B̌, P̌, s),

of type defined by ϕ) is a system of locally equivalent charts. A log smooth

structure on X (of type defined by ϕ) is a maximal atlas on the complement

of a closed subset Z ⊆ X of codimension two which does not contain any toric

stratum.

A pre-polarized toric log CY-pair is a scheme of the form X = X0(B̌, P̌, s)

together with a polarization ϕ of (B,P) and a log smooth structure.

A (formal) toric degeneration of CY-pairs (π : X → T,D) induces a log

smooth structure on the central fibre. Theorem 3.22 and Definition 4.17 in

[GS06] describe the set of log smooth structures on X potentially arising in

this way, as a quasi-affine subvariety of the space of sections of a coherent

sheaf LS+
pre,X supported on Xsing. On V (v) this sheaf is isomorphic to

⊕
eOVe ,

where the sum runs over all e : v → ρ with dim ρ = n − 1. A section (fe)e of

LS+
pre,V (v) =

⊕
eOVe over U ⊆ V (v)\Z defined by a log smooth structure obeys

the following compatibility condition along toric strata of codimension two.

Consider an (n − 2)-cell τ ∈ P with v ∈ τ , let ρ1, . . . , ρl be a cyclic ordering

of the (n − 1)-cells containing τ and write h : v → τ . Let ďρi ∈ Λ⊥ρi ⊆ Λ∗v
be generators compatible with this cyclic ordering. It turns out the following

condition is satisfied by tuples (fe) defining a log structure:

l∏
i=1

ďρi ⊗Z fei |Vh = 0⊗ 1 in Λ∗v ⊗Z Γ(U,O×Vh).(1.8)

Note that the product treats the first factor additively and the second factor

multiplicatively. Conversely, any rational section of LS+
pre,V (v) with zeros and

poles not containing any toric stratum and fulfilling (1.8) defines a log smooth

structure on V (v). This is proved by showing that giving an equivalence class

of charts on an open subset U ⊆ V (v) is equivalent to giving sections fe ∈
Γ(U,O×Ve) fulfilling (1.8).
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Given a chart (hm)m∈Λv∩|Σv | on U ⊆ V (v), the associated section fe of

OVe |U for e : v → ρ is defined as follows. Since ρ is of codimension one, there

exist two unique maximal cells σ+, σ−, with ρ = σ+ ∩σ−. Write g± : v → σ±.

Working in an affine chart at v let m+ ∈ Λv∩Kg+ be a generator of Λv/Λρ. For

appropriate m0 ∈ Ke it holds m0−m+ ∈ Kg− , and in any case m0+m+ ∈ Kg+ .

Then

fe =
h2
m0
|Ve

hm0−m+ |Ve · hm0+m+ |Ve
∈ O×Ve(U).

This is independent of the choices of m+ and m0. The meaning of fe is that

at the generic point of Ve a local model for a toric degeneration with central

fibre X is given by

V (zw − fe · tl) ⊆ Speck[z, w, t, x1, . . . , xn−1].(1.9)

Explicitly, z and w may be taken as the continuations by zero of zm
+

and z−m
+

,

and l ∈ N is the integral length of the one-cell ρ̌ ∈ P̌. From this description

it should be plausible that the geometrically meaningful log smooth structures

on V (v) are defined by sections (fe)e of
⊕

eO×Ve over V (v) \ Z that extend as

sections of LS+
pre,V (v) =

⊕
eOVe . Such log smooth structures are called positive.

(This corresponds to positivity for integral tropical manifolds.) In fact, the log

smooth structure associated to a toric degeneration of log CY-pairs is positive

([GS06, Prop. 4.20]).

The global structure of LS+
pre,X follows from the formula describing the

change of charts. Not surprisingly this depends on the choice of open gluing

data s describing the patching of the open sets V (v) to yield X = X0(B̌, P̌, s).

Let v, v′ ∈ P be vertices, U ⊆ V (v) with p(U) ⊆ p
Ä
V (v′)

ä
and (fe)e:v→ρ ∈

Γ(U,LS+
pre,V (v)). Denote by Φv′v(s) the gluing isomorphism from U ⊆ V (v) to

an open subscheme U ′ ⊆ V (v′). Then the corresponding section of LS+
pre,V (v′)

on U ′ is (fe′)e′:v′→ρ with

Φv′v(s)
∗(fe′) =

D(se′ , ρ, v
′)

D(se, ρ, v)
se(m

ρ
v′v)z

mρ
v′vfe;(1.10)

see [GS06, Th. 3.27]. If τ ∈P is a cell containing v, v′, then this equation can

be written more symmetrically by viewing fe′ and fe as functions on an open

subset of V (τ) via the canonical open embeddings V (τ) → V (v′), V (τ) →
V (v):

D(sg′ , ρ, v
′)−1s−1

g′ (fe′) = zm
ρ

v′vD(sg, ρ, v)−1s−1
g (fe),(1.11)

where g : v → τ , g′ : v′ → τ . (Common factors arising from τ → ρ cancel.)

These formulae provide an explicit description of LS+
pre,X as an abstract

sheaf. For each ρ ∈ P [n−1] fix a vertex v ∈ ρ. Then the −mρ
vv′ ∈ Λρ for

v′ ∈ ρ define a PL-function on the normal fan of ρ ([GS06, Rem. 1.56]), hence
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an invertible sheaf Nρ on the codimension-one stratum Xρ corresponding to

ρ. The isomorphism class of Nρ is well defined since for a different v the

PL-function only changes by a linear function. Now (1.10) shows

LS+
pre,X '

⊕
ρ∈Pn−1

Nρ.

Summarizing, we now have a complete description of the space of positive

log smooth structures on X = X0(B̌, P̌, s) as sections of LS+
pre,X with zeros

not containing toric strata and fulfilling the compatibility condition (1.8) in

codimension two. Sections of this sheaf are given explicitly via tuples (fe)e:v→ρ
of regular functions on the codimension-one strata of each V (v) ⊆ X, obeying

the compatibility condition (1.8) and the gluing conditions (1.10) or (1.11).

This description also defines uniquely, for each ρ ∈P [n−1], a codimension-

two subscheme Zρ ⊆ X with preimage in V (v) the zero locus of fv→ρ in

Vv→ρ. It is a Cartier divisor in the (n− 1)-dimensional toric stratum Xρ ⊆ X
associated to ρ. The canonical minimal choice of Z in Definition 1.23 is then

Z :=
⋃

ρ∈P [n−1]

Zρ.(1.12)

For given open gluing data, the space of sections of LS+
pre,X giving rise to a

positive log smooth structure on X can be empty or complicated. One main re-

sult in [GS06] is, however, that if (B,P) is locally sufficiently rigid as an affine

manifold (“simple”) and positive, then the space of isomorphism classes of log

CY-spaces with dual intersection complex (B,P) equals H1(B, i∗Λ ⊗Z k×),

where i : B \ ∆ → B is the inclusion ([GS06, Th. 5.4]). This cohomology

group is explicitly computable; it is a product of a finite group and (k×)s with

s = dimQH
1(B, i∗Λ ⊗Z Q). Simplicity of (B,P) requires certain polytopes

associated to local monodromy to be elementary simplices ([GS06, Def. 1.60]).

It implies primitivity of local monodromy in codimension two and can be

explained by a complete list of local models in dimensions up to 3 ([GS06,

Ex. 1.62]). In higher dimensions simplicity is a harder-to-understand maximal

degeneracy condition. In the case of complete intersections in toric varieties it

is related to Batyrev’s MPCP resolutions [Gro05].

One final point in this section concerns the interaction of open gluing

data with our chart description of log smooth structures. We already noted

that cohomologous open gluing data lead to isomorphic X. But a change by

a “coboundary” (tσ)σ∈P has the effect of composing our charts for the log

smooth structure with the corresponding automorphisms of V (σ). Because

this changes the identification of V (σ) with an open subset of X, this leads

to a different section (fe)e:v→ρ of LS+
pre,X |V (v) = LS+

pre,V (v). We can, however,

partly get rid of this nonuniqueness by requiring that for any e : v → ρ and
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x ∈ X the zero-dimensional stratum corresponding to v, we have

fe(x) = 1.(1.13)

In other words, the constant term of fe ∈ k[Ke ∩ Λv] equals 1. If this is the

case, the log smooth structure and the corresponding section of LS+
pre,X are

called normalized for the given open gluing data ([GS06, Def. 4.23]).

If a section is not normalized, the constant terms of the fe define the

coboundary of a zero-cycle, whose application to the open gluing data leads

to a normalized section ([GS06, p. 290]). Hence there is always some open

gluing data for which the log smooth structure of a toric log CY-pair is normal-

ized. The normalization condition may thus be interpreted as “gauge fixing”,

a process eliminating infinitesimal automorphisms. A generalization of this

condition will turn up in our deformation process to get rid of pure t-terms

(Definition 3.27).

1.3. Statement of the Main Theorem. The input to the Main Theorem is a

pre-polarized, positive toric log CY-pair with intersection complex (B,P, ϕ).

The log smooth structure needs to satisfy a certain local rigidity condition that

we now explain. If (B,P) is positive and simple, then for any open gluing data

s the set of log smooth structures on X = X0(B̌, P̌, s) is nonempty ([GS06,

Th. 5.4]) and any choice fulfills the requested properties; see Remark 1.29

below. This implies the Reconstruction Theorem for integral tropical manifolds

stated in the introduction.

The local rigidity condition involves the following notion of primitivity of

Minkowski sums of polyhedra.

Definition 1.24. Let Ξ1, . . . ,Ξs ⊆ Rn be polyhedra, Ξ =
∑
i Ξi their

Minkowski sum and Ξ
[0]
i , Ξ[0] the respective sets of vertices. For v ∈ Ξ[0],

denote by v(i) ∈ Ξ
[0]
i the unique solution to the equation v =

∑
i v(i). Con-

sider the following linear map:

F :
∏
i

Map
Ä
Ξ

[0]
i ,k

ä
−→ Map

Ä
Ξ[0], k

ä
, (ai)i 7−→

(
v 7→

∑
i
ai
Ä
v(i)
ä)
.

Then Ξ1, . . . ,Ξs are called Minkowski transverse if F (a1, . . . , as) = 0 only has

the trivial solutions

ai(v) = αi ∈ k,
∑

i
αi = 0.

Remark 1.25. From F (a1, . . . , as) = 0, any edge of Ξ leads to a linear

equation of the form

a1(v1) + · · ·+ as(vs) = a1(v′1) + · · ·+ as(v
′
s)

with vi, v
′
i ∈ Ξ

[0]
i , and the question is if these impose enough conditions to imply

that ai is constant. From this description it is not hard to see that Ξ1, . . . ,Ξs
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are Minkowski-transverse if they do not have parallel edges, for then only one

vi changes along any edge of Ξ, and there are enough edges to compare the

values of any two vertices of any Ξi.

On the other hand, this is not a necessary condition. For example, the

two polygons

Ξ1 = conv
¶

(0, 0), (1, 0), (0, 1)
©

and Ξ2 = conv
¶

(0, 0), (1, 0), (1, 1)
©

are Minkowski transverse.

Suppose now we are given X = X0(B̌, P̌, s) along with a positive log

smooth structure. For the following definition, recall from (1.12) the compo-

nents Zρ ⊆ X, ρ ∈P [n−1], of the singular locus of the log structure. For τ ⊆ ρ
and Xτ ⊆ X the associated toric stratum, the Newton polytope of Zρ ∩Xτ is

∆τ (ρ) := conv{mρ
vv′ | v

′ ∈ τ},

where v ∈ ρ is a fixed choice of vertex. This is naturally a face of the mon-

odromy polytope ∆(ρ) (1.3) parallel to Λτ and is well defined up to translation.

Definition 1.26. We call a positive, toric log Calabi-Yau space locally rigid

if:

(i) For each ρ ∈ P [n−1] and τ ∈ P [n−2], τ ⊆ ρ, any integral point of

∆τ (ρ) is a vertex of ∆τ (ρ).

(ii) If Xτ ⊆ X denotes the toric stratum defined by τ ∈ P [n−2], then for

any ρ ∈ P [n−1] containing τ the intersection Zρ ∩ Xτ is reduced and

irreducible. Moreover, no more than three yield the same subset of Xτ .

(iii) For any τ ∈P [n−2] let Ξi, i = 1, . . . , s, be an enumeration of ∆τ (ρ) for

ρ ∈P [n−1], τ ⊆ ρ, modulo translation. Then Ξ1, . . . ,Ξs are Minkowski

transverse.

Remark 1.27. Let τ ∈P [n−2]. By (ii) the polynomials fv→ρ|Vv→τ defining

Zρ ∩Xτ locally are irreducible. The compatibility condition (1.8) then implies

that for any ρ with Zρ ∩Xτ 6= ∅,¶
ďρ′
∣∣∣Zρ′ ∩Xτ = Zρ ∩Xτ

©
are the edge vectors of a polygon with edges of unit integral length in the

two-dimensional affine space Λ⊥τ ⊆ Λ∗v,R, well defined up to translation. By

the second requirement in (ii) it has 2 or 3 edges. We thus obtain a set {Ξ̌i}
of line segments and triangles and a corresponding set of convex PL-functions

ϕi on Στ .

Example 1.28. To illustrate the concept of local rigidity we give three local

examples in dimension 4. Figure 1.2 shows the respective fans Στ together with

the values of a PL-function ϕτ pulling back to ϕ at the generators of the rays (in
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square brackets) and the functions fv→ρ. The five rays in the right-most figure

[1]

[1]

[0]

[0]

1 + z + g4

1 + z + g3

1 + z + g2

1 + z + g1 [1]

[1]

[0]

[0]

1 + z

1 + w

1 + w

1 + z 1 + w

[0]

1 + z

[17]

1 + w

[5]

1 + z

[0][17]

1 + w

Figure 1.2.

are generated by (1, 0), (2, 5), (−1, 4), (−3,−5) and (1,−4). In either case z =

z(0,0,1,0), w = z(0,0,0,1), denote monomials generating the coordinate ring of the

maximal torus of Xτ , while g1, . . . , g4 are arbitrary functions vanishing on Xτ .

Note that all examples are normalized and fulfill (1.8). In the left figure all four

functions fv→ρ have the same restriction to Xτ , thus violating condition (ii).

On the other hand, the middle and right examples are locally rigid. The

polytopes according to Remark 1.27 are Ξ̌1 = [0, 1] × {0}, Ξ̌2 = {0} × [0, 1],

and Ξ̌1 = conv{0, (4, 1)}, Ξ̌2 = conv{(0, 0), (0, 1), (−5, 3)}, respectively.

Remark 1.29. If (B,P) is simple ([GS06, Def. 1.60]), then X0(B̌, P̌, s)

is locally rigid for any choice of open gluing data s. In fact, (i) follows readily

from the fact that in this case ∆(ρ) is an elementary simplex for any ρ ∈
P [n−1]. This also implies that Zρ ∩ Xτ is reduced and irreducible, as ∆τ (ρ)

is the Newton polytope of Zρ ∩ Xτ . As for the second condition in (ii), let

v ∈ τ be a vertex. Simplicity implies the existence of p ≤ codim τ = 2

polytopes ∆̌i ⊆ Λ⊥τ,R ⊆ Λ∗v with the following properties: (1) Each ray of Στ

labelled by a codimension-one ρ with Zρ ∩Xτ 6= ∅ is generated by the inward

normal of some ∆̌i. (2) The convex hull of
⋃
i ∆̌i × {ei} ⊆ Λ⊥τ,R × Rp is an

elementary simplex. By (2) the tangent spaces of ∆̌i are transverse. Thus

either p = 1 and ∆̌1 is a triangle or a line segment, or p = 2 and ∆̌1, ∆̌2, are

two nonparallel line segments (cf. [GS06, p. 217] for the latter case). This

implies (ii). Condition (iii) follows from Remark 1.25 since Ξi are elementary

simplices with TΞ1 ⊕ · · · ⊕ TΞs an internal direct sum.

We are now in position to state the main result of this paper. The notions

of pre-polarized toric log CY-pair, formal toric degeneration of CY-pairs, local

rigidity and positivity have been introduced in Definitions 1.23, 1.9, 1.26 and

1.4, respectively.
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Theorem 1.30. Any locally rigid, positive, pre-polarized toric log CY-pair

with proper irreducible components arises from a formal toric degeneration of

CY-pairs.

Note that the hypothesis of properness is equivalent to the boundedness of

every cell of P in the intersection complex (B,P). We are confident that this

hypothesis is not necessary, but the unbounded case seems to raise a number

of interesting points involving Landau-Ginzburg potentials, which are better

dealt with elsewhere. However, most of the arguments we give will work in

general, and we will, in the course of the proof, remark when we are using this

boundedness hypothesis.

If we want actual families, we need to restrict to the projective or compact

analytic setting.

Corollary 1.31. Any projective, locally rigid, positive toric log CY-pair

(X,D) with H1(X,OX) = H2(X,OX) = 0 arises from a projective toric de-

generation of CY-pairs over k[t].

Proof. The cohomological assumptions imply that an ample line bun-

dle on X extends to the formal degeneration. The result then follows from

Grothendieck’s Existence Theorem in formal geometry; see [Gro63, 5.4.5]. �

Remark 1.32. The assumption on cohomology is indeed superfluous. In

fact, one can show that any ample line bundle L on X extends to the formal

degeneration by applying our construction to the total space of L. Details of

this observation will appear elsewhere.

Note that if H2(B, k×) = 0 for B the dual intersection complex associated

to the toric log-CY pair, then projectivity of X0(B̌, P̌, s) follows from the

existence of the pre-polarization ([GS06, Th. 2.34]).

For the analytic formulation we just remark that all the notions we have in-

troduced so far have straightforward analogues in the complex-analytic world.

In view of the existence of versal deformations of (pairs of) compact complex

spaces [Dou74], [Gra74], we obtain the following result.

Corollary 1.33. Any compact, locally rigid, positive toric log CY-pair

arises from a toric degeneration of analytic CY-pairs over k[t].

2. Main objects of the construction

The rest of the paper is devoted to the proof of Theorem 1.30. We thus fix,

once and for all, a polarized, integral tropical manifold (B,P, ϕ), open gluing

data s for (B,P), and a positive log smooth structure on X = X0(B̌, P̌, s)
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given by a compatible set of sections (fe)e of LS+
pre,V (v) fulfilling the multiplica-

tive condition (1.11). We also assume that the discriminant locus ∆ = ∆({aτ})
does not contain any rational points, as discussed before Lemma 1.3.

In this entire section, we do not assume the cells of P to be bounded.

2.1. Exponents, orders, rings. We construct the deformation of (X,D)

order-by-order. In each step the deformation is a colimit, in the category of

separated schemes, of a system of affine schemes. This system is obtained by

chopping B into polyhedral pieces, called chambers, of growing number for

higher order; then P induces a stratification of each chamber, and there will

be one ring for each inclusion of such strata. Homomorphisms are obtained

either by changing strata within one chamber or by passing from one chamber

to a neighbouring one. We start by explaining how to define the rings.

Recall that for a vertex v ∈ B we have the local model V (v) ⊆ Speck[Pv]

for X ⊆ X. Here Pv are the integral points over the graph in TB,v⊕R of a local

representative ϕv of ϕ with ϕv(v) = 0. The disadvantage of this description is

that it depends on the choice of representative of ϕ. To derive a more invariant

point of view recall that the Legendre dual to v is a maximal cell v̌ ⊆ Λ∗v,R
with vertices σ̌ = −λσ ∈ Λ∗v, where λσ are the linear functions defined by ϕv
for the maximal cells σ containing v. We may then view m = (m,h) ∈ Λv ⊕Z
as an affine function on v̌ via the sequence of identifications

Λv ⊕ Z = (Λ∗v)
∗ ⊕ Z = Γ(Int v̌,Aff (B̌,Z)).

The value of this affine function, denoted by m also, at σ̌ is

m(σ̌) = 〈m,−λσ〉+ h.(2.1)

This gives the following description of Pv in terms of affine functions on v̌.

Lemma 2.1. Pv =
¶
m = (m,h) ∈ Λv ⊕ Z

∣∣∣m|v̌ ≥ 0
©

.

Proof. The condition m|v̌ ≥ 0 is equivalent to requiring that m = (m,h)

lies in the dual of the cone generated by v̌×{1} ⊆ Λ∗v,R⊕R. By our definition

of Newton polyhedra this agrees with the convex hull of the graph of ϕv, whose

integral points are Pv. �

The preceding discussion motivates the following definition.

Definition 2.2. An exponent at a point x ∈ B\∆ is an element of the stalk

of Aff (B̌,Z) at x. An exponent on σ ∈Pmax is an exponent at any x ∈ Intσ,

that is, an element of Aff (B̌,Z)σ̌. An exponent m on σ defines exponents at

any x ∈ σ \∆ that we denote by the same symbol.

The image of an exponentm at x (on σ) under the projectionAff (B̌,Z)x→
Λx (Aff (B̌,Z)σ̌ → Λσ) is denoted m.
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Here we view Aff (B̌,Z) as a locally constant sheaf on B as explained in

Construction 1.16. Note that there is an exact sequence

0 −→ Z −→ Aff (B̌,Z)
m 7→m−→ i∗Λ −→ 0;

see [GS06, Def. 1.11]. An exponent m at x ∈ B \ ∆ extends uniquely to

a section of Aff (B̌,Z) on the interior of each σ ∈ Pmax containing x. This

defines an element of Aff (B̌,Z)σ̌ that we denote mσ. Note that if x ∈ σ∩σ′ for

another maximal cell σ′ containing x, then parallel transport in v̌ for a vertex

v in the same connected component of (σ∩σ′)\∆ as x maps mσ ∈ Aff (B̌,Z)σ̌
to mσ′ ∈ Aff (B̌,Z)σ̌′

To define our rings we need various order functions on exponents. For m ∈
Pv and σ ∈Pmax, v ∈ σ, the monomial zm does not vanish on the irreducible

component Vv→σ of Spec k[Σv] ⊆ Speck[Pv] if and only if h = λσ(m). Thus

by (2.1), mσ(σ̌) equals the order of vanishing of zm along Vv→σ.

Definition 2.3. 1) Let m be an exponent at x ∈ B \∆. Then the order of

m on σ ∈Pmax, x ∈ σ is

ordσ(m) := mσ(σ̌).

Denote by P∂
max the set of codimension-one cells of P contained in ∂B. Then

for x ∈ ρ, the order of m on ρ ∈P∂
max is

ord∂ρ(m) := 〈m,nρ〉,

where nρ ∈ Λ∗x is an inward pointing primitive normal to ρ.

For A ⊆ B a subset contained in a cell of P and with x ∈ A, define

ordA(m) := max
Ä¶

ordσ(m)
∣∣∣σ ∈Pmax, A⊆σ

©
∪
¶

ord∂ρ(m)
∣∣∣ ρ∈P∂

max, A⊆ ρ
©ä
.

Note that for A = σ a maximal cell this agrees with the previous definition.

2) Let ω ∈P be the minimal cell containing x. Define

Px :=

®
m ∈ Aff (B̌,Z)x

∣∣∣∣∣ ∀σ ∈Pmax, x ∈ σ : ordσ(m) ≥ 0

∃σ′ ∈Pmax, ω ⊆ σ′ : m ∈ Kωσ
′

´
.

The notion of order is compatible with local monodromy.

Lemma 2.4. Let σ, σ′ ∈ Pmax and let m be an exponent on σ. If m′ is

the result of parallel transport of m along a closed loop inside (σ∪σ′)\∆, then

ordσ(m) = ordσ(m′).

If ρ ∈ P∂
max, ρ is a face of σ and m′ is the result of parallel transport of m

along a closed loop inside Int(σ) ∪ Int(σ′) ∪ ((ρ ∩ σ′) \∆), then

ord∂ρ(m) = ord∂ρ(m′).
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Proof. On (σ ∪ σ′) \ ∆, the locally constant sheaf Aff (B̌,Z) splits non-

canonically as Λ⊕ Z. This follows from [GS06, Prop. 1.12] in connection with

[GS06, Prop. 1.29] applied to τ = σ ∩ σ′. Moreover, by [GS06, Prop. 1.29]

again, the monodromy for paths in (σ ∪ σ′) \ ∆ acts trivially on Λ⊥τ ⊆ Λ∗x,

which in an affine chart at x ∈ τ contains σ̌. Hence mσ(σ̌) remains unchanged

under monodromy.

Similarly, for the second statement, let τ = ρ ∩ σ′. Then monodromy of

loops in Int(σ) ∪ Int(σ′) ∪ (τ \ ∆) preserves Λ⊥τ ⊆ Λ∗x. But Λ⊥τ contains the

normal to ρ, hence the result. �

In view of the lemma it makes sense to define, for m ∈ Aff (B̌,Z)σ̌, the

order on neighbouring maximal cells.

Definition 2.5. Let σ, σ′ ∈Pmax with σ ∩ σ′ 6= ∅ and m ∈ Aff (B̌,Z)σ̌ an

exponent on σ. Define the order of m on σ′ as follows. Let m′ ∈ Aff (B̌,Z)σ̌′

be the result of parallel transport of m inside v̌ for any vertex v ∈ σ∩σ′. Then

ordσ′(m) := ordσ′(m
′).

If, in addition, ρ′ ∈ P∂
max and ρ′ is a face of σ′, let m′ ∈ Aff (B̌,Z)σ̌′ be the

result of parallel transport of m inside v̌ for any vertex v ∈ σ ∩ ρ′. Then

ord∂ρ′(m) := ord∂ρ′(m
′).

With these definitions it now also makes sense, for m an exponent on

σ ∈ Pmax and A ⊆ σ, to define ordA(m) just as in Definition 2.3 above for

exponents at a point.

Much of our strategy depends on the idea that if an exponent m is prop-

agated in the direction −m, the order of m increases. This is analogous to the

behaviour of the order function ordl in [KS06, §10.3].

Proposition 2.6. Let m be an exponent at x ∈ B \ (∆ ∪ ∂B), and let

τ ∈ P be the minimal cell containing x. If σ+, σ− ∈ P are maximal cells

containing τ such that the corresponding maximal cones in Στ contain m and

−m, respectively, then

ordσ−(m) = max
¶

ordσ(m)
∣∣∣σ ∈Pmax, τ ⊆ σ

©
,

ordσ+(m) = min
¶

ordσ(m)
∣∣∣σ ∈Pmax, τ ⊆ σ

©
.

Proof. Στ is the normal fan of τ̌ ; given e± : τ → σ±, the cones Ke± of

Στ are the normal cones to the vertices σ̌± of τ̌ (see [GS06, Def. 1.38]). In

particular, on τ̌ an element of Ke± achieves its minimal value at σ̌±, from

which the result follows. �

Next we construct standard thickenings of the rings describing the toric

strata locally. These will be our basic building blocks.
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Construction 2.7 (The rings). For ω ∈ P and σ ∈ Pmax with ω ⊆ σ,

define the monoid

Pω,σ :=

®
m ∈ Aff (B̌,Z)σ̌

∣∣∣∣∣ ∀σ′ ∈Pmax, ω ⊆ σ′ : ordσ′(m) ≥ 0

∃σ′ ∈Pmax, ω ⊆ σ′ : m ∈ Kωσ
′

´
.

The condition m ∈ Kωσ
′ is only relevant if ω ⊆ ∂B. Note that if v is a vertex,

then by Lemma 2.1, for any choice of representative ϕv of ϕ at v and any

σ ∈Pmax, it holds that Pv,σ = Pv canonically.

For any σ′ ∈ Pmax containing ω, parallel transport through a vertex

v ∈ σ ∩ σ′ induces an isomorphism Pω,σ ' Pω,σ′ . This isomorphism, however,

generally depends on the choice of v. Thus σ serves as a reference cell.

Another manifestation of this phenomenon is as follows. If x ∈ Int(ω)\∆,

there is a canonical isomorphism Pω,σ ' Px. Thus for any x, x′ ∈ Int(ω) \∆,

any choice of maximal cell σ containing ω induces an isomorphism Px ' Px′ ,

but this isomorphism generally depends on the choice of σ.

If g : ω → τ ∈ Hom(P) and σ ∈ Pmax with τ ⊆ σ, then for each k ∈ N
we have a monoid ideal

P>kg,σ :=
¶
m ∈ Pω,σ

∣∣∣ ordτ (m) > k
©
⊆ Pω,σ.

Let I>kg,σ denote the ideal in k[Pω,σ] generated by P>kg,σ and define

Rkg,σ :=
Ä
k[Pω,σ]/I>kg,σ

ä
fg,σ

.

The function fg,σ at which we localize is constructed from the given section

(fe)e of LS+
pre,X as follows. Choose a vertex v ∈ ω and write e : v → ω. Recall

that se ∈ PM(ω) is a map Λv ∩ |ω−1Σv| → k× that is piecewise multiplica-

tive with respect to ω−1Σv. Thus the restriction of se to the maximal cone in

ω−1Σv given by σ defines a homomorphism ζ : Λσ → k×. Composing this ho-

momorphism with Aff (B̌,Z)σ̌ → Λσ leads to the following ring automorphism

of k[Pω,σ]:

se,σ : k[Pω,σ] −→ k[Pω,σ], se,σ(zm) = ζ(m) · zm.

Now for any ρ ∈ P [n−1] containing τ , denote by eρ the composition v →
ω → τ → ρ and let Keρ ∈ Σv be the corresponding cone of codimension

one. Since Vv→ρ ⊆ V (v) equals Spec k[Keρ ∩ Λv] we have the expansion feρ =∑
m∈Keρ∩Λv feρ,mz

m. The restriction of this function to Vv→τ lifts canonically

to k[Pv,σ] as
∑
m∈Pv,σ feρ,mz

m with

feρ,m :=

®
feρ,m, m ∈ Keρ , ordτ (m) = 0,

0, otherwise.
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With the inclusion Pv,σ ⊆ Pω,σ via parallel transport inside σ understood, we

now define

fρ,e,σ := s−1
e,σ

Ç ∑
m∈Pv,σ

feρ,mz
m

å
∈ k[Pω,σ](2.2)

and the localizing element as

fvg,σ :=
∏
ρ⊇τ

fρ,e,σ.

If τ ∈ Pmax, then this product is empty, and we take fvg,σ = 1. Note that by

the normalization condition, fvg,σ has constant term 1.

For a different choice of vertex e′ : v′ → ω, equation (1.11) implies

s−1
e′,σ(fe′ρ) = C · zm

ρ

v′vs−1
e,σ(feρ)

for some C ∈ k×. (Here we view mρ
v′v ∈ Λρ ⊆ Λσ as an element of Pω,σ

by taking the unique lift m under Pω,σ → Λσ with ordρ(m) = 0. Similar

identifications will occur throughout the text without further notice.) Thus

fv
′

g,σ =
∏
ρ⊇τ

s−1
e′,σ

Ç ∑
m∈Pv′,σ

fe′ρ,mz
m

å
=C ′

∏
ρ⊇τ

zm
ρ

v′vs−1
e,σ

Ç ∑
m∈Pv,σ

feρ,mz
m

å
= C ′z`m

ρ

v′vfvg,σ,

where e′ρ : v′ → ρ and C ′ ∈ k× is another constant. Now the monomials zm
ρ

v′v

are invertible in k[Pω,σ] since mρ
v′v ∈ Λω. Hence the localization of k[Pω,σ]/I>kg,σ

at fvg,σ does not depend on the choice of v ∈ ω. We set fg,σ := fvg,σ for any

v ∈ ω, viewed as well defined only up to invertible functions in k[Pω,σ].

More generally, if I ⊆ k[Pω,σ] is any monomial ideal with radical I>0
g,σ, set

RIg,σ :=
Ä
k[Pω,σ]/I

ä
fg,σ

.

Any of these rings contains the distinguished monomial z1, where 1∈Aff (B̌,Z)σ̌
is the constant 1 function. These monomials correspond to the deformation

parameter t and are preserved by all our constructions. We therefore write

t = z1 and keep in mind that we really work with k[t]-algebras.

Remark 2.8. The meaning of the rings Rkω→τ,σ is as follows. The choice

of e : v → ω determines the local model V (v) = Speck[Σv] ⊆ Speck[Pv,σ] for

X ⊆ X, and the open subsets Speck[ω−1Σv] ⊆ Speck[Σv] and Speck[Pω,σ] ⊆
Speck[Pv,σ]. The open gluing construction of X yields the open embedding

Φv,ω(s) : V (ω) −→ V (v)
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by twisting Spec k[ω−1Σv] → Speck[Σv] by s−1
e . Moreover, g : ω → τ deter-

mines the toric stratum

Vg = Spec
Ä
k[Pω,σ]/I>0

g,σ

ä
⊆ V (ω).

Thus Spec
Ä
k[Pω,σ]/I>kg,σ

ä
is the k-th order thickening of Vg inside Speck[Pω,σ].

As for the localization recall that the singular locus Z of the log structure

on V (v) is the union of the zero loci Ze of fe for e : v → ρ, ρ ∈ P [n−1].

Thus the zero locus of fvg,σ equals the Φv,ω(s)-preimage of p−1(Zτ ) for Zτ :=⋃
e:τ→ρ Ze. In summary, SpecRkg,σ is isomorphic to the k-th order thickening

of Vg \ Φv,ω(s)−1(p−1(Zτ )) inside V (ω).

Remark 2.9. Let g : ω → τ , g′ : ω′ → τ ′ and assume that ω ⊆ ω′ and

τ ⊇ τ ′. We also fix a reference cell σ ∈Pmax containing τ . Then Pω′,σ differs

from Pω,σ by making invertible those m ∈ Pω,σ with ordω′(m) = 0. Moreover,

for any m ∈ Pω,σ it holds ordτ ′(m) ≥ ordτ (m) since τ ′ ⊆ τ . Hence I>kg,σ ⊆ I>kg′,σ,

and we obtain the canonical homomorphism

ψ0 : k[Pω,σ]/I>kg,σ −→ k[Pω′,σ]/I>kg′,σ.

If ω = ω′, then ψ0(fg,σ) divides fg′,σ, and hence ψ0 induces a map Rkg,σ → Rkg′,σ.

In the general case we need to take into account the twisting by the open

gluing data as follows. The piecewise multiplicative function sa, a : ω → ω′,

coming from the open gluing data, is given on σ by a homomorphism sa,σ :

Λσ → k×. This defines a ring automorphism of k[Pω′,σ] respecting orders.

Hence it induces an automorphism of k[Pω′,σ]/I>kg′,σ that we also denote by

sa,σ. The special case where ω is a vertex is the case used in Construction 2.7.

Now if e : v → ω, then sa◦e,σ = sa,σ · se,σ, which implies

fρ,a◦e,σ = (s−1
a,σ ◦ ψ0)

Ä
fρ,e,σ

ä
.

