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Abstract
& Context Forests are important carbon sinks, but increasing
temperatures may favour increases in insect populations, result-
ing in greater damage to trees. This, in turn, would lead to lower
levels of carbon sequestration, intensifying global warming.
& Aim It is therefore important to predict the impact of
insect defoliation on tree growth accurately. The main
insect defoliators of conifers in Southern Europe and
North Africa are pine and cedar processionary moths
(Lepidoptera, Thaumetopoeidae).
& Method We conducted a meta-analysis based on 45 study
cases, to estimate the effect of processionary moth defolia-
tion on tree growth.
& Result Overall, processionary moth defoliation had a sig-
nificant impact on tree growth, regardless of the tree and
moth species considered. Mean relative tree growth loss
increased with the rate of defoliation levelling out at ca.
50 %; it was significantly larger for young than for old trees.
& Conclusion These results suggest that estimates of proces-
sionary moth defoliation could easily be incorporated into tree
growth models, to predict the effect of processionary moth
outbreaks on carbon sequestration in Mediterranean forests.

Keywords Meta-analysis . Thaumetopea . Pinus .Cedrus .

Defoliation . Growth

1 Introduction

Forest ecosystems are major terrestrial carbon sinks (Hyvönen
et al. 2007). In Europe, carbon sequestration in forests has
increased in recent decades, mostly due to sustained increases
in woody biomass (Luyssaert et al. 2010). However, some of
this biomass is lost through natural disturbances, such as forest
fires, windfalls and insect damage (Nabuurs et al. 2008). In the
context of climate change, the predicted increase in net pri-
mary production (Nemani et al. 2003) due to higher temper-
atures and CO2 concentrations may therefore be offset by
changes in the frequency and intensity of biotic disturbances
(Logan et al. 2003; Netherer and Schopf 2010). Early signs of
global warming recently triggered a large-scale outbreak of
mountain pine beetle in British Columbia (Bentz et al. 2010)
resulting in the death of millions of trees and converting the
pine forest from a carbon sink to a source of atmospheric
carbon (Kurz et al. 2008). Insect defoliators are likely to have
the same impact on forest ecosystems (Dymond 2010). In the
shorter term, insect defoliation may also result in lost timber
production (Alfaro 1991; Twery 1990). There is therefore a
need to improve our knowledge of the consequences of insect
defoliation for tree growth and carbon sequestration (Pinkard
et al. 2011).

Due to their faster growth, conifers sequester carbon
more effectively than broad-leaved species (Hyvönen et al.
2007). However, the defoliation of conifers by insect herbi-
vores may have more severe effects on tree growth (Parsons
et al. 2003), particularly because, unlike broad-leaved trees
(and larch), they display no reflush growth after foliage
consumption (Wainhouse 2005). Heavy defoliation of pine,
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spruce or larch can result in a decrease in stem growth of
more than 50 % (Kulman 1971) and the amount of this
reduced growth is thought to be linearly proportional to
defoliation intensity (Kulman 1971). However, this relation-
ship may be affected by additional factors, such as site
conditions, stand age and density, recurrence and time of
defoliation (Wainhouse 2005).

The main insect defoliators of conifers in Southern
Europe and North Africa are the pine or cedar processionary
moths (Lepidoptera, Thaumetopoeidae): Thaumetopoea
pityocampa (Dennis and Schiff.), Thaumetopoea wilkinsoni
(Tams), Thaumetopoea bonjeani (Powel) and Traumato-
campa ispartaensis (Doganlar and Avcı). T. pityocampa is
oligophagous on pines and cedars in Mediterranean
countries (Devkota and Schmidt 1990; Masutti and Battisti
1990). T. wilkinsoni occurs in the eastern part of the Med-
iterranean Basin (in Turkey, for example) and its main hosts
are Pinus brutia, Pinus halepensis and Pinus nigra (Halperin
1990). T. bonjeani is present in North Africa, where it feeds
principally on Cedrus sp. (Gachi et al. 2005). The cedar
processionary moth, previously known as Thaumetopoea sol-
itaria (Freyer), has been observed in Turkey since 1975 and
was identified as a new species named T. ispartaensis in 2001.
T. ispartaensis is one of the most dangerous pests of Cedrus
libani in the Middle East (Avcí 2003).

