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On large subsets of Fn
q with no

three-term arithmetic progression

By Jordan S. Ellenberg and Dion Gijswijt

Abstract

In this note, we show that the method of Croot, Lev, and Pach can be

used to bound the size of a subset of Fn
q with no three terms in arithmetic

progression by cn with c < q. For q = 3, the problem of finding the largest

subset of Fn
3 with no three terms in arithmetic progression is called the

cap set problem. Previously the best known upper bound for the affine cap

problem, due to Bateman and Katz, was on order n−1−ε3n.

The problem of finding large subsets of an abelian group G with no three-

term arithmetic progression, or of finding upper bounds for the size of such

a subset, has a long history in number theory. The most intense attention

has centered on the cases where G is a cyclic group Z/NZ or a vector space

(Z/3Z)n, which are in some sense the extreme situations. We denote by

r3(G) the maximal size of a subset of G with no three-term arithmetic pro-

gression. The fact that r3((Z/3Z)n) is o(3n) was first proved by Brown and

Buhler [BB82], which was improved to O(3n/n) by Meshulam [Mes95]. The

best known upper bound, O(3n/n1+ε), is due to Bateman and Katz [BK12].

The best lower bound, by contrast, is around 2.2n [Ede04].

The problem of arithmetic progressions in (Z/3Z)n has sometimes been

seen as a model for the corresponding problem in Z/NZ. We know (for in-

stance, by a construction of Behrend [Beh46]) that r3(Z/NZ) grows more

quickly thanN1−ε for every ε>0. Thus it is natural to ask whether r3((Z/3Z)n)

grows more quickly than (3 − ε)n for every ε > 0. In general, there has been

no consensus on what the answer to this question should be.

In the present paper we settle the question, proving that for all odd

primes p, r3((Z/pZ)n)1/n is bounded away from p as n grows.
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The main tool used here is the polynomial method — in particular, the use

of the polynomial method developed in the breakthrough paper of Croot, Lev,

and Pach [CLP17], which drastically improved the best known upper bounds

for r3((Z/4Z)n). In this case, they show that a subset of G with no three-term

arithmetic progression has size at most cn for some c < 4. In the present paper,

we show that the ideas of their paper can be extended to vector spaces over a

general finite field.

Remark 1. The ideas of this paper were developed independently and

essentially simultaneously by the two authors. Since the arguments of our two

papers were essentially identical, we present them as joint work.

We begin with a slight generalization of Lemma 1 of [CLP17]. Let Fq be

a finite field, and let n be a positive integer. Let Mn be the set of monomials

in x1, . . . , xn whose degree in each variable is at most q − 1, and let Sn be the

Fq-vector space they span.

Observe that the evaluation map e : Sn → FFn
q
q given by e(p) := (p(a))a∈Fn

q

is a linear isomorphism. Indeed, both spaces have dimension qn, and the map e

is surjective since for every a ∈ Fnq the polynomial
∏n
i=1(1 − (xi − ai)q−1) is

mapped to the indicator function of point a.

For any real number d in [0, (q − 1)n], let Md
n be the set of monomials in

Mn of degree at most d and Sdn the subspace of Sn they span. Write md for the

dimension of Sdn. By a slight abuse of notation, we use “polynomial of degree

at most d” to mean an element of Sdn.

Proposition 2. Let Fq be a finite field and let A be a subset of Fnq . Let

α, β, γ be three elements of Fq which sum to 0.

Suppose P ∈ Sdn satisfies P (αa + βb) = 0 for every pair a, b of distinct

elements of A. Then the number of a ∈ A for which P (−γa) 6= 0 is at most

2md/2.

Remark 3. The proof of Proposition 2 is essentially the same as that of

Lemma 1 of Croot-Lev-Pach [CLP17], which proves the proposition in the case

(α, β, γ) = (1,−1, 0). In the γ = 0 case, the conclusion of the proposition is

that P (0) = 0 once |A| > 2md/2; it turns out to be essential for the present

application to have the added flexibility of forcing P to vanish at a larger set

of places.

Proof. Any P ∈ Sdn is a linear combination of monomials of degree at

most d, so we can write

(1) P (αx+ βy) =
∑

m,m′∈Md
n : deg(mm′)≤d

cm,m′m(x)m′(y).
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In each summand of (1), at least one of m and m′ has degree at most d/2.