Thus s−1
a,σ ◦ ψ0 defines a well-defined map

ψ0(s) : Rkg,σ −→ Rkg′,σ.

Example 2.10. To illustrate the use of the rings Rkg,σ in our construction

let us look at a simple example that captures the situation in codimension one.

Assume that ρ is a one-dimensional cell in a two-dimensional B, with vertices

v1, v2, and monodromy constant κ := κρρ ≥ 0; see (1.1). For simplicity

we assume the open gluing data to be trivial (se = 1 for all e). Let the

dual cell ρ̌ have integral length l. Let σ1, σ2 be the two maximal cells with

ρ = σ1 ∩ σ2. Then Spec k[Pρ,σi ] is isomorphic to A1 \ {0} times the two-

dimensional Al−1-singularity. With gi : ρ → σi and idρ : ρ → ρ, we have the

two maps Rkgi,σi → Rkidρ,σi , which in appropriate coordinates are just canonical
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quotient homomorphisms composed with a localization:

k[w,w−1, x1, y1, t]/(x1y1 − tl, yk̄+1
1 )

−→ k[w,w−1, x1, y1, t]fidρ,σ1
/(x1y1 − tl, xk̄+1

1 , yk̄+1
1 ),

k[w,w−1, x2, y2, t]/(x2y2 − tl, xk̄+1
2 )

−→ k[w,w−1, x2, y2, t]fidρ,σ2
/(x2y2 − tl, xk̄+1

2 , yk̄+1
2 ).

Here we assumed for simplicity that k + 1 = (k̄ + 1) · l for k̄ ∈ N. Now by

parallel transport through vi we obtain two isomorphisms

ψi : Rkidρ,σ1
→ Rkidρ,σ2

.

This gives two fibre products Rkg1,σ1
×Rk

idρ,σ2

Rkg2,σ2
, and we will prove in a more

general context in Lemma 2.34 that each is isomorphic to

Speck[w,w−1, x, y, t]/(xy − tl, tk+1).

However, for k + 1 ≥ l there exists no isomorphism between these two

fibre products inducing the identity on Rkgi,σi unless κ = 0. In fact, if w = zm

with m ∈ Λρ the generator pointing from v1 to v2, then ψ1 and ψ2 are related

by the automorphism

ψ−1
2 ◦ ψ1 : w 7→ w, x1 7→ w−κx1, y1 7→ wκy1, t 7→ t

of Rkidρ,σ1
, which is not the identity unless κ = 0 or k < l. For a continuation

of this discussion see Example 2.19.

The example illustrates that monodromy yields an obstruction to gluing

the standard k-th order deformations of the local models of X consistently. To

remedy this we need to compose the maps between rings by automorphisms.

These automorphisms are the subject of the next subsection, in a log setting

for our rings that we now discuss.

By construction RIω→τ,σ comes with a homomorphism of monoids

(Pω,σ,+)→ (RIω→τ,σ, ·).

This yields a chart for a log structure on SpecRIω→τ,σ, and it will be very im-

portant in the algorithm to trace this information. We therefore now introduce

a category of rings with charts.

Definition 2.11. A log ring is a ring R together with a monoid homo-

morphism α : P → (R, ·). A morphism of log rings (or log morphism)

(α : P → R) → (α′ : P ′ → R′) consists of a ring homomorphism ψ : R → R′

and monoid homomorphisms

β : P → P ′, θ : P → (R′)×



AFFINE AND COMPLEX GEOMETRY 1339

such that

(2.3) ψ ◦ α = θ · (α′ ◦ β).

If (β, θ, ψ) : (P → R) → (P ′ → R′) and (β′, θ′, ψ′) : (P ′ → R′) → (P ′′ → R′′)

are log morphisms, their composition is defined asÄ
β′ ◦ β, (ψ′ ◦ θ) · (θ′ ◦ β), ψ′ ◦ ψ

ä
.

This is indeed a log morphism from (P → R) to (P ′′ → R′′) as one easily checks.

Two log morphisms (β1, θ1, ψ1), (β2, θ2, ψ2) from α : P → R to α′ : P ′ → R′

are equivalent if there exists a homomorphism η : P → (P ′)× such that

β2 = β1 + η, θ2 = θ1 · (α′ ◦ η)−1, ψ2 = ψ1.

Log rings and log morphisms modulo equivalence define the category LogRings.

Remark 2.12. 1) This definition just rephrases the basic notions of log

geometry [Kat89] on the level of rings. In particular, a log ring α : P → R

is the same as an affine scheme X = SpecR with a chart for a log structure

γ : P → Γ(X,MX) in the Zariski topology. Note that such a chart induces a

canonical isomorphismÄ
O×X ⊕ PX

ä¿¶
(h,m)

∣∣∣h · α(m) = 1
©
−→MX ,

so we can represent elements of MX as pairs (h,m), h ∈ O×X , m ∈ P .

Similarly, a log morphism (β, θ, ψ) between the log rings α : P → R and

α′ : P ′ → R′ gives rise to a morphism of the associated affine log schemes as

follows. The map f : X ′ := SpecR′ → X := SpecR of the underlying schemes

is defined by ψ. Then by (2.3),

f−1(O×X ⊕ PX) −→ O×X′ ⊕ P
′
X′ , (h,m) 7−→

Ä
ψ(h) · θ(m), β(m)

ä
descends to a morphism f−1MX →MX′ . Indeed, h · α(m) = 1 implies

1 = ψ
Ä
h · α(m)

ä
= ψ(h) · (ψ ◦ α)(m)

(2.3)
= ψ(h) · θ(m) · α′

Ä
β(m)

ä
.

Conversely, under the assumption that for the chart γ′ : P ′ → Γ(X ′,MX′)

no nonzero element of P ′ maps to an invertible element, any morphism of log

schemes (f, f [) : (X ′,MX′) → (X,MX) arises in this fashion. In fact, under

the stated condition, the composition

P
γ−→ Γ(X,MX)

f[−→ Γ(X ′,MX′)
κ−→ Γ(X ′,MX′/O×X′)

with κ the quotient homomorphism, factors canonically over κ◦γ′, thus defining

β : P → P ′. Comparison of γ′ ◦ β with f [ ◦ γ then defines θ. Note that

on the side of log rings the stated condition translates into the requirement

α′−1(R′×) = {0}.
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Thus, at least for log rings α : P → R fulfilling α−1(R×) = {0}, our discus-

sion also shows that the notion of equivalence is compatible with compositions

of morphisms.

2) In our case, R = Rkg,σ is a localization of a quotient of k[Pω,σ] and hence

carries canonically the structure of a log ring via α : Pω,σ → Rkg,σ, α(m) = zm.

Because Pω,σ generates Rkg,σ up to localization, (2.3) determines the underlying

ring homomorphism ψ of a log morphism from β and θ. Moreover, in the cases

we are interested in, β is either canonically given or is fixed in the discussion

and θ factors through the projection Pω,σ → Λσ. By abuse of notation we then

talk of a group homomorphism θ : Λσ → (Rg′,σ)× as being a log morphism.

We write θ for the associated ring homomorphism, and use θ(m) and θ(m)

interchangeably. Explicitly, we have

θ(zm) := θ(m) · zβ(m)

for the underlying ring homomorphism, and the composition of two log mor-

phisms θ1, θ2 reads

(θ1 ◦ θ2)(m) = θ1(m) · θ1

Ä
θ2(m)

ä
.(2.4)

2.2. Automorphism groups. We will now discuss various groups of log au-

tomorphisms of the rings which appear in our construction. For this subsection,

fix g : ω → τ , σ ∈ Pmax with τ ⊆ σ, and a monomial ideal I ⊆ k[Pω,σ] with

radical I0 := I>0
g,σ. Let f := fvg,σ ∈ k[Pω,σ], v ∈ ω a vertex, be a localizing

element as in Construction 2.7. Write P := Pω,σ and RI := RIg,σ = (k[P ]/I)f .

Recall also the projection P → Λσ, m 7→ m, and the conventions of Re-

mark 2.12. We are interested in log automorphisms of P → RI .

Remark 2.13. 1) The inverse of a log automorphism θ is

θ−1(m) = θ
−1
Ç

1

θ(m)

å
.

2) The formula for multiple compositions is

θ1 ◦ θ2 ◦ · · · ◦ θr = θ1 · (θ1 ◦ θ2) · . . . · (θ1 ◦ θ2 ◦ · · · ◦ θr−1 ◦ θr).(2.5)

On the right-hand side the composition symbol denotes ordinary composition

of maps and the centered dots denote multiplication of maps with target RI .

We will now describe the group of all log automorphisms θ : Λσ → (RI)×

with the property that θ(m) = 1 mod I0, by describing the Lie algebra of this

group. We first consider the module of log derivations of RI , defined by

Θ(RI) := RI ⊗Z Λ∗σ = Hom(Λσ, R
I).
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We view an element ξ ∈ Θ(RI) as an additive map ξ : P → RI factoring

through P → Λσ. In particular, a⊗ n defines the map

P 3 m 7−→ a〈m,n〉.

Note that ξ ∈ Θ(RI) also induces an ordinary k-derivation of RI via

ξ(zm) := ξ(m)zm.

It is then suggestive to write a∂n for a⊗ n ∈ Θ(RI) or its associated ordinary

derivation:

(a∂n)(zm) = a〈m,n〉zm.
The adjoint action of the group of automorphisms on derivations lifts to

the log setting by defining, for θ a log automorphism and ξ a log derivation,

Adθ ξ := (θ ◦ ξ ◦ θ−1) · θ + θ ◦ ξ.(2.6)

Given ξ1, . . . , ξn ∈ Θ(RI), we can define a higher order log differential

operator, a map ξ1 ◦ · · · ◦ ξn : Λσ → RI , inductively by the formula

(ξ1 ◦ · · · ◦ ξn)(m) = ξ1(m) · (ξ2 ◦ · · · ◦ ξn)(m) + ξ1(ξ2 ◦ · · · ◦ ξn(m))(2.7)

so that

zm(ξ1 ◦ · · · ◦ ξn)(m) = (ξ1 ◦ · · · ◦ ξn)(zm),

where the composition on the right-hand side is just the composition of ordi-

nary k-endomorphisms of RI . The powers of ξ ∈ Θ(RI) fulfill a higher order

Leibniz rule:

ξn(m1 +m2) =
n∑
i=0

Ç
n

i

å
ξi(m1)ξn−i(m2), m1,m2 ∈ Λσ.(2.8)

Proposition 2.14. The group

GI :=
¶
θ : Λσ→ (RI)×

∣∣∣ θ is a log automorphism,∀m∈Λσ : θ(m) = 1 mod I0

©
is an algebraic group with Lie algebra gI := I0 · Θ(RI) endowed with the Lie

bracket

[ξ1, ξ2] := ξ1 ◦ ξ2 − ξ2 ◦ ξ1.

Proof. From (2.8) it follows that if ξ ∈ I0 ·Θ(RI), the formula

exp(ξ)(m) := 1 +
∞∑
i=1

ξi(m)

i!
(2.9)

defines an element exp(ξ)∈GI since

exp(ξ)(m1 +m2) = exp(ξ)(m1) · exp(ξ)(m2).

Note that the sum is finite because
√
I = I0.

Conversely, let θ ∈ GI . Define inductively Ni : Λσ → R by N0 := 1 and

Ni := θ ·
Ä
θ ◦Ni−1

ä
−Ni−1.
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The induced map N i : zm 7→ Ni(m)zm equals (θ − id)i. Note that Ni takes

values in Ii0. Thus we can define log(θ) : Λσ → RI by

log(θ) :=
∞∑
i=1

(−1)i+1

i
Ni.

Again, this is a finite sum. Noting inductively that

Nn(m1 +m2) =
∑

i+j+k=n,i,j,k≥0

n!

i!j!k!
Ni+j(m1)Ni+k(m2),

it follows by direct computation that log(θ) is additive. Hence log(θ) ∈ I0 ·
Θ(RI), and then the usual power series identity implies θ = exp(log(θ)). �

On the k-basis zm∂n of gI , the formula for the Lie bracket is

[zm∂n, z
m′∂n′ ] = (zm∂n(zm

′
))∂n′ − (zm

′
∂n′(z

m))∂n

= zm+m′(〈m′, n〉∂n′ − 〈m,n′〉∂n) = zm+m′∂〈m′,n〉n′−〈m,n′〉n.

(2.10)

In particular, gI is a nilpotent Lie algebra.

Later on we will often need to control how the basic elements exp(zm∂n)

commute with certain more general log automorphisms. For this we record the

following lemma.

Lemma 2.15. For h ∈ (RI)× consider the log automorphism

θ : m 7−→ h−〈m,n0〉,

of RI , where n0 ∈ Λ∗σ annihilates any exponent occurring in h. Then for

m ∈ Λσ , n ∈ Λ∗σ ,

Adθ(z
m∂n) = zm

Ä
h−〈m,n0〉∂n + h−〈m,n0〉−1(∂nh)∂n0

ä
.

Proof. Using the fact that every monomial in h is left-invariant by θ we

get θ−1(m) = h〈m,n0〉 and, with ξ = zm∂n,

Adθ(ξ)(m
′)

(2.6)
= (θ ◦ ξ ◦ θ−1)(m′) · θ(m′) + (θ ◦ ξ)(m′)

= (θ ◦ ξ)
Ä
h〈m

′,n0〉
ä
· h−〈m′,n0〉 + θ

Ä
〈m′, n〉zm

ä
= θ
Ä
〈m′, n0〉h〈m

′,n0〉−1(∂nh)zm
ä
h−〈m

′,n0〉 + 〈m′, n〉h−〈m,n0〉zm

= 〈m′, n0〉h−〈m,n0〉−1(∂nh)zm + 〈m′, n〉h−〈m,n0〉zm. �

For any sub-Lie algebra h ⊆ gI , we obtain a subgroup H = exp(h) of GI

consisting of exponentials of elements of h. We shall consider a number of such

subgroups.

In what follows, fix a codimension-two subspace Tj ⊆ Λσ,R defined over Q,

and write Λj = Tj ∩ Λσ. Later on Tj will be the tangent space to a polyhedral
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subset of σ of codimension two. Write P>0 = P>0
g,σ ⊆ Pω,σ and P I for the

monoid ideals generating I0 and I. Then each of the following subspaces of gI

are Lie subalgebras, as is easily checked using (2.10):

gIj :=
⊕

m∈P>0\P I
zm
Ä
k⊗ Λ⊥j

ä
,

h̃Ij :=
⊕

m∈P>0\P I
zm
Ä
k⊗ (m⊥ ∩ Λ⊥j )

ä
,

hIj :=
⊕

m∈P>0\PI
m 6=0

zm
Ä
k⊗ (m⊥ ∩ Λ⊥j )

ä
,

⊥hIj :=
⊕

m∈P>0\PI
m 6∈Λj

zm
Ä
k⊗ (m⊥ ∩ Λ⊥j )

ä
,

‖hIj :=
⊕

m∈P>0\PI
m∈Λj\{0}

zm
Ä
k⊗ Λ⊥j

ä
.

The corresponding subgroups of GI are denoted GIj , ‹HI
j , HI

j , ⊥HI
j , and ‖HI

j ,

respectively. Of these the most essential one for our construction is HI
j with

Lie algebra generated by derivations zm∂n, where ∂n acts trivially on zm and

m points in a specific direction (m 6= 0).

Remarks 2.16. (1) All θ ∈ GIj satisfy θ(m) = 1 whenever m ∈ Λj.

(2) The log automorphism associated to an element of h̃Ij of the form a∂n
is easy to write down explicitly:

exp(a∂n)(m) = exp(〈m,n〉a) = exp(a)〈m,n〉.

Here exp(a) is the usual exponential of a function, which is a polynomial in a

because a ∈ I0. Indeed, a involves only monomials zm with 〈m,n〉 = 0, and

hence the composition formula (2.7) inductively shows

(a∂n)i(m) =
Ä
〈m,n〉a

äi
.

(3) Denote by

Ωp(RI) = RI ⊗
∧p

Λσ

the module of logarithmic p-forms on RI . We write f ⊗ m = f dlogm for

f ∈ RI , m ∈ ∧p Λσ. We have the (ordinary) exterior derivative

d : RI −→ Ω1(RI) = Hom(Λ∗σ, R
I), f 7−→ (n 7→ ∂nf) .

This gives

d : Ωp(RI) −→ Ωp+1(RI)
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in the usual way, and gI acts on Ωp(RI) by Lie derivative. In particular, gI

acts on ΩdimB(RI) by ξ(Ω) = Lξ(Ω) = d(ι(ξ)Ω) for ξ ∈ gI , Ω ∈ ΩdimB(RI).

It is then not difficult to see that h̃Ij consists of those elements of gIj which

preserve

Ωstd = dlog(m1 ∧ · · · ∧mn) = dlog(m1) ∧ · · · ∧ dlog(mn),

where m1 ∧ · · · ∧mn is a primitive generator of
∧dimB Λσ. In fact,

Lzm∂nΩstd = d
Ä
zmι∂nΩstd

ä
= 〈m,n〉zmΩstd.

Note also that any log automorphism of RI acts on Ωp(RI) by

θ
Ä
a dlog(m1) ∧ · · · ∧ dlog(mp)

ä
:= θ(a)

(
dlogm1 +

dθ(m1)

θ(m1)

)
∧ · · · ∧

(
dlogmp +

dθ(mp)

θ(mp)

)
.

One can check that whenever θ ∈ GI this agrees with the exponential of the

action of gI on Ωp(RI); that is, for ξ ∈ gI and α ∈ Ωp(RI) it holds thatÄ
exp(ξ)

ä
(α) =

∞∑
i=0

1

i!
Liξ(α).

Thus ‹HI
j consists of those log automorphisms in GIj preserving Ωstd.

(4) Note that ‖hIj is abelian and [‖hIj ,
⊥hIj ] ⊆ ⊥hIj , so we get an exact

sequence of Lie algebras

0 −→ ⊥hIj −→ hIj −→ ‖hIj −→ 0

and hence an exact sequence of groups

1 −→ ⊥HI
j −→ HI

j −→ ‖HI
j −→ 1.

2.3. Slabs, walls and structures. Our construction involves splittingB into

smaller and smaller pieces which are separated by slabs and walls. We begin

with the subdivision of B given by P; the codimension-one elements of P
define slabs. We then proceed to subdivide B through a scattering process

by adding walls, which are codimension-one polyhedra contained in maximal

elements of P. These walls split these maximal cells into chambers. The

choice of words “wall” and “slab” is inspired by the first author’s house, which

is built on a slab. Just as with this house, over time, the slabs develop cracks,

and here are subdivided, while once a wall is introduced, it remains unmodified

during the process of further subdivisions of P. A slab also carries additional

data, namely the starting data determined by the log structure and some

higher order corrections, while a wall only carries higher order data. A further

difference is that walls, unlike slabs, have a built-in directionality. Both slabs

and walls lead to log automorphisms of rings Rkg,σ, which will be used to glue

together these rings to create k-th order deformations.
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For the following definition, recall the open star Uτ =
⋃
σ∈P,σ⊇τ Intσ of

a cell τ and the notation v[x] ∈ ρ for the unique vertex in the same connected

component of ρ \∆ of some x ∈ ρ \∆, ρ ∈P [n−1].

Definition 2.17. A slab is a convex, rational, (n− 1)-dimensional polyhe-

dral subset b of a cell ρb ∈P [n−1] together with elements

fb,x =
∑

m∈Px,m∈Λρb

cmz
m ∈ k[Px],

one for each x ∈ b \∆, satisfying the following properties:

(i) If x, x′ ∈ b \ ∆, Π : k[P gp
x ] → k[P gp

x′ ], is defined by parallel transport

along a path inside cl(Uρb) \∆ and v = v[x], v′ = v[x′], then

D(se′ , ρb, v
′)−1s−1

e′ (fb,x′) = zm
ρb
v′vΠ
Ä
D(se, ρb, v)−1s−1

e (fb,x)
ä
,(2.11)

where e : v → ρb, e
′ : v′ → ρb.

(ii) If e : v → ρb with v = v[x], and Π : k[P gp
x ] → k[P gp

v ] is defined by

parallel transport from x to v along a path inside ρb \∆, then

fe = Π
( ∑
m∈Px, ordb(m)=0

cmz
m
)
,

where (fe) is the section of LS+
pre,X defining the log smooth structure

on X.

Remarks 2.18. 1) By condition (i) the functions fb,x determine each other

by parallel transport inside cl(Uρb)\∆. In particular, a slab carries only finitely

many nonzero coefficients as information.

2) Condition (ii) says that (fe) determines the part of fb,x of order 0 for

every x ∈ b \∆. Note that by (1.11) this is compatible with condition (i).

Example 2.19. Continuing on Example 2.10 let us show how slabs resolve

the problem of incompatible gluings due to monodromy. In this example, we

take an additional slab b with support the one-dimensional cell ρ = σ1 ∩ σ2.

We view the functions fb,vi as elements of Rkidρ,σ2
via parallel transport from

vi into σ2. Let πi : Λσi → Z be the projection with kernel Λρ and which is

positive on vectors pointing from σ1 to σ2. In going from σ1 to σ2, compose

the isomorphism ψi : Rkidρ,σ1
→ Rkidρ,σ2

, obtained via parallel transport through

the vertex vi ∈ ρ, with

zm 7−→ (fb,vi)
−π1(m) · zm.

In appropriate coordinates these are the homomorphisms of k[w,w−1]-algebras

sending x1, y1 to fb,v1 ·x2, f−1
b,v1
·y2 (i = 1), and to fb,v2 ·wκx2, f−1

b,v2
·w−κy2 (i = 2),

respectively. Now (2.11) requires fb,v2 = w−κfb,v1 , and this is exactly what is
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needed to make the two homomorphisms agree. Thus Rkg1,σ1
×Rk

idρ,σ2

Rkg,σ2
is

well defined.

Explicitly, computing in the chart at v1, the fibre product is generated

as k[w,w−1, t]-algebra by X := (x1, fb,v1x2), Y := (fb,v1y1, y2), with single

relation XY − Fb,v1t
l, where Fb,v1 = (fb,v1 , fb,v1). Note how this fits with the

interpretation of the section fv1→ρ of LS+
pre,V (v1)|V (ρ) in (1.9).

Definition 2.20. A wall is a convex, rational, (n − 1)-dimensional poly-

hedral subset p of a maximal cell σp ∈ P [n] with p ∩ Intσp 6= ∅ together

with

(i) an (n− 2)-face q ⊆ p, q 6⊆ ∂B, the base of p;

(ii) an exponent mp on σp with ordσp(mp) > 0 and mp,x ∈ Px for every

x ∈ p \∆; and

(iii) cp ∈ k,

such that

p = (q− R≥0mp) ∩ σp.

Here we view σp as a polyhedron in Λσp,R and mp as an element of Aff (B̌,Z)σ̌p .

The notation is (p,mp, cp), or simply p if mp and cp are understood.

Figure 2.1. Perspective and top views of a wall in a maximal

cell (n = 3).

Remarks 2.21. 1) Analogous to slabs we have a function for each x ∈ p\∆,

defined by

fp,x := 1 + cpz
mp,x .

The various fp,x are transformed to one another via parallel transport inside

σp \ ∆. Note that the fp,x are honest functions while the fb,x of a slab are

really sections of the line bundle with transition functions zm
ρb
v′v .
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2) We have ∂p = Base(p) ∪ Sides(p) ∪ Top(p) with

Base(p) := q,

Sides(p) := (∂q− R≥0mp) ∩ σp,
Top(p) := cl

Ä
∂p \ (q ∪ Sides(p)

ä
.

In the following we will consider systems of slabs and walls fulfilling certain

additional conditions.

Definition 2.22. Let S = S b ∪S p with S b and S p locally finite sets of

slabs and walls, respectively. Define the support of S as

|S | :=
⋃
b∈S

b.

A chamber of S is the closure of a connected component of B \ |S |. The set of

chambers of S is denoted as Chambers(S ). Two chambers u, u′, are adjacent

if dim u ∩ u′ = n− 1.

A structure is a locally finite set of slabs and walls S along with a poly-

hedral decomposition PS of |S |, fulfilling the following conditions:

(i) The map associating to a slab b ∈ S its underlying polyhedral subset

of B defines an injection from S b to P
[n−1]
S , and any ρ ∈ P [n−1] is

contained in |S b|.
(ii) Each chamber of S is convex and its interior is disjoint from any wall.

(iii) Any wall in S is a union of elements of PS .

(iv) Any σ ∈Pmax contains only finitely many slabs or walls in S .

2.4. The gluing morphisms. We assume a structure S to be given. Then

for each chamber u ∈ Chambers(S ) there exists a unique σu ∈ Pmax with

u ⊆ σu. Thus for each pair (g, u) with (g : ω → τ) ∈ Hom(P) and τ ⊆ σu,

we have the rings Rkg,σu , k ∈ N. These are the rings whose spectra we wish

to glue. Technically this is done by a functor from a “gluing category” to the

category of log rings.

Definition 2.23. For a structure S define Glue(S ) as the category with

objects (g, u) with (g : ω → τ) ∈ Hom(P), u ∈ Chambers(S ) and ω ∩ u 6= ∅,
τ ⊆ σu. (Then also τ ∩ u 6= ∅, ω ⊆ σu.) We call ω and τ the domain and target

of (g, u), respectively. There is a (unique) morphism

(g : ω → τ, u) −→ (g′ : ω′ → τ ′, u′)

if and only if ω ⊆ ω′ and τ ⊇ τ ′.

Note that each morphism e : (g, u)→ (g′, u′) in this category decomposes

into a sequence of morphisms of the following two basic types:

(I) ω ⊆ ω′, τ ⊇ τ ′, u = u′ (change of strata).
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(II) ω = ω′, τ = τ ′, dim u∩ u′ = n− 1, ω ∩ u∩ u′ 6= ∅ (change of chamber).

For these two types of morphisms we now define a morphism of log rings

Rkg:ω→τ,σu → Rkg′:ω′→τ ′,σu′
by specifying homomorphisms of monoids β : Pω,σu→

Pω′,σu′ and

θ : Λσu −→
Ä
Rkg′,σu′

ä×
,

following the conventions of Remark 2.12(2). At this point our definition will

still depend on choices, but this dependence will disappear after imposing the

condition of consistency on S below (Definition 2.28). To put these log mor-

phisms into context recall from Remark 2.8 that if (g : ω → τ, u) ∈ Glue(S ),

then SpecRkg,σu is a k-th order thickening of an open subset of Vg. Hence the

target τ of (g : ω → τ, u) selects the toric stratum while its domain ω selects

the affine open subset to consider. Thus a morphism of Type I in Glue(S )

should map to a composition of the closed embedding associated to τ ′ → τ

composed with the open embedding associated to ω → ω′. Changing chambers

(II) leads to the application of log isomorphisms.

Construction 2.24 (The basic gluing morphisms).

(I) (Change of strata). Let

e : (g : ω → τ, u)→ (g′ : ω′ → τ ′, u)

be a morphism in Glue(S ) of Type I and let a : ω → ω′. Denote by sa,σu :

Λσu → k× the homomorphism defined by sa ∈ PM(ω) for σu. Take β : Pω,σu →
Pω′,σu to be the canonical map and

θ : Λσu −→ (Rkg′,σu)×, m 7−→ s−1
a,σu(m).

Note that θ is the canonical ring homomorphism from Remark 2.9.

(II) (Change of chambers). Let

e : (g : ω → τ, u)→ (g : ω → τ, u′)

be a morphism in Glue(S ) of Type II. Then either u∩u′ intersects the interior

of a maximal cell (that is, σu = σu′) or not. This leads to the following two

cases:

(1) σu = σu′ . Write σ := σu = σu′ and h : ω → σ. The intersection u∩u′ is

an (n−1)-dimensional convex polyhedron not contained in the (n−1)-skeleton

of P. Since ω ∩ u ∩ u′ 6= ∅, there exists v ∈P
[n−1]
S with v ⊆ u ∩ u′, ω ∩ v 6= ∅.

Then Int v ⊆ Intσ, and any wall p with v ⊆ p has the property ω ∩ p 6= ∅.
Because ∆ does not contain rational points then even ω ∩ (p \∆) 6= ∅. This is

the first place where we need the perturbation of ∆.

Let p1, . . . , pr ∈ S p be the walls containing v. Choose x ∈ Int(v), and

let fpi,x = 1 + cpiz
mpi,x denote the function associated to pi at x according to
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Remark 2.21(1). Note that any nonzero exponent m of this function fulfills

ordτ (m) ≥ ordσ(m) > 0. Denote by fi the image of fpi,x in Rkg,σ.

The tangent space of u∩u′ defines an (n−1)-dimensional rational subspace

Tu∩u′ ⊆ Λσ,R. Let π : Λσ → Z be the epimorphism which contracts Tu∩u′ ∩ Λσ
and which is positive on vectors pointing from u to u′.

Now define β = id : Pω,σ → Pω,σ and

θ = θ(v) : Λσ −→ (Rkg,σ)×, m 7−→ sh,σ
( r∏
i=1

fi
)−π(m)

.

This yields a log automorphism of Rkg,σ because fi = 1 mod I>0
g,σ, and hence

the associated automorphism of k[Pω,σ]/I>kg,σ changes the localizing element

only by an invertible function.

Without further assumptions our definition of θ depends on the choice

of v. We keep this dependence in mind for the time being by adding v to the

notation at appropriate places.

(2) σu 6= σu′ . In this case u ∩ u′ is contained in an (n− 1)-cell ρ ∈P. Let

v ∈P
[n−1]
S be such that v ⊆ u∩u′ and ω∩v 6= ∅. Again we will emphasize the

dependence on v in the notation. Since all polyhedra are rational and ∆ does

not contain rational points, it holds that (ω ∩ v) \∆ 6= ∅. Let x ∈ (ω ∩ v) \∆,

and write e : v → ω, v := v[x]. Denote by b the unique slab with underlying

polyhedral set v.

Now define β by parallel transport through v:

Aff (B̌,Z)σ̌u −→ Aff (B̌,Z)v −→ Aff (B̌,Z)σ̌u′ ,

and

θ = θ(v) : Λσu −→ (Rkg,σu′ )
×, m 7−→

Ä
D(se, ρ, v)−1s−1

e (fb,x)
ä−π(m)

.

Here π : Λσu → Z is the epimorphism with kernel Λρ which is positive on

vectors pointing from u to u′, and fb,x is considered as an element of k[Pω,σu′ ]

via a chart at v. Since β respects orders (Lemma 2.4) it identifies Pω,σu ⊆
Aff (B̌,Z)σ̌u with Pω,σu′ and I>kg,σu with I>kg,σu′ . Hence β and θ define a ring

isomorphism k[Pω,σu ]/I>kg,σu → k[Pω,σu′ ]/I
>k
g,σu′

. This isomorphism respects the

localizing elements as these only involve monomials of order zero with respect

to ρ and hence are tangent to ρ. This shows that θ indeed defines a log

isomorphism.

Our construction also seems to depend on x ∈ v ∩ (ω \ ∆). We now

show that this is not the case. In fact, a different choice x′ gives a vertex

v′ ∈ ω leading to e′ : v′ → ω, θ′ : Λσu −→ (Rkg,σu′ )
× instead of e : v → ω,

θ : Λσu −→ (Rkg,σu′ )
×. Parallel transport through v′ instead of v yields

β′(m) = β(m) + π(m) ·mρ
v′v.
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Then (β, θ, θ) and (β′, θ′, θ′) are equivalent via η : Λσu → (Pω,σu′ )
×, η(m) =

π(m) ·mρ
v′v:

θ′(m) =
Ä
D(se′ , ρ, v

′)−1s−1
e′ (fb,x′)

ä−π(m)
(2.12)

=
Ä
D(se, ρ, v)−1s−1

e (fb,x)zm
ρ

v′v
ä−π(m)

= θ(m) · z−π(m)·mρ
v′v = θ(m) · (α′ ◦ η(m))−1.

Here we used the change of coordinates formula (2.11) for fb,x. This proves

independence of the choice of x, up to equivalence.

Remark 2.25. 1) The consistency check (2.12) in Construction 2.24(II.2)

forces the change of coordinates formula (2.11) in the definition of slabs.

2) While the log isomorphism in Construction 2.24(II.2) is only defined

up to equivalence, a choice of vertex v ∈ ω distinguishes a representative of

the equivalence class. In fact, quite generally for log isomorphisms, equivalent

log isomorphisms can be distinguished by the underlying homomorphism of

monoids, which in the case at hand is given by parallel transport through v.

Changing chambers commutes with changing strata.

Lemma 2.26. Assume that g : ω→ τ, g′ : ω′→ τ ′, and u, u′∈Chambers(S ),

fulfill ω ⊆ ω′, τ ⊇ τ ′, ω ∩ u ∩ u′ 6= ∅, dim u ∩ u′ = n− 1 and τ ⊆ σu ∩ σu′ . For

the morphisms

e1 :=
Ä
(g, u) −→ (g, u′)

ä
, e2 :=

Ä
(g, u′) −→ (g′, u′)

ä
,

f1 :=
Ä
(g, u) −→ (g′, u)

ä
, f2 :=

Ä
(g′, u) −→ (g′, u′)

ä
in Glue(S ) let θ(ei), θ(fi) be the basic gluing morphisms from Construc-

tion 2.24, where θ(e1) and θ(f2) are computed using the same v ∈ P
[n−1]
S .

Then

θ(e2) ◦ θ(e1) = θ(f2) ◦ θ(f1).

Proof. Denote a : ω → ω′. Let us first assume that u, u′, are contained in

the same maximal cell σ, that is, σu = σu′ . With h : ω → σ, h′ : ω′ → σ it holds

that h = h′ ◦ a and hence sh,σ = sh′,σ · sa,σ. Then from Construction 2.24(I)

and (II.1) we obtain

θ(e2) ◦ θ(e1)(m) = θ(e2)
Ä
θ(e1)(m)

ä
· θ(e2)(m)

= θ(e2)
(
sh,σ
Ä∏

ifi
ä−π(m)

)
· s−1
a,σ(m)

= sh′,σ
Ä∏

ifi
ä−π(m) · s−1

a,σ(m) = θ(f2)(m) · θ(f2)
Ä
s−1
a,σ(m)

ä
= θ(f2)(m) · θ(f2)

Ä
θ(f1)(m)

ä
= θ(f2) ◦ θ(f1)(m).



AFFINE AND COMPLEX GEOMETRY 1351

Otherwise there exists ρ ∈ P [n−1] with u ∩ u′ ⊆ ρ. Writing e : v → ω,

e′ : v → ω′ for v = v[x] as in Construction 2.24(II.2), by the definitions of

D(se, ρ, v) and D(se′ , ρ, v) (Definition 1.20), we haveÇ
D(se′ , ρ, v)

D(se, ρ, v)

åπ(m)

=
se′,σu(m)

se′,σu′ (m)
·
se,σu′ (m)

se,σu(m)
=
sa,σu(m)

sa,σu′ (m)
.