The processionary moth larvae prefer to feed on mature
needles but may also feed on young needles, potentially
resulting in defoliation of up to 100 % of crown volume.
Defoliation decreases the activity of needles and their avail-
ability for photosynthesis, resulting in significant impact on
tree growth (Hodar et al. 2003). Severe, repeated defoliation
may even lead to the death of the tree, particularly if the tree
is young or soil conditions are poor, because trees weakened
by defoliation are more susceptible to secondary pests, such
as bark beetles. In the last decade, it has been shown that T.
pityocampa is spreading towards higher latitudes and alti-
tudes, probably due to the global warming (Battisti et al.
2005; Robinet et al. 2007). For both peri-Mediterranean
forests and more northern pine forests that are potentially
susceptible to invasion, it is therefore important to better
predict the impact of processionary moth damage on eco-
system functioning.

Several studies have evaluated the loss of tree growth due
to processionary moth defoliation (Table 1). However, as for
many other insect defoliators (Wainhouse 2005), many dif-
ferent methods have been used to quantify these losses.
These methods have included the measurement of annual
rings (i.e. dendrochronology), comparing tree circumfer-
ence, height or volume between defoliated and unaffected
trees or comparing growth in the same tree before and after
attacks. This diversity of methodological approaches pre-
vents generalisations regarding the patterns of tree growth in
response to processionary moth defoliation. Moreover, the

lack of consistency in estimates of defoliation rate and the
use of different tree species of different ages in these studies
makes it difficult to draw firm conclusions about the rela-
tionship between growth loss and defoliation severity. We
circumvented these problems, by carrying out a meta-
analysis of existing studies to address the question of the
impacts of processionary moth defoliation on pine or cedar
growth. Meta-analysis is based on the use of a set of statis-
tical tools to combine the outcomes of independent studies
for evaluations of the overall effect of a particular factor
and for assessing the influence of covariates on this
effect (Gurevitch and Hedges 1999). Our main objectives
were: (1) to determine whether processionary moth defoli-
ation significantly effects tree growth, (2) to determine
whether this effect increased significantly with the intensity
of defoliation and (3) to investigate whether growth responses
to processionary moth defoliation differed between young and
mature trees.

2 Materials and methods

2.1 Data collection

We searched for studies investigating the effect of pine
processionary moth defoliation on tree growth in online
bibliographic databases (ISI Web of Knowledge and Goo-
gle Scholar). Keyword searches were conducted with var-
ious combinations of relevant terms, such as: Pinus or
Cedrus or pine or cedar, processionary or Thaumetopoea,
defoliation or damage and radial or diameter or circum-
ference or height or volume or growth. We also searched
the references cited in relevant publications. Studies were
included in the meta-analysis if they met the following
four criteria:

1. Tree growth, estimated with circumference, height or
volume variables, was compared between naturally
defoliated and unaffected (control) trees. We excluded
studies dealing with artificial defoliation because artifi-
cial defoliation might not correctly mimic the natural
process of processionary moth defoliation in terms of
timing and needle choice (Quentin et al. 2010).

2. Defoliation rate was estimated as percent defoliation,
stratified into classes.

3. The mean of the growth response variable, a measure of
its variance and the sample size for both defoliated and
control trees were reported in the text or could be
determined by the digitisation of graphs.

4. The reported paired comparison of growth, between
defoliated and control trees, was made with the same
experimental or observational protocol, on the same
date and in the same region.
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Our literature search identified 24 published studies de-
scribing the effect of processionary moth on tree growth. Six
of these studies had insufficient statistical data, four lacked
information about defoliation rate and two were based on
artificial defoliation (Table 1). We rediscovered the archived
data for Lemoine’s (1977) study, making it possible to
distinguish between two independent sampled stands. This
meta-analysis was therefore based on 45 pairwise compar-
isons derived from 12 publications or reports published
between 1977 and 2010.

2.2 Calculating effect sizes and defining explanatory
variables

The effect of processionary moth defoliation on tree growth
was estimated by using the log response ratio lnR (Eq. 1) as
standardised effect size for each pairwise comparison (Hedges
et al. 1999). The use of ln R (rather than Hedges’ d or another
measurement of effect size) has recently become more com-
mon in biological studies because it assumes that effects can
be multiplicative and is less sensitive to error than other
methods (Morris et al. 2007). The variance of ln R (vln R)
was calculated as in Eq. (2) and the inverse of this variance
was used as the weighting in calculations of weighted means
(Hedges et al. 1999). A negative value of lnR indicates a
growth loss in defoliated trees (less growth in defoliated trees
than in control, unaffected trees).

