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Abstract
& Key message We combined aerial LiDAR and ground sen-
sors to map the spatial variation in micro-environmental
variables of the tropical forest understory. We show that
thesemetrics depend on forest type and proximity to canopy
gaps. Our study has implications for the study of natural
forest regeneration.
& Context Light impacts seedling dynamics and animals, ei-
ther directly or through their effect on air temperature and
relative humidity. However, the micro-environment of tropical
forest understories is heterogeneous.

& Aims We explored whether aerial laser scanning (LiDAR)
can describe short-scale micro-environmental variables. We
also studied the determinants of their spatial and intra-annual
variation.
& Methods We used a small-footprint LiDAR coverage com-
bined with data obtained from 47 environmental sensors moni-
toring continuously understory light, moisture and temperature
during 1 year over the area.We developed and tested twomodels
relating micro-environmental conditions to LiDAR metrics.
& Results We found that a volume-based model predicts em-
pirical light fluxes better than a model based on the proportion
of the LiDAR signal reaching the ground. Understory field
sensors measured an average daily light flux between 2.9
and 4.7% of full sunlight. Relative seasonal variation was
comparable in the understory and in clearings. In canopy gaps,
light flux was 4.3 times higher, maximal temperature 15%
higher and minimal relative humidity 25% lower than in the
forest understory. We found consistent micro-environmental
differences among forest types.
& Conclusions LiDAR coverage improves the fine-scale de-
scription of micro-environmental variables of tropical forest
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understories. This opens avenues for modelling the distribu-
tion and dynamics of animal and plant populations.

Keywords FrenchGuiana . Light . Nouragues station .

Plant dynamics . Temperature . Relative humidity

1 Introduction

Solar irradiance and spectral composition of understory light
are both critical for a range of biological processes, from forest
regeneration (Ackerly and Bazzaz 1995; Montgomery and
Chazdon 2002; Valladares 2003; Palomaki et al. 2006), to sig-
nalling among animals (Endler 1993; Regan et al. 2001). Light
is critical to seed germination (Baskin and Baskin 2001; Willis
et al. 2014) and seedling and sapling growth within tropical
forests (Tinoco-Ojanguren and Pearcy 1995; Baraloto and
Goldberg 2004; Palomaki et al. 2006).

Greater light irradiance on the ground also implies increased
ground-level air temperature, as predicted by energy balance
models (Monteith and Unsworth 2013), and air temperature is
expected to bear on heterotrophic respiration processes in the
rainforest soil (Salinas et al. 2011). Higher rates of litter decom-
position and a faster proliferation of micro-organisms are expect-
ed as temperature increases. Higher ground temperature also
leads to an increased water evaporation and thus affects both soil
and air moisture (Marthews et al. 2008).

Tropical forest canopies absorb or reflect most of direct sun-
light, and on average, ground-level light typically represents 1
to 3% of the above-canopy intensity (Chazdon and Fetcher
1984; Montgomery and Chazdon 2001). Canopy gaps caused
by branch or tree falls result in ephemeral and localised, but
intense, increases in local irradiance in the understory (Chazdon
and Pearcy 1991; Smith et al. 1992; Engelbrecht and Herz
2001). As a result, light availability at ground level is heteroge-
neous in both time and space (Canham et al. 1994; Nicotra et al.
1999; Montgomery and Chazdon 2001). It is controlled by the
geometry of the canopy (Capers and Chazdon 2004), e.g. stem
density is a weak predictor of light availability (Montgomery
and Chazdon 2001).

Recent advances in remote sensing provide new opportuni-
ties for the landscape-scale assessment of forest structure.
Small-footprint aerial laser scanning, or LiDAR, provides
fine-grained (i.e. 1 m2) information on the structure and hetero-
geneity of forest canopies (Lefsky et al. 2002). On the ground,
environmental sensors have also been significantly improved in
the past years (Le Galliard et al. 2012). They can now be de-
ployed to measure environmental variables at many points in
space and during long periods of time. Previous studies have
sought to quantify leaf area index (LAI) in tropical forest using
large-footprint LiDAR (Tang et al. 2012) or in temperate forests
(Parker et al. 2001; Lee et al. 2009; Mücke et al. 2011; Bode
et al. 2014; Peng et al. 2014). Here, we seek to infer the

fine-grained variability in understory light intensity by combin-
ing small-footprint LiDAR and an environmental sensor net-
work in a natural mixed species lowland Neotropical forest in
French Guiana.

We quantify the spatial and temporal variation in key forest
understory environmental variables. Specifically, we aim to an-
swer the following three questions. (1) How do metrics derived
from airborne LiDAR perform in the prediction of ground-level
temperature, relative humidity and local irradiance? (2) What are
the variations of micro-environment between different forest
types and how do they vary in and around canopy gaps? (3)
What are the differences in irradiance, temperature and relative
humidity between dry and wet season and do canopy character-
istics impact on these differences?

2 Material and methods

2.1 Study site

We selected a study zone of 5.4 km2 within the old-growth
tropical moist forest centred around the Inselberg Camp of the
Nouragues Ecological Research Station in French Guiana
(Latitude: 4° 04′ 27.986″ N, Longitude: 52° 40′ 45.107″ W).
Hills and plateaus reaching 250 m asl alternate with 60–100 m
elevation valleys. A 450-m asl granitic outcrop (inselberg)
dominates the area. Annual rainfall is typical of moist tropical
forests (average of 2861 mm year−1 on the1992–2012 period)
with a two-month dry season (precipitation below
100 mm month−1) in September and October and a shorter
one in February or March (Fig. S1 in Online resources).
Five types of vegetation can be distinguished in our study
zone: high forest, low forest at the margin of the inselberg,
low and sparse vegetation on the inselberg, liana-infested for-
est and periodically flooded forest (Fig. 1). Over 1700 angio-
sperm species are recorded in the Natural Reserve (Sabatier
and Prévost 1990; van der Meer and Bongers 1996).