Hence

θ(e2) ◦ θ(e1)(m) = θ(e2)
Ä
D(se, ρ, v)−1s−1

e (fb,x)
ä−π(m) · θ(e2)(m)

= s−1
a,σu′

Ä
D(se, ρ, v)−1s−1

e (fb,x)
ä−π(m) · s−1

a,σu′
(m)

=
Ä
D(se′ , ρ, v)−1s−1

e′ (fb,x)
ä−π(m) · s−1

a,σu(m) = θ(f2) ◦ θ(f1)(m),

as desired. �

2.5. Loops around joints and consistency. To use compositions of basic

gluing morphisms to define a functor from Glue(S ) to LogRings requires a

compatibility condition that we now discuss.

Definition 2.27. A joint j of S is an (n−2)-cell of PS with j 6⊆ ∂B. The

set of joints of S is denoted Joints(S ).

The minimal cell σj ∈ P containing a joint j has codimension at most

two, and we speak of codimension-zero, one and two joints, respectively. For

v ∈ σj a vertex we define the normal space of j as

Qvj,R := Λv,R/Λj,R.

To denote the image of an object in Qvj,R we use a double bar. For example, if

σ ∈Pmax contains j, we have the canonical map

Aff (B̌,Z)σ̌ −→ Λv −→ Qvj,R, m 7−→ m.

Moreover, for a cell inside B containing j, say τ ∈ P, denote by τ ⊆ Qvj,R
the image of the tangent wedge to τ along j. This is a convex cone, which is

strictly convex if and only if j is contained in an (n− 2)-dimensional face of τ .

Note that for any σ ∈ Pmax containing v, parallel transport defines a

canonical isomorphism

Qvj,R = Λσ,R/Λj,R,

and local monodromy acts trivially on the right-hand side if codimσj ∈ {0, 2}.
Thus, in this case, Qvj,R can be defined independently of v, while if σj = ρ ∈
P [n−1], we can only define the two half-planes separated by the line ρ invari-

antly.

Now the (n− 1)-cells of PS containing j define a set of distinct half-lines

in Qvj,R. Let v1, . . . , vl, vl+1 = v1, be a cyclic numbering of these cells induced
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by an orientation on Qvj,R. Then by Definition 2.22(ii) for any i there exists a

unique ui ∈ Chambers(S ) with ∂ui = vi ∪ vi+1.

Now let (g : ω → τ) ∈ Hom(P) and assume j ∩ ω 6= ∅ and τ ⊆ σj. Then

for each i we have a morphism

e : (g : ω → τ, ui)→ (g : ω → τ, ui+1)

in Glue(S ) changing chambers. By Construction 2.24 we thus obtain the

sequence of log isomorphisms

θi = θ(vi) : Λσui → (Rkg,σui+1
)×

from Rkg,σui
to Rkg,σui+1

. Note that the equivalence class of θi only depends on

g, vi, j and an orientation on Qvj,R.

Definition 2.28. The structure S is consistent at the joint j to order k if

for any (g : ω → τ) ∈ Hom(P) with j ∩ ω 6= ∅ and τ ⊆ σj, the composition

θkj := θl ◦ · · · ◦ θ1 : Λσu1
−→ (Rkg,σu1

)×(2.13)

equals 1. A structure is consistent to order k if it is consistent to order k at

every joint.

Remark 2.29. 1) Note that relabelling u1, . . . , ul to ui, . . . , ul, u1, . . . , ui−1,

only leads to conjugation of θkj with an isomorphism Rkg,σu1
→ Rkg,σui

, and

reversing the cyclic order produces the inverse. Thus consistency around a

joint really only depends on S and j. Moreover, θkj is well defined once a

reference chamber u1 and orientation of Qvj are chosen for a vertex v ∈ σj.
2) The notion of consistency implicitly depends on the choice of open

gluing data s.

3) Consistency of a structure S does not depend on the choice of polyhe-

dral decomposition PS . In fact, if S is consistent at every joint of PS it is

also consistent at every joint of any refinement of PS .

4) Assume ω ⊆ ω′ ⊆ τ ′ ⊆ τ and we compute (2.13) both for g : ω →
τ and g′ : ω′ → τ ′, with the same sequence of chambers, resulting in log

automorphisms θkj and θkj
′
. It then follows from Lemma 2.26 that θkj

′
equals

the composition of θkj with the canonical homomorphism

(Rkg,σu1
)× −→ (Rkg′,σu1

)×.

5) By 4), it suffices to consider the case ω = τ = σj. In fact, Rkω→σj,σu1
→

Rkidσj ,σu1
is the localization at nonzero divisors, while Rkω→σj,σu1

→ Rkω→τ,σu1
is

a surjection followed by a localization. Hence a log automorphism of Rkω→τ,σu1

compatible with the identity on Rkidσj ,σu1
is the identity.
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For consistent structures we can define a gluing functor

F ks : Glue(S ) −→ LogRings,

mapping (g, u) to Rkg,σu and morphisms of types I or II to the basic gluing

morphisms of the respective types defined in Construction 2.24. In fact, the

following is true.

Lemma 2.30. Assume that the structure S is consistent to order k. Let

e = er ◦ · · · ◦ e1 = e′r′ ◦ · · · ◦ e′1 be two decompositions of e ∈ Hom(Glue(S )) into

basic morphisms. Then if θr, . . . , θ1 and θ′r′ , . . . , θ
′
1 are the associated basic log

morphisms, it holds that

θr ◦ · · · ◦ θ1 = θ′r′ ◦ · · · ◦ θ′1.

Proof. The proof proceeds in three steps.

Step 1. Independence of choices. The construction of the morphism as-

sociated to a change of chambers (g : ω → τ, u) → (g : ω → τ, u′) (Construc-

tion 2.24(II) required a choice of v ∈ P
[n−1]
S . We claim independence of this

choice for consistent structures. We use the notation from Construction 2.24.

If v′ ∈P
[n−1]
S is another (n−1)-cell with v′ ⊆ u∩u′, ω∩v′ 6= ∅ and adjacent to

v (i.e. dim v∩v′ = n− 2), then j := v∩v′ is a joint and the log isomorphisms θ

and θ′ constructed via v and v′, respectively, differ by a composition θl ◦ · · ·◦θ1

associated to a loop around j (Definition 2.28). Hence they are equal. The

general case follows since any two (n− 1)-cells of PS contained in u ∩ u′ and

intersecting ω can be connected by a sequence of adjacent cells with the same

properties.

Step 2. Reduction to the case g = g′. By construction the basic gluing

morphisms changing strata are compatible with compositions in Hom(P): If

ei and ei+1 both change strata for a fixed chamber u = ui = ui+1 = ui+2, then

F ks (ei) ◦ F ks (ei+1) = F ks (f),

where f : (gi, u) → (gi+2, u). Since, by Lemma 2.26, changing chambers com-

mutes with changing strata, we can thus assume that only e1 changes strata.

Since the analogous factorization for e′ leads to the same change of strata this

reduces the claim to a sequence of changes of chambers.

Step 3. Spaces of chambers. Given g : ω → τ look at all chambers u such

that (g, u) ∈ Glue(S ):

A :=
¶
u ∈ Chambers(S )

∣∣∣ω ∩ u 6= ∅, τ ⊆ σu
©
.

Define Σ to be the abstract two-dimensional cell complex with A as set of

vertices, edges connecting adjacent u, u′ ∈ A and a disk glued into any 1-cycle

of chambers u1, . . . , ul forming a loop around a joint. An edge with vertices

u, u′, defines a change of chamber isomorphism (of either type) Rkg,σu → Rkg,σu′ .
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Consistency says that the composition of these isomorphisms following the

boundary of a 2-cell is the identity. Thus we obtain the desired independence

of the sequence of adjacent chambers connecting u1 with ur once we know

H1(Σ,Z) = 0. This follows from the following lemma.

Lemma 2.31. π1(Σ) = 0.

Proof. Denote by

V :=
⋃

σ∈Pmax,τ⊆σ
σ

the closed star of τ with respect to P. Then for u ∈ Chambers(S ) the condi-

tion τ ⊆ σu is equivalent to u ⊆ V , and such chambers define a decomposition

of V into closed polyhedra. This is generally not a proper polyhedral decom-

position because the intersection of two chambers needs not be a face of either

chamber. We can however refine the decomposition of V into chambers into an

honest polyhedral decomposition PV , for example by replacing each slab or

wall by the hyperplane containing it. Since ω is topologically a ball, the cells

of PV intersecting ω form a polyhedral decomposition P ′ of an n-cell, and

so does the combinatorial dual decomposition P̌ ′. Thus the two-skeleton of

P̌ ′ is simply connected. Now Σ is obtained from P̌ ′ by contracting all edges

corresponding to adjacent n-cells of P lying in the same chamber. Thus also

Σ is simply connected. �

This finishes the proof of Lemma 2.30. �

2.6. Construction of finite order deformation. Given a structure S that

is consistent to order k we are now able to construct the desired deformation

(Xk, Dk) of (X,D) over Spec
Ä
k[t]/(tk+1)

ä
, by taking, in a certain sense, the

colimit of SpecRkg,σu over (g, u) ∈ Glue(S ). Taken literally this would lead

to a nonseparated scheme because we have removed closed subsets (the zero

loci of the localizing elements fg,σu) from lower-dimensional strata. Instead we

proceed as follows. Denote by

F ks : Glue(S ) −→ Rings

the composition of F ks with the forgetful functor LogRings → Rings. For

(g : ω → τ, u) ∈ Glue(S ), the underlying topological space of SpecF ks (g, u) =

SpecRkg,σu is, according to Remark 2.8, canonically an open subset of Vg ⊆
V (ω). Denote by

i(g, u) :
∣∣∣ SpecRkg,σu

∣∣∣ −→ ∣∣∣V (ω)
∣∣∣

the inclusion of the underlying topological spaces. Then

Ok(g, u) := i(g, u)∗OSpecRkg,σu
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defines a sheaf of k[t]-algebras on V (ω), and if e : (g : ω → τ, u) → (g′ : ω′ →
τ ′, u′) is a morphism in Glue(S ) and

Φωω′(s) : V (ω′)→ V (ω)

is the open embedding defined from the composition of p|V (ω′) with the inverse

of p|V (ω), then F ks (e) defines a homomorphism of sheaves of k[t]-algebras

Ok(g, u) −→
Ä
Φωω′(s)

ä
∗Ok(g

′, u′).

In fact, recall from the discussion following Definition 1.18 that Φωω′(s) is

given by the canonical embedding Spec k[ω′−1Σv] → Speck[ω−1Σv] for some

v ∈ ω, composed with the automorphism s−1
h of Spec k[ω′−1Σ] coming from

open gluing data, where h : ω → ω′. By Remark 2.9 this is compatible with

the reduction modulo t of SpecF ks (e). In particular, we have

|Φωω′(s)| ◦ i(g′, u′) = i(g, u) ◦ | SpecF ks (e)|.

Thus

(g : ω → τ, u) 7−→
Ä
|V (ω)|,Ok(g, u)

ä
(2.14)

defines a contravariant functor from Glue(S ) to the category of ringed spaces.

The aim of this subsection is to show that the colimit of this functor defines

a deformation of X over k[t]/(tk+1) of the desired form. This will be achieved

in Proposition 2.39.

We first construct deformations V k(ω) of the standard affine sets V (ω)

that cover X and then glue by open embeddings. Thus for the time being keep

ω fixed and consider

V k(ω) :=
Ä∣∣∣V (ω)

∣∣∣, lim←−Ok(g, u)
ä
,

where the inverse limit runs over all (g, u) ∈ Glue(S ) with domain ω.

Let x ∈ Int(ω) \∆. For each g : ω → τ we can choose ug ∈ Chambers(S )

with x ∈ ug and such that (g, ug) ∈ Glue(S ). Then by Lemma 2.30, if

(g, u) ∈ Glue(S ) with domain ω, there is a unique isomorphism Rkg,σug → Rkg,σu
by a composition of changes of chambers. This shows that we may replace the

system of rings Rkg,σu and sheaves Ok(g, u), for (g, u) ∈ Glue(S ) with domain

ω, with the system

Rτ := Rkg:ω→τ,σug and Ok(τ) := Ok(g : ω → τ, uτ ),

respectively, where now τ runs over all cells containing ω and uτ := uω→τ . In

doing this keep in mind that the homomorphisms

ψτ ′τ : Rτ → Rτ ′

thus obtained now involve compositions of changes of chambers.
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Eventually we will argue inductively, noting that reduction modulo tl+1

defines rings Rlτ , sheaves Ol(τ) and ringed spaces V l(ω) for l < k. These are

related by the complex

0 −→ OV (ω)
·tl−→ OV l(ω) −→ OV l−1(ω) −→ 0(2.15)

of sheaves of k[t]-algebras on V (ω), and we have to show this complex is exact.

Then V l(ω) is a flat lifting of V l−1(ω) from k[t]/(tl) to k[t]/(tl+1). It then

follows inductively that V k(ω) is affine, of finite type over k and flat over

k[t]/(tk+1). The overall strategy for showing exactness is to write down an

isomorphism with standard local models outside a codimension-three locus

contained in Zω, the preimage of Z under p : V (ω)→ X, and then to extend.

This will also show log smoothness away from Z in the limit k →∞.

The first step is the construction of a chart for V k(ω) away from Zω. We

write P = Pω,σuidω
= Px. Recall that for any τ ⊇ ω, we have the homomor-

phism

ατ : P −→ Rτ

endowing Rτ with the structure of a log ring. Whenever τ ⊇ τ ′ ⊇ ω there is a

log morphism

θτ ′τ : Λx ' Λσuτ −→ (Rτ ′)
×

such that θτ ′τ = ψτ ′τ .

Proposition 2.32. Let p ∈ |V (ω)| \ Zω . Since |V (ω)| coincides with

the topological space underlying Speck[P ]/(tk+1), there is a prime ideal p ⊆
k[P ]/(tk+1) corresponding to p. Furthermore, for g : ω → τ , |SpecRτ | is

identified with |Vg| \ Zω . Thus if p ∈ |Vg|, there is a prime ideal pτ ⊆ Rτ
corresponding to p. Then there is an isomorphism

ψ :
Ä
k[P ]/(tk+1)

ä
p
−→ lim←−(Rτ )pτ ,

where the inverse limit is over all g : ω → τ with p ∈ |Vg|, and the maps of the

inverse system are the localizations of the maps ψτ ′τ .

Proof. For any τ ′ ⊆ τ with ω ⊆ τ ′ it holds that (ω → τ ′, uτ ) ∈ Glue(S ).

Note that ψτ ′τ is the composition of the canonical homomorphism

Rτ = Rkω→τ,σuτ −→ Rkω→τ ′,σuτ ,

changing strata, with a change of chambers isomorphism

Rkω→τ ′,σuτ −→ Rkω→τ ′,σuτ ′
= Rτ ′ .

In particular, ψτ ′τ needs not be surjective because the change of strata homo-

morphism may involve a localization. However, after localizing at the ideals

pτ ′ and pτ respectively, this map becomes surjective.
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Note also that if ω ⊆ τ ′′ ⊆ τ ′ ⊆ τ , then by consistency,

θτ ′′τ = θτ ′′τ ′ ◦ θτ ′τ = θτ ′′τ ′ · (ψτ ′′τ ′ ◦ θτ ′τ ).

It follows that (θτ ′τ )τ ′(τ is a barycentric 1-cocycle for the system of groups

Hom(Λx, (Rτ )×pτ ), as considered in [GS06, A.1]. Since the homomorphisms

(Rτ )×pτ → (Rτ ′)
×
pτ ′

are surjective it is straightforward to check the exactness

criterion (∗) in [GS06, Prop. A.1]. Hence there exist θτ : Λx → (Rτ )×pτ such

that for any τ ′ ( τ ,

θτ ′τ = θτ ′/(ψτ ′τ ◦ θτ ).

Then θτ · ατ defines a compatible system of homomorphisms

ψτ :
Ä
k[P ]/(tk+1)

ä
p
→ (Rτ )pτ ,

hence the desired map ψ. Note that ψτ is the composition of the canonical

quotient Ä
k[P ]/(tk+1)

ä
p
−→

Ä
k[P ]/I>kω→τ

ä
p

and an isomorphism of
Ä
k[P ]/I>kω→τ

ä
p

with (Rτ )pτ . Now it is easy to check

that k[P ]/(tk+1) is the inverse limit of the rings k[P ]/I>kω→τ with the canonical

quotient homomorphisms between them, and an analogous statement holds for

the localizations. The ψτ induce an isomorphism between this inverse system

and (Rτ )pτ . This shows that ψ is indeed an isomorphism. �

Corollary 2.33. For any l≤k, Sequence (2.15) is exact on V (ω) \ Zω .

Following Example 2.19 we can also check directly exactness of (2.15) at

general points of Zω.

Lemma 2.34. For any ρ ∈ P [n−1] containing ω, Sequence (2.15) is also

exact at all points of the maximal torus Speck[Λρ] ⊆ Vω→ρ.

Proof. Let σ+, σ−, be the maximal cells with ρ = σ+ ∩ σ−. Only three

of the sheaves Ok(τ) have support on Speck[Λρ], namely Ok(ρ) and Ok(σ±).

Moreover, by choosing uσ± as adjacent chambers and uρ = uσ+ , we can as-

sume that Rσ+ → Rρ is the canonical homomorphism while Rσ− → Rρ is the

canonical homomorphism composed with a change of chamber automorphism

ψ : Rρ −→ Rρ, zm 7−→ f−π(m)
ρ · zm

as defined in Construction 2.24(II.2). Recall that π : Λσ− → Z maps to 1

a generator of Λσ−/Λρ pointing from σ− to σ+, and fρ has zero locus Zω ∩
|Speck[Λρ]| ⊆ V (ω). Denote by Fρ ⊆ P the face corresponding to ρ. Since

ρ is codimension one, P + F gp
ρ ' Λρ ⊕ Se for some e ≥ 1 with Se ⊆ Z2

the monoid generated by (1, 0), (e,−1), (0, 1). Denote by R+, R− and R∩
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the localizations at the multiplicative system {zm}m∈Fρ of Rσ+ , Rσ− and Rρ,

respectively. Explicitly, we may write

R− = k[Λρ][x, y, t]/
Ä
xy − te, yβtγ

∣∣∣βe+ γ ≥ k + 1
ä
,

R+ = k[Λρ][x, y, t]/
Ä
xy − te, xαtγ

∣∣∣αe+ γ ≥ k + 1
ä
,

R∩ =
Ä
k[Λρ][x, y, t]/

Ä
xy − te, xαyβtγ

∣∣∣max{α, β}e+ γ ≥ k + 1
ää
fρ
,

and R+ → R∩ is the canonical quotient followed by localization at fρ, while

R− → R∩ is the homomorphism of k[Λρ][t]/(t
k+1)-algebras with

x 7−→ fρx, y 7−→ f−1
ρ y.

We claim that

R∪ := k[Λρ][X,Y, t]/(XY − fρte, tk+1) −→ R− ×R∩ R+,

X 7−→ (x, fρx), Y 7−→ (fρy, y)

is an isomorphism of k[Λρ][t]-algebras. In fact, the rings R−, R+, are generated

by 1, xi, yj , i, j > 0, as k[Λρ][t]/(t
k+1)-modules, and the same monomials

generate R∩ as k[Λρ]fρ [t]/(t
k+1)-module. Moreover, the k[Λρ][t]-submodules

of R− (R+) generated by xi, i ≥ 0, (yj , j ≥ 0), is a free direct summand.

Thus if g± ∈ R±, we may write uniquely g− =
∑
i≥0 aix

i + h−(y, t), g+ =∑
j≥0 bjy

j + h+(x, t) with h±(0, t) = 0. Thus (g−, g+) ∈ R− ×R∩ R+ if and

only if

a0 = b0, h−(y, t) =
∑
j>0

bjf
j
ρy

j , h+(x, t) =
∑
i>0

aif
i
ρx
i

as elements of R∩. If this is the case, then (g−, g+) is the image of
∑
i≥0 aiX

i+∑
j>0 bjY

j ∈ R∪. This shows surjectivity. Injectivity follows along the same

lines by noting that R∪ is a free k[Λρ][t]/(t
k+1)-module with basis Xi, Y j ,

i ≥ 0, j > 0.

To complete the proof it remains to observe that

(tl) ⊆ k[Λρ][X,Y, t]/(XY − fρte, tl+1)

is a free k[Λρ][X,Y ]/(XY )-module for 0 < l ≤ k. In fact, by the same argument

as before, each element of (tl) can be uniquely written as

tl
(∑
i≥0

aiX
i +

∑
j>0

bjY
j
)
. �

We now know that Sequence (2.15) is exact on V (ω)\Z ′ω, where Z ′ω is the

intersection of Zω with the union of the codimension-two strata of V (ω). To

extend across Z ′ω the crucial technical result is the following.
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Lemma 2.35. For ω ⊆ τ ⊆ σ, σ ∈ Pmax, let Y = Spec(k[P ]/I>kω→τ,σ),

and let p ∈ Y be a scheme-theoretic point contained in a proper toric stratum

of Y , but p not the generic point of a toric stratum. Then depthOY,p ≥ 2.

Proof. There is a τ ′ with ω ⊆ τ ′ ( τ such that Vω→τ ′ ⊆ Y red is the

smallest toric stratum containing p. Then p ∈ Vτ ′→τ ′ , the open torus orbit of

Vω→τ ′ . So p is a point in the open subscheme U = Spec(k[Pτ ′,σ]/I>kτ ′→τ,σ) of Y .

Note that Pτ ′,σ splits noncanonically as

Pτ ′,σ = P ′ × Zr,

where r = dim τ ′ and P ′ is a sharp monoid (i.e., containing no invertible

elements other than 0). In particular, there is a monomial ideal I ′ ⊆ k[P ′]

such that

U ' Spec(k[P ′]/I ′ ⊗k k[Zr]).
Let p ⊆ k[P ′]/I ′ ⊗k k[Zr] be the prime ideal corresponding to p. We need

to find a regular sequence a1, a2 ∈ p of length two. Take a1 = 1 ⊗ f , where

f ∈ p ∩ k[Zr] is a nonzero element, which exists since p is not the generic

point of Vτ ′→τ . Take a2 = zm ⊗ 1, where m ∈ P ′ is an element in the interior

of the face of P ′ corresponding to τ . It is then easy to see that a1, a2, form

a regular sequence. Indeed, view k[P ′]/I ′ and k[Zr]/(f) as k-vector spaces.

Then tensoring the injective map

k[Zr] ·f−→k[Zr]

with k[P ′]/I ′ shows that a1 is not a zero-divisor, and tensoring the injective

map

k[P ′]/I ′
·zm−→k[P ′]/I ′

with k[Zr]/(f) shows that a2 is not a zero-divisor in (k[P ′]/I ′ ⊗k k[Zr])/(a1).

�

Remark 2.36. The assumption in Lemma 2.35 that p is not the generic

point of a toric stratum is necessary. In particular, unlike Vg the thickening

SpecRkg,σ needs not fulfill Serre’s condition S2. As an example, take ω a

point in a two-dimensional B, a polarization ϕω with Newton polyhedron the

unit square, τ ⊇ ω a maximal cell and p the zero-dimensional toric stratum

Vω→ω ⊆ SpecRτ . Then in appropriate coordinates

k[P ] = k[x, y, z, w]/(xy − zw), I>kω→τ,τ = (x, z)k+1,

and y−1z = w−1x is a regular function on Spec(Rτ )\{p} that does not extend.

Such an extension would be possible by the depth argument if depthOSpecRτ ,p

≥ 2.

Lemma 2.37. j∗OV k(ω)\Zω = OV k(ω).
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Proof. If U ⊆ V (ω) is an open set, then by definition,

OV k(ω)(U) = lim←−OSpecRτ (U),

j∗OV k(ω)\Zω(U) = lim←−OSpecRτ (U \ Zω).

Now for any maximal cell σ ⊇ ω, Lemma 2.35 shows with the usual depth

argument that the restriction map OSpecRσ(U) → OSpecRσ(U \ Zω) is a bi-

jection. Hence the canonical map OV k(ω) → j∗OV k(ω)\Zω is an isomorphism

since membership of a tuple (fσ), fσ ∈ OSpecRσ(U), in lim←−OSpecRτ (U) can be

checked on U \ Zω. �

We are now in position to conclude exactness of (2.15) at all points.

Proposition 2.38. For any l ≤ k, Sequence (2.15) is exact.

Proof. We know exactness of (2.15) on V (ω) \ Z ′ω, where Z ′ω is the inter-

section of Zω with the union of the codimension-two strata of V (ω). Pushing

forward by j′ : V (ω) \ Z ′ω → V (ω) yields the exact sequence

0 −→ j′∗OV (ω)\Z′ω
·tl−→ j′∗OV l(ω)\Z′ω −→ j′∗OV l−1(ω)\Z′ω −→ R1j′∗OV (ω)\Z′ω .

The term on the far right vanishes since V (ω) is Cohen-Macaulay and

codimZ ′ω ≥ 3. �

We have now established that V k(ω) is a flat deformation of V (ω) over

Speck[t]/(tk+1). In particular, V k(ω) is an affine scheme of finite type over k.

Moreover, whenever ω ⊆ ω′, the functor (2.14) induces a map of schemes

Φk
ωω′(s) : V k(ω′) −→ V k(ω).

These morphisms are compatible with sequences ω ⊆ ω′ ⊆ ω′′:

Φk
ωω′′(s) = Φk

ωω′(s) ◦ Φk
ω′ω′′(s);

hence they define a functor from P to the category of schemes. Define Xk as

the colimit of this functor.

Proposition 2.39. The maps Φk
ωω′(s) are open embeddings. In particu-

lar, Xk is a scheme locally of finite type and flat over k[t]/(tk+1).

Proof. Recall that in studying OV k(ω) we reduced the inverse limit over

(ω → τ, u) ∈ Glue(S ) to an inverse limit over cells τ containing ω by choosing

one chamber uτ for each τ . Now using the same choice of uτ for ω and ω′, for

τ ⊇ ω′, we see that V k(ω′)→ V k(ω) is defined by

lim←−
τ⊇ω′

Φωω′(s)
−1Ok(ω → τ, uτ ) −→ lim←−

τ⊇ω′
Ok(ω′ → τ, uτ ).(2.16)

Note that on the left-hand side we dropped the sheaves Ok(ω → τ, uτ ) for cells

τ containing ω but not containing ω′ because they are supported away from
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the image of Φωω′(s). Now on the ring level, the τ -component of (2.16) is the

identity of Rkω′→τ,σuτ . Thus (2.16) is an isomorphism.

It remains to remark that for vertices v, v′ ∈ P the open sets p
Ä
V (v)

ä
and p

Ä
V (v′)

ä
intersect in p

Ä
V (ω)

ä
for ω the minimal cell containing v, v′. Thus

OXk , as a sheaf on |X|, is isomorphic on p(V (ω)) to p∗OV k(ω). Hence Xk is

a scheme with the claimed properties. At this point we use crucially that the

cells of P do not self-intersect; otherwise we would end up with an algebraic

space here. �

Remark 2.40. Proposition 2.32 also endows Xk with an abstract log struc-

ture, together with a log smooth morphism to Speck[t]/(tk+1) with the log

structure generated by N → k[t]/(tk+1), 1 7→ t. While this is not relevant

to this paper it is important in order-by-order computations involving the log

structure, such as in the study of variations of Hodge structures.

2.7. The limit k →∞. So far we have dealt with a fixed structure S that

was consistent to order k. We now wish to take the limit k →∞ by considering

a sequence Sk of structures that are compatible in the following way.

Definition 2.41. Two structures S , S ′, are compatible to order k if the

following conditions hold:

(1) If p = (p,m, c) ∈ S is a wall with c 6= 0 and ordσp(m) ≤ k, then p ∈ S ′,

and the analogous statement holds for S and S ′ interchanged.

(2) If x ∈
Ä

Int(b)∩ Int(b′)
ä
\∆ for slabs b ∈ S , b′ ∈ S ′, then fb,x, fb′,x ∈

k[Px] agree modulo tk+1.

If S , S ′, are compatible to order k and S is consistent to order k,

then S ′ is also consistent to order k and the two deformations Xk and X ′k
constructed from S and S ′, respectively, are canonically isomorphic.

We are now in a position to reduce the Main Theorem to the construction

of a sequence of compatible structures.

Proposition 2.42. Assume there is a sequence (Sk)k≥0 of structures on

(B,P, ϕ) such that for any k,

(1) Sk is consistent to order k;

(2) Sk and Sk+1 are compatible to order k.

Then there exists a formal toric degeneration of CY-pairs (π̂ : “X → “O, “D)

with central fibre (X,D) and intersection complex (B,P, ϕ) for the given pre-

polarization on X .

Proof. By compatibility of Sk and Sk+1, we have a closed embedding

Xk → Xk+1 exhibiting Xk+1 as flat deformation of Xk for any k. Thus “X :=
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lim−→k
Xk is a formal scheme, flat over k[t]. Moreover, the charts

ψk :
Ä
k[P ]/(tk+1)

ä
p
−→ lim←−(Rτ )pτ

constructed in Proposition 2.32 are also compatible for various k and compat-

ible with the open embeddings and with other choices of f . Hence for any

p ∈ X \Z we obtain an isomorphism of O
X̂,p

= lim←−OXk,p with a localization of

lim←−kk[P ]/(tk+1). Define the deformation “D ⊆ “X of D by interpreting ψk as the

chart for a log structure. Explicitly, since D is a toric Cartier divisor, there ex-

ists m ∈ P , unique up to an invertible element, such that (zm, t) ⊆ lim←−(Rτ )pτ is

the ideal of D. Define “D as the closure of the divisor defined by zm. Note that“D fulfills (iii) in Definition 1.9 by construction. Since codimZ ≥ 2, this also

shows regularity of “X in codimension one. Furthermore, since lim←− commutes

with push-forward by j : X \Z → X, Lemma 2.37 implies O
X̂

= j∗OX̂\Z . This

shows that “X is S2, and hence “X is normal as required in Definition 1.9(ii).

Finally, the central fibre is isomorphic to (X,D) by construction. �

The rest of the paper is devoted to the construction of a sequence of

structures Sk as demanded in Proposition 2.42.

3. The algorithm

This section is devoted to the core construction of this paper, the inductive

generation of structures (Sk)k≥0 as required in Theorem 2.42. We continue

with the polarized tropical manifold (B,P, ϕ), open gluing data for the cone

picture s and data (fe)e defining a positive log smooth structure on X =

X0(B̌, P̌, s), as fixed at the beginning of Section 2. We now also assume local

rigidity (Definition 1.26).

Theorem 3.1. If all cells ofB are bounded, there exists a sequence (Sk)k≥0

of structures on (B,P, ϕ) such that for any k,

(1) Sk is consistent to order k;

(2) Sk and Sk+1 are compatible to order k.

The proof of this theorem occupies the whole section, with the proof of

one technical result deferred to Section 4. As remarked earlier, most of the

arguments do not require bounded cells, so we shall work with the general case,

making it clear where we require the boundedness hypothesis.

3.1. The initial structure. Take S0 to consist only of slabs b, where b = ρb
is a codimension-one cell of P and fb,x = Π−1(fe), where e : v = v[x]→ ρb is

the vertex in the connected component of ρb\∆ containing x and Π : k[P gp
x ]→

k[P gp
v ] is given by parallel transport from x to v along a path inside ρb \ ∆.

Then Chambers(S0) = P [n], and we can take PS = P [≤n−1].
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Proposition 3.2. S0 is consistent to order 0.

Proof. The only joints j of S0 are the codimension-two cells of P, so take

j = τ ∈P [n−2], τ 6⊆ ∂B. Let σ1, . . . , σl be the maximal cells of P containing

τ , ordered cyclically (that is, σi ∩ σi+1 = ρi ∈ P [n−1] with σl+1 := σ1), and

take ďρi (as in (1.1)) to be negative on σi. To check consistency for g : ω → τ ′

with τ ′ ⊆ σi, for all i it suffices to consider ω = τ ′ = τ , by Remark 2.29(5).

Then by Construction 2.24(II.2), letting x ∈ Int(τ) \∆ and e : v = v[x]→ τ ,

θi := F 0
s (idτ , σi) : m 7−→

Ä
D(se, ρi, v)−1s−1

e (fbρi ,x)
ä−〈m,ďρi 〉.

Thus in R0
idτ ,σ1

, letting eρi : v → ρi,

(θl ◦ · · · ◦ θ1)(m) =
( l∏
i=1

D(se, ρi, v)〈m,ďρi 〉
)
s−1
e

( l∏
i=1

Ä
feρi |Vidτ

ä−〈m,ďρi 〉)
=
( l∏
i=1

se,σi(m)

se,σi+1(m)

)
s−1
e

( l∏
i=1

Ä
feρi |Vidτ

ä−〈m,ďρi 〉) = 1,

the last equality by (1.8). This is the desired consistency. �

Note that according to Remark 2.40 the structure S0 defines an abstract

log structure on X. Checking consistency to order 0 means verifying the multi-

plicative condition (1.8) for the associated section of LS+
pre,X . By construction

this is indeed just the log structure we started with.

3.2. Scattering diagrams. Given Sk−1, the construction of Sk proceeds in

three steps. The first of these introduces new walls, of order k, by a procedure

that is strictly local around a joint and is the subject of this subsection. The

second step performs various semi-global adjustments involving several joints.

The remaining trouble terms are removed in the last step by a normalization

procedure applied to each slab.

Recall from Section 2.5 the space Qvj,R = Λv,R/Λj,R for a joint j and the

notation m, τ etc. We think of Qvj,R as being divided by those half-lines c

emanating from the origin that are contained in ρ for some ρ = ρc ∈ P [n−1],

ρ ⊇ j. We refer to these half-lines as cuts. Observe that if codimσj = 1, there

are two cuts separating Qvj,R into two half-planes, while in the codimension-

two case the cuts subdivide Qvj,R into a number of strictly convex cones. In the

codimension-zero case there are no cuts at all.

Once an orientation onQvj,R is chosen and c = R≥0·m ⊆ Qvj,R, m ∈ Λσ\{0},
is a (rational) half-line emanating from the origin, the unique generator nc of

m⊥ ∩ Λ⊥j ' Z with the property that 〈m′, nc〉 > 0 for m,m′, mapping to an

oriented basis of Qvj,R, is called the normal vector to c.
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Consistency at j depends only on the local properties around j of slabs and

walls containing j and hence can be studied on Qvj,R. The following definition

is an abstraction of the situation.