lnR ¼ ln
XDEF

X CTL

� �
ð1Þ

where XDEF is the mean growth measurement for defoliated

trees and X CTLis the mean growth measurement for unaffect-
ed, control trees.

vlnR ¼ σCTLð Þ2
NCTL X CTL

� �2 þ σDEFð Þ2
NDEF XDEF

� �2 ð2Þ

where N is the sample size and σ is the standard deviation.
Because the effect size is a ratio, it has no unit. It is thus

theoretically possible to combine studies reporting different
types of growth measurements. However, radial and height
growth may respond differently to processionary moth de-
foliation. We therefore assessed the effect of the type of
growth measurement used on lnR. Both circumference and
height growth data were available for the same trees in six
papers accounting for 11 mean values per defoliation class
(Chatziphilippidis and Avtzis 1994; Carus 2004, 2009,
2010, Durkaya et al. 2009; Pestaña and Santolamazza-
Carbone 2010). A simple linear regression analysis was
used to compare mean lnR values per class of defoliation
for circumference and height. It showed that there was a
highly significant correlation between the two values of lnR
(n011, F0212.2, R²00.91, P<0.0001) which were almost

equal to each other (ln Rcir01.1 ln Rheight). We therefore
pooled studies reporting either circumference or height los-
ses in the same dataset.

For studies reporting tree growth estimates for several
years, we used only the data for the first year. Two indepen-
dent experiments (different stands or sites) reported in the
same paper were considered as two separate comparisons.

We split the dataset into classes for tree age and percent-
age of defoliation. Trees were considered ‘young’ if they
were less than 15 years old and ‘old’ if they were greater
than 15 years old. We defined four classes of processionary
moth defoliation rate: class 1, 5–24 %; class 2, 25–49 %;
class 3, 50–74 %; and class 4, 75–100 %. In many cases,
groups of trees with different rates of defoliation were
compared with the same control group (unaffected trees)
within a given study. These comparisons are not truly inde-
pendent. To account for this problem of multiple compar-
isons, we used the method proposed by Borenstein et al.
(2009). We collapsed the data from all groups of defoliated
trees to generate a combined sample size, mean and standard
deviation. We then calculated a new effect size for a com-
parison of the control group with the new merged group.
This reduced the entire dataset to 15 fully independent
comparisons, for which a new meta-analysis was carried
out. The weighted mean of growth loss obtained with the
complete dataset (−43 %) was very similar to the grand
mean effect size calculated with the reduced set of
independent studies (−0.38 %) and was within the con-
fidence interval for the reduced set of independent stud-
ies (−26 to −48 %). We therefore decided to use the
complete dataset with 45 pairwise comparisons, to ensure that
a maximum of information was retained and to maximise
statistical power in tests for the effect of covariates, such as
the rate of defoliation.

We combined effect sizes across all comparisons, us-
ing the random effect model (Gurevitch and Hedges
1993) to calculate a weighted mean of growth loss (i.e.
the grand mean effect size, E++). Because individual
studies did not have similar sample sizes, and because
the variance of effect size is a function of sample size, it
was necessary to calculate a weighted average of effect
sizes to estimate cumulative effect size for our sample of
studies (Eq. 3)

Eþþ ¼
Pn
i¼1

wi lnRi

Pn
i¼1

wi

ð3Þ

with wi ¼ 1
vlnRi

:

The mean effect size was considered statistically signif-
icant if its bias-corrected bootstrap confidence interval (CI),
estimated with 9,999 iterations, did not include zero.

860 J.-S. Jacquet et al.



We used a mixed-effect model to assess between-class
heterogeneity (for each covariate) and to evaluate the sig-
nificance of the class effect (Gurevitch and Hedges 1999),
assuming a fixed effect across classes and a random effect
within classes (Borenstein et al. 2009). The weighted mean
effect size Ej (Eq. 4) and a bias-corrected bootstrap confi-
dence interval were then calculated for each class of cova-
riate (tree age and defoliation rate).

Ej ¼
Pkj
i¼1

wij lnRij

Pkj
i¼1

wij

ð4Þ

We calculated the variation in effect size explained by the
categorical model (QBetween or QB). This between-class het-
erogeneity was tested against a Chi² distribution, to evaluate
the significance of the class effect. We back-transformed
effect size values with the exponential function to provide
a direct estimate of relative growth loss as a percentage of
mean growth in unaffected trees.