We can therefore write (not necessarily uniquely)

P (αx+ βy) =
∑

m∈Md/2
n

m(x)Fm(y) +
∑

m∈Md/2
n

m(y)Gm(x)

for some families of polynomials Fm, Gm indexed by m ∈Md/2
n .

Now let B be the A×A matrix whose a, b entry is P (αa+ βb). Then

Bab =
∑

m∈Md/2
n

m(a)Fm(b) +
∑

m∈Md/2
n

Gm(a)m(b).

This is an expression of B as a sum of 2md/2 matrices, each one of which visibly

has rank at most 1. Thus the rank of B is at most 2md/2.

On the other hand, our hypothesis on P forces B to be a diagonal matrix.

The bound on the rank of B now implies that at most 2md/2 of the diagonal

entries of B are nonzero. This completes the proof. �

Theorem 4. Let α, β, γ be elements of Fq , not all zero, such that α+β+

γ = 0, and let A be a subset of Fnq such that the equation

αa1 + βa2 + γa3 = 0

has no solutions (a1, a2, a3) ∈ A3 apart from those with a1 = a2 = a3. As

above, let md be the number of monomials in x1, . . . , xn with total degree at

most d and in which each variable appears with degree at most q − 1.

Then |A| ≤ 3m(q−1)n/3.

Proof. Without loss of generality we may assume γ 6= 0.

Let d ∈ [0, (q − 1)n]. The space V of polynomials in Sdn vanishing on the

complement of −γA has dimension at least md − qn + |A|.
View the elements of V as functions on Fnq , and let P ∈ V have maximal

support. Let Σ := {a ∈ Fnq : P (a) 6= 0} be the support of P . We have

|Σ| ≥ dimV for otherwise, there would exist a nonzero Q ∈ V vanishing on Σ.

But then the support of P + Q would strictly contain Σ, contradicting the

choice of P .

Write S(A) for the set of all elements of Fq of the form αa1 +βa2, with a1
and a2 distinct elements of A. Then S(A) is disjoint from −γA by hypothesis,

so P vanishes on S(A). By Proposition 2, we know that P (−γa) is nonzero

for at most 2md/2 points a of A, hence |Σ| ≤ 2md/2.

It follows that

md − qn + |A| ≤ dimV ≤ |Σ| ≤ 2md/2

whence

|A| ≤ 2md/2 + (qn −md).
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We note that qn − md is the number of q-power-free monomials whose

degree is greater than d; these are naturally in bijection with those monomials

whose degree is less than (q − 1)n− d, of which there are at most m(q−1)n−d.

Taking d = 2(q − 1)n/3, we thus have

|A| ≤ 2m(q−1)n/3 + (qn −m2(q−1)n/3) ≤ 3m(q−1)n/3

as claimed. �

It is not hard to check that m(q−1)n/3/q
n is exponentially small as n grows

with q fixed. We can be more precise. Let X be a variable which takes values

0, 1, . . . , q− 1 with probability 1/q each. Then m(q−1)n/3/q
n is the probability

that n independent copies of X have mean at most (q − 1)/3. By symmetry,

this equals the probability that n independent copies of X have mean at least

2(q − 1)/3. This is an example of a large deviation problem. By Cramér’s

theorem [RAS15, §2.4], we have

lim
n→∞

1

n
log(m(q−1)n/3/q

n) = −I(2(q − 1)/3),

where I is the rate function of the random variable X, calculated as follows:

I(x) is the supremum, over all θ in R, of

(2) θx− log((1 + eθ + · · ·+ e(q−1)θ)/q).

We note that (2) takes the value 0 at θ = 0 and has nonzero derivative at

θ = 0 unless x = (q− 1)/2, so the supremum of (2) is positive; this shows that

m(q−1)n/3 = O(cn) for some c < q.

Corollary 5. Let A be a subset of (Z/3Z)n containing no three-term

arithmetic progression. Then |A| = o(2.756n).

Proof. Taking q = 3 and x = 4/3, the supremum in (2) is attained when

eθ = (
√

33 + 1)/4 and we obtain the bound 3e−I(4/3) < 2.756. The theorem

now follows by applying Theorem 4 with α = β = γ = 1. �
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