Definition 3.3. A ray in Qvj,R is a triple (r,mr, cr), where r is a one-

dimensional, rational cone R≥0 · q, q ∈ Λv \ Λj; mr is a nonzero exponent

on a maximal cell σ with ±mr ∈ r ∩ σ and such that m ∈ Px for all x ∈ j \∆;

cr is a constant in k. By abuse of notation we often just write r to refer to

(r,mr, cr). A ray is called incoming, outgoing and undirectional in the respec-

tive cases mr ∈ r \ {0}, −mr ∈ r \ {0} and mr = 0. The order of a ray r is

defined as ordj(mr).

A scattering diagram for j at a vertex v ∈ σj consists of

(1) a choice of ω ∈P with j ∩ Intω 6= ∅, ω ⊆ σj and v ∈ ω;

(2) a finite set of rays r = (r,mr, cr);

(3) for each cut c ⊆ Qvj,R and any x ∈ (j∩ Intω) \∆ a function fc,x ∈ k[Px]

with the same properties as the functions fb,x in Definition 2.17;

(4) an orientation of Qvj,R.

The notation is D = {r, fc} with ω and the orientation of Qvj,R understood. For

rays r and cuts c of a scattering diagram we write nr and nc, respectively, for

the now well-defined normal vectors.

Two scattering diagrams D = {r, fc}, D′ = {r′, f ′c} for j at v defined with

the same ω are equivalent modulo a monomial ideal J ⊆ k[Pω,σ], where σ ⊇ j,

if (1) for any m ∈ Pω,σ with zm 6∈ J , and ε ∈ {−1, 1}, it holds∏
{r∈D |mr=m, ε·m∈r}

(1 + crz
mr) =

∏
{r′∈D′ |mr′=m, ε·m∈r′}

(1 + cr′z
mr′ ) mod J,

where we use parallel transport through v to interpret m as an exponent on

other maximal cells containing j; (2) for any cut c and any x ∈ (j ∩ Intω) \∆

the functions fc,x, f
′
c,x ∈ k[Px] agree modulo terms of ordj at least k + 1.

Given a scattering diagram D = {ri, fc} and g : ω → τ with j ∩ Intω 6= ∅,
τ ⊆ σj, and σ ∈Pmax containing j, we obtain a log isomorphism of Rkg,σ just as

from a loop around a joint. Specifically, let σ1, . . . , σr = σ0 be a cyclic ordering

of the maximal cells containing j compatible with the orientation of Qvj,R, and

let ρj = σj−1 ∩ σj . This induces a cyclic ordering of the cuts cj ⊆ σj−1 ∩ σj .
In the codimension-two case this inclusion defines cj uniquely, while there are

two choices in the case of codimension one. Assume that the rays are labelled

cyclically as well and in such a way that ri ⊆ σj if and only if ij−1 < i ≤ ij .

Then for ri ⊆ σj and for any k we have the log automorphism

θi : Λσj −→ (Rkg,σj )
×, m 7−→

Ä
sω→σj (1 + criz

mri )
ä−〈m,nri 〉



AFFINE AND COMPLEX GEOMETRY 1365

of Rkg,σj , as in Construction 2.24(II.1), where we think of passing through ri in

the sense of the cyclic ordering of the σi. Note that θi can also be written as

θi = exp
Ä
− log

Ä
sω→σj (1 + criz

mri )
ä
∂nri

ä
;

hence θi is an element of the group H
I>kg,σ
j acting on Rkg,σj . Similarly, following

Construction 2.24(II.2) with x ∈ j \∆ such that v[x] = v, the functions fcj ,x
define the log isomorphism

θcj : Pω,σj−1 −→ (Rkg,σj )
×, m 7−→

Ä
D(sv→ω, ρj , v)−1s−1

v→ω(fcj ,x)
ä−〈m,nci 〉

from Rkg,σj−1
to Rkg,σj , with monoid homomorphism defined by parallel trans-

port through x. Note that if we chose an x with v[x] 6= v, we would still obtain

an equivalent log isomorphism as verified in (2.12); see also Remark 2.25(2).

Define

(3.1) θkD,g :=
Ä
θir ◦ · · · ◦ θir−1+1

ä
◦ θcr ◦

Ä
θir−1 ◦ · · · ◦ θir−2+1

ä
◦ θcr−1 ◦ · · · ◦

Ä
θi1 ◦ · · · ◦ θ1

ä
◦ θc1 .

After distinguishing σ1 this is a well-defined representative of a log automor-

phism of Rkg,σ1
. In fact, any two log automorphisms associated to rays or

slabs in the same direction commute, so this composition is independent of the

chosen indexing.

By definition, θkD,g depends only on the equivalence class of D to order k.

Note also that reversing orientations leads to (θkD,g)
−1, while a different choice

of σ1 leads to conjugation of θkD,g by a log isomorphism Rkg,σj → Rkg,σ1
for some

j. We are often only interested in properties invariant under these changes and

hence suppress them in the notation for θkD,g.

Construction 3.4. A structure S induces a scattering diagram Dj =

Dj(S , ω, v) for each joint j, ω ∈ P with j ∩ Intω 6= ∅, ω ⊆ σj and vertex

v ∈ ω as follows. The slabs containing j readily define the functions fc,x. For

a wall p containing j there are the following possibilities:

(1) j ⊆ ∂p. Then add the ray (p,mp, cp) to Dj. This ray is incoming,

outgoing or unoriented if j ⊆ Top(p), j ⊆ Base(p) or j ⊆ Sides(p),

respectively.

(2) j ∩ Int p 6= ∅. Then p is a line through the origin, defining two one-

dimensional half lines r, r′ = −r ⊆ Qj,R. Then add the pair of rays

(r,mp, cp), (r′,mp, cp). These are either both undirectional or a pair of

an incoming and an outgoing ray.

Note that consistency of S around jto order k can be expressed by θkDj,idσj
=1.

Remark 3.5. For a different choice of vertex v′ ∈ ω there is a piecewise

linear identification of Qvj,R with Qv′j,R defined on σ by parallel transport from v
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to v′ inside σ ∈Pmax. This identifies the scattering diagrams Dj = Dj(S , ω, v)

and D′j = Dj(S , ω, v′). Note that the respective computations in (3.1), for the

same maximal cell σ1 ⊇ j, then only differ by changing the underlying monoid

homomorphisms by parallel transport from v to v′ in σ1. In particular, we

have the equality of representatives of log automorphisms of Rkω→σj,σ1

θkDj
= θkD′

j
.

Similarly, any of the considerations with scattering diagrams below are

independent of the choice of v.

Assuming θk−1
D,idσj

= 1, we now use the structure of the group ⊥H
I>kg,σ
j to

try to achieve θkD,idσj
= 1 by adding some rays and, in the codimension-two

case, changing the functions fc to order k. The key idea is captured in the

following lemma of Kontsevich and Soibelman ([KS06, Th. 6]), adapted to our

setting. For the rest of this subsection fix the joint j, σ ∈ Pmax containing j,

and g : ω → σj with j ∩ Intω 6= ∅ and v ∈ ω. Write Ik = I>kg,σ ⊆ k[Pω,σ].

Definition 3.6. For K ⊆ Qvj,R a strictly convex cone (K ∩−K = {0}), not

necessarily closed and I ⊆ k[Pω,σ] a monomial ideal with radical I0, we define

the following Lie subalgebras of gIj :

gIj,K :=
⊕

zm∈I0\I
−m∈K\{0}

zm(k⊗ Λ⊥j ),

hIj,K :=
⊕

zm∈I0\I
−m∈K\{0}

zm
Ä
k⊗ (m⊥ ∩ Λ⊥j )

ä
= gIj,K ∩ hIj .

The corresponding Lie groups are denoted as GIj,K and HI
j,K .

Note that hIj,K ⊆ ⊥hIj .

Lemma 3.7. Let j be a joint with σj ∈ Pmax and K ⊆ Qvj,R a strictly

convex cone. Then for any θ ∈ HIk
j,K , there exists a scattering diagram D for

j consisting entirely of outgoing rays r with Int r ⊆ K such that θ = θkD,g .

Moreover, D is unique up to equivalence to order k.

Proof. For k = 0 we may take D = ∅. By induction on k we may thus

assume there exists a unique scattering diagram D′ with θk−1
D′,g = θ mod Ik−1.

Then by the definition of hIkj,K we can write uniquely

θkD′,g ◦ θ−1 = exp
Ä∑

i

ciz
mi∂ni

ä
,(3.2)

where zmi ∈ Ik−1 \ Ik, −mi ∈ K \ {0}, ni ∈ mi
⊥ ∩ Λ⊥j and ci ∈ k \ {0}. By

changing ci we may assume ni = n−R≥0mi
. Define D by adding the outgoing
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rays (−R≥0mi,mi, ci) to D′. Noting that [zmi∂ni , h
Ik
j ] = 0, we see that

θkD,g ◦ θ−1 = θkD′,g ◦ θ−1 ◦
∏
i

exp
Ä
− cizmi∂ni

ä
= id .

Uniqueness follows from the uniqueness of the expansion in (3.2). �

As we will see, the same idea as in the proof of Lemma 3.7 can be used

to add rays to a codimension-zero scattering diagram D′ with θk−1
D′,g = 1 to

construct a scattering diagram D with θkD,g ∈ ker
Ä
‖Hk

j → ‖Hk−1
j

ä
, uniquely

up to equivalence to order k. Note that the remaining exponents m with

m ∈ Λj have to be dealt with by other arguments since outgoing rays always

lead to elements in the subgroup ⊥Hk
j ⊆ Hk

j .

In higher codimension, under the presence of slabs, this is much more

subtle because we have to convert between computations in the various groups

Rkg,σi using the log isomorphisms associated to slabs. In particular, it is not

clear that the commutation does not introduce poles in directions different

from the cuts c corresponding to slabs. We will also have weaker uniqueness

properties because one can always replace a ray in the direction of a cut c

with a change of fc. The detailed study of this situation is the subject of the

technical last section. Here we content ourselves with a statement of the results

needed for the construction of Sk.

For enhanced readability we introduce the following notation. Recall we

have fixed j, σ ∈Pmax, with j ⊆ σ, and g : ω → σj with j∩ Intω 6= ∅. We work

with various log automorphisms of Rkg,σ =
Ä
k[Pω,σ]/Ik

ä
fg,σj

, Ik = I>kg,σ .

Convention 3.8. 1) For a set Vµ ⊆ Λσ, a subspace Wµ ⊆ Λ∗σ and elements

fµ ∈ (Rkg,σ)×, we write

Ok
(∑

µ

Vµ
fµ
⊗Wµ

)
for the set of log automorphisms of Rkg,σ of the form θ=exp

Ä∑
µ,i cµ,i

zmµ,i

fµ
∂nµ,i

ä
with mµ,i ∈ Vµ, nµ,i ∈Wµ, ordσj(mµ,i) ≥ k.

2) Let v ∈ ω be a vertex, e : v → ω. Then for ρ ∈ P [n−1] containing j,

define

fρ = fρ,v := D(se, ρ, v)−1fρ,e,σ ∈ k[Pω,σ]

with fρ,e,σ defined in (2.2). Note that according to (1.11) a different choice

e′ : v′ → ω leads to

fρ,v′ = zm
ρ

v′vfρ,v.(3.3)

In particular, fρ is well defined up to multiplication by zm with m ∈ Λω,

ordω(m) = 0.
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For example, with this notation

ker
Ä
‖HIk

j →
‖H

Ik−1

j

ä
= Ok

Ä
(Λj \ {0})⊗ Λ⊥j

ä
.

We are now ready to state the main result of Section 4.

Proposition 3.9. Let D′ be a scattering diagram for j ∈ Joints(Sk−1)

with θk−1
D′,g = 1, g : ω → σj. Then there exists a scattering diagram D, equivalent

to order k− 1 to D′ and with the sets of rays differing only by outgoing rays r

with r 6⊆ ρ for any ρ ∈P [n−1] containing j, such that

θkD,g ∈


Ok
Ä
(Λj \ {0})⊗ Λ⊥j

ä
, codimσj = 0,

Ok
(
Λj ⊗ Λ⊥j +

Λρ
fρ
⊗ Λ⊥ρ

)
, codimσj = 1 (ρ = σj),

Ok
(
Λj ⊗ Λ⊥j +

∑
ρ⊇j

Λj

fρ
⊗ Λ⊥ρ

)
, codimσj = 2.

(3.4)

If codimσj < 2, the functions fc,x of D and D′ coincide, while if codimσj = 2

they may be changed by adding multiples of zm with −m ∈ c \ {0}.
Moreover, up to equivalence, D is the unique scattering diagram with these

properties.

Proof for codimσj=0. Arguing similarly to Lemma 3.7 we have the unique

decomposition

θkD,g = exp
(∑

i

ciz
mi∂ni

)
,(3.5)

but this time only zmi ∈ Ik−1 \Ik, mi 6= 0, ni ∈ mi
⊥∩Λ⊥j . Define D by adding

to D′ for each i with mi 6= 0 the ray (−R≥0mi,mi, ci), assuming without loss

of generality that ni = n−R≥0mi . Since the log automorphisms of these rays

are in the center of HIk
j it holds that

θkD,g = θkD′,g ◦
∏

{i |mi 6=0}
exp
Ä
− cizmi∂ni

ä
= exp

( ∑
{i |mi=0}

ciz
mi∂ni

)
.

This is of the desired form. Finally, uniqueness follows from the uniqueness

statement for (3.5).

The proof for codimσj > 0 occupies Section 4. �

It is also important for this section to record the effect on θkD,g of certain

simple changes to D.

Proposition 3.10. Let D be a scattering diagram for j and assume θkD,g
fulfills (3.4) of Proposition 3.9.
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(1) If “D is obtained from D by adding the term czm to some fc with

ordjm = k and m ∈ Λσj , then

θk
D̂,g

= θkD,g ◦ exp
(
− c′ z

m

fρc
∂nc

)
with c′ = D(se, ρc, v)−1 · s−1

e (m) · c, e : v → ω.

(2) If “D is obtained from D by adding an undirectional ray (r,m, c) with

ordjm = k, then

θk
D̂,g

=


θkD,g ◦ exp

(
− c′zm∂nr

)
, codimσj 6= 1,

θkD,g ◦ exp
(
− c′zm∂nr

)
◦Ok

(Λρ
fρ
⊗ Λ⊥ρ

)
, codimσj = 1 (ρ = σj)

with c′ = sh(m) · c, h : ω → σj .

Proof. First we observe that the change in (1) has the same effect as

composing the log isomorphism associated to c by exp(−c′zm/fρc∂nc). Note

that since m ∈ Λσj , it holds that ordσj(m + m′) > k whenever ordσj(m
′) > 0.

Thus by Lemma 2.15 this log isomorphism commutes with any of the other log

isomorphisms, hence the result. Adding an undirectional ray is similar, but in

the codimension-one case fc involves monomials zm
′

with m′ ∈ Λρc \ Λj since

ρc = σj. But again, by Lemma 2.15, we obtain

Adθc(−czm∂nr) = −czm
Ä
∂nr + f−1

ρc (∂nrfρc)∂nc

ä
since 〈m,nc〉=0. The exponential of this expression is of the form exp(−czm∂nr)

◦Ok
Ä
(Λρc/fρc)⊗ Λ⊥ρc

ä
. �

3.3. Step I: Scattering at joints. We now begin the algorithm providing

the induction step, the construction of Sk from Sk−1. Since the various parts

of it are scattered throughout four subsections, text providing instructions for

this process is shaded.

I.1. Refinement of slabs. The notion of compatibility of structures (Defini-

tion 2.41) allows arbitrary refinements of slabs. To be able to use local methods

we now impose the following conditions on Sk−1, which can be achieved by

subdivision of slabs:

If b ∈ Sk−1 is a slab and b ∩ ∂ρb 6= ∅, there exists τ ⊆ ∂ρb with

b ∩ Int τ 6= ∅ and τ ′ ∈P [≤n−2], Int τ ′ ∩ b 6= ∅ =⇒ τ ′ ⊆ τ.(3.6)

Of course, this also means refining the polyhedral decomposition PSk−1
.

Note that (3.6) implies that if dim b∩∂ρb = n−2 for a slab b, then b∩∂ρb
is a joint.

For each joint j of Sk−1 we now obtain a scattering diagram D′j (Construc-

tion 3.4) to which we can apply Proposition 3.9 with g = idσj . Each ray of
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the scattering diagram thus obtained defines a new wall with base j. However,

if codimσj = 2, this also involves a change of slabs by terms of order k and

thus influences the computation at other joints. We therefore deal with joints

of codimension two first.

I.2. Adjustments of slabs from joints of codimension two. For each

codimension-two joint j and any slab b containing j, Proposition 3.9, applied

to any g : ω → σj, defines a change f̃b,x of fb,x, for all x ∈ b ∩ ω, by terms of

order k along σj. Use (2.11) to extend this modification of slab function fb,x
to all x ∈ b. In view of uniqueness and Remark 2.29(4) and (5), the results for

different choices of ω containing x coincide.

Moreover, by (3.6) any slab contains at most one joint j with codimσj
= 2. Hence the corrections from different joints are independent of each other.

After applying these changes to Sk−1 simultaneously, we may therefore assume

Proposition 3.9 applies without any change of slabs. Note that this replacement

does not affect the equivalence class of Sk−1 to order k − 1.

The next step produces the new walls. We require the following lemma.

Lemma 3.11. Let j ⊆ B, j 6⊆ ∂B, be an (n − 2)-dimensional polyhedral

subset of some σ ∈ Pmax and m a monomial on σ with ordσ(m) = k ≥ 0.

Assume furthermore m ∈ Px, for all x ∈ j and −m 6∈ Λj, to be contained in

the tangent wedge to σ along j. Then m ∈ Px for any x ∈ p \∆ with

p := (j− R≥0 ·m) ∩ σ,

and for any x ∈ Top(p) := cl
Ä
∂p \

Ä
j ∪ (∂j − R≥0m)

ää
, x 6∈ ∂B, there exists

σ′ ∈Pmax with x ∈ σ′ and ordσ′(m) > k.

Proof. For any σ′ ∈ Pmax with σ′ ∩ (p \ j) 6= ∅, Proposition 2.6 with

σ+ = σ shows

ordσ′(m) ≥ ordσ(m) = k ≥ 0.

Thus m ∈ Px for any x ∈ p. On the other hand, if x ∈ Top(p), then m is not

tangent to the minimal cell τ containing x. Thus m, as an affine function on

τ̌ , is nonconstant. In particular, as it takes its minimal value on σ̌, there exists

a vertex σ̌′ of τ̌ such that ordσ′(m) = m(σ̌′) > m(σ̌) = ordσ(m) = k. �

I.3. Scattering at joints. For a joint j of Sk−1 let Dj be the scattering

diagram obtained from D′j := Dj(Sk−1, σj, v), for some choice of vertex v ∈ σj,
by the application of Proposition 3.9 with g = idσj . By I.2 the functions fc,x
remain unchanged, so Dj differs from D′j only by outgoing rays in directions

different from directions of slabs. Moreover, Proposition 3.9 applied with vari-

ous g : ω → σj, for ω with j∩ Intω 6= ∅, implies mr ∈ Px for any r ∈ Dj \D′j and
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x ∈ j \∆. In fact, by Remark 3.5 we may assume that the vertex v ∈ σj lies

in ω. Hence v can also be used for the scattering diagram Dj(ω) obtained for

ω → σj. Then as in Remark 2.29 one sees that uniqueness implies equivalence

of Dj and Dj(ω) to order k. This shows that mr ∈ Px for x ∈ (j ∩ Intω) \∆.

Define S I
k by adding to Sk−1, for any joint j and any ray r ∈ Dj \D′j, the

wall (pr,mr, cr) with

pr :=
Ä
j− R≥0 ·mr

ä
∩ σ,

where σ is the unique maximal cell with r ⊆ σ. This is indeed a wall by

Lemma 3.11. Add some more walls p with cp = 0 to achieve the requirement

of Definition 2.22(ii), for example by covering Hp ∩ σ by such walls, for each

added wall p ⊆ σ, with Hp ⊆ Λσ,R the affine hyperplane containing p. (This

step is indeed not necessary as follows by the arguments in Section 3.4, but

we will not prove this.) Choose also a polyhedral decomposition PS I
k

which

on |Sk−1| refines PSk−1
and such that each slab or wall of S I

k is a union of

(n− 1)-cells of PS I
k

.

We now have produced a new structure S I
k , with the superscript “I”

indicating that it is the result of Step I of the algorithm. By subdividing slabs

we may assume (i) in the definition of structures (Definition 2.22) to continue

to hold, while (3.6) from I.1 is true in any case.

We now check that the corrections at the joints of Sk−1 have the desired

effect. In particular, we have to verify that new walls do not influence the

computations at joints different from their bases.

Proposition 3.12. For any j ∈ Joints(S I
k ), the scattering diagram Dj =

Dj(S
I
k , σj, v), v ∈ σj, fulfills

θkDj,g
∈



Ok
Ä
(Λj \ {0})⊗ Λ⊥j

ä
, codimσj = 0,

Ok
(
Λj ⊗ Λ⊥j +

Λρ
fρ
⊗ Λ⊥ρ

)
, codimσj = 1 (ρ = σj),

Ok
(
Λj ⊗ Λ⊥j +

∑
ρ⊇j

Λj

fρ
⊗ Λ⊥ρ

)
, codimσj = 2.

(3.7)

Proof. S I
k differs from Sk−1 effectively by the addition of walls p with

base a joint jp of Sk−1, the other walls having cp = 0 and thus being irrelevant.

We now discuss the contributions of such p to the computation of θkDj,idσj
. There

are the following possibilities for the relative position of j inside p:

(1) j ⊆ Base(p) = jp.

(2) j ⊆ Top(p).

(3) j 6⊆ ∂p.

(4) j ⊆ Sides(p).
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In (1), jp is a joint of Sk−1 and p arose from an outgoing ray produced in

Proposition 3.9. These precisely lead to the desired form (3.4) of θkDj,idσj
.

In Case (2), ordj(mp) > k by Lemma 3.11. These walls do not make any

contribution in order k at j.

Case (3) can only happen in the codimension-zero case, that is, if σj ∈
Pmax. Then ordj(m) = ordσj(m) = k and hence exp

Ä
− log(1 + czm)∂n

ä
commutes with any log automorphism of Rkidσj ,σj

; see (2.10). Since the auto-

morphism associated to p occurs twice with opposite signs in θkDj,idσj
, it makes

no contribution.

In (4) with σj maximal, the automorphism associated to p lies in Ok
Ä
(Λj \

{0})⊗Λ⊥j
ä
. Hence this wall preserves (3.4). Finally, in (4) with codimσj > 0,

Proposition 3.10(2) shows that the insertion of p preserves the form of (3.4). �

3.4. Interstices and consistency in codimension 0. The remaining terms

in (3.7) all involve exponents tangent to joints or slabs. The topology at

intersections of joints now imply strong compatibility conditions that are the

subject of this subsection. Among other things, these restrictions already imply

consistency at codimension-zero joints.

Definition 3.13. An interstice of a structure S is an (n− 3)-cell d ∈PS

with d 6⊆ ∂B.

Analogous to the situation for a joint, for a vertex v ∈ σd we obtain a

normal space Qvd,R ' R3, defined as Λv,R/Λd,R. Again we write m ∈ Qvd,R for

the image of an exponent on any σ ∈Pmax containing d, and τ ⊆ Qvd,R for the

image of the tangent wedge along d of a cell τ ⊆ B, τ ⊇ d.

To study the topology of the situation along d we look at the associated

2-sphere

Sd :=
Ä
Qvd,R \ {0}

ä
/R>0,

which we orient arbitrarily. This 2-sphere comes with the following cell-

decomposition. For the joints j1, . . . , js containing d we have 0-cells ji/ ∼,

the 1-cells are given by v/∼ for v ∈ P
[n−1]
S , v ⊇ d, and the 2-cells are u/∼

for u ∈ Chambers(S ), u ⊇ d. Let Σd be the dual cell complex, with 0, 1 and

2-cells û, v̂ and ĵ defined by chambers, elements of P
[n−1]
S and joints containing

d, respectively. Note that this is a subcomplex of the cell-complex Σ studied

in Step 3 of the proof of Lemma 2.30 for the case g = idσd . It is then clear

that for each edge path β in Σd from û to û′, we obtain a log isomorphism

θβ : Pσd,σu −→
Ä
Rkidσd ,σu′

ä×
from Rkidσd ,σu

to Rkidσd ,σu′
. The underlying monoid homomorphism is obtained

by parallel transport through v.
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Next choose a base vertex û0 ∈ Σd and let γi be a closed loop covering

the edges of ĵi in counterclockwise direction. Because the 1-skeleton Σ1
d of Σd

has the homotopy type of S2 minus s points, there exist paths βi on Σd, with

βi connecting û0 with the base point of γi, such that βiγiβ
−1
i is a standard

generating set of π1(Σ1
d, û0):

β1γ1β
−1
1 β2γ2β

−1
2 . . . βsγsβ

−1
s = 1.(3.8)

Note that such βi exist regardless of the given order j1, . . . , js of the joints. For

the corresponding sequence of log isomorphisms, we conclude that

θ−1
βs
◦ θγs ◦ θβs ◦ · · · ◦ θ−1

β1
◦ θγ1 ◦ θβ1 = 1.(3.9)

Note that we may impose additional conditions on the choices of βi, γi as long

as (3.8) holds.

For S = S I
k constructed in Step I, (3.9) implies the following result for

interstices d with codimσd = 0.

Proposition 3.14. Assume that d is an interstice of S I
k with codimσd=0

and write, using (3.7),

θγi = exp
(∑

m

am,iz
m∂ni(m)

)
as log automorphism of Rkidσd ,σd

, where the sum runs over those exponents m

on σd with m ∈ Λji , ordσd(m) = k, and am,i ∈ k, ni(m) ∈ Λ⊥ji . Then for any

m ∈ Pσd,σd with ordσd(m) = k, in Λ∗σd it holds that∑
i

am,ini(m) = 0.(3.10)

Proof. Since θγi only involves monomials of order k, it commutes with θβi
and any θγj . Hence (3.9) shows that

1 = θγs ◦ · · · ◦ θγ1 = exp
(∑
m,i

am,iz
m∂ni(m)

)
,

which readily implies the result. �

To deduce analogous restrictions from higher codimension interstices we

need to understand how θγi transforms by commutation with log isomorphisms

changing chambers u ⊇ d.

Lemma 3.15. Let θγ be the log isomorphism from Rkidσd ,σu′
to Rkidσd ,σu

associated to an edge path γ in Σd connecting û′ with û. Then for any m ∈
Pσd,σu′ with zm ∈ Jl−1 := I l−1

0 · Ik−1 + Ik, n ∈ Λ∗σ and a ∈ k(Λσd) ∩ Rkidσd ,σu′ ,
there exist bi ∈ k(Λσd) ∩Rkidσd ,σu and ni ∈ Λ∗σu such that

θγ ◦ exp(azm∂n) ◦ θ−1
γ = exp

(∑
i

biz
m∂ni

)
=
∏
i

exp
Ä
biz

m∂ni
ä

mod Jl
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as log automorphisms of Rkidσd ,σu
. Here we identify Λσu and Λσu′ by parallel

transport through some vertex v ∈ σu ∩ σu′ .

Proof. By induction on the number of edges passed by γ it suffices to

consider the case that u and u′ are adjacent chambers and θγ is the associated

basic gluing morphism. Thus, up to choosing an isomorphism Rkidσd ,σu
→

Rkidσd ,σu′
by parallel transport through a point in Int(d) \ ∆, we are in the

situation of Lemma 2.15. Since I0 ·Jl−1 ⊆ Jl this shows first that we can ignore

all expressions in θγ involving monomials zm
′

with ordσd(m′) > 0. Thus we

may assume θγ to be of the form m′ 7→ f 〈m
′,n0〉 with f ∈ k(Λσd) ∩ (Rkidσd ,σu

)×,

and then Lemma 2.15 gives the claimed result. �

Remark 3.16. The reason for introducing Jl−1 = I l−1
0 · Ik−1 + Ik here is

that the order function from Definition 2.3 is not in general additive. For

example, for a vertex v in a one-dimensonal B with adjacent maximal cells

σ1, σ2 and ϕv|σ1 = 0, ϕv|σ2 having slope 1, we have k[Pω,σ] ' k[N2], t = z(1,1)

and ordv
Ä
(1, 0)

ä
= 1, ordv

Ä
(0, 1)

ä
= 1, but also ordv

Ä
(1, 1)

ä
= 1. Similar

ideals as Jl will occur repeatedly in the following.

Note that one exception where ordτ (m + m′) = ordτ (m) + ordτ (m′) is

when m∈Λτ , because then ordσ(m) = ordτ (m) for any σ ∈Pmax containing τ .

We can now deduce an analogue of Proposition 3.14 for interstices of

higher codimension.

Proposition 3.17. Assume that d is an interstice of S I
k with codimσd≥1

and let σ ∈Pmax, σ ⊇ d. For any joint j ⊆ σ of S I
k containing d, take the base

chamber of the loop γj around j to be contained in σ and oriented according to

the chosen orientation of Σd. Write

θγj = exp
( ∑
{(m,ν) |m∈A, ordσd(m)=k}

aj,m,νz
m∂nj,m,ν

)

as log automorphism of Rkidσd ,σ
, where aj,m,ν ∈ k(Λσd) ∩ Rkidσd ,σ , nj,m,ν ∈ Λ⊥d

and A is a set of representatives of Pσd,σ/Λσd .

(1) If σj = σ and −m ∈ IntKσdσ, then
∑
ν aj,m,ν∂nj,m,ν

= 0.

(2) Let ρ ∈P [n−1], d ⊆ ρ ⊆ σ.

(a) If codimσd≥2 and −m ∈ IntKσdρ, then
∑
ν,{j⊇d |σj=ρ} aj,m,ν∂nj,m,ν

= 0.

(b) If codimσd = 1, assume in addition that θγj = 1 for any joint j ⊇ d

with codimσj = 0. Then for any m ∈ A,
∑
ν,{j⊇d |σj=ρ} aj,m,ν∂nj,m,ν

= 0.

(3) Assume in addition that θγj = 1 for any joint j ⊇ d with codimσj ≤ 1.
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(a) If codimσd = 2 and j, j′ are the unique joints in σd containing d,

then θγj′ = θ−1
γj

.

(b) If codimσd = 3 and j ⊇ d is a joint with codimσj = 2, then

θγj ∈ Ok(Λd ⊗ Λ⊥d ).

Proof. We proceed inductively, proving the statement for any σ ∈Pmax,

σ ⊇ d, and those exponents m with zm ∈ Jl \ Jl−1, Jl = I l0 · Ik−1 + Ik. For

l = 0 there is nothing to prove.

The key ingredient is (3.9) with a particular choice of γi, βi. The additional

requirement is that for any τ ∈ P containing d, the loops around joints j

with σj = τ are numbered consecutively γi, γi+1, . . . , γi+r, and are based on

chambers contained in the same maximal cell σ(τ) ⊇ τ ; furthermore,

βiγiβ
−1
i . . . βi+rγi+rβ

−1
i+r

shall be freely homotopic to an edge path γτ passing along the boundary of⋃i+r
j=i ĵj once. There are two exceptional cases. First, if σd = τ = ρ ∈ P [n−1],

then
⋃i+r
j=i ĵj is an annulus; in this case we want a homotopy to an edge path

first following one boundary component, then an edge v̂ to the other boundary

component, then following the other boundary component, and finally back

along v̂. The other exceptional case occurs for σd = τ ∈ P [n−2], where τ

contains exactly two joints j, j′, as in (3)(a). We then take γτ to consist of

the composition of two loops with some common base point, denoted ûτ , and

which go around ĵ and ĵ′, respectively. In any case, following γτ defines a log

automorphism θτ := θγτ of Rkidσd ,σ(τ).

We note at this point that with this selection of paths, parts (2)(b) and

(3)(a) of this proposition follow immediately from (3.9), observing that each

θγj commutes with automorphisms attached to any wall containing d.

Continuing with the other cases, note that for any τ , the θkγj with σj = τ

commute mutually and with any automorphism associated to a wall p ⊆ σ(τ).

This shows that

θτ =
∏

{j |σj=τ}
θγj = exp

( ∑¶
(m,ν)

∣∣∣ m∈A, ordσd (m)=k

ordτ (m)=k

© aτ,m,νzm∂nτ,m,ν)(3.11)

as log automorphism of Rkidσd ,σ(τ), with aτ,m,ν ∈ k(Λσd)∩Rkidσd ,σ(τ) and nτ,m,ν ∈
Λ⊥d . By (3.7) and Proposition 2.6, the sum runs only over those m with −m ∈
Kσdτ . Note also that since the elements of A are not congruent modulo Λσd ,∑
ν aτ,m,νnτ,m,ν is uniquely determined.

In the proof special care has to be taken for codimension-one joints j,

because these potentially involve monomials zm with the only restriction −m ∈
Kσdρ, ρ = σj. If codimσd = 3, these may interact with terms arising from

codimension-two joints j′ ⊆ ∂ρ in a way spoiling the induction process. We
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deal with this problem as follows. If codimσd = 3, there are exactly two cells

τ1 6= τ2 of P of codimension two with d ⊆ τµ ⊆ ρ. Let vµ ∈ P
[n−1]

S I
k

be the

unique cell (support of a slab) with d ⊆ vµ ⊆ ρ, and dim τµ ∩ vµ = n − 2,

µ = 1, 2. Note that (3.6) from Step I implies v1 6= v2. Thus v̂µ separates the

2-cell ĵµ ∈ Σd, jµ the unique joint with d ⊆ jµ ⊆ τµ, from another 2-cell ĵ with

j a joint with σj = ρ. Now change θ(vµ), the log isomorphism associated to

following the edge v̂µ in the same direction as γjµ , by composition with

θµ := exp
( ∑
{(m,ν) |m∈A,−m∈Int(Kσdτµ)}

aρ,m,νz
m∂nρ,m,ν

)
.

This has the effect of composing θτµ = θjµ with θµ and θρ with θ−1
µ . Thus

this change cancels all terms aρ,m,ν∂nρ,m,ν on the right-hand side of (3.11)

whenever −m ∈ (∂Kσdρ) \ Λσd . With this reinterpreted θ(vµ), formula (3.9)

still holds, and the conclusions of the proposition remain unchanged. We

henceforth assume these terms do not arise in (3.11) for any τ ∈P [n−1] in the

first place.