The publication bias problem was addressed by calculat-
ing a fail-safe sample size corresponding to an estimate of
the number of studies with a null effect size that we would
need to add to the analysis to render the result of the meta-
analysis non-significant. The weighted method proposed by
Rosenberg (2005) was used to calculate the fail-safe number
for our dataset, and this number was then compared with
Rosenthal’s conservative critical value of 5n+10, where n is
the total number of comparisons (Rosenberg et al. 2000). All
meta-analyses were carried out with METAWIN 2.0 software
(Rosenberg et al. 2000).

3 Results

The qualitative examination of all retrieved published
papers on the effects of processionary moth defoliation
indicated that, in all but one case, tree growth was reduced
by defoliation (Table 1). However, the relative growth loss
attributed to processionary moth defoliation greatly varied
between studies, and even for complete defoliation (100 %),
it ranged from 20 to 80 % (Table 1).

Our quantitative review (meta-analysis) gave less ambigu-
ous results. It clearly revealed that defoliation by procession-
ary moth caterpillars resulted in a significant decrease in tree
growth. The grand mean effect size was −0.55 (CI0−0.67
to −0.45), indicating a mean growth loss of 43 % (CI036
to 49 %) with respect to unaffected trees. The weighted
fail-safe sample size was 55,265, about 235 times larger
than the critical value of 235 ((5×45)+10). Thus, these
results are unlikely to be affected by publication bias. In
all but 2 of the 45 cases, individual growth rates were
negative (Fig. 1). The two cases of a positive effect size,
indicating greater growth in defoliated than in unaffected
trees, corresponded to the same study (Barrento et al. 2008)
and concerned 10–25-year-old trees with 1–25 % of defo-
liation by T. pityocampa. The tree growth response to
defoliation by T. bonjeani and T. wilkinsoni fell within
the range of variation for the tree growth response to
defoliation by the more common species T. pityocampa.

3.1 Effects of percent defoliation

Percentage defoliation had a highly significant effect on
growth loss in defoliated trees (df03, QB011.7 and P00.01).
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The mean effect size was negative and significantly different
from zero for all defoliation rate classes, and its magnitude
increased with the rate of defoliation. However, the effect of
defoliation on growth loss seemed to level out from defoliation
rates of 50 % on (Fig. 2). Low rates of defoliation (5–24 %)
resulted in a growth loss of about 20 %, whereas severe
defoliation (>50 %) induced growth losses of almost 50 %.

3.2 Effect of tree age

We tested the effect of tree age hierarchically within each
class of processionary moth defoliation rate. We found a
significant effect of tree age on tree growth response to
processionary moth defoliation within the 5–24 % class
(df01, QB06.4, P00.03) and the 75–100 % class (df01,
QB05.4, P00.05) but not within the 50–74 % class (df01,
QB00.38, P00.48). By grouping these three classes of
defoliation, we observed an overall significant effect of tree
age on growth response to processionary moth defoliation
(df01, QB06.0, P00.02) with young trees exhibiting larger
growth losses than old trees (Fig. 3). Too few replicates
were available to allow testing this effect in the 25–49 %
class.

4 Discussion

The impact of insect defoliation on the growth of evergreen
tree species has been extensively studied and most of these
studies have concluded that even low levels of defoliation
can reduce radial or height growth. In a seminal literature
review, Kulman (1971) discussed many cases of damage
caused by moth and sawfly conifer defoliators and found
that light defoliation induced a significant loss of 10 to 30 %
of radial growth. The results of our meta-analysis are con-
sistent with these findings, as we estimated that 5 to 24 %
defoliation by processionary moth would reduce pine

growth by about 20 %. At the other end of the gradient,
heavy defoliation had a much greater impact, with 30 to
95 % growth loss (Kulman 1971). Similarly, severe
defoliation by the sawflies Diprion pini (L.) on Scots
pine (Langstrom et al. 2001; Lyytikäinen-Saarenmaa and
Tomppo 2002), Cephalcia lariciphila (Wachtl) on larch
(Vejpustkovà and Jaroslav 2006) and Neodiprion abietis
(Harr.) on spruce (Parsons et al. 2003) reduced radial growth
by 40 to 70 %. Radial increment in Scots pine was
reduced by about 30 % at the peak of pine looper moth
Bupalus piniaria (L.) outbreaks (Straw 1996) and by
about 90 % in jack pines following heavy defoliation
by Choristoneura pinus (Freeman) (Kulman 1963). Similarly,
we found that 76 to 100 % defoliation by processionary moth
caused ca. 50 % growth loss in conifers.