For this study, after removing the areas containing the
campsite and the inselberg, gaps were defined following
Brokaw’s definition as areas larger than 20 m2 with a canopy
height lower than 2 m (Brokaw 1982). Within the zone of
interest, 81 gaps were detected across forest types. Micro-
environmental conditions in these gaps were compared with
that in buffer zones around them irrespective of the type of
surrounding vegetation.

2.2 LiDAR acquisition

In March 2012, one aerial laser scanning (LiDAR) acquisition
was conducted by the private company ALTOA (http://www.
altoa.fr/) over 24 km2 of old-growth forest on the Nouragues
Research Station. A portable Riegl laser rangefinder (LMSQ
560, 200 kHz, 1.5 μm wavelength laser pulses) was flown on
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a Britten-Norman Islander (BN2) aircraft at ca. 400 m above
the ground at about 45 m s−1. The average laser pulse density
was ca. 12 pulse m−2, the scanning angle ranged between −23°
and +23° from vertical and the beam divergence was 0.5
mrad, resulting in a footprint of 0.2 m. Registration of multiple
returns led to a mean density of 20 pt m−2 in the zone of
interest with a mean spacing of 0.23 m. Two dual-frequency
GPS receivers coupled to an inertial navigation system
allowed a sub-decimetre differential positioning.

Ground points were filtered with the ‘Ground’ routine of
TerraScan (TerraSolid, Helsinki), average ground points den-
sity was 0.77 m−2 with 1.14 m average spacing. A 1-m reso-
lution digital elevation model (DEM) was constructed using
the las2dem function of LAStools software (Insenburg).

2.3 Light flux modelling

We used LiDAR signal intensity to approximate canopy trans-
mittance to the whole solar radiation. The backscatter signal is
split into asmany echoes as the laser beam encounters reflective
surfaces (provided they are large enough). Post-processing of
full-waveform LiDAR yields not only the location of the ech-
oes but also the energy backscattered by each reflective surface
(Wagner et al. 2006). Assuming that the reflectance of the can-
opy elements is similar across the forest and that the reflected
energy does not depend on the laser incident angle (Fig. S3 in
Online resources), backscattered energy should be proportional
to the scattering cross-section of each surface. We thus weight-
ed LiDAR returns based on their rank and the total number of
returns in the pulse they belong to. Weighting was based on the

average relative energy associated to each return in the vegeta-
tion (Table S1 in Online resources).

We considered transmittance derived from LiDAR and ob-
tained from sub-vertical sampling to be representative of the
canopy transmittance in all directions hence considering that
transmittance is isotropic. This is equivalent to considering
that foliage elements are small, distributed randomly and with
a spherical angle distribution (Monteith and Unsworth 2013).

2.4 Multidirectional light penetration index

For taking full advantage of LiDAR 3D information, we di-
vided space into cubic cells (voxels). The Beer-Lambert law
stipulates that light transmission for each beam exiting a cell
should comply with the following equation:

IOut ¼ IEnt � exp −α� lð Þ

with IOut and IEnt , the light intensity entering and exiting the
cell, respectively, α the extinction coefficient and l the length
of the optical path through the cell. Considering multiple in-
cident light beams with different trajectories, the transmittance
of a particular cell j normalised by the mean optical path
length lmean is therefore approximated by

T j ¼ exp −aj
� � ¼ IOut; j

IEnt; j

� �−lmean

Thus, the transmittance of each voxel j can be measured by
estimating the ratio between the inbound energy and the out-
bound energy for every beam crossing the voxel j as:

Fig. 1 Map of the zone of
interest (adapted from Réjou-
Méchain et al. 2015). The
different forest types were
determined using field inventory
and ALS-derived information on
canopy height topography.
Position of light, temperature and
relative humidity sensors are
marked by red stars
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ln T j
� � ¼ 1

1

n
∑n

i li
� ln

∑n
i PFOuti � Si � li

∑n
i PFEnti � Si � li

� �

where n is the total number of LiDAR beams entering voxel j;
PFEnti and PFOuti are respectively the inbound and outbound
fractions of the beam energy of pulse i for voxel j. They are
obtained from the energy fraction of beams after each return
(Table S1 in Online resources). Si is the beam cross-section at
voxel centre calculated knowing the distance from source and the
beamdivergence assuming no fragmentation; li is the optical path
length of the beam i in voxel j. The term, ∑n

i PFOuti � Si � li
represent the volume actually crossed by the beam exiting the
considered cell while ∑n

i PFEnti � Si � li is the potential vol-
ume sampled by the entering beam. Their ratio approximates the
proportion of voxel volume that is travelledwithout encountering
any object.

We also define the plant area density (PAD, the area of veg-
etation per volume of canopy, in m2 m−3), which is calculated as:

PAD ¼ min
log10 T j

� �

−0:5
; PADmax

� �

PADmax is the maximal admissible value for PAD. PAD max
was set to 1 m2 m−3 here for a 1-m3 resolution. Several values
were tested without modifying the results qualitatively. In our
dataset, around 17% of canopy voxels were not sampled due
to low laser penetration and sampling irregularity. An average
of the PAD in a 3DMoore neighbourhood (Balzter et al. 1998)
was assigned to unsampled voxels.

Using the 3D information of the PAD in the voxel space, we
calculated the light transmitted above ground level by