After having established this property, if codimσd = 3, we add to the

induction hypothesis the following analogue of (1) and (2)(a) for codimension-

two joints:

(4) If τ ∈P [n−2], d ⊆ τ ⊆ σ and −m ∈ IntKσdτ , then
∑
ν aj,m,ν∂nj,m,ν

= 0

for the unique joint j ⊇ d with σj = τ .

Now for any τ ⊇ d, if ji, . . . , ji+r are the joints with σj = τ then by the

above choice of γi, . . . , γi+r there exists an edge path βτ from û0 to the base

point ûτ of γτ such that

βτγτβ
−1
τ = βiγiβ

−1
i . . . βi+rγi+rβ

−1
i+r.

Therefore,

θ−1
βτ
◦ θτ ◦ θβτ = θ−1

βi+r
◦ θγi+r ◦ θβi+r ◦ · · · ◦ θ

−1
βi
◦ θγi ◦ θβi .(3.12)

In particular, we can now rewrite (3.9) in the form

θ−1
β′
s′
◦ θs′ ◦ θβ′

s′
◦ · · · ◦ θ−1

β′1
◦ θ1 ◦ θβ′1 = 1,(3.13)

where for any i we have θi = θτ , β′i = βτ for some τ = τ(i), and each τ ⊇ d

occurs exactly once.

We now do the inductive step from l − 1 to l. The plan is to deduce (1),

(2)(a) and (4) for m with zm ∈ Jl \Jl−1 by looking at (3.13) modulo Jl+1. For

τ ) σd, consistency of S I
k to order k− 1 and the present induction hypothesis
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show that

θτ = exp
( ∑
{(m,ν) |m∈A}

aτ,m,νz
m∂nτ,m,ν

)
(3.14)

◦ exp
Ä∑
ν′
aτ,ν′t

k∂nτ,ν′
ä

mod Jl+1

with zm ∈ Jl \Jl−1, −m ∈ IntKσdτ and aτ,ν′ , aτ,m,ν ∈ k(Λσd)∩Rkidσd ,σ(τ). Note

that if τ ∈ P [n−2] and codimσd = 3, then (3.14) follows from (4). In (3.13),

θτ occurs conjugated by the log isomorphism associated to the edge path βτ .

Now since I0 · Jl ⊆ Jl+1, the conjugation by a log automorphism associated to

crossing a wall does not have any effect modulo Jl+1 and can thus be ignored

in the following. For the conjugation by a log automorphism associated to

crossing a slab, Lemma 3.15 shows that likewise

θ−1
βτ
◦ θτ ◦ θβτ = exp

(∑
m,ν

a′τ,m,νz
m∂n′τ,m,ν

)
◦ exp

Ä∑
ν′
a′τ,ν′t

k∂n′
τ,ν′

ä
mod Jl+1

with zm ∈ Jl \ Jl−1, −m ∈ IntKσdτ and a′τ,ν′ , a
′
τ,m,ν ∈ k(Λσd) ∩Rkidσd ,σ(τ). On

the other hand, if τ = σd, we readily obtain a similar expansion without the

first factor, that is, with all a′τ,m,ν = 0. Thus in any case, for any τ,m, ν with

zm ∈ Jl \ Jl−1, the expression a′τ,m,νz
m∂n′τ,m,ν cannot cancel with any term

from θτ ′ for any τ ′ 6= τ . In view of (3.13) we therefore conclude that

θ−1
βτ
◦ θτ ◦ θβτ = exp

Ä∑
ν′
a′τ,ν′t

k∂n′
τ,ν′

ä
mod Jl+1

for any τ , with a′τ,ν′ ∈k(Λσd)∩Rkidσd ,σ(τ). Hence also θτ =exp(
∑
ν′ aτ,ν′t

k∂nτ,ν′ ),

which in turn gives that modulo Jl+1,
∑
m,ν aτ,m,νz

m∂nτ,m,ν = 0, where the sum

is over those m such that −m ∈ IntKσdτ . Expanding out the definition of θτ
now proves the claimed formulae in (1), (2)(a) and (4) for m with zm ∈ Jl\Jl−1.

This shows (1) and (2)(a) in the statement of the proposition. (3)(b) follows

easily from the fact that under the additional hypothesis we only have aτ,m,ν
6= 0 if τ ∈P [n−2]. �

We are now in position to prove consistency to order k along codimension-

zero joints.

Proposition 3.18. S I
k is consistent to order k at any joint j with codimσj

= 0 provided σj is bounded.

Proof. Let σ ∈Pmax. For a joint j ⊆ σ intersecting Int(σ), a loop around

j defines a log automorphism

θkj = exp
(∑

i

ciz
mi∂ni

)
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of Rkidσ ,σ with ordσ(mi) = k and mi ∈ Λj for all i. This depends only on

the sense of orientation of the loop, since changing the base chamber leads

to conjugation by automorphisms associated to walls, and these only involve

monomials of higher order.

Now fix an exponent m on σ := σj. We have to show that cmj :=∑
mi=m cini ∈ Λ∗σ ⊗ k vanishes. This is clear if m = 0 because θkj ∈ HIk

j .

Otherwise Lx = (x + Rm) ∩ σ for x ∈ Int j is a line segment, varying in an

(n − 3)-dimensional family with parameter x. Since the boundaries of inter-

stices in σ have dimension n − 4, we may choose x ∈ j in such a way that

the intersection of Lx with any v ∈ P
[n−3]

S I
k

lies in Int v. Then there exist

real numbers 0 < λ1 < λ2 < · · · < λs < ∞ and joints j1 = j, j2, . . . , js with

x+λm ∈ Int ji for λ ∈ (λi−1, λi), and s and λs maximal with this property. By

the choice of x we see that x+λim ∈ ji∩ ji+1, for 1 ≤ i < s, must be an interior

point of an interstice di intersecting Intσ, and m 6∈ Λdi . In this situation only

the two joints ji, ji+1, containing m in their tangent spaces contribute to the

sum in (3.10). Thus Proposition 3.14 implies cmji = cmji+1
, provided we orient

the loops around ji and ji+1 in the same way.

Inductively, we thus see that cmj = cmjs . Now the maximality of λs implies

that x+ λsm ∈ ∂js is an interior point of some v ∈P
[n−3]

S I
k

. If v ⊆ ∂B, noting

in any event that −m ∈ Kσvσ, m cannot be in the support of the fan Σσv ,

which is convex. So m 6∈ Pσv,σ; a contradiction. Thus v = d is an interstice,

and m 6∈ Λd. If d 6⊆ ∂σ, we can run Proposition 3.14 again to conclude

that cmj = cmjs = 0. If ds ⊆ ∂σ, ds 6⊆ ∂B, Proposition 3.17(1) applies since

−m ∈ Intσds σ. Hence cmj = cmjs = 0 also in this case. �

3.5. Step II: Homological modification of slabs. The next step of the al-

gorithm achieves consistency for codimension-one joints. At a single joint this

can be done by modifying the functions associated to the two slabs containing

this joint. There is then a problem of whether or not this can be done con-

sistently, as changes to slabs dictated by one joint may conflict with changes

to slabs dictated by another joint. Furthermore, monomials in the functions

associated to slabs do not propagate in the same way monomials associated

to walls do, because of (2.11). Thus it is impossible to emulate the arguments

used for codimension-zero joints, and instead, we need to use homological ar-

guments which will fix the corrections to all slabs in a given codimension-one

ρ ∈P simultaneously.

Throughout the following discussion we therefore fix ρ ∈ P [n−1] and a

reference cell σ ∈ Pmax, ρ ⊆ σ. The discussion in this subsection will only

apply to the case that ρ is bounded. To fix signs, orient σ and each joint

j ⊆ ρ arbitrarily. This distinguishes a sense of orientation of each loop around

any joint in ρ that we tacitly assume in the following. Let ďρ ∈ Λ⊥ρ ' Z
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be the generator that is positive on σ. If j is a joint with Int j ⊆ ρ, then

by (3.7) the log automorphism θkj of Rkidρ,σ associated to a loop around j lies

in Ok
Ä
Λj⊗Λ⊥j + (Λρ/fρ)⊗Λ⊥ρ

ä
. Thus for any vertex v ∈ σj = ρ, we may write

θkj = exp
(∑

i ciz
mi∂ni +

∑
i diz

m′i

fρ,v
∂ďρ

)
with mi ∈ Λj, m

′
i ∈ Λρ and ordρ(mi) = ordρ(m

′
i) = k. The expression

∑
i diz

m′i

is unique up to adding multiples of fρ,v. Note that in view of (3.3) a different

choice v′ of vertex leads to the expression
∑
i diz

m′i+m
ρ

v′v .

Thus
∑
i diz

m′i defines a well-defined element dj = (dj,v)v in the k-vector

space Wρ that is defined as follows. For a vertex v ∈ ρ let

Wρ,v := W̃ρ,v/
Ä
W̃ρ,v · fρ,v

ä
with

W̃ρ,v :=
¶∑

i aiz
mi ∈ k[Pρ,σ]

∣∣∣mi ∈ Λρ, ordρ(mi) = k
©
.

Note that W̃ρ,v · fρ,v ⊆ W̃ρ,v because fρ,v involves only exponents m with

ordρ(m) = 0 and m ∈ Λρ. For another vertex v′ ∈ ρ we have the isomorphism

Wρ,v −→Wρ,v′ , h 7−→ h · zm
ρ

v′v .

Then Wρ is defined as the set of tuples (hv)v∈ρ with hv ∈Wρ,v and

hv′ = zm
ρ

v′v · hv.

The plan is now to achieve dj = 0 by changing the slabs contained in ρ. Fix

a vertex v ∈ ρ and let B ⊆ Pρ,σ be a set of exponents such that
Ä
zm

ρ

v′v+m
ä
v′

,

m ∈ B, forms a basis of Wρ. For m ∈ B and x ∈ ρ \ ∆, write m[x] for the

parallel transport of m+mρ
v′v to x inside ρ \∆, where v′ = v[x] ∈ ρ. Thus we

can write

dj,v′ =
∑
m∈B

dmj z
m[v′](3.15)

for some dmj ∈ k. We now follow a procedure to adjust the functions fb,x, for

b ⊆ ρ a slab, by multiples of zm[x] for a single m ∈ B. Write Pρ for the

polyhedral decomposition of ρ given by PS I
k

. For the function fb,x of a slab

b ⊆ ρ to receive a correction by a multiple of zm[x], we require that

(1) m[x] ∈ Px,

(2) for any joint j ⊆ b with x ∈ j and any σ′ ∈ Pmax with σ′ ⊇ j it holds

that ordσ′(m[x]) ≥ k.
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The second condition ensures that such a correction does not influence lower

order computations. Thus we consider only the polyhedral complex Pm ⊆Pρ

defined as the complement of the open star of

Ω :=
¶
x ∈ ∂ρ

∣∣∣m[x] 6∈ Px
©
∪⋃j Int j ⊆ ∂ρ,(3.16)

where the union runs over all joints j ⊆ ∂ρ such that ordσ′(m[x]) < k for some

σ′ ∈Pmax containing j and x ∈ j \∆. Said differently, Pm consists of all cells

of Pρ not intersecting Ω.

On the other hand, a codimension-two joint j ⊆ ∂ρ does not impose any

conditions on changing a slab function fb,x, b⊇ j, by czm[x] if (i) ordj(m[x])>k,

or (ii) m[x] ∈ Λj, x ∈ (Int j) \ ∆. In fact, Proposition 3.10(1) shows that

such changes keep the form (3.7) for θkDj
. We therefore work relative to the

subcomplex Ãm ⊆Pρ consisting of faces of (n− 2)-cells j ⊆ ∂ρ of Pρ obeying

(i) or (ii). (Ãm may include (n − 2)-cells j ⊆ ∂B, which are not joints, but

these do not impose conditions anyway.) Note that by Proposition 2.6, an

(n−2)-cell j ⊆ ∂ρ of Pρ is contained in ‹Am if and only if m is contained in the

half-plane tangent wedge to j in ρ. In particular, the underlying topological

space ‹Am ⊆ ∂ρ of Ãm is a union of facets of ρ, and an alternative description

of ‹Am is ‹Am = cl
¶
x ∈ ∂ρ \∆

∣∣∣m[x] ∈ Kxρ
©
.(3.17)

Finally denote

Am := Ãm ∩Pm.

Note that ‹Am∩Ω is contained in the relative boundary of ‹Am, and hence Am is

also obtained by removing the open star of a subset of ∂Ãm. In fact, if v ∈Pρ

is contained in the relative interior of ‹Am, then m[x] ∈ Kxρ for all x ∈ v \∆.

This implies ordσ′(m[x]) ≥ ordρ(m[x]) = k for all x ∈ v \ ∆ and σ′ ∈ Pmax

containing x, and hence v ∈Pm.

Our interest in (Pm,Am) comes from the following result.

Lemma 3.19. The cellular (n − 2)-chain (dmj )
j∈P

[n−2]
m

with dmj = 0 for

j ⊆ ∂ρ and as in (3.15) otherwise, is a relative cycle for (Pm,Am).

Proof. Orient each interstice d ⊆ ρ arbitrarily. Then for any d ⊆ j ⊆ ρ, the

comparison of the chosen orientation of d with the one induced from j defines a

sign sgn(d, j) ∈ {±1} such that the coefficient of d in the boundary of a cellular

(n− 2)-chain (cj)j is ∑
j⊇d

sgn(d, j)cj.

Now let v ∈P
[n−3]
m . Then either v ⊆ ∂B or v = d is an interstice. In the

first case, if v 6∈ Am, then by (3.17), m[x] 6∈ Kxρ for x in a neighbourhood of

d in ∂ρ. In particular, −m[x] ∈ IntKσvρ, but also m[x] maps to |Σσv | since
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m[x] ∈ Px. This contradicts convexity of |Σσv |. Thus v ∈ Am and there is

nothing to check.

In the case of an interstice with d ⊆ ∂ρ and d 6∈ Am, we have −m[x] ∈
IntKσdρ as before. Proposition 3.17(2a) now shows

∑
j⊇d, j 6∈Am sgn(d, j)dmj = 0.

The sign arises from the difference in orientation conventions for loops around

joints.

If d 6⊆ ∂ρ, Proposition 3.17(2b) implies
∑

j⊇d sgn(d, j)dmj = 0, again ob-

serving the different orientation conventions. �

We now prove two lemmas concerning the topology of this situation.

Lemma 3.20. The pair (Pm,Am) is a deformation retract of (Pρ, Ãm).

Proof. We want to retract the cells in Pρ \Pm successively, in a way

compatible with Ãm. For this we use the following elementary result. If

Ξ ⊆ Rk is a bounded convex polytope and x ∈ ∂Ξ, then the projection from

a point x′ ∈ Rk \ Ξ sufficiently close to x and with x − x′ ∈ KxΞ defines a

deformation retraction of Ξ onto the union of facets of Ξ not containing x.

Explicitly, for y ∈ Ξ, define

α(y) = max{α ∈ R≥0 | y + α · (y − x′) ∈ Ξ}.

Then

[0, 1]× Ξ −→ Ξ, (λ, y) 7−→ y + λα(y)(y − x′)
is the desired deformation retraction.

We apply this result first to successively retract (Pρ, Ãm) to (Pm ∪
Ãm, Ãm). Let P ′ ⊆Pρ be a subcomplex obtained inductively. Let P ′

∂ ⊆P ′

consist of subcells of cells w ∈ P ′ \ (Pm ∪ Ãm) with the property that there

is a unique v ∈ P ′ \ (Pm ∪ Ãm) with w ( v. This P ′
∂ is the subset of cells

that can be taken as center for the next retraction. We will assume inductively

that P ′
∂ 6= ∅ as long as P ′ 6= Pm ∪ Ãm. To see this is true initially, note first

that if (Pm ∪ Ãm) ∩ ∂Pρ = ∂Pρ, then Pm = Pρ and Ãm = ∂Pρ anyway

and there is nothing to do. Otherwise, there is a slab b ∈ Pρ \ (Pm ∪ Ãm)

with dim b ∩ ∂ρ = n− 1, and then b ∩ ∂ρ ∈P ′
∂ .

Given P ′
∂ 6= ∅, choose a point x in the interior of a maximal cell w ∈P ′

∂ ,

contained properly in a unique cell v ∈ P ′ \ (Pm ∪ Ãm). Now apply the

above deformation retraction of v using the chosen x. Since x is disjoint from

any cell of Pm ∪ Ãm, this deformation retraction is trivial on this subcomplex

of P ′. We now note that after making this retraction, we continue to have

P ′
∂ 6= ∅. In fact, if w̃ ∈ P ′ \ (Pm ∪ Ãm), then w := w̃ ∩ Ω is a nonempty

cell of Pρ. Moreover, by the inductive construction, the link of w in P ′ is a

retraction of the link of w in Pρ. From this one can see that the link of w

contains a cell in P ′
∂ , and hence P ′

∂ continues to be nonempty. The process
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stops when P ′ = Pm ∪ Ãm. An analogous argument then retracts (Ãm,Am)

onto (Am,Am), and hence (Pm ∪ Ãm, Ãm) onto (Pm,Am). �

Lemma 3.21. Hn−2(Pm,Am) = 0.

Proof. By Lemma 3.20 this follows once we prove Hn−2(Pρ, Ãm) = 0.

Let ∆(ρ) ⊆ Λρ,R be the convex hull of {mρ
vv′ | v′ ∈ ρ vertex} and ψρ̌ be the

corresponding PL-function on the normal fan Σ̌ρ of ρ. Recall from (3.17) that‹Am is the union of facets τ ⊆ ρ with m[x] ∈ Kxρ for some x ∈ Int τ . If n ∈ Λ∗ρ
is the inward normal vector to τ generating the ray in Σ̌ρ dual to τ , this is

equivalent to

0 ≤ 〈m[x], n〉 = 〈m,n〉+ 〈mρ
v[x]v, n〉 = 〈m,n〉+ ψρ̌(n).

Thus ‹Am ⊆ ∂ρ is dual to the subset of rays of Σρ̌ on which the convex function

ψρ̌ +m is nonnegative. Thus if m ∈ ∆(ρ), we obtain ‹Am = ∂ρ, and otherwise

ρ deformation retracts to ‹Am. In any case it follows that Hn−2(Pρ, Ãm) =

Hn−2(ρ, ‹Am) = 0. �

II.1. First homological modification of slabs. By Lemma 3.21 we can find

an (n− 1)-chain (bmb )
b∈P

[n−1]
m

whose boundary is (dmj )j modulo chains in Am.

Then for any slab b ⊆ ρ, subtract the term D(se, ρ, v)se(b
m
b z

m[x]) from fb,x,

where v = v[x] and e : v → ρ. By construction of Pm we have m[x] ∈ Px
for all x ∈ b \∆ and the change of vertex formula (2.11) continues to hold, so

this makes sense. Proposition 3.10(1) shows that doing so removes the terms

dmj z
m[v]/fρ,v from θkj , whenever j ∈ Pm, j 6⊆ ∂ρ. Furthermore, if m[v] does

appear in θkj for some joint j ⊆ ρ, j 6⊆ ∂ρ, then j ∈Pm, so this process removes

the term involving m[v] from θkj whenever such a term appears.

Repeat this for all exponents m ∈ B = B(ρ) and for all ρ ∈P [n−1].

For j ⊆ ρ with codimσj = 1, we can now write

θkj = exp
Ä∑

ciz
mi∂ni

ä
with mi ∈ Λρ, ni ∈ Λ⊥j . Next we would like to achieve θkj ∈ Ok(Λj⊗Λ⊥j ). This

is possible by a further, straightforward modification of slabs.

II.2. Further subdivision of slabs to achieve θkj ∈ Ok(Λj ⊗ Λ⊥j ). For every

j with codimσj = 1 and every mi appearing in θkj with mi 6∈ Λj, we note that

ni must be proportional to ďρ, and thus we can assume after changing ci that

ni = ďρ. Viewing j ⊆ ρ as a subset of Λρ,R, define

b(mi) := (j− R≥0mi) ∩ ρ ⊆ ρ.
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We then modify slabs contained in ρ by adding ±cise(mi)z
mife to fb,y for

y ∈ b(mi) ∩ b \ ∆, b ⊆ ρ a slab and e : v[y] → σj = ρ. This of course might

mean subdividing the slabs further. By doing so, it follows again from Propo-

sition 3.10(1) that, with proper choice of sign, the term ciz
mi∂ni disappears

from θkj . Note that this process might introduce new joints j′ contained in

the sides of b(mi). But for such j′, m′i ∈ Λj′ , and so by a simple calculation

analogous to Proposition 3.10(2), θkj′ satisfies

θkj′ = exp
Ä∑

ciz
mi∂ni

ä
withmi ∈ Λj′ . In fact, after carrying this out for every joint j with codimσj = 1,

we see that this now holds for all joints with codimσj = 1. We write S II,pre
k

for the structure thus obtained.

The arguments of Proposition 3.18 for codimension-zero joints now imply

that the remaining terms of θkj are undirectional. Recall that a log automor-

phism lies in Ok(0⊗ Λ⊥j ) if it is of the form exp(
∑
n an∂n) with an ∈ k[t] and

n ∈ Λ⊥j .

Proposition 3.22. For j ∈ Joints(S II
k ) with σj = ρ ∈ P [n−1], it holds

that

θkj ∈ Ok(0⊗ Λ⊥ρ ).

Proof. The construction of S II,pre
k was designed to achieve θkj ∈ Ok(Λj ⊗

Λ⊥j ) for codimension-one joints. It then follows exactly as in Proposition 3.18

that there are no contributions of exponents m with m 6= 0. In this argument

Proposition 3.17(2) replaces both Proposition 3.14 and Proposition 3.17(1).

Thus θkj ∈ Ok(0⊗ Λ⊥j ).

To see furthermore that even θkj ∈ Ok(0 ⊗ Λ⊥ρ ), we have to show that

θkj (m)=1 for all m ∈ Λρ. This follows easily with the notion of tlog that comes

out naturally of our discussion of the higher order normalization procedure in

Step III. We therefore postpone the rest of the proof to Section 3.6; see the

discussion after Lemma 3.29. �

To remove the remaining undirectional terms we now run a homological

argument again. For ρ ∈P [n−1] and a joint j ∈ S II,pre
k with σj = ρ, Proposi-

tion 3.22 shows we can write uniquely

θkj = exp
Ä
cjt

k∂ďρ

ä
for some cj ∈ k. Let d be an interstice of S II,pre

k with σd = ρ and j1, . . . , jr ⊆ ρ
be the codimension-one joints containing d. Then the θkji commute and (3.9),
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now interpreted for S II,pre
k , implies

1 = θkjr ◦ · · · ◦ θ
k
j1 = exp

( r∑
i=1

sgn(d, ji)cjit
k∂ďρ

)
.

Here we use the signs sgn(d, ji) which were introduced above. This shows that∑r
i=1 sgn(d, ji)cji = 0, and hence (cj)j∈Pn−2

ρ
can be viewed as a relative cellular

(n− 2)-cycle for (Pρ, ∂Pρ). Again we simply set cj = 0 whenever j ⊆ ∂Pρ.

II.3. Second homological modification of slabs. Since Hn−2(Pρ, ∂Pρ) = 0

there exists an (n − 1)-chain (bb)b∈Pn−1
ρ

with boundary (cj)j. Then for a slab

b ⊆ ρ and x ∈ b \ ∆, add bbt
kfe to fb,x for v := v[x] and e : v[x] → ρ.

Proposition 3.10(1) now shows that after these changes, θkj = 1 holds for any

codimension one-joint j ⊆ ρ. Repeat this process for all ρ ∈ P [n−1]. The

structure thus obtained is denoted as S II
k .

We have now arrived at a structure S II
k that is consistent up to codimen-

sion one. Moreover, for codimension-two joints essentially the same arguments

together with local rigidity (Definition 1.26) give further restrictions.

Proposition 3.23. Let j ∈ Joints(S II
k ).

(1) If codimσj ≤ 1, then θkj = 1.

(2) If codimσj = 2, let τ = σj and v ∈ τ a vertex. Then we can write

θkj = exp
(
ctk∂n +

∑
ρ⊇j
v′∈τ

cρ,v′t
k z

mρ
vv′

fρ,v
∂ďρ

)

with c, cρ,v′ ∈ k and n ∈ Λ⊥τ .

Proof. (1) As we have not changed anything at joints j of S I
k with codimσj

= 0 this case follows from Proposition 3.18, while the constructions in Step II

were designed to achieve θkj = 1 if codimσj = 1.

(2) By the definition of the polyhedral complex Pm ⊆ Pρ and Proposi-

tion 3.10(1), the changes from S I
k to S II

k do not affect the form (3.7) of θkj at

codimension-two joints.

Now note that the joints j ⊆ τ are the maximal cells of the polyhedral

decomposition of τ given by PS II
k

. Thus if d is an interstice with σd = τ

there are precisely two codimension-two joints j, j′ ⊆ τ containing d. In this

case Proposition 3.17(3)(a) shows that θkj ◦
Ä
θkj′
ä−1

= 1, assuming the normal

spaces Qvj,R = Qvτ,R = Qvj′,R are oriented in the same way. Thus all θkj with

j ⊆ τ agree. Thus there exist cj , dρ,j ∈ k and mj ,m
′
ρ,j with mj ,m′ρ,j ∈ Λτ ,
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ordτ (mj) = ordτ (m′ρ,j) = k, nj ∈ Λ⊥τ , such that for any j ⊆ τ ,

θkj = exp
(∑

j

cjz
mj∂nj +

∑
j, ρ⊇τ

dρ,j
zm
′
ρ,j

fρ,v
∂ďρ

)
.

Now by looking at an interstice d ⊆ ∂τ containing v, Proposition 3.17(3)(b) im-

plies that we may assume all mj and m′ρ,j to be contained in the half-plane tan-

gent wedge Kdτ . Indeed, otherwise their contribution vanishes by the propo-

sition. Taking a different vertex v′ transforms zm
′
ρ,j/fρ,v into zm

′
ρ,j−m

ρ

vv′/fρ,v′ .

Thus we may take cj = 0 for all j, and dρ,j = 0 unless m′ρ,j −m
ρ
vv′ ∈ Kv′τ for

every vertex v′ ∈ τ . As in the proof of Lemma 3.21 one sees that, in the latter

case, m′ρ,j must be contained in the convex hull of {mρ
vv′ | v′ ∈ τ vertex}. This

is a face of ∆(ρ), and by Definition 1.26(i) any integral point of this face is a

vertex. Hence m′ρ,j = mρ
vv′ for some v′ ∈ τ . Because ordτ (m′ρ,j) = k, it then

follows that

zm
′
ρ,j = tk · zm

ρ

vv′ .

This proves the claimed formula for θkj . �

3.6. Step III: Normalization. For a joint j of S II
k the remaining terms in

θkj do not propagate — either they are undirectional (zm with m = 0), or they

are of the form zm/fρ,v and −m points into the tangent wedge of ρ at v for

any choice of vertex v ∈ ρ. Step III removes these terms by a normalization

procedure.

The normalization condition asks that there be no pure t-terms in the

logarithm of the functions s−1
e (fb,x) that occur in changing chambers separated

by a slab b, up to order k. Because this expression may contain exponents m

with ordρ(m) = 0, we need to take appropriate completions of our rings Rkg,σ
to make sense of the logarithm.

Again, in this section, we assume all cells of B are bounded.

Construction 3.24. Let (g : ω → τ) ∈ Hom(P), σ ∈ Pmax, a reference

cell containing τ and v ∈ τ a vertex. Because Kvτ is a strictly convex cone,

the subset

E =
¶
m ∈ Pω,σ

∣∣∣m ∈ Kvτ \ {0}
©

of Pω,σ is additively closed and ⋂
ν≥0

νE = ∅.

We can thus define a Hausdorff topology on k[Pω,σ] by taking

Uν :=
¶∑

m∈νE amz
m ∈ k[Pω,σ]

©
, ν ≥ 1
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as fundamental neighbourhood system of 0. Note that if Λω ∩ (Kvτ \{0}) 6= ∅,
then E generates the unit ideal, and hence this is not the I-adic topology for

any ideal I. Denote the completion of this topological ring by k[Pω,σ]v.
Similarly, one defines a topology onRkg,σ, with associated completion

v“Rkg,σ.

Because the localizing functions fρ,v are invertible in k[Pω,σ]v/Î>kg,σ , for any

ρ ⊇ τ , we have
v“Rkg,σ = k[Pω,σ]v/Î

>k
g,σ ,

where Î>kg,σ ⊆ k[Pω,σ]v is the ideal generated by I>kg,σ ⊆ k[Pω,σ].

Definition 3.25. Let f =
∑
m∈Pω,σ amz

m ∈ k[Pω,σ]v/Î>kg,σ .

(1) The t-content of f is defined by

contt f :=
∑

m∈Pω,σ :m=0

amz
m =

∑
m∈Pω,σ :m=0

amt
ordσ(m) ∈ k[t]/(tk+1).

(2) We say that f fulfills the cone condition if am 6= 0, ordω(m) = 0,

implies m ∈ Kvτ .

(3) If a0 6= 0 and f fulfills the cone condition, we define

tlog f := contt

Ç
−
∞∑
i=1

1

i

(
1− f

a0

)iå
∈ k[t]/(tk+1).

If f ∈ k[Pω,σ], we indicate which completion to work in by writing tlogv f .

Remarks 3.26. The sum in the definition of tlog f is the power series of

log f without the constant term. Thus since contt is additive, the usual power

series identity implies that

tlog
Ä
f1 · f2

ä
= tlog f1 + tlog f2 mod tk+1

for fi ∈ k[Pω,σ]v/Î>kg,σ with nonvanishing constant terms and fulfilling the cone

condition.

We are now in position to formulate the normalization condition.

Definition 3.27. A slab b is called normalized to order k if for any x ∈ b\∆
and v′ ∈ ρb a vertex, it holds that

tlogv′
Ä
z
m
ρb
v′v[x]s−1

e (fb,x)
ä
∈ (tk+1),

where e : v[x]→ ρb, and we consider z
m
ρb
v′v[x]s−1

e (fb,x) as an element of k[Pρb,σ].

A structure is normalized to order k if each of its slabs is normalized to order k.

The point of normalization is the following.

Proposition 3.28. Assume that j is a joint of a structure S such that

each slab b ⊇ j is normalized to order k, and let θkj be the log automorphism
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associated to a loop around j based on σ ∈Pmax. Then for any m ∈ Pσj,σ and

v ∈ σj, it holds that

tlogv
Ä
θkj (m)

ä
= 0 mod tk+1.

Proof. By parallel transport through v view the basic gluing morphisms

associated to slabs and walls containing j as log automorphisms of Rkidσj ,σ
.

These all have the form

m 7−→ f 〈m,n〉

for some n ∈ Λ⊥j \{0} and f ∈ k[Pσj,σ] with ∂nf = 0. Moreover, tlogv f = 0 for

automorphisms associated to walls in any case and for slabs by the normaliza-

tion condition. Note that the factors D(se, ρ, v)−1 ∈ k\{0} occurring for slabs

have no influence on tlogv f . Hence taking into account the composition for-

mula for log morphisms (2.4) and Remark 3.26, the result follows readily from

Lemma 3.29 below by induction on the number of such automorphisms. �

Lemma 3.29. Let θ be a log automorphism of Rkg,σ , g : ω → τ , of the

form

m 7−→ f 〈m,n〉

with n ∈ Λ∗σ \ 0 and f ∈ k[Pω,σ], ∂nf = 0. Assume that v ∈ τ is a vertex

such that a ∈ Rkg,σ and f , viewed as elements of k[Pω,σ]v , have nonvanishing

constant terms and fulfill the cone condition. Then

tlogv
Ä
θ(a)
ä

= tlogv a ∈ k[t]/(tk+1).

Proof. Observe that

θ(zm) = f 〈m,n〉 · zm

has vanishing t-content unless −m occurs as an exponent in f 〈m,n〉. But then

∂nf = 0 implies 〈m,n〉 = 0, and hence θ(zm) = zm. This shows that for any

b ∈ k[Pω,σ]v,
contt(b

i) = contt
Ä
θ(bi)

ä
= contt

Ä
θ(b)i

ä
,

and hence, if b fulfills the cone condition and has vanishing constant term,

contt
(∑

i≥1

1

i
bi
)

= contt
(∑

i≥1

1

i
θ(b)i

)
.

The statement follows from this by setting b = 1 − (a/a0) for a0 ∈ k the

constant term of a. �

With the notion of tlog at hand it is now easy to complete the proof of

Proposition 3.22 left unfinished in Step II.

Proof of Proposition 3.22 — finish. We have seen that θkj ∈ Ok(0 ⊗ Λ⊥j );

that is,

θkj = exp
(∑

i

cit
k∂ni

)
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with ci ∈ k and ni ∈ Λ⊥j . If m ∈ Pσj,σ for some σ ∈ Pmax containing j and

v ∈ σj is a vertex, then

tlogv
Ä
θkj (m)

ä
=
¨
m,
∑
i cini

∂
tk mod tk+1.

Thus θkj ∈ Ok(0⊗ Λ⊥ρ ) if this expression vanishes for all m with m ∈ Λρ.

Now θkj is the composition of log isomorphisms associated to walls and

to two slabs contained in ρ. Arguing as in Proposition 3.28 we see that the

former do not make any contribution to tlogv
Ä
θkj (m)

ä
for any m, while the log

isomorphisms associated to the two slabs are trivial on those m ∈ Pσj,σ with

m ∈ Λρ. Thus indeed tlogv
Ä
θkj (m)

ä
= 0 for m with m ∈ Λρ. �

We will now impose the additional inductive assumption that Sk−1 is

normalized. This is an empty statement for k = 0. For the inductive step from

k− 1 to k note that since no terms of order k− 1 have been added to slabs to

obtain S II
k , all slabs in this latter structure are also normalized to order k−1.

It is then easy to normalize S II
k to order k:

III. Normalization of slabs. For any slab b ∈ S II
k and x ∈ b \ ∆, the

inductive assumption shows for any vertex v′ ∈ ρb

tlogv′
Ä
zm

ρb
v′vs−1

e (fb,x)
ä

= cv′t
k mod tk+1

for some cv′ ∈ k. Here v = v[x] ∈ ρb and e : v → ρb. Fix a set of vertices Vb of

ρb such that

Vb −→
¶
mρb
v′v

∣∣∣ v′ ∈ ρb vertex
©
, v′ 7−→ mρb

v′v

is a bijection. Now replace fb,x by

fb,x −
∑
v′∈Vb

cv′t
kse(z

−mρb
v′v).

Noting that fb,x already contains the monomial z−m
ρb
v′v = zm

ρb
vv′ for each v′ ∈ ρb,

as follows from Equations (1.10) and (1.13), we must have −mρb
v′v ∈ Px. Thus

the new collection {fb,x |x ∈ b \∆} satisfies the definition of a slab. Note that

cv′ for v′ ∈ ρb depends only mρb
v′v. This shows that the new fb,x is independent

of the particular choice of representative vertices Vb. By construction the slab

b is now normalized to order k.