Only one study reported a positive effect of procession-
ary moth on pine growth (Barrento et al. 2008), but this may
be a false causal effect. Processionary moth females are
known to select taller trees for oviposition (Démolin
1969). Young tall trees are likely to exhibit faster growth
rates than smaller trees of the same age. If young and tall
trees are only very lightly infested by processionary moth,
this may not have any detrimental effect on their growth.
Thus, growth rates may remain greater for taller defoliated
trees than for smaller trees that have not been infested at all
(which were considered as control).

There is a broad consensus that the magnitude of growth
loss is proportional to the amount of foliage removed by
insect herbivores (Kulman 1971; Piene and Little 1990;
Gross 1992; Reich et al. 1993). However our meta-
analysis revealed an asymptotic relationship, since the effect
of processionary moth damage on tree growth levelled out
from 50 % of defoliation on (Fig. 2).

In conifers, initial shoot elongation makes use of stored
photosynthates from the previous growing season, whereas
summer wood growth and needle elongation are mostly de-
pendent on current-year photosynthates (Kulman 1971).
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According to the carbon/nutrient balance hypothesis (Krause
and Raffa 1996), evergreen trees that store a large propor-
tion of their biomass in needles may lose a large proportion
of their carbohydrate reserves during defoliation. It has
been also suggested that the elimination of old leaves
during defoliation induces a shift in carbon allocation to
higher priority sinks and, in particular, to the production of
new foliage. This would result in carbohydrate shortage for
stem diameter growth (Mayfield et al. 2005). For these
reasons, conifers would be expected to suffer substantial
growth loss in response to insect defoliation, with this
impact evident in the same growing season, as observed
with processionary moth.

Processionary moth caterpillars feed on pine and cedar
needles in autumn and winter. They avoid feeding on
young needles unless the mature ones are missing (A.
Battisti personal communication). Old foliage contributes
a significant part of the tree crown, for example 55 % of
tree crown area in maritime pine (Pinus pinaster Ait.)
(Porté et al. 2000). The consumption of old foliage is
therefore likely to have a significant effect on tree growth
(Parsons et al. 2003). However, new foliage produced in
spring is known to have higher photosynthetic activity
(Porté and Loustau 1997). A small fraction of new foliage
regenerated by trees heavily defoliated in the previous
winter could then be sufficient to resume growth, which
could explain why complete processionary moth defolia-
tion (76–100 %) decreased growth by only about 50 %
(Fig. 2).

We found no difference in the effect of processionary
moth defoliation on relative growth loss when estimated
from circumference and height data. Similarly, Kulman
(1971) and Wainhouse (2005) cited several studies in
which the impact of insect defoliation on height growth
was as severe as that on radial growth. However, we did
observe a significant effect of tree age on growth responses to

processionary moth defoliation. Kulman (1971) and
Wainhouse (2005) argued that young trees are more
likely than old trees to die following severe defoliation,
but that the growth-reducing effect of defoliation seems
to be independent of tree age. Yet, young and older trees
differ in term of canopy structure and nutrient storage
capacity, and these differences are likely to influence
their response to defoliation (Kelly et al. 1995; Straw
et al. 2002, 2011). The proportion of older foliage is
higher in old than young pine trees (Porté et al. 2000).
Because processionary moth caterpillars start feeding on
older foliage, for the same percentage defoliation, they
will begin feeding on young foliage earlier in younger
trees. Since young foliage contributes more to tree
growth, the effect of processionary moth defoliation on
younger trees is expected to be greater. Larger trees are also
expected to mitigate some of the effects of defoliation by
using stored nutrient reserves (Niinemets 2010). Although,
we compared young and old trees through a meta-analysis
of a number of different studies, it would be preferable to
test the effect of processionary moth defoliation on the
growth of trees of different age classes within the same
experimental study, with the same site conditions and pro-
cessionary moth population levels.

Overall, our meta-analysis, based on all available pub-
lished papers on the topic, confirms that processionary
moth defoliation has a significant impact on pine and
cedar growth, even when only a small proportion of the
foliage is consumed. Our findings also indicate that
growth loss is more pronounced for younger than for
older trees and would level out at ca. 50±10 % for
heavily defoliated trees. These results suggest that esti-
mates of processionary moth defoliation could easily be
incorporated into tree growth models, to predict the effect
of processionary moth outbreaks on carbon sequestration
in Mediterranean forests.
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