After modifying each slab in S II
k in this way, we obtain S III

k .

We can now complete the proof of Theorem 3.1.

Proposition 3.30. The structure S III
k is consistent to order k.
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Proof. Since the normalization procedure does not change walls, Proposi-

tion 3.23(1) still shows consistency to order k for codimension-zero joints.

If codimσj = 2, local rigidity (Definition 1.26) provides a partition of

the set of codimension-one cells ρ ⊇ j with Zρ ∩ Xσj 6= ∅ into subsets of

cardinalities 2 and 3. Let ρi, i = 1, . . . , s, be a choice of one representative

for each such subset. Let fi ∈ k[Pσj,σ] be the sum of the terms amz
m of fρi,v

with ordj(m) = 0. Note that this is independent of the choice of representative

by Definition 1.26(ii) and the normalization condition (1.13). By local rigidity

the Newton polytope of fi is

Ξi := conv
¶
mρi
vv′ | v

′ ∈ σj
©
⊆ Λσj,R,

and any integral point of this polytope is a vertex. Now Proposition 3.23(2),

which by Proposition 3.10(1) continues to hold after normalization, gives

θkj = exp
(
ctk∂n +

∑
i,v′∈σj

ci,v′t
k z

m
ρi
vv′

fi
∂ni,v′

)
= exp

(
tk

Ä∏
j fj
ä
∂cn +

∑
i

Ä∏
j 6=i fj

ä∑
m∈Ξi z

m∂ni(m)∏
j fj

)
,

where ni(m) =
∑
{v′∈σj |m

ρi
vv′=m}

ci,v′ni,v′ ∈ k⊗Λ∗σ. Writing fi =
∑
m∈Ξi di,mz

m,

di,m ∈ k \ {0}, this leads to

θkj = exp
( tk∏

i fi

∑
m∈∆(σj)

zm∂n(m)

)
with ∆(σj) =

∑
i Ξi and

n(m) =
∑∑

j
mj=m,mj∈Ξj

d1,m1 · . . . · ds,ms
(
cn+

∑
i

ni(mi)

di,mi

)
.(3.18)

Now Proposition 3.28 applies and we obtain

0 = tlogv
Ä
θkj (m′)

ä
= tk〈m′, n(0)〉.

Thus n(0) = 0 by the normalization condition. Expanding at a different vertex

v′ ∈ σj changes fi to zm
ρi
v′vfi by (3.3), and hence n(0) becomes n(mv′) with

mv′ =
∑
im

ρi
vv′ . Because the normal fan of σj is a refinement of the normal fan

of ∆(σj), the mv′ run over all vertices of ∆(σj). Now any vertex m of ∆(σj)

may uniquely be written m =
∑
imi with mi ∈ Ξi. Therefore the sum in (3.18)

has only one term. This shows that for any vertex m =
∑
imi ∈ ∆(σj),

cn+
∑
i

ni(mi)

di,mi
= 0.
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Now apply Definition 1.26(iii) to the tuple of functions associating cn
s + ni(m)

di,m

to a vertex m ∈ Ξi. It then follows that there are ni ∈ Λ⊥σj ⊗ k with

ni = cn+
ni(m)

di,m
for all m ∈ Ξi,

and
∑
i ni = 0. Thus n(m) = 0 for all m ∈ ∆(σj) ∩ Λσj . Hence θkj = 1, as

desired.

If codimσj = 1, we have to show that the normalization procedure does

not spoil the consistency from Proposition 3.23(1). Indeed, Proposition 3.10(1)

shows that we can write

θkj = exp
( ∑
v′∈ρ

cv′t
k z

mρ
vv′

fρ,v
∂ďρ

)
.

Now as in the codimension-two case,

0 = tlogv′
Ä
θkj (m)

ä
= tk〈m, cv′ ďρ〉,

and hence cv′ = 0 for all v′. �

4. Higher codimension scattering diagrams

This section fills in the remaining parts of the proof of Proposition 3.9.

Nothing here requires boundedness of cells in P. We first establish a stronger

uniqueness theorem and then show existence for the two cases codimσj = 1, 2

separately. Throughout this section we fix the following notation. Let j ⊆ B be

an (n−2)-dimensional polyhedral subset contained in a reference cell σ ∈Pmax

and let g : ω → σj with j∩Intω 6= ∅. Furthermore, choose x ∈ (j∩Intω)\∆ and

let v = v[x] ∈ σj be a vertex in the same connected component of σj\∆ as x. We

work in various rings RIg,σ for σ ∈Pmax containing j, for ideals I with radical

I0 = I>0
g,σ. We keep the standard notation Il = I>lg,σ from before. Different

choices of σ are identified by parallel transport through v without further

notice. We also fix an orientation of Qvj,R = Λv,R/Λj,R and write Q := Qvj,R for

brevity. Recall that a cut c ⊆ Q is a one-dimensional cone contained in ρ ⊆ Q
for some ρ ∈P [n−1], ρ ⊇ j. Moreover, as before, m 7→ m denotes the quotient

maps Pω,σ → Q and Px → Q.

4.1. Uniqueness.

Proposition 4.1. Let j ∈ Joints(Sk−1) and J, J ′ ⊆ k[Pidσj ,σ
] ideals with

Ik ⊆ J ⊆ J ′ and I0 · J ′ ⊆ J , where σ ∈Pmax, σ ⊇ j. Let D,D′, be scattering



AFFINE AND COMPLEX GEOMETRY 1391

diagrams for j such that θkD,idσj
= θkD′,idσj

= 1 mod J ′, and modulo J ,

θkD,idσj
, θkD′,idσj

∈



Ok
Ä
(Λj \ {0})⊗ Λ⊥j

ä
, codimσj = 0,

Ok
(
Λj ⊗ Λ⊥j +

Λρ
fρ
⊗ Λ⊥ρ

)
, codimσj = 1 (ρ = σj),

Ok
(
Λj ⊗ Λ⊥j +

∑
ρ⊇j

Λj

fρ
⊗ Λ⊥ρ

)
, codimσj = 2;

that is, as log automorphisms of Rkidσj ,σ
/J . Assume that D,D′ only differ

by outgoing rays (r,mr, cr) not contained in any cut, with zmr ∈ J ′ and, if

codimσj = 2, by changing the functions fc,x by multiples of some zm ∈ J ′ with

−m ∈ c \ {0}. Then D and D′ are equivalent modulo J .

Moreover, if codimσj = 1, then the same conclusion holds if we also allow

adding outgoing rays contained in ρ, provided θkD,idσj
= θkD′,idσj

= 1 mod J .

Proof. We have to investigate how θkD,idσj
changes when D is modified. We

first derive formulae for the effect of adding a single ray (r,mr, cr) or of adding

czmc to fc,x for some cut c, where zmr , zmc ∈ J ′ \ J . In the case of adding a

ray, since I0 · J ′ ⊆ J , the associated log automorphism

θr = exp
Ä
− log(1 + crz

mr)∂nr

ä
: m′ 7→ (1 + crz

mr)−〈m
′,nr〉

commutes with any other log automorphism associated to a ray of D, modulo J .

For the commutation with the log automorphism θc associated to a cut c,

Lemma 2.15 shows that

θc ◦ θr ◦ θ−1
c = exp

Ä
− crzmr(f

−〈mr,nc〉
c,x ∂nr + f

−〈mr,nc〉−1
c,x (∂nrfc,x)∂nc)

ä
.

If codimσj = 2, then any monomial zm in ∂nrfc,x fulfills ordj(m) > 0, and

hence we may write

θc ◦ θr ◦ θ−1
c = exp

Ä
arz

mr∂nr

ä
for some ar ∈ k(Λj) ∩ (Rkidσj ,σ′

)×, σ′ ∈Pmax, the relevant reference cell. Note

that ar depends, up to a constant factor, only on mr. If codimσj = 1, this needs

not be true because ∂nrfc,x may contain monomials zm with ordρ(m) = 0. This

term, however, becomes irrelevant after restriction to

Pρ :=
¶
m ∈ Pidσj ,σ

′

∣∣∣m ∈ Λρ
©

because it occurs in combination with ∂ďρ . We can thus nevertheless write

θc ◦ θr ◦ θ−1
c |Pρ = exp

Ä
arz

mr∂nr

ä
|Pρ

with ar ∈ k(Λσj) ∩ (Rkidσj ,σ′
)×.
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As for the change of fc,x for codimσj = 2 by adding ccz
mc ∈ J ′ to fc,x, we

note that modulo J this is equivalent to composing the log isomorphism θc by

exp
Ä
− (ccz

mc/fc,x)∂nc

ä
. Then analogous arguments show

θc′ ◦ exp
Ä
− (ccz

mc/fc,x)∂nc

ä
◦ θ−1

c′ = exp
Ä
acz

mc∂nc

ä
for some ac ∈ k(Λj) ∩ (Rkidσj ,σ′

)× depending only on mc and cc.

Now assume without loss of generality that D′ is obtained from D by

adding rays (ri,mri , cri) and addition of cjz
mj to fc(j),x with criz

mri , cjz
mj ∈ J ′,

−mj ∈ c(j) \ {0} and all mri ,mcj pairwise distinct. Then if codimσj 6= 1, the

above computations show that

θkD′,idσj
= θkD,idσj

◦ exp
(∑

i
ariz

mri∂nri
+
∑

j
acjz

mj∂nc(j)

)
mod J.

Under the hypotheses on θD,idσj , θD′,idσj this is only possible if both sums are

empty. Indeed, as the ari ’s and acj ’s are determined, up to constant factors, by

the mri ’s and mcj ’s, there is no way nonzero terms in these sums can cancel.

If codimσj = 1, the line ρ separates Q into two half-planes. By symmetry

it suffices to show that D′ differs from D at most by adding rays in the half-

plane not containing σ. Letting r1, . . . , rs be the rays with ri ⊆ σ we obtain

θkD′,idσj
|Pρ = θkD,idσj

|Pρ◦exp
(
−
∑

i≤s
criz

mri∂nri
+
∑

i>s
ariz

mri∂nri

)∣∣∣∣
Pρ

mod J.

Now for any monomial zm occurring in the second sum, m is contained in the

interior of the half-plane not containing σ. So these cannot cancel with any

term from the first sum. As before we can thus conclude that the first sum

must be empty. This finishes the proof of the first paragraph of the proposition.

To prove the second paragraph we just need to add that if σj = ρ ∈P [n−1],

then the log automorphism θr for an outgoing ray r with r ⊆ ρ commutes with

θc for the two cuts c present in this case. One then sees easily that adding such

rays destroys the condition θkD,idσj
= 1 unless the change leaves the equivalence

class of D unchanged. �

4.2. Infinitesimal scattering diagrams. One basic idea in the existence

proofs of the next two paragraphs is to “perturb” a scattering diagram in

order to simplify the type of scatterings to be considered. For the case of codi-

mension two we also need to consider more general log automorphisms and

more general functions asssociated to cuts than before. This leads to a deco-

ration of the elements of the deformed scattering diagram by group elements.

We obtain the following notion of “infinitesimal scattering diagram.”

Definition 4.2. A squiggly ray or s-ray l in Q is the image of a C∞-

embedding i : [0,+∞) → Q, such that for t � 0, i(t) = (t − t0)m + i(t0) for

some m ∈ Λσ \ Λj. We call i(0) its endpoint, and denote by r(l) := R≥0 · m
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the associated asymptotic half-line. A segment l in Q is the image of a C∞-

embedding i : [0, 1]→ Q with distinguished initial and final endpoint i(0) and

i(1), respectively. An orientation of an s-ray or segment is an orientation of

its tangent bundle.

An infinitesimal scattering diagram for a group G of log automorphisms

of RIg,σ is a collection D = {(l, θl), fc}, where (1) l ⊆ Q is an s-ray or seg-

ment, either oriented or unoriented; (2) θl is an element of G of the form

exp
Ä∑

i cl,iz
ml,i∂nl,i

ä
; (3) for each cut c ⊆ Q and any p ∈ c \ {0} not contained

in any l with dim l ∩ c = 0, we have a polynomial fc,p =
∑
m∈Px,m∈Λρc

cmz
m ∈

k[Px] defining an invertible element of RIg,σ.

We have the following additional conditions imposed on this data:

(i) If l is an oriented s-ray or segment, then −R≥0 ·ml,i ⊆ Q is independent

of i and, in the case of an s-ray, is parallel to l outside a compact subset,

extending in the direction of the orientation of l.

(ii) If l is an unoriented s-ray or segment, then for any i, ml,i = 0 and, in

the case of an s-ray, nl,i ∈ Λ⊥j ∩ r(l)⊥.

(iii) If G ⊆ ‹HI
j , then in addition we will assume that for any s-ray or

segment (l, θl) ∈ D, θl = exp
Ä
− log(1 + czml)∂nl

ä
for some ml ∈ Px,

nl ∈ m⊥l , c ∈ k.

(iv) For s-rays or segments (l, θl), (l′, θl′) ∈ D, either l ∩ l′ is a finite set of

points, or θl ◦ θl′ = θl′ ◦ θl and l ⊆ l′ or l′ ⊆ l.

(v) If p, p′ ∈ c \ {0} lie in the same connected component of c \⋃dim l∩c=0 l,

then fc,p = fc,p′ .

An oriented s-ray is called incoming if it is oriented towards its endpoint;

otherwise it is called outgoing. An oriented segment is outgoing from its initial

endpoint and incoming into its final endpoint.

Remark 4.3. Recall from Section 3.2 that, for any rational half-line l ⊆ Q,

the chosen orientation of Q determines uniquely a primitive normal vector

nl ∈ Λ∗σ. A polynomial fc,p of an infinitesimal scattering diagram thus defines

unambigously the log isomorphism

θc,p : m 7−→ f
−〈m,nc〉
c,p

from RIg,σ− to RIg,σ+
, if σ± are the maximal cells with σ+ ∩ σ− = c, ordered

appropriately. Note that this differs slightly from the convention for ordinary

scattering diagrams since here we have already taken into account the effect

of the open gluing data (se). Conversely, this log isomorphism determines

fc,p uniquely modulo I. For uniformity of notation we will thus describe both

s-rays and the polynomials fc,p for cuts by pairs (z, θz) consisting of a locally

closed submanifold (= l or a connected component of c \⋃dim l∩c=0 l) of Q and
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a log isomorphism between rings RIg,σ. We then call (z, θz) foundational if it

comes from a cut and nonfoundational otherwise.

We will also sometimes confuse an element of a scattering diagram (z, θz)

with its support, z.

An element z ∈ D comes with an orientation of the normal bundle. For

s-rays or cuts it is defined by the normal vector nz (for s-rays, of the asymptotic

half-line). For a segment z = im
Ä
i : [0, 1] → Q

ä
, take the orientation in such

a way that if b ∈ z and ξ ∈ TQ,b maps to a positive normal vector, then i∗∂t, ξ

forms an oriented basis of TQ,b.

Construction 4.4. Given a smooth immersion γ : [0, 1] → Q which inter-

sects elements of an infinitesimal scattering diagram D for a group G transver-

sally, with endpoints disjoint from any element of D, and which does not pass

through any point of

Sing(D) :=
⋃
z∈D

∂z ∪
⋃

z1,z2∈D
dim z1∩z2=0

z1 ∩ z2,

we now define θγ,D ∈ G, the γ-ordered product of those θz with z crossed by γ.

Explicitly, we can find numbers

0 < t1 ≤ t2 ≤ · · · ≤ ts < 1

and elements zi ∈ D such that γ(ti) ∈ zi, and zi 6= zj if ti = tj , i 6= j, with s

taken to be as large as possible. Then we set

θγ,D = θεszs ◦ · · · ◦ θ
ε1
z1

with the sign εi = ±1 positive if and only if γ∗∂t|ti maps to a positive normal

vector along z.

Note that if ti = ti+1, then dim zi ∩ zi+1 = 1; hence θzi and θzi+1 commute

according to (iv) in Definition 4.2. Thus the γ-ordered product is well defined.

Construction 4.5. An infinitesimal scattering diagram D for HI
j has an

associated asymptotic scattering diagram Das constructed as follows. Take

ω ∈ P in Definition 3.3(1) as fixed throughout this section. For each s-ray

(l, θl), according to Definition 4.2(iii), we can write uniquely

θl = exp
Ä
− log(1 + clz

ml)∂nl

ä
.

Define Das as the collection of rays (r(l),ml, s
−1
ω→σl(ml) · cl), where l ∈ D is an

s-ray and σl ∈Pmax is such that r(l) ⊆ σl, together with the functions

fc,y := D(sey , ρc, v[y]) · sey
Ä
z
mρc
v[y]vfc,p

ä
for cuts c and y ∈ (j ∩ Intω) \ ∆, ey : v[y] → ω. Here p is any point in the

unbounded connected component of c \Sing(D), and we use parallel transport
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through a maximal cell σ containing ρc to interpret fc,p ∈ k[Px] as an element

of k[Py].

Remark 4.6. If D =
¶

(r,mr, cr), fc,x
©

is an ordinary scattering diagram,

we obtain an infinitesimal scattering diagram for HI
j for any ideal I, with one

straight s-ray l with endpoint the origin for each ray r and fc,p := D(se, ρc, v)−1·
s−1
e

Ä
fc,x
ä
, e : v → ω for all p ∈ c \ {0}. The associated asymptotic scattering

diagram is equivalent to D modulo I.

The point of the definition of infinitesimal scattering diagrams is of course

that if θγ,D ∈ H for all small loops γ around points of Sing(D), where H ⊆ G
is a normal subgroup, say of log automorphisms of Rkg,σ, then also θkDas,g

∈ H.

4.3. Existence in codimension one. This subsection is devoted to the proof

of the existence statement in Proposition 3.9 in the case codimσj = 1; that is,

ρ := σj ∈P [n−1]. In this case Q has two cuts that we denote by c+, c−, and we

take ďρ = nc+ . Denote by K+, K− the two connected components of Q\ρ such

that ďρ is positive on K+. We are given a scattering diagram D′ = {r, fc,y} for

j with θk−1
D′,g = 1.

Interpreting D′ as an infinitesimal scattering diagram for Hk
j according

to Remark 4.6, let Din be the set of all elements of D′ which are not outgo-

ing s-rays. We will construct an infinitesimal scattering diagram D for Hk
j

containing Din such that Das is obtained from Din by adding only outgoing

s-rays. This D will be such that θγ,D = θkDas,g
for γ a large counterclockwise

loop around the origin, and it satisfies the conditions of the Proposition, ex-

cept that a priori it is not constructed to contain D′. But since in particular

θγ,D = 1 mod Ik−1, it then follows by the uniqueness result of Proposition 4.1,

used inductively, that in fact D′ and Das are equivalent to order k − 1. Thus

Das will be the desired extension of D′.

Write Din = Dno∪Din,+∪Din,−, where Dno consists of the two foundational

elements and the nonoriented s-rays of D′, and Din,± consists of those incoming

s-rays contained in cl(K±). As a starting point for the construction of D,

deform Din to an infinitesimal scattering diagram D0 with (D0)as = Din, by

moving the s-rays in Din,± so that their endpoints are points p± ∈ Int(c±), as

illustrated in Figure 4.1.

Set
Jl := I l+1

0 + Ik,

and let s be the smallest integer such that Js = Ik. We then construct infini-

tesimal scattering diagrams D1, . . . ,Ds for Hk
j , always with the same functions

associated to cuts as D′; that is,

fc± = fc±,p := D(se, ρc± , v)−1 · s−1
e

Ä
fc±,x

ä
,

e : v → ω, for any p ∈ c \ Sing(Dl), enjoying the following properties:
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Figure 4.1. The deformation D0 of Din.

(1) θδ,Dl = 1 mod Jl for each loop δ around a singular point of Dl except

the origin, and θδ0,Dl = 1 mod Jl+Ik−1 for δ0 a small loop around the

origin.

(2) Each z ∈ Dl+1 \Dl is either oriented and fulfills Int(z) ∩ Sing(Dl) = ∅
and Int(z) ∩ ρ = ∅, or has support equal to c− or c+.

(3) If z ∈ Dl+1 \Dl is a segment, then the final endpoint of z is in ρ and

mz is in the same half-plane K± as Int(z).

(4) If z ∈ Dno \ {c+, c−} and p ∈ Int(z) is a point of Sing(Dl), then there is

exactly one oriented segment or s-ray z′ ∈ Dl with p ∈ Int(z′). Further-

more z′ intersects z transversally at p and there is an open neighbour-

hood U of p such that, if U+ and U− are the connected components of

U \ z such that U+ ∩ z′ is oriented away from p and U− ∩ z′ is oriented

towards p, then for any other z′′ ∈ Dl containing p, p is an endpoint of

z′′, and Int(z′′) ∩ U ⊆ U+.

(5) If p ∈ ρ ∩ Sing(Dl) \ {0}, then for any nonfoundational z ∈ Dl with

endpoint p, 〈mz, ďρ〉 < 0 or 〈mz, ďρ〉 > 0, independently of z.

Note here, in general, that the elements of Dl are not straight! We need

this so that we do not get “nongeneral” collision points. Figure 4.2 demon-

strates allowable behaviour at nonoriented s-rays and along ρ, illustrating (4)

and (5).

Note that D0 satisfies properties (1)–(5). We shall now construct Dl+1

from Dl with these properties in several steps, adding new s-rays and segments

for each singular point of Dl.

Construction 4.7. Step 1. If p ∈ Sing(Dl) \ ρ, there are two cases. If p is

not contained in a nonoriented s-ray, we follow essentially the same process as

in the proof of the codimension-zero case. If δ is a small counterclockwise loop

around p, then since all z ∈ Dl containing p have θz ∈ ⊥Hk
j , we can write

θδ,Dl = exp
Ä∑

ciz
mi∂ni

ä
mod Jl+1



AFFINE AND COMPLEX GEOMETRY 1397

0c− c+

Figure 4.2. Behaviour of Dl at nonoriented s-rays.

with zmi ∈ Jl \ Jl+1, mi 6= 0 and 〈mi, ni〉 = 0. We can then take

D(p) =
¶

(zi, exp
Ä
− log(1 + ciz

mi)∂ni))
©
,

where

(1) If −mi is in the closure of the same connected component K± of Q\ ρ
as p, then we take zi to be an outgoing s-ray (not necessarily straight!)

disjoint from ρ, with endpoint p.

(2) If −mi is in the other connected component, then we take zi to be

a segment with initial endpoint p and final endpoint on ρ, but not a

singular point of Dl.

In either event, we choose zi so that it satisfies the relevant constraints (2)–(5)

listed above. It now holds that θδ,Dl∪D(p) = 1 mod Jl+1, just as in the proof

of the codimension-zero case of the Proposition.

If p is contained in a nonoriented s-ray (z, θz), we apply the same process,

but now have to argue that θδ,Dl ∈ ⊥Hk
j rather than just Hk

j . In fact, it follows

from constraint (4) that there is exactly one other s-ray or segment z′ ∈ Dl

with p ∈ Int(z′), and any other z′′ ∈ Dl containing p has endpoint p and is

initially contained on the same side of z as the outgoing part of z′. By abuse of

notation, denote by θz the composition of all log automorphisms associated to

nonoriented s-rays with support z. It then suffices to check θz◦θ±1
z′ ◦θ−1

z ∈ ⊥Hk
j .

By Definition 4.2(ii) and (iii), we can write

θz = exp
(∑

cjz
mj∂nz

)
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with mj = 0, and θz′ = exp
Ä
− log(1 + czmz′ )∂nz′ ) = exp

Ä∑
j c
′
jz
jmz′∂nz′

ä
. It

then follows from Lemma 2.15 with h = exp(−∑ cjz
mj ) and n0 = nz that

θz ◦ θ±1
z′ ◦ θ

−1
z = exp

(
±
∑

j
Adθz(c

′
jz
jmz′∂nz′ )

)
does not contain any monomials m′ with m′ ∈ Λj.

We can thus obtain D(p) =
¶

(zi, exp
Ä
− log(1 + ciz

mi)∂ni))
©

as before,

with the further property that each zi lies on the same side of z as all the

other outgoing s-rays or segments with endpoint p, giving the inductive re-

quirement (4).

Now set
D

(1)
l = Dl ∪

⋃
p∈Sing(Dl)\ρ

D(p).

We can make all the choices of s-rays and segments so that D
(1)
l satisfies the

constraints (2)–(5).

Step 2. If p ∈ ρ ∩ Sing(D
(1)
l ) \ {0}, we can construct D(p) consisting of

outgoing s-rays with endpoint p such that θ
γ,D

(1)
l
∪D(p)

= 1 mod Jl+1. Indeed,

by constraint (5), all incoming s-rays or line segments at p not contained in ρ are

contained in, without loss of generality, K+, and outgoing s-rays are contained

in K−. We claim that θδ,Dl ∈ Hk
j,K−∪{0}, the group defined in Definition 3.6.

In fact, it follows again from Lemma 2.15 that any monomial zm occurring

in θδ,Dl obeys −m ∈ K−. To check the claim it remains to verify that the

commutation of an element exp
Ä
czm∂n

ä
of Hk

j with the log automorphism

associated to crossing c− preserves Ωstd; see Remark 2.16(3). If one writes

Ωstd = α · ∧i dlog(mi) with α ∈ k and mi ∈ Λj for i ≥ 3, and 〈m1, ďρ〉 =

〈m2, n〉 = 0, this follows by a straightforward computation from Lemma 2.15.

Thus we can now follow the same procedure as in Step 1, defining D(p) to

consist of a finite number of outgoing s-rays with endpoint p and with interior

contained in K−. (No segments are necessary since these s-rays need never

cross ρ.) This can be done so that θγ,Dl∪D(p) = 1 mod Jl+1. Doing this for

each such p, we set

D
(2)
l = D

(1)
l ∪

⋃
p∈Sing(D

(1)
l

)∩ρ, p 6=0

D(p).

Again, we can make these choices so that D
(2)
l satisfies the constraints (2)–(5).

One then sees easily that

θ
δ,D

(2)
l

= 1 mod Jl+1

for δ a loop around any point of Sing(D
(2)
l ) \ {0}, as follows from the fact that

ker
Ä
H
Jl+1

j → HJl
j

ä
is contained in the center of H

Jl+1

j .

Step 3. It remains to address the situation at the origin. Without loss of

generality, we will take δ0 to have a base point immediately to one side of c+
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c− c+

δc+

δc−

δ−

δ+

0

Figure 4.3. Decomposition of δ0.

and split δ0 into four semi-circular arcs in such a way that δc− and δc+ only

cross s-rays with support c+ or c−; see Figure 4.3. Then

θ
δ0,D

(2)
l

= θc+ ◦ θ− ◦ θc− ◦ θ+,

where we have written θc± := θ
δc± ,D

(2)
l

, θ± := θ
δ±,D

(2)
l

. Using (2.5) we calculate

θ
δ0,D

(2)
l

(m) = θc+(m) · θc+(θ−(m)) · θc+(θ−(θc−(m))) · θc+(θ−(θc−(θ+(m)))).

Now θ± only involves monomials zm
′

with m′ = 0, and these are left invariant

by θc± . In addition, θc± take the form

m 7→ (f±)−〈m,ďρ〉.

(Note that we may not have f± = fc± since it is possible that some outgoing

rays with support c± may have been added in this Step for a smaller l.) This

allows us to simplify to get

θ
δ0,D

(2)
l

(m) = (f+)−〈m,ďρ〉 · θ−(m) · θ−(f−)〈m,ďρ〉 · θ−(θ+(m))(4.1)

= (θ− ◦ θ+)(m) ·
Å
θ−(f−)
f+

ã〈m,ďρ〉
.

Assuming, say, that 〈m, ďρ〉 = 1, we can write this as

(4.2) θ
δ0,D

(2)
l

(m) =
fρ + · · ·
fρ + · · ·

,

where · · · denotes expressions only involving monomials zm
′ ∈ I0 with 〈m′, ďρ〉

= 0. Indeed, f± = fρ mod I0 and θ− ◦ θ+ = 1 mod I0. Since by induction

θ
δ0,D

(2)
l

= 1 mod Jl + Ik−1, the numerator and denominator must agree up to

terms in Jl + Ik−1. Thus modulo Jl+1 + Ik−1, θ
δ0,D

(2)
l

(m) = 1 +
∑

(ajz
m′j/fρ)

with zm
′
j ∈ Jl, m′j ∈ Λρ. On the other hand, if 〈m, ďρ〉 = 0, then θ

δ0,D
(2)
l

(m) =
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c+c−

δ0

α

γ

Figure 4.4. Illustration of α,γ and δ0.

(θ− ◦ θ+)(m), and we can write θ
δ0,D

(2)
l

(m) = 1 +
∑
bjz

mj with zmj ∈ I0 and

mj = 0. Thus

(4.3) θ
δ0,D

(2)
l

= exp
(∑

cjz
mj∂nj +

∑
dj
zm
′
j

fρ
∂ďρ

)
mod Jl+1 + Ik−1

for some coefficients cj , dj ∈ k and exponents mj ,m
′
j with mj ∈ Λj, m

′
j ∈ Λρ

(possibly with a different set of mj ’s and m′j ’s) and zmj , zm
′
j ∈ Jl.

Now taking γ to be a large loop around the origin, enclosing all singular

points and segments of D
(2)
l and with base point in the same connected com-

ponent of Q \ ρ as δ0, let α be a path disjoint from ρ joining the base point of

γ to the base point of δ0, so that αδ0α
−1 is homotopic to γ in Q \ {0}. Then

modulo Jl+1,
θ
γ,D

(2)
l

= θ−1

α,D
(2)
l

◦ θ
δ0,D

(2)
l

◦ θ
α,D

(2)
l

.

Since θ
δ0,D

(2)
l

only involves monomials zm in Jl + Ik−1, one sees that modulo

Jl+1 + Ik−1, θ
α,D

(2)
l

commutes with θ
δ0,D

(2)
l

. Thus if we let D′l = (D
(2)
l )as, then

θkD′
l
,g = θ

γ,D
(2)
l

= θ
δ0,D

(2)
l

mod Jl+1 + Ik−1.

This shows that θkD′
l
,g equals the right-hand side of (4.3) modulo Jl+1 + Ik−1.

Note that D′l has the same incoming and nondirectional rays as D′ and the

same functions fc. Since θkD′,g = 1 mod Ik−1 and θkD′
l
,g = 1 mod Jl+Ik−1, and

furthermore D′ and D′l agree on cuts, incoming rays and nonoriented rays, it

follows from the last sentence of Proposition 4.1 applied inductively that D′ and

D′l are equivalent modulo Jl+Ik−1. To compare D′ and D′l modulo Jl+1 +Ik−1,
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let D′′l be obtained from D′l by removing all outgoing rays r contained in ρ with

zmr ∈ Jl. Then θD′′
l
,g = 1 mod Jl + Ik−1 and D′, D′′l , satisfy the hypothesis of

Proposition 4.1 modulo Jl+1 + Ik−1. Thus D′′l and D′ are equivalent modulo

Jl+1 + Ik−1. Thus by adding a number of outgoing rays contained in ρ to

D′l, observing Proposition 3.10(1) once more, we can insure that θkD′
l
,g = 1

mod Jl+1 + Ik−1. Adding these same s-rays to D
(2)
l to obtain Dl+1 completes

the third step of the construction, so that θδ0,Dl+1
= 1 mod Jl+1 + Ik−1. Note

that this step does not destroy the result of Step 2.

We have now obtained D1, . . . ,Ds, and from Ds we take D = (Ds)as,

which we modify by throwing out all outgoing rays in D contained in ρ to

get a scattering diagram D. Now compare D′, D and D. All three scattering

diagrams share the same incoming and undirectional rays by construction, and

the functions fc± are the same. In addition, neither D′ nor D have outgoing

rays contained in ρ. We will use uniqueness (Proposition 4.1) to argue induc-

tively that D′, D and D are equivalent modulo Jl + Ik−1 for every l, hence

modulo Ik−1. This is trivially true for l = 0. Assume that it is true for a

given l. Now by assumption on D′ and by construction of D

θkD′,g = θk
D,g

= 1 mod Jl+1 + Ik−1.

Thus by Proposition 4.1, D′ and D are equivalent modulo Jl+1 + Ik−1. On the

other hand, inductively D and D are equivalent modulo Jl + Ik−1, so up to

equivalence, these two scattering diagrams only disagree by outgoing rays in ρ

with attached monomial in Jl + Ik−1. It then follows that modulo Jl+1 + Ik−1,

θkD,g takes the form given in the codimension-one case of Proposition 4.1, and

hence by the uniqueness of the first paragraph of that proposition, D′ and D

are equivalent modulo Jl+1 + Ik−1.

Now since θδ0,Ds = 1 mod Ik−1, (4.3) shows that

θδ0,Ds ∈ Ok
(
Λj ⊗ Λ⊥j +

Λρ
fρ
⊗ Λ⊥ρ

)
.

It then follows as before that θkD,g has the same form (but is not equal to θδ0,Ds
as we threw out s-rays contained in ρ). This finishes the proof of the existence

of scattering diagrams in codimension one. �

4.4. Existence in codimension two.

4.4.1. The denominator problem. We now want to prove the existence

part of Proposition 3.9 for the case that τ := σj is of codimension two. Unlike

the cases of lower codimension this requires the use of our hypothesis of local

rigidity, specifically, (ii) in Definition 1.26. We continue to use the notation set

up at the beginning of this section. In addition, we write P = Px, which we

also identify with Pω,σ via parallel transport for any σ ∈ Pmax containing τ .
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Using this convention we drop the reference cell σ in the notation for the rings,

so Rkg means Rkg,σ for any appropriate σ.

Before we embark on the proof, let us explain the basic difficulty, why we

call this the denominator problem, and why we need some hypotheses.

The naive approach to proving this result is to simply emulate the argu-

ment of Lemma 3.7, proceeding inductively and at each stage calculating θkD,g.

When doing so, because of the automorphisms associated to slabs, we obtain

terms of the form
Ä∏

µ f
aµ
cµ,x

ä
zm∂n for some aµ ∈ Z; in particular, the fcµ ’s can

appear as denominators in this expression. We can attempt to get rid of these

terms by adding outgoing rays with support −R≥0m or modifying cuts so as

to produce automorphisms of the form
Ä∏

µ f
a′µ
cµ,x

ä
zm∂n. Here a′µ and aµ may

differ because this automorphism might need to be commuted past some cuts

before it can be cancelled with the original troubling term. However, we are

not allowed to have terms with denominators appearing in the automorphisms

in D. If −R≥0m does not coincide with a cut, we need to have a′µ ≥ 0 for all µ,

while if −R≥0m does coincide with a cut cµ, then we need a′µ ≥ −1 and a′µ′ ≥ 0

for all µ′ 6= µ. This means we need to carefully control the powers a′µ which

appear. This is what we call the denominator problem. If one attempts this

direct approach, then in sufficiently complex examples, the absence of denom-

inators seems like a miracle. This direct approach can be carried out using a

computer algebra package, and when item (ii) of the definition of local rigidity

is satisfied, this naive algorithm works. Unfortunately, we have been unable

to prove this directly. Instead, we have to resort to a more indirect solution to

this problem. However, the fact that Proposition 3.9 holds, as proved in this

section, implies this naive algorithm does work.

It does not always work if item (ii) of local rigidity fails.

Example 4.8. Take dimB = 3, τ ∈P [1], g = idτ , and write Q = Z2 with

cuts ci ⊆ QR generated by (−1, 0), (0,−1) and (1, 2). Suppose the polarization

ϕ is given by ϕ(−1, 0) = ϕ(0,−1) = 0 and ϕ(1, 2) = 2. Writing Λx = Q ⊕ Z
and Aff (B̌,Z)x = Q⊕ Z⊕ Z we obtain

P = Px = {(a1, a2, a3, a4) ∈ Z4 |ϕ(a1, a2) ≤ a4}.

We then consider the (infinitesimal) scattering diagram D′ without any

rays, thus given by the functions fcµ ∈ k[Px], which we take as follows:

fc1 = 1 + z(0,0,1,0),

fc2 = (1 + z(0,0,1,0))2 + z(0,−1,0,0),

fc3 = 1 + z(0,0,1,0).

Noting that ordτ (0,−1, 0, 0) = 1, we see that z(0,−1,0,0) ∈ I0 and θ0
D′,g = 1.

On the other hand, an elementary calculation shows that the unique choice
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of lifting D of D′ so that θ1
D,g = 1, is obtained by adding the outgoing s-ray

(R≥0 · (0, 1), θ) with

θ(m) =
(
1 +

z(0,−1,0,0)

1 + z(0,0,1,0)

)〈m,(1,0,0)〉
.

Of course, this is not permitted, as we cannot allow denominators in our au-

tomorphisms attached to s-rays.

Note that the restriction of fc2 to Xτ is (necessarily) not reduced, and

hence this example does not fulfill Definition 1.26(ii).

Of course, the foundational elements in this example are completely deter-

mined by the initial data defining the log smooth structure on X, and the point

is that there may be local obstructions to smoothability. In this particular ex-

ample, one can check that there is no suitable smoothing. Thus additional

hypotheses are required. The key point of Definition 1.26(ii) is that if this

hypothesis holds, there exists a sufficiently rigid local model for a smoothing,

which we now describe.

4.4.2. Model deformations. Let ρ1, . . . , ρr = ρ0 be a cyclic numbering of

the codimension-one cells containing τ , inducing a counterclockwise ordering

of the corresponding cuts cµ = ρµ in Q. Let ďρµ = ncµ be as defined in

Remark 4.3. Recall from Definition 1.26 that equality of the subschemes Zρµ ∩
Xτ distinguishes subsets of {ρµ} of cardinalities 2 and 3. Moreover, for each

such subset we have a convex PL-function ϕ on Στ with Newton polygon

Ξ̌ an integral line segment or triangle with edges of integral length one; see

Remark 1.27. We number these functions arbitrarily ϕ1, . . . , ϕs, and write i(ρ)

for the index given by ρ ⊇ τ , provided Zρ ∩Xτ 6= ∅. We call such ρ singular,

while if Zρ ∩Xτ = ∅, we put i(ρ) = 0 and say ρ is nonsingular. Furthermore,

let ϕ0 be the pull-back to Λx of a convex PL-function on Στ defining the

polarization. Similarly, we view ϕi as PL-functions on Λx via composition

with Λx → Q = |Στ |.
For σ ∈ Pmax containing τ , denote by ni,σ ∈ Λ∗x, 1 ≤ i ≤ s, the linear

function defining ϕi on Kτσ. We also need the partial linear extension of ϕi
along ρ ∈P [n−1], ρ ⊇ τ , defined as follows:

ϕi,ρ(m) := max
¶
〈m,ni,σ〉

∣∣∣σ ∈Pmax, σ ⊇ ρ
©
.

Let e1, . . . , es be the standard generating set for Zs. Now define ‹P ⊆
Aff (B̌,Z)x ⊕ Zs to be the monoid‹P =

{
m+

∑s

i=1
aiei

∣∣∣∣m ∈ P, ai ≥ ϕi(m), i = 1, . . . , s
}
.

Then k[‹P ] is a k[t]-algebra by setting t = z1 for 1 ∈ P the distinguished

element as before.

To define the ideal of our local model in k[‹P ] we furthermore use the

following notion of t-divisibility of a monomial zm ∈ k[P ] along the τ -stratum.
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For m ∈ P , define

ht(m) = min
¶

ordσ(m)
∣∣∣σ ∈Pmax, σ ⊇ τ

©
.

Note that ht(m) is the integral height of m above the graph of ϕ0 for an

identification Aff (B̌,Z)x = Λx⊕Z. Note also that by Proposition 2.6, ht(m) =

ordσ(m) if and only if m ∈ σ.

For the moment, we will assume that we are given functions f̃i ∈ k[‹P ] of

the form

f̃i =
∑
m

ci,mz
m+
∑

j
ϕj(m)ej(4.4)

such that if ht(m) = 0 and m 6∈ Kτρ for some ρ with i(ρ) = i, then ci,m = 0,

and

fρ =
∑

m∈Kτρ, ht(m)=0

ci,mz
m.

In particular, for any i we require the functions fρ with i(ρ) = i to have a

common extension to V (ω). This is not always possible. Our construction of

f̃i in Section 4.4.6 indeed requires the hypothesis of Definition 1.26(ii). For

example, it is impossible to achieve this in Example 4.8.

Now write ti = zei ∈ k[‹P ], 1 ≤ i ≤ s, and consider the ideal

J̃>k =
Ä
t1 − f̃1, . . . , ts − f̃s

ä
+
Ä
zm+

∑
i
aiei ∈ k[‹P ]

∣∣∣ ht(m) > k
ä

in k[‹P ]. For later use it will be convenient to formally define t0 := 1.

We will also use the following related ideals, with A = σ, ρ, τ and l ≥ 0:

J̃>kl = J̃>k +
Ä
zm+

∑
i
aiei ∈ k[‹P ]

∣∣∣ zm ∈ I l+1
0 + Ik

ä
⊆ k[‹P ],(4.5)

J̃>kA = J̃>k +
Ä
zm+

∑
i aiei ∈ k[‹P ]

∣∣∣ ordA(m) > k
ä
⊆ k[‹P ].

The ideal J̃>k defines the local model, while J̃>kl , J̃>kA provide the reduction

modulo I l+1
0 + Ik and the various primary components, respectively. To study

the situation along a codimension-one cell ρ ⊇ τ it is natural to forget the

nonstandard behaviour on all other codimension-one cells and work in k[‹Pρ]
with ‹Pρ =

{
m+

∑
aiei

∣∣∣∣m ∈ P, ai ≥ ϕi,ρ(m), i = 1, . . . , s
}
.

The analogue of J̃>k in k[‹Pρ] is

ρJ̃
>k =

Ä
t1 − f̃1, . . . , ts − f̃s

ä
+
Ä
zm+

∑
i
aiei ∈ k[‹Pρ] ∣∣∣ htρ(m) > k

ä
,

where

htρ(m) = min
¶

ordσ(m)
∣∣∣σ ∈Pmax, σ ⊇ ρ

©
.

The formulae for the analogues ρJ̃
>k
l , ρJ̃

>k
A of J̃>kl , J̃>kA are defined as in (4.5)

with ρJ̃
>k replacing J̃>k.
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Remark 4.9. The basic idea of what we are going to do is that

Speck[‹P ]/J̃>k −→ Speck[t]/(tk+1)

gives a good local model for the k-th order deformation of V (τ). Clearly,

the reduction of the central fibre is canonically isomorphic to the closure of

V (τ) in V (ω) = Speck[P ]/(t), and the central fibre is reduced on V (τ). To

describe the map at the generic point of a codimension-one stratum Vτ→ρ ⊆
V (τ), find m,m′, in a localization of P along the face corresponding to ρ

such that htρ(m) = htρ(m
′) = 0 and m = −m′ is a generator of Λx/Λρ.

Then x = zm, y = zm
′
, fulfill the relation xy = te, while their canonical lifts

x̃ = zm+
∑

i ϕi,ρ(m)ei , ỹ = zm
′+
∑

i ϕi,ρ(m′)ei , fulfill

x̃ỹ = zei(ρ) · te = ti(ρ) · te = f̃i · te mod J̃>k.

This is just a slight perturbation of the standard local model as derived in

the proof of Lemma 2.34. As a result, we can essentially describe this local

model by gluings of the standard thickenings via certain automorphisms, which

can be written down explicitly. Some effort is then required to massage these

automorphisms into a standard form.

Remark 4.10. We will use repeatedly the following observation. Any mono-

mial in k[‹P ]/J̃>k is equal to an expression only involving monomials of the

form zm+
∑

i
ϕi(m)ei . Indeed, we can show this by downward induction on

ht(m), starting with those monomials with ht = k + 1, in which case such a

monomial is already in J̃>k. Now suppose the result is true for all monomials

with ht > k′. Then for a monomial zm+
∑

i
aiei with ht(m) = k′, in k[‹P ] we

can write

(4.6) zm+
∑

i
aiei = zm+

∑
i
ϕi(m)ei

s∏
i=1

t
ai−ϕi(m)
i .

We can then substitute ti = f̃i for each i. Now, by design, f̃i only contains

terms of the desired form zm
′+
∑

j
ϕj(m′)ej ; however, in making the substitu-

tion, cross terms will arise which are not of this form. These cross terms in∏s
i=1 f̃

ai−ϕi(m)
i are of the form∏

j

zmj+
∑

i
ϕi(mj)ei = z

∑
j
mj+

∑
i,j
ϕi(mj)ei .

By convexity of ϕi,
∑
j ϕi(mj) ≥ ϕi(

∑
jmj), and if we have inequality, then

there is no σ ∈ Pmax with mj ∈ Kτσ for all j; strict convexity of ϕ0 on

the fan Στ then implies
∑
j ϕ0(mj) > ϕ0(

∑
jmj). Thus any term arising

in the expansion of (4.6) of the form zm
′+
∑

i
a′iei with a′i > ϕi

Ä
m
ä

for some

1 ≤ i ≤ s must have ht(m′) > k′. By the induction hypothesis, these terms
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can be written in the desired form. We call this process reduction and say a

monomial in k[‹P ]/J̃>k is in reduced form if it is of the form zm+
∑s

i=1
ϕi(m)ei .

The same argument works in the ring k[‹Pρ]/ρJ̃>k if ϕi is replaced by ϕi,ρ,

for 0 ≤ i ≤ s. There is one slight difference here. The terms zm
′+
∑

i
aiei

appearing in f̃j may not satisfy ai = ϕi,ρ(m′), but if they do not, then we also

have htρ(m
′) > 0, allowing the induction process. Again, we call a monomial

in this ring in reduced form if it is of the form zm+
∑

ϕi,ρ(m)ei .

4.4.3. Comparison with the standard model. We now want to decompose

Speck[‹P ]/J̃>k into standard pieces. To make the comparison with the stan-

dard piece SpecRkω→σ for some σ ∈Pmax containing τ , we need to localize at

the product of

fi,σ :=
∑

{m | ht(m)=0,m∈Kωσ}
ci,mz

m ∈ k[P ].

Let σ1, . . . , σr be the maximal cells containing τ , labelled modulo r in such a

way that ρµ = σµ ∩σµ+1. Since we often need to consider neighouring cells we

write µ− := µ− 1 , µ+ := µ for 1 ≤ µ ≤ r, interpreted modulo r.

Proposition 4.11. For 1 ≤ µ ≤ r,

(4.7) zm 7−→ zm+
∑

i
〈m,ni,σµ 〉ei

induces ring isomorphisms

β±µ : (Rkω→σµ)∏
i
fi,σµ
−→
Ä
k[‹Pρµ± ]/ρµ±J̃

>k
σµ

ä∏
i
ti
,

κµ :
Ä
Rkω→τ )∏

ifi,σµ
−→
Ä
k[‹P ]/J̃>kτ

ä∏
i
ti
'
Ä
k[‹Pρµ± ]/ρµ±J̃

>k
τ

ä∏
i
ti
.

Proof. Let us first consider the case of β+
µ . First we note that

β+
µ (fi,σµ) =

∑
{m | ht(m)=0,m∈Kωσµ}

ci,mz
m+
∑

j
〈m,nj,σµ 〉ej = f̃i mod ρµJ̃

>0
σµ .

Because ρµJ̃
>0
σµ is nilpotent in k[‹Pρµ ]/ρµJ̃

>k
σµ , we see that if we can invert ti = f̃i,

we can invert β+
µ (fi,σµ), and vice versa. Thus β+

µ is defined. Now set‹Rkµ :=
Ä
k[P ]⊗k k[t±1

1 , . . . , t±1
s ]
ä¿Ä

zm ⊗ 1
∣∣∣m ∈ P, ordσµ(m) > k

ä
.

The formula for β+
µ induces an obvious identification of ‹Rkµ withÄ
k[‹Pρµ ]/〈zm+

∑
j
ajej | ordσµ(m) > k〉

ä∏
ti
.

This identification yields an isomorphism‹Rkµ/(t1 − f̃1, . . . , ts − f̃s) '
Ä
k[‹Pρµ ]/ρµJ̃

>k
σµ

ä∏
ti
.
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Now using the same reduction process as in Remark 4.10, f̃i ∈ ‹Rkµ is equivalent

modulo (t1 − f̃1, . . . , ts − f̃s) to a f̃ ′i only containing monomials of the form

zm ⊗ 1. In particular, in ‹Rkµ, we can write

ti − f̃ ′i =
∑

gij(tj − f̃j),

and we can assume the image of gij in ‹R0
µ is δij . Thus the matrix (gij) is

invertible in ‹Rkµ, and the ideals (t1 − f̃1, . . . , ts − f̃s) and (t1 − f̃ ′1, . . . , ts − f̃ ′s)
coincide. Thus

(Rkω→σµ)∏ fi,σµ
'
Ä
k[P ]/I>kω→σµ

ä∏
f̃ ′i

' ‹Rkµ/(t1 − f̃ ′1, . . . , ts − f̃ ′s) ' Äk[‹Pρµ ]/ρµJ̃
>k
σµ

ä∏
ti
,

the first isomorphism since the localizing elements only differ by nilpotent

monomials. Furthermore, this isomorphism is induced by β+
µ , giving the result.

The proofs for β−µ and κµ run identically. For the target of κµ note that

the inclusion k[‹P ]→ k[‹Pρµ± ] is an isomorphism after localizing at
∏
ti. �

For the following proposition recall that we defined ti(ρ) = t0 = 1 whenever

ρ is nonsingular.

Proposition 4.12. For each 1 ≤ µ ≤ r define the log automorphism

θµ : P −→ (Rkg)×, θµ(m) = κ−1
µ+1(ti(ρµ))

−〈m,ďρµ 〉.

Then θr ◦ · · · ◦ θ1 = 1.

Proof. First note that from the definition of the convex PL-functions ϕj
and their defining linear functions nj,σ,

t
−〈m,ďρµ 〉
i(ρµ) =

s∏
j=1

t
〈m,nj,σµ−nj,σµ+1

〉
j .

Thus

κµ+1(θµ(zm)) = κµ+1(θµ(m))κµ+1(zm)

=

Ç s∏
i=1

t
〈m,ni,σµ−ni,σµ+1

〉
i

å
zm+

∑
i〈m,ni,σµ+1

〉ei

= zm+
∑
〈m,ni,σµ 〉ei = κµ(zm),

and hence θµ = κ−1
µ+1 ◦ κµ.

From this one easily sees that

θr ◦ · · · ◦ θ1(m) =
r∏

µ=1

Ä
κ−1

1 ◦ κµ+1 ◦ θµ
ä
(m) = κ−1

1

( r∏
µ=1

t
−〈m,ďρµ 〉
i(ρµ)

)
= κ−1

1

( s∏
i=1

∏
{ρ | i(ρ)=i}

t
−〈m,ďρ〉
i

)
= 1,

the last equality by Definition 1.26(ii) and Remark 1.27. �
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4.4.4. The factorization lemma. The problem now is that when ρµ is sin-

gular, θµ is not a very well-behaved log automorphism. Our next task is to

factor it into manageable log automorphisms. The first step achieves a prod-

uct decomposition of f̃i(ρµ) of the form ti(1 + t−1
i
‹G+
µ )(1 + t−1

i
‹G−µ ), with ‹G±µ

gathering all monomials propagating into σµ±+1 and i = i(ρµ). There are two

problems with this. First, this is generally only possible modulo monomials

of higher order or propagating along ρ away from τ . And second, ‹G±µ will

only become divisible by ti after pulling back by β±µ . From this factorization

Proposition 4.15 constructs the desired factorization of θµ.

Recall that ci,m denotes a coefficient of f̃i (4.4).

Lemma 4.13. Let ρ = ρµ be singular and i = i(ρµ).

(1) There exist ‹Fµ, ‹G±µ ∈ k[‹Pρ]/ρJ̃>k with the following properties :

(i) One has ‹Fµ =
∑

m∈P,m∈Λρ

dµ,mz
m+
∑

j
ϕj,ρ(m)ej

with dµ,m = ci,m if m ∈ Kωρ and ordρ(m) = 0.

(ii) ‹G±µ is a linear combination of monomials of the form zm+
∑

j
ϕj,ρ(m)ej

with ±〈m, ďρ〉 < 0.

(iii) ‹G−µ ‹G+
µ is divisible by ti in k[‹Pρ]/ρJ̃>k, and in this ring,

(4.8) ti + ‹G−µ + ‹G+
µ + t−1

i
‹G−µ ‹G+

µ − ‹Fµ = 0.

(2) Suppose that for some i′, f̃i′ is replaced by f̃i′+ czm+
∑

j ϕj(m)ej , where

zm ∈ I l+1
0 + Ik.

(i) If i′ 6= i, then ‹Fµ and ‹G±µ are unchanged modulo ρJ̃
>k
l+1.

(ii) If i′ = i and m ∈ ρ, then ‹Fµ is replaced by ‹Fµ+czm+
∑

j
ϕj,ρ(m)ej modulo

ρJ̃
>k
l+1, while ‹G±µ are unchanged modulo ρJ̃

>k
l+1.

(iii) If we are not in case (i) or (ii), then modulo ρJ̃
>k
l+1, ‹Fµ and ‹G±µ are

modified by expresssions of the form azm+
∑

j
ϕj,ρ(m)ej , where a ∈ k[‹Pρ]\

ρJ̃
>k
0 .

Proof. We first note that if ‹G±µ satisfy condition (ii) in (1), then ‹G−µ ‹G+
µ

consists entirely of cross-terms of the form

zm+
∑

j
ϕj,ρ(m)ej · zm

′+
∑

j
ϕj,ρ(m′)ej

with 〈m, ďρ〉 > 0, 〈m′, ďρ〉 < 0. Then ϕi,ρ(m) + ϕi,ρ(m′) > ϕi,ρ(m + m′), so‹G−µ ‹G+
µ is divisible by ti.

We will construct ‹G±µ and ‹Fµ by induction on k. Begin initially with‹Fµ = ‹G±µ = 0 for k = −1.
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Now assume ‹G±µ and ‹Fµ have been constructed so that (4.8) holds in

k[‹Pρ]/ρJ̃>k−1. Now as in Remark 4.10, the left-hand side of (4.8) can be rewrit-

ten, modulo ρJ̃
>k, entirely in terms of monomials of the form czm+

∑
j
ϕj,ρ(m)ej ,

necessarily with htρ(m) = k, by the induction hypothesis. For each such term,

we have three cases.

(1) If 〈m, ďρ〉 > 0, we subtract this term from ‹G−µ .

(2) If 〈m, ďρ〉 < 0, we subtract this term from ‹G+
µ .

(3) If 〈m, ďρ〉 = 0, we add this term to ‹Fµ.

After making these changes to ‹G±µ and ‹Fµ, it is then clear that (4.8) holds

modulo ρJ̃
>k. Proceeding inductively, we construct ‹Fµ and ‹G±µ , such that

conditions (ii) and (iii) hold.

Note that when this procedure is carried out for k = 0, for the left-hand

side of (4.8) we get just ti, which is equivalent to f̃i. The only terms of the

form zm+
∑

j
ajej appearing in f̃i with 〈m, ďρ〉 = 0 that are not in ρJ̃

>0 must

have ordρ(m) = 0; hence m ∈ Kωρ and aj = ϕj(m) = ϕj,ρ(m). This makes it

clear that condition (i) holds.

For (2), we just need to look at the terms in (4.8) and investigate what

effect the reduction process of Remark 4.10 has on these. Terms in ‹G±µ and‹Fµ are already in reduced form by conditions (i) and (ii) in (1). On the other

hand, any cross-term zm
′+
∑

j
ajej in t−1

i
‹G−µ ‹G+

µ is necessarily in ρJ̃
>0
τ , so the

effect of the change to f̃i′ to the reduction process only affects this term by

something in ρJ̃
>0
τ ·ρJ̃>kl ⊆ ρJ̃

>k
l+1. Finally, reducing ti = f̃i, we see that if i 6= i′,

any term appearing in f̃i which is not in ρJ̃
>0
τ is already reduced, so similarly

the change to this term from the change in f̃i′ is in ρJ̃
>k
l+1. This gives Case (i).

Now if i = i′, then ti = f̃i acquires an additional term czm+
∑

j
ϕj(m)ej .

If m ∈ ρ, then this is already in reduced form as ϕj(m) = ϕj,ρ(m), giving

Case (ii). Otherwise, the reduction process will replace this term modulo

ρJ̃
>k
l+1 with an expression

azm+
∑

j
ϕj,ρ(m)ej

with a 6∈ ρJ̃
>k
0 , giving Case (iii). �

The following lemma is the key point for showing that no denominators

will occur in our factorization.

Lemma 4.14. For 1 ≤ µ ≤ r and ρ = ρµ singular there are chains of

surjections and inclusions

k[‹Pρ]/ρJ̃>k � k[‹Pρ]/ρJ̃>kσµ (β+
µ )−1

↪→ Rkω→σµ ,

k[‹Pρ]/ρJ̃>k � k[‹Pρ]/ρJ̃>kσµ+1

(β−µ+1)−1

↪→ Rkω→σµ+1
,
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where in each instance the first map is the obvious one. Furthermore, there

exist elements G−µ ∈ Rkω→σµ , G+
µ ∈ Rkω→σµ+1

such that

β+
µ (G−µ ) = ti · ‹G−µ ,

β−µ+1(G+
µ ) = ti · ‹G+

µ ,

where i = i(ρµ). In addition, the image of G±µ in Rkg is in I0.

Proof. We give the proof for G−µ and β+
µ , the other case being completely

analogous.

The first point is to show that (β+
µ )−1 takes k[‹Pρ]/ρJ̃>kσµ into Rkω→σµ rather

than, a priori, into (Rkω→σµ)∏
i
fi,σµ

. To see this, let ‹Pσµ be defined by‹Pσµ =
¶
m+

∑
iaiei

∣∣∣m ∈ Pidσµ , ai ≥ 〈m,ni,σµ〉, i = 1, . . . , s
©
.

This can be viewed as the localization of ‹P along the face corresponding to

σµ. Beware that this notation is not in strict analogy with ‹Pρ because now we

localize at elements of P . If we denote

σµJ̃
>k :=

Ä
t1 − f̃1, . . . , ts − f̃s

ä
+
Ä
zm+

∑
i
aiei ∈ k[‹Pσµ ]

∣∣∣ ordσµ(m) > k
ä
,

then zm 7→ zm+
∑

j
〈m,nj,σµ 〉ej also defines a map

α′µ : Rkidσµ −→ k[‹Pσµ ]/σµJ̃
>k.

This is an isomorphism. Indeed, k[‹Pσµ ] ' k[Pidσµ ] ⊗k k[t1, . . . , ts], and as in

Remark 4.10, modulo σµJ̃
>k, every ti is equivalent to an element of k[Pidσµ ]

under this isomorphism. Thus

k[‹Pσµ ]/σµJ̃
>k ' k[Pidσµ ]/(tk+1) = Rkidσµ .

Now Rkidσµ is the localization of Rkω→σµ at any element zm with ordσµ(m)

= 0 and m ∈ IntKωσµ. Thus U := SpecRkidσµ and V := Spec(Rkω→σµ)∏ fi,σµ

are both open subsets of X = SpecRkω→σµ , and X \(U∪V ) is a closed subset of

X of codimension at least two and not contained in a toric stratum. Hence the

restriction map Γ(X,OX)→ Γ(U ∪V,OX) is an isomorphism by Lemma 2.35.

Similarly, ‹U = Speck[‹Pσµ ]/σµJ̃
>k and ‹V = Spec

Ä
k[‹Pρ]/ρJ̃>kσµ ä∏ ti

are

open subschemes of ‹X = Spec k[‹Pρ]/ρJ̃>kσµ . The maps β+
µ and α′µ induce iso-

morphisms ‹V → V and Ũ → U respectively, which from their explicit form are

clearly compatible on overlaps, defining an isomorphism α : ‹U ∪ ‹V → U ∪ V .

Thus any ξ ∈ k[‹Pρ]/ρJ̃>kσµ defines a regular function on ‹U ∪ ‹V by restriction

from X̃, and (α−1)∗(ξ) ∈ Γ(U ∪ V,OX) = Γ(X,OX). As (α−1)∗ coincides

with (β+
µ )−1 for functions on ‹V , this shows that (β+

µ )−1 maps k[‹Pρ]/ρJ̃>kσµ into

Rkω→σµ .
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Now (a) obviously (β+
µ )−1(t−1

i
‹G−µ ) ∈ (Rkω→σµ)∏ fi,σµ

; (b) any monomial

in ‹G−µ is of the form zm+
∑

j ϕj,ρ(m)ej with 〈m, ďρ〉 > 0, so ϕj,ρ(m) = 〈m,nj,σµ〉
for j 6= i, but ϕi,ρ(m) > 〈m,ni,σµ〉. This shows that

t−1
i zm+

∑
j ϕj,ρ(m)ej = zm−ei+

∑
j ϕj,ρ(m)ej ∈ k[‹Pσµ ],

so (β+
µ )−1

Ä
t−1
i
‹G−µ ä ∈ Rkidσµ .

Thus from (a) and (b), we see that

G−µ := (β+
µ )−1

Ä
t−1
i
‹G−µ ä ∈ Rkω→σµ

as desired. For the statement that G−µ ∈ I0, we note that if zm 6∈ I0, then

m ∈ Λτ , but such monomials do not occur in G−µ by the properties of ‹G−µ . �

Proposition 4.15. For singular ρ = ρµ, define log automorphisms

θ±µ : P −→ (Rkg)×, θ±µ (m) = (1 +G±µ )±〈m,ďρ〉

θ′µ : P −→ (Rkg)×, θ′µ(m) = F−〈m,ďρ〉µ ,

where

Fµ = κ−1
µ (‹Fµ) = κ−1

µ+1(‹Fµ).

Then θ±µ ∈ Gkj and

θ+
µ ◦ θ′µ ◦ (θ−µ )−1 = θµ.(4.9)

Proof. The fact that θ±µ ∈ Gkj follows from the fact that G±µ are in I0 and

are induced by elements of k[P ], by Lemma 4.14. Similarly, by condition (i)

of Lemma 4.13(1), Fµ ∈ (Rkg)×.

We are going to verify (4.9) in the form

θ+
µ ◦ θ′µ = θµ ◦ θ−µ .(4.10)

The proof relies on (4.8) and the fact that θµ transforms κµ+1 into κµ:

κµ+1

Ä
θµ(zm)

ä
= κµ+1

Ä
κ−1
µ+1

Ä
t
−〈m,ďρ〉
i

ä
zm
ä

= t
−〈m,ďρ〉
i · zm+

∑
j
〈m,nj,σµ+1

〉
(4.11)

= zm+
∑

j〈m,nj,σµ 〉 = κµ(zm).

Here i = i(ρµ). Now if m ∈ Λρ, then
Ä
θ+
µ ◦ θ′µ

ä
(m) = 1 =

Ä
θµ ◦ θ−µ

ä
(m). It thus

suffices to evaluate both sides of (4.10) at one m ∈ P with 〈m, ďρ〉 = 1. Note

that by (4.8), ‹Fµ = ti(1 + t−1
i
‹G+
µ )(1 + t−1

i
‹G−µ )(4.12)
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holds in
Ä
k[‹Pρ]/ρJ̃>kä∏

i
ti

. Moreover, since Fµ only involves monomials zm
′

with 〈m′, ďρ〉 = 0, multiplication with F−1
µ commutes with θ+

µ . Thus

θ+
µ

Ä
θ′µ(m)

ä
= F−1

µ .

Using the composition formula for log automorphisms (2.4) we now compute

κµ+1

ÄÄ
θ+
µ ◦ θ′µ

ä
(m)
ä

= κµ+1

Ä
θ+
µ

Ä
θ′µ(m)

ä
· θ+
µ (m)

ä
= κµ+1

Ä
F−1
µ · (1 +G+

µ )
ä

= ‹F−1
µ ·

Ä
1 + t−1

i
‹G+
µ

ä (4.12)
=

Ä
1 + t−1

i
‹G−µ ä−1 · t−1

i

= κµ
Ä
1 +G−µ

ä−1 · t−1
i

(4.11)
= κµ+1

Ä
θµ
Ä
θ−µ (m)

ää
· κµ+1

Ä
θµ(m)

ä
= κµ+1

ÄÄ
θµ ◦ θ−µ

ä
(m)
ä
.

By Proposition 4.11, this implies (4.10) after localization at
∏
i fi,σµ+1 , which

is enough because SpecRkg has no embedded components. �

Letting θ±µ = θ′µ = 1 if ρ is nonsingular, Proposition 4.12 and Proposi-

tion 4.15 now show

(4.13) θ+
r ◦ θ′r ◦ (θ−r )−1 ◦ · · · ◦ θ+

2 ◦ θ
′
2 ◦ (θ−2 )−1 ◦ θ+

1 ◦ θ
′
1 ◦ (θ−1 )−1 = 1.

4.4.5. Construction of the scattering diagram. Recall from the hypothesis

of Proposition 3.9 that we are given a scattering diagram D′ for j with θk−1
D′,g = 1.

Following Remark 4.6 view D′ as an infinitesimal scattering diagram for Gkj
and write D′in and D′no for the sets of incoming and unoriented rays of D′,

respectively. In this step we will explain how to produce a scattering diagram

D with certain properties given D′in and D′no and an additional choice of ele-

ments f̃1, . . . , f̃s ∈ k[‹P ] as was considered above. This choice of functions will

determine the functions associated to singular ρ containing τ . To determine

the functions for nonsingular ρ let

NS(τ) = {µ | ρµ is nonsingular}.
Now we assume we are given a collection of functions {Fµ ∈ k[P ] |µ ∈ NS(τ)}
with Fµ ∈ 1 + I0. In the final step below we will then show how to choose f̃i
and {Fµ |µ ∈ NS(τ)} in such a way that D is equivalent to D′ to order k − 1.

In doing this it turns out that we need more flexibility for terms czm with

m = 0. Hence we also add, as auxiliary input, polynomials h1, . . . , hr ∈ k[P ]

with all occurring exponents m fulfilling ordτ (m) > 0 and m = 0. These

should be thought of as potential perturbations of fcµ by undirectional terms.

As compatibility condition for the hµ, we require

(4.14)
∏

{ρµ | i(ρµ)=i}
(1 + hµ)⊗ ďρµ = 1

in (Rkg)× ⊗ Λ∗x for i = 1, . . . , s.
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cµ+1 cµ

qµ

p′′µ

C
qµ−1

cµ−1

γ−µ δµ

p′µ pµ

γ′µ

γ+µ

Figure 4.5. Choice of paths. Only a part of the scattering dia-

gram is shown.

Let Df be the infinitesimal scattering diagram without s-rays or segments,

and with

fcµ,p = Fµ

for any p ∈ cµ \ {0}. Here if µ ∈ NS(τ), then Fµ is the chosen element of k[P ],

and if µ 6∈ NS(τ), then Fµ is as constructed in Proposition 4.15 from the data

f̃1, . . . , f̃s.

For µ = 1, . . . , r pick a point pµ ∈ Intσµ. As illustrated in Figure 4.5 let

p′µ be a point very close to pµ on the line joining the origin and pµ, and let

p′′µ be a point on this same line, but very close to the origin. We can assume

p′′1, . . . , p
′′
n are on a small circle C centered at the origin. Let qµ−1 ∈ C ∩ Intσµ

and close to cµ−1, so that there are no s-rays of D′no intersecting C between

C ∩ cµ−1 and qµ−1. Let γ−µ , γ+
µ be the arcs of C running from qµ−1 to p′′µ and

from p′′µ to qµ, respectively. Let δµ be a path connecting p′′µ to p′µ along the line

joining them, and let γ′µ be a small loop around pµ based at p′µ, oriented in the

same direction as γ, which we take here to be a big loop around the origin. The

point of these choices is that γ is freely homotopic inside Q\ {0, p1, . . . , pr} to

γ̃ :=
r∏

µ=1

γ−µ δµγ
′
µδ
−1
µ γ+

µ .(4.15)

Furthermore, let q ∈ Q \
Ä
{p1, . . . , pr} ∪

⋃
µ cµ
ä

be a point not on any of the

chosen paths and encircled by γ but not by γ̃.

For each z ∈ D′in, choose a point qz ∈ Int(cµ) for µ such that z ⊆ σµ.

Taking all qz’s distinct and outside C, we set

Din := {(z + qz, θz) | (z, θz) ∈ D′in}.
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This has the effect of translating each incoming s-ray so its endpoint lies on a

cut, but not the origin. Choose the qz’s so no element of Din passes through q

or one of the pµ’s. Also write Dno := D′no.

Set

Jl := I l+1
0 + Ik,

so for sufficiently large l, Jl = Ik. We now construct inductively infinitesimal

scattering diagrams D0 ⊆ D1 ⊆ · · · for Gkj with the following properties:

(1) Modulo Jl,

θγ′µ,Dl = θδµ,Dl ◦ θ
−1
γ+
µ ,Dno

◦ (θns
µ )−1 ◦ (θ−µ )−1 ◦ θ+

µ−1 ◦ θ
−1
γ−µ ,Dno

◦ θ−1
δµ,Dl

,

where θ±µ are the log automorphisms of Rkg constructed in Proposi-

tion 4.15 (the identity if µ ∈ NS(τ)), and

θns
µ =

m 7→ F
−〈m,ďρµ 〉
µ µ ∈ NS(τ),

1 µ 6∈ NS(τ).

(2) For γ′ any loop around a singular point of Dl other than the origin or

any pµ, θγ′,Dl = 1 mod Jl.

(3) No nonfoundational element of Dl \Dno intersects C or its interior.

(4) For each z ∈ Dl+1 \Dl, θz is congruent to 1 mod Jl.

(5) If p ∈ Sing(Dl)∩(cµ\{0}) for some µ, then either (a) there is an undirec-

tional s-ray z with p ∈ Int(z) and z is the only nonfoundational element

containing p, or (b) there is exactly one incoming segment or s-ray with

endpoint p, and all other nonfoundational elements z ∈ D containing p

are oriented s-rays or segments with endpoint p which lie on the other

side of cµ, with mz in the same connected component of Q\Rcµ as Int z.

(6) Given z ∈ Din, all s-rays in Dl \Din asymptotically parallel to z are en-

countered by γ (the large loop around the origin) before encountering z.

(7) The only elements z of Dl containing q are unoriented s-rays lµ, µ =

1, . . . , r, with endpoint q, r(lµ) = cµ and θlµ = exp
Ä
− log(1 +hµ)∂ďρµ

ä
.

Note that (4.14) together with (7) implies (2) for small loops around q.

Construction 4.16. To start the inductive construction of Dl consider

Df ∪Dno ∪Din. This infinitesimal scattering diagram fulfills (1)–(6) for l = 0.

To achieve (7) insert unoriented s-rays with endpoint q as demanded, observing

(3), and crossing any cut at most once. Note that we cannot in general avoid

crossing cuts, so we need to adjust the functions fcµ,p to achieve (2) for small

loops around such intersection points. The adjustments are made inductively

along each cut cµ, treating the points in cµ ∩
⋃
µ′ lµ′ in the order encountered

along cµ starting from 0.

At such a point p ∈ cµ ∩ lµ′ , denote by c± the connected components of

cµ \
⋃
µ′′ lµ′′ adjacent to p such that c+ is contained in the unbounded part of
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cµ \ {p}, and let fc± and θc± be the associated polynomials and log automor-

phisms, respectively. Then for a small counterclockwise loop γ′ around p with

appropriate base point, we find

θγ′,Dl = θc+ ◦ θ∓1
lµ′
◦ θ−1

c− ◦ θ
±1
lµ′
.

The signs for θlµ′ are determined by the orientation of the normal bundle of lµ′ .

Then the same arguments as in Step 3 of the codimension-one case (§ 4.3) give

θγ′,Dl(m) =

Ç
(θlµ′ )

∓1(fc−)

fc+

å〈m,ďρµ 〉
;(4.16)

see (4.1) with θ± = θ±1
lµ′

. Now replace all polynomials fcµ,p′ for p′ in the un-

bounded part of cµ \ {p} by (θlµ′ )
∓1(fc−). Continuing in this fashion along cµ

and for all µ defines D0. Note that D0 fulfills (2) for loops around cµ ∩ lµ′ for

any l.

We now construct Dl+1 from Dl by adding new s-rays and segments at

the singular points of Dl and the pµ.

Step 1. Let p either be a singular point of Dl with p ∈ Intσµ or p = pµ for

some µ. Let v−, v+ be primitive generators of cµ−1 and cµ, respectively. Let

γp be a small loop around p, oriented in the same direction as γ. Write

θp :=

θδµ,Dl ◦ θ
−1
γ+
µ ,Dno

◦ (θns
µ )−1 ◦ (θ−µ )−1 ◦ θ+

µ−1 ◦ θ
−1
γ−µ ,Dno

◦ θ−1
δµ,Dl

p = pµ,

1 p 6= pµ.

By the inductive assumption (1),

θp ◦ θ−1
γp,Dl

= 1 mod Jl,

so we can write

θp ◦ θ−1
γp,Dl

= exp
Ä∑

ciz
mi∂ni

ä
mod Jl+1

with
∑
ciz

mi∂ni ∈ker
Ä
g
Jl+1

j → gJlj
ä
. Let S be the set of indices S={i |mi 6=0}.

For each i ∈ S, take zi to be a suitably chosen outgoing s-ray with end-

point p, asymptotically parallel to −R≥0mi. It will need to be chosen so that

z ∩ Sing(Dl) = {p}, and so that it passes through the maximal cones σµ of

Στ in the same order p − R≥0mi passes through these cones. In addition, for

i 6∈ S, we can write

ciz
mi∂ni = c−i z

mi∂v̌− + c+
i z

mi∂v̌+ ,

where v̌± ∈ Λ⊥j ⊗ Q are the dual basis to v±. Define unoriented s-rays

z± ⊆ Intσµ with endpoint p, asymptotically parallel to cµ−1 and cµ, respec-

tively, and with

θz± := exp
(∑
i 6∈S

c±i z
mi∂v̌±

)
.
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Setting

D(p) =
¶Ä

zi, exp(ciz
mi∂ni)

ä ∣∣∣ i ∈ S© ∪ ¶Äz±, θz±ä©,
we then have θγp,Dl∪D(p) = θp mod Jl+1, as desired.

However, we cannot just add D(p) to Dl, because while the s-rays of D(p),

being the identity modulo Jl, commute modulo Jl+1 with all nonfoundational

elements of Dl, they do not commute with foundational elements.

To rectify this, we modify D(p) as follows. Replace an s-ray (z, θz) ∈ D(p)

with z1, . . . , zb, where z1, . . . , zb are the closures of the connected components

of z \ ⋃µ cµ. Of course there are a finite number of such components, and if

they are ordered so that p ∈ z1 and zi ∩ zi+1 6= ∅, then zi is a segment for i < b

while zb is an s-ray. Note that if z was unoriented, then by the construction of

D(p), z is in fact contained in the interior of σµ anyway, and no modification of

z is necessary. Otherwise, z is an outgoing s-ray, and we define θzi inductively

as follows, starting with θz1 = θz. Let µ′ be chosen so that zi ∩ zi+1 ∈ cµ′ .

If θzi = exp
Ä∑

m,n cmz
m∂n
ä
, then by our choice of z, −m is contained in the

connected component of Q \ Rcµ′ containing zi+1. Then we take

θzi+1 = exp
(∑
m,n

cmz
mf
|〈m,ďρµ′ 〉|
ρµ′ ∂n

)
.

Note that fcµ′ ,p′ = fρµ′ mod I0 for any p′ ∈ cµ′ \ Sing(Dl) and ∂nfρµ′ = 0

mod I0 for n ∈ Λ⊥j , so that by Lemma 2.15, for zm ∈ Jl,

Adθ−1
cµ′

(zm∂n) = zmf
〈m,ďρµ′ 〉
ρµ′ ∂n

for 〈m, ďρµ′ 〉 > 0 and

Adθcµ′
(zm∂n) = zmf

−〈m,ďρµ′ 〉
ρµ′ ∂n

for 〈m, ďρµ′ 〉 < 0. From this we conclude that θγ′,{cµ′ ,zi,zi+1} = 1 mod Jl+1,

where γ′ is a loop around the point z ∩ cµ′ . Applying this procedure to each

s-ray in D(p), we get a modified D(p), consisting of a collection of segments

and s-rays.

Step 2. Assume that p ∈ Sing(Dl) ∩ (cµ \ {0}). Since singular points on

cuts contained in an unoriented s-ray or segment lie on some lµ, which we have

already discussed for all l, it suffices to consider the case that p is contained in

an oriented s-ray or segment. We then follow a similar but simpler procedure

than in Step 1. By condition (5)(b), there is precisely one incoming segment

or s-ray z with endpoint p. Then by Lemma 2.15, θγp,{z,fcµ} ∈ G
Jl+1

j,K∪{0} (Def-

inition 3.6), where K is the connected component of Q \ Rcµ disjoint from z.

Thus, using the same technique as that of the proof of Lemma 3.7 and the
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previous case, one can construct a collection of outgoing s-rays D(p) with end-

point p and interiors contained in K such that θγp,Dl∪D(p) = 1 mod Jl+1. We

then modify D(p) by subdividing the s-rays as we did above.

We now see if we take

Dl+1 = Dl ∪
⋃
p

D(p),

then Dl+1 satisfies the inductive properties (1), (2) and (4). For (1) note

that because all monomials occuring in Dno and θ±µ are in I0, we may replace

θδµ,Dl+1
by θδµ,Dl in the required equation for θγ′µ,Dl+1

. Thus (1) follows from

the definition of θpµ in Step 1 above. With a further bit of care in making the

choices of s-rays above sufficiently general, all other conditions can be satisfied

also. This completes the construction of the Dl’s.

Lemma 4.17. For any l, θγ,Dl = 1 mod Jl.

Proof. By (3) the only elements of Dl that γ±µ crosses are foundational or

in Dno. Hence

θγ−µ ,Dl = θγ−µ ,Dno
, θγ+

µ ,Dl
=

θ
′
µ ◦ θγ+

µ ,Dno
µ 6∈ NS(τ),

θns
µ ◦ θγ+

µ ,Dno
µ ∈ NS(τ),

where θ′µ = θcµ,p is the log automorphism from Proposition 4.15 and p is the

intersection point of γ+
µ with cµ. In view of property (1) of Dl, the definition

of γ̃ (4.15) and (4.13), this shows that

θγ̃,Dl =
1∏

µ=r

θγ+
µ ,Dl
◦ θ−1

δµ,Dl
◦ θγ′µ,Dl ◦ θδµ,Dl ◦ θγ−µ ,Dl

=
1∏

µ=r

θγ+
µ ,Dl
◦ θ−1

γ+
µ ,Dno

◦ (θns
µ )−1 ◦

Ä
θ−µ
ä−1 ◦ θ+

µ−1 ◦ θ
−1
γ−µ ,Dno

◦ θγ−µ ,Dl

=
1∏

µ=r

θ′µ ◦
Ä
θ−µ
ä−1 ◦ θ+

µ−1 = 1.

By property (2), we conclude that

θγ,Dl = θγ̃,Dl = 1 mod Jl

because γ, being a big loop around the origin, is freely homotopic to γ̃ in

Q \ {0, p1, . . . , pr}. �

Lemma 4.18. For a rational half-line r ⊆ Q, let θr be the contribution to

θγ,Dl from outgoing s-rays asymptotically parallel to r. Then θr ∈ ‹HJl
j , and if

r is not a cut, then θr ∈ ⊥HJl
j .
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Proof. Note that automorphisms attached to nonoriented or incoming s-

rays are in HJl
j in any event, and hence preserve Ωstd. Automorphisms attached

to foundational elements preserve Ωstd as follows from their explicit form. To-

gether with Proposition 4.17 this shows

(4.17) Ωstd = θγ,Dl(Ωstd) = (θrt ◦ · · · ◦ θr1)(Ωstd) mod Jl,

where {r1, . . . , rt} is the finite set of asymptotic directions of outgoing rays in Dl

in the order encountered by γ. Assume we have shown inductively that each θri
preserves Ωstd modulo Jl, the base case l = 0 being trivial. Then modulo Jl+1,

we can factor θri = θi,1 ◦ θi,2, where θi,1 ∈ ‹HJl+1

j , and θi,2 = exp
Ä∑

m z
m∂nm

ä
with nm ∈ Λ⊥j ⊗ k, zm ∈ Jl and −m ∈ ri. Then by Remark 2.16(3),

θri(Ωstd) = θi,2(Ωstd) =
(
1 +

∑
m
〈m,nm〉zm

)
Ωstd mod Jl+1.

However, monomials zm
′
, zm

′′
, with −R≥0m′ 6= −R≥0m′′ can never cancel, so

in order for (4.17) to hold modulo Jl+1, we in fact must have 〈m,nm〉 = 0 for

each m. Thus θrµ ∈ ‹HJl+1

j . Furthermore, if rµ is not a cut, then θrµ ∈ ⊥H
Jl+1

j

since only outgoing s-rays contribute to θrµ , and these only involve monomials

zm with m 6= 0. �

Now take l sufficiently large so that Jl = Ik. Similar to Construction 4.5

we now construct an asymptotic scattering diagram D by following a procedure

for each rational half-line r ⊆ Q.

First suppose r is not a cut. Consider the contribution θr to θγ,Dl from all

s-rays asymptotically parallel to r. By property (6) of Dl we can write

θr = θin,r ◦ θno,r ◦ θ′r,

where θin,r, θno,r and θ′r are the contributions from elements of Din and from

nonoriented and outgoing s-rays, respectively. Note that by the explicit com-

mutator formula (2.10), automorphisms attached to nonoriented s-rays asymp-

totically parallel to r commute with automorphisms attached to oriented s-rays

asymptotically parallel to r. Now by Lemma 4.18, θ′r ∈ ⊥Hk
j,r, so by Lemma 3.7

we can write θ′r =
∏

r′∈Dr
θr′ for Dr a set of rays with support r (in particular

θr′ ∈ ⊥Hk
j,r).

If r = cµ for some µ, we are not allowed to add outgoing rays with support

r and rather need to modify fcµ . In this case, the contribution to θγ,Dl from s-

rays asymptotically parallel to r takes the form θ1◦θcµ ◦θ2, where θ1, θ2 ∈ Gk+1
j

and θ1◦θ2 ∈ H̃k
j,cµ

, by Lemma 4.18. Recall that θcµ,p is given by m 7→ f
−〈m,ďρµ 〉
cµ,p

for p ∈ cµ far away from the origin. Note in addition that for m ∈ P , θ1(m)

and θ2(m) can be written as a sum of terms czm
′

with −m′ ∈ cµ. It then
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follows that if θ′cµ is defined by m 7→ θ1(fcµ,p)
−〈m,ďρµ 〉, then

θ1 ◦ θcµ(m) = θ1(f
−〈m,ďρµ 〉
cµ,p ) · θ1(m)

= θ′cµ(m) · θ′cµ
Ä
θ1(m)

ä
=
Ä
θ′cµ ◦ θ1

ä
(m).

Thus θ1 ◦ θcµ ◦ θ2 = θ′cµ ◦ θ1 ◦ θ2, and since θ1 ◦ θ2 ∈ ‹Hk
j,cµ

, we can in fact

write θ1 ◦ θ2 as m 7→ g
−〈m,ďρµ 〉
µ for some gµ only involving monomials zm with

〈m, ďρµ〉 = 0. Thus the log automorphism m 7→
Ä
θ1(fcµ,p)·gµ

ä−〈m,ďρµ 〉 coincides

with θ1 ◦ θcµ ◦ θ2.

Now set

D := D′in ∪D′no ∪
⋃

r
Dr ∪

¶
θ1(fcµ,p) · gµ

©
,

where the union is over all rational half-lines r ⊆ Q that are not cuts. By

construction, θkD = θkDl = 1.

4.4.6. Construction of f̃i, hµ and {Fµ |µ ∈ NS(τ)}. The diagram D con-

structed in 4.4.5 depends on the choices of f̃1, . . . , f̃s, h1, . . . , hr and {Fµ |µ ∈
NS(τ)}, and needs not be an extension of D′. We now explain how to make

these choices so that it is. We will construct a sequence of choices for the f̃i’s,

Fµ’s and hµ’s, (f̃ li ), (F lµ), (hlµ), l = 0, 1, . . . , each yielding via Construction 4.16

a scattering diagram D(l) =
¶

(r,mr, cr), f
l
cµ

©
with the properties

(1) D(l) is equivalent to D′ modulo Jl + Ik−1;

(2) for each µ, any monomial zm appearing in f lcµ − fcµ mod Jl fulfills

−m ∈ cµ.

To begin, take h0
µ = 0, F 0

µ = 1 for µ ∈ NS(τ), and f̃0
i to be given by the

condition that ci,m = 0 unless ht(m) = 0 and m ∈ cµ for some µ with i = i(ρµ).

Note that f̃0
i is uniquely determined by the fρ’s. Furthermore, modulo J0 = I0,

D(0) is equivalent to the scattering diagram with functions fρ and no rays. In-

deed, all nonfoundational elements in D(0) are irrelevant modulo I0, and the

statement for the foundational elements follows from Lemma 4.13(1)(i) and

Fµ = κ−1
µ (‹Fµ) for µ 6∈ NS(τ).

Now suppose we have constructed f̃ li , F
l
µ and hlµ with the desired proper-

ties. For each µ, let glρµ ∈ k[P ] be the sum of terms in f lcµ − fcµ of the form

czm ∈ Jl \ Jl+1 with m ∈ cµ \ {0}. These are the terms we need to remove

from fcµ to obtain (2). Denote by g̃lρ ∈ k[‹P ] what we get by replacing each

term czm in glρ by czm+
∑

j ϕj(m)ej . We then take

f̃ l+1
i = f̃ li −

∑
{ρ | i(ρ)=i}

g̃lρ,

F l+1
µ =F lµ − glρµ , µ ∈ NS(τ).
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At this point, we do not change the hµ’s. We now look carefully at how the

new scattering diagram D(l + 1) differs from D(l) modulo Jl+1.

To do so, we first use Lemma 4.13(2) to see how ‹Fµ and ‹G±µ change for

µ 6∈ NS(τ). Modulo ρµJ̃
>k
l+1, ‹Fµ is replaced by‹Fµ − g̃lρµ +

∑
{m | −m∈cµ\{0}}

amz
m+
∑

j
ϕj,ρµ (m)el ,

where am ∈ k[‹Pρµ ]\ ρµJ̃>k0 . As Fµ = κ−1
µ (‹Fµ), this has the effect, modulo Jl+1,

of replacing Fµ with

Fµ − glρµ + terms of the form czm with −m ∈ cµ \ {0}.

Similarly, ‹G±µ are only changed by terms in ρµJ̃
>k
l \ ρµJ̃>kl+1, so G±µ are only

changed by terms in Jl \Jl+1. Tracing through Construction 4.16 one sees that

this has the effect of producing D(l + 1) with the property that modulo Jl+1,

f l+1
cµ − fcµ = sum of terms of the form czm with −m ∈ cµ.

The same holds for µ ∈ NS(τ) directly from the construction of F l+1
µ . This

yields the desired condition (2). Unfortunately, we cannot use the uniqueness

statement Proposition 4.1 yet to deduce (1) for l + 1 because f l+1
cµ − fcµ may

contain monomials zm with m ∈ Λj. Thus further modification is necessary.

Modify D(l+1) to get an auxiliary scattering diagram “D(l+1) as follows.

Let f̂ l+1
cµ be obtained from f l+1

cµ by subtracting those terms czm in f l+1
cµ − fcµ

with m ∈ Λj. Note that by induction hypothesis (1) for D(l), f̂ l+1
cµ − fcµ ∈ Jl +

Ik−1. We then replace each foundational element in D(l+ 1) by replacing f l+1
cµ

with f̂ l+1
cµ to get “D(l+ 1). Since by construction and induction hypothesis (1),

D(l),D(l+ 1) and D̂(l+ 1) are all equivalent to D′ modulo Jl + Ik−1, we have

θk−1

D̂(l+1)
= θk−1

D(l) = θk−1
D′ = 1 mod Jl + Ik−1.

Moreover, by construction f̂ l+1
cµ − fcµ consists only of terms zm ∈ Jl \ Jl+1

with −m ∈ cµ \ {0}. On the other hand, using Proposition 3.10(1) to compare

θk−1

D̂(l+1)
and θk−1

D(l+1) = 1, we see that

θk−1

D̂(l+1)
= exp

(
−
∑
µ

î
(f̂ l+1

cµ − f
l+1
cµ )/fρµ

ó
∂ďρµ

)
mod Jl+1 + Ik−1.

Hence Proposition 4.1 tells us that D̂(l + 1) must be equivalent to D′ modulo

Jl+1 + Ik−1. Thus, in particular,

θk−1

D̂(l+1)
= 1 mod Jl+1 + Ik−1.
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By the normalization condition, if i(ρ) = i(ρ′), or equivalently Zρ ∩ Xτ =

Zρ′ ∩Xτ , then fρ = fρ′ mod I0. Thus again modulo Jl+1 + Ik−1,

1 = θk−1

D̂(l+1)
= exp

Ç
−

∑
µ∈NS(τ)

Ä
f̂ l+1
cµ − f

l+1
cµ

ä
∂ďρµ

−
s∑
i=1

f−1
i

Ç ∑
{µ | i(ρµ)=i}

Ä
f̂ l+1
cµ − f

l+1
cµ

ä
∂ďρµ

åå
.

Here fi := fρ for some ρ with i(ρ) = i. Now since f1, . . . , fs are rela-

tively prime modulo I0 by Definition 1.26(ii), this is only possible if fi divides∑
{µ|i(ρµ)=i}

Ä
f̂ l+1
cµ −f

l+1
cµ

ä
∂ďρµ modulo Jl+1 + Ik−1 for i = 1, . . . , s. We now use

changes of hlµ to turn to zero each term for µ ∈ NS(τ) and each sum over µ in

the second summation. If µ ∈ NS(τ), take

hl+1
µ = hlµ + (f̂ l+1

cµ − f
l+1
cµ ).

If µ 6∈ NS(τ), the polygon Ξ̌i belonging to µ according to Remark 1.27 is either

a line segment or a triangle. Let µν , ν = 1, 2 or ν = 1, 2, 3 be the correspond-

ing indices, that is, with i(ρµν ) = i. In the case of a line segment we have

ďρµ1
= −ďρµ2

, while in the case of a triangle the ďρµν generate Λ⊥τ as Q-vector

space. In any case we can write, modulo Jl+1 + Ik−1,∑
ν

Ä
f̂ l+1
cµν
− f l+1

cµν

ä
∂ďρµν

= fi
∑
ν

ai,ν∂ďρµν
(4.18)

for some ai,ν ∈ k[P ] containing only monomials zm with m ∈ Λj. Now take

hl+1
µν = hlµν + ai,ν .

We can now run Construction 4.16 again, with the same f̃ l+1
i , F l+1

µ , as

previously, but now with the newly defined hl+1
µ rather than hlµ. Since we only

changed hlµ by terms czm in Jl and with m ∈ Λj, the infinitesimal scattering

diagram Dl+1 remains unchanged modulo Jl, while modulo Jl+1 it differs only

on the automorphisms associated to the undirectional s-rays emanating from

q as given by the modification of hlµ. In fact, the definition of the fcµ,p from

(4.16) remains unchanged because θlµ′ acts trivially on zm if m ∈ Λj, while if

m 6∈ Λj, then θlµ′ (z
m) differs from zm by terms in Jl+1.

The effect to the scattering diagram D(l+ 1) is that modulo Jl+1 + Ik−1,

for µ ∈ NS(τ), f l+1
cµ gets replaced by f̂ l+1

cµ . For µν 6∈ NS(τ), we add fiai,ν to

f l+1
cµν

. Hence by the definition of ai,ν in (4.18) we now obtain∑
{µ | i(ρµ)=i}

Ä
f̂ l+1
cµ − f

l+1
cµ

ä
∂ďρµ = 0 mod Jl+1 + Ik−1
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for any i. From the condition that each Ξ̌i is a line segment or triangle with

every edge of unit affine length, this can only hold if f̂ l+1
cµ −f

l+1
cµ is independent

modulo Jl+1 + Ik−1 of the choice of µ with i(ρµ) = i.

We are now in position to modify f̃ l+1
i a second time by, for each term

czm in f̂ l+1
cµ − f

l+1
cµ for any µ with i(ρµ) = i, adding

czm+
∑

j
ϕj(m)ej

to f̃ l+1
i . By applying Lemma 4.13(2) and the argument already made, D(l+1)

is modified so that now f l+1
cµ −fcµ contains no terms in Jl \Jl+1 of the form zm

with −m 6∈ cµ \ {0}. Thus by the same uniqueness arguments, D(l + 1) coin-

cides with D′ modulo Jl+1 + Ik−1. This completes the inductive construction

of f̃ l+1
i and hlµ.

Now take l sufficiently large so that Jl = Ik. Then θkD(l) = 1 mod Ik, and

D(l) is equivalent to D′ modulo Ik. The diagram D(l) is almost what we want;

the functions fcµ however may still contain terms of the form czm ∈ Ik−1 \ Ik
with m ∈ Λj, which we do not wish to allow in Proposition 3.9. We simply

discard these terms to get D; by Proposition 3.10(1), θkD takes the desired

form. �

5. Concluding remarks

We will end with a number of short remarks and observations about our

construction.

Remark 5.1. The first point to emphasize is the importance of the nor-

malization procedure carried out in Step III of the algorithm. Observe that

given Sk−1 consistent to order k− 1, we actually can produce many liftings to

obtain a structure Sk consistent to order k. We can do so by modifying the

structure Sk produced in our algorithm as follows. Change all the slabs in a

given ρ ∈P [n−1] in the same way. For each vertex v′ of ρ choose cv′ ∈ k, and

add to fb,x for x ∈ b \∆ the expression

D(se, ρ, v[x]) · se
Ç∑

v′
cv′t

kz
mρ
v[x]v′

å
with e : v[x] → ρ. Doing so does not destroy consistency for codimension-one

joints. If such modifications are made for each ρ ∈ P [n−1], then consistency

at codimension-two joints is a cocycle condition which, with proper choices of

coefficients cv′ , can be satisfied. In the case when B is simple, it turns out that

this gives all “well-behaved” logarithmic k-th order liftings of the (k − 1)-st

order logarithmic deformation of X specified by Sk−1. In fact, one can develop

a form of logarithmic deformation theory for log Calabi-Yau spaces, which is

done in [GS10], which explains what “well-behaved” means. In this context,
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v
0

0

1

x

Figure 5.1.

the set of these well-behaved k-th order liftings modulo a suitable equivalence

relation is in fact a vector space of the expected dimension, defined as H1 of

a sheaf of logarithmic derivations of X. What might seem surprising at first

about our construction is that we construct a canonical choice of lifting; nor-

mally one expects the set of liftings to be a torsor over this H1, without a

canonical choice of origin.

Of course, in mirror symmetry, there is a natural set of coordinates on

the moduli space of Calabi-Yau varieties near a large complex structure limit

point, namely canonical coordinates. The expectation is that our canonical

choice of lifting makes t into a canonical coordinate. We do not wish to make

this statement precise here, but just illustrate in a simple example why this

might arise. Consider a local three-dimensional example. Suppose we have

a vertex v ∈ P contained in a two-dimensional monodromy invariant affine

subspace, a plane, as depicted in Figure 5.1. The figure only shows a neigh-

bourhood of v and only those cells of P contained in the plane. The dotted

lines represent the discriminant locus, and the numbers indicate a choice of

representative for ϕ near v; the value given is that on a primitive vector in the

direction of the labelled cell. Assuming all monodromy vectors mρ
v′v appearing

in this example are primitive and the gluing data is trivial, the slab function

at the point x, as depicted, takes the form

fb,x = 1 + z(1,0,0,0) + z(0,1,0,0) + z(−1,−1,0,1) +
∑
k≥1

akt
k,

where t = z(0,0,0,1). The normalization condition dictates the values of the

coefficients ak, which are easily seen to give the sum

−2t+ 5t2 − 32t3 + 286t4 − 3038t5 + · · · .
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This can be compared with the mirror of the anti-canonical bundle of P2,

as described, e.g., in [GZ02, §4.2]; the extra power series in t means t is a

canonical coordinate for this family.

The next observation is that our construction is integral in a precise sense.

This may be related to some of the observed arithmetic properties of mirror

phenomena.

Theorem 5.2. Let A ⊆ k be a subring. Given a proper, locally rigid,

positive, toric log CY-pair given by open gluing data s = (se)e with se taking

values in A× for all e, then the structures Sk produced by our algorithm are

also defined over A; i.e. for each slab b ∈ Sk and wall p ∈ Sk,

fb,x ∈ A[Px],

cp ∈ A.

Proof. We will give a sketch of the argument. One needs to check that at

each step of the algorithm, all coefficients are in A. In Step I, we need to know

that in Proposition 3.9, if D′ is defined over A, so is D. To check this, we need

to check it is never necessary to divide by an element of A. It is easy to see that

this is the case if codimσj = 0 directly from the proof of that case. Indeed, in

the exponentials which appear in the proof, only a first order expansion is nec-

essary as terms of the form zmi ∈ Ik−1 \ Ik have square zero modulo Ik. Thus

no denominators appear in the expansion of the expressions used in the proof.

Note that here it is important that the log automorphisms associated to walls

take the form exp(− log(1 + czm)∂n) rather than exp(−czm∂n), to guarantee

that no denominators appear in the automorphisms attached to walls.

When codimσj = 1, a similar analysis of the argument in Section 4.3

shows the same integrality. However, this is not true of the argument given

for codimσj = 2, but it is faster in both cases to argue directly. Once one

knows that Proposition 3.9 is true, one knows that the naive algorithm which

works for codimension-zero joints also works for the other types of joints, as

described at the beginning of Section 4.4.1. We omit the details.

Step II presents no additional problems; the relevant relative homology

groups are zero whether the coefficient ring is k or A, and thus we only need

to modify slabs by adding terms with coefficients in A. Finally, integrality in

Step III requires understanding the normalization condition better. Consider

the following situation. Suppose that we have ρ ∈P [n−1], v ∈ ρ ⊆ σ ∈Pmax,

so we have the set

E = {m ∈ Pρ,σ|m ∈ Kvρ \ {0}}.
Suppose f = f0 + g ∈ A[Pρ,σ] such that f0 consists of all terms with zero

ordρ appearing in f , and g contains only exponents m with m ∈ Λρ and with

ordρm > 0. Furthermore, assume f0 has constant term a0 ∈ A×, all other
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exponents appearing in f0 are contained in E, and tlogv(f) ∈ (tk). Then we

need to show that tlogv(f) = atk mod tk+1 for a ∈ A. To do this, we can first

of all replace f by f/a0 (recalling that a0 ∈ A×) without changing tlogv f , so

we can assume the constant term is 1. We will show how to expand f in an

infinite product expansion

f =
∏

m∈Pρ,σ

Ä
1 + amz

m
ä

with am ∈ A and which converges in the completed ring
v“Rkidρ,σ. A sufficient

condition to guarantee this convergence is that for any ν, there are only a finite

number of m with m 6∈ νE with am 6= 0. Then for any given ν, all but a finite

number of the cross-terms in the expansion of the product are in νE.

We will construct the infinite product expansion in two steps. First, write

f = f0(1 +g/f0). This factorization can be performed in
v“Rkidρ,σ, since f0 is in-

vertible in this ring. We then express both f0 and 1 +g/f0 as infinite products

of the desired form.

To express f0 as an infinite product, we proceed inductively, for each ν ≥ 1,

writing f0 as a product
∏
m(1 + amz

m) with m 6∈ νE, up to terms in νE. For

ν = 1, the product is taken to be empty. For ν > 1, suppose that the product∏
m(1+amz

m) agrees with f0 up to terms in (ν−1)E. Then f0−
∏
m(1+amz

m)

contains only a finite number of terms
∑
bm′z

m′ with m ∈ (ν − 1)E \ νE. We

then can replace
∏

(1 + amz
m) with∏ Ä
1 + amz

m
ä∏ Ä

1 + bm′z
m′
ä

to obtain a product which works for ν.

For 1 + g/f0, we proceed similarly, but now not all the exponents occur-

ing are in νE for some ν. This time we proceed order-by-order. Suppose we

have writtten 1 + g/f0 =
∏
m(1 + amz

m), an infinite product defined in the

ring
v“Rlidρ,σ, for some 0 ≤ l < k, and we wish to extend the infinite prod-

uct to work in the ring
v“Rl+1

idρ,σ
. It is not difficult to see that after expanding

1 + g/f0 in any of these rings, writing f0 = 1 + terms in E, that for any given

ν, 1 + g/f0 contains only a finite number of terms not in νE. The same is true

of
∏
m(1 + amz

m). Thus the same is true of

1 + g/f0 −
∏
m

(1 + amz
m) =

∑
m′
bm′z

m′

in
v“Rl+1

idρ,σ
, with ordρm

′ = l + 1 for each m′. Then replace
∏

(1 + amz
m) with∏ Ä

1 + amz
m
ä∏ Ä

1 + bm′z
m′
ä
.

All new cross-terms now have ordρ larger than l+ 1. Proceeding for l up to k,

we obtain the full expansion.
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We now observe that if f =
∏
m(1 + amz

m) as above, then tlogv f ∈
k[t]/(tk+1) coincides with∑

m

tlogv(1 + amz
m) =

∑
{m |m=0}

tlogv(1 + amz
m).

Of course, this is true if this is a finite product; for the case of an infinite prod-

uct, we observe that for any given f and k, there is some ν ≥ 1 such that if f

and f ′ agree up to terms in νE, then tlogv f = tlogv f
′. Hence the infinite prod-

uct can be truncated to a finite product without changing the value of tlogv.

Now note that in this construction, since we only took products and sub-

tracted, all of the am’s are in the ring A, given that all the coefficients of f were.

Furthermore, by assumption, tlogv f ∈ (tk). Since a term of the form 1 + alt
l

appears at most once in the infinite product expansion of f , the only way this

can happen is if the factors of the form 1+alt
l appearing in the product expan-

sion have al = 0 for l < k. Thus tlogv f = tlogv(1 + atk) = atk mod tk+1 for

some a ∈ A, as desired. This shows integrality in Step III of the algorithm. �

Remark 5.3. Finally, we would like to comment on the dependence on the

choice of discriminant locus ∆ in our construction. In fact, our construction is

independent of this choice. The easiest way to see this is to run our algorithm

on X0×P1, with intersection complex B× [0, 1] with the product affine struc-

ture. We take the discriminant locus in B × [0, 1] to be an isotopy between

two choices of discriminant locus ∆0 ⊆ B × {0} and ∆1 ⊆ B × {1}, chosen

so ∆ contains no rational points. We then run our algorithm for B × [0, 1],

and it is not difficult to see that the structures Sk on B × [0, 1] restrict to

the structures on B × {0} and B × {1}. In particular, the structures given

by the two choices of discriminant locus in fact lead to the same formal toric

degeneration of CY-pairs.

References

[Ale02] V. Alexeev, Complete moduli in the presence of semiabelian group

action, Ann. of Math. 155 (2002), 611–708. MR 1923963. Zbl 1052.14017.

http://dx.doi.org/10.2307/3062130.

[AN99] V. Alexeev and I. Nakamura, On Mumford’s construction of degener-

ating abelian varieties, Tohoku Math. J. 51 (1999), 399–420. MR 1707764.

Zbl 0989.14003. http://dx.doi.org/10.2748/tmj/1178224770.

[Ben] J.-P. Benzécri, Variétés localement affines, Séminaire Ehresmann 1959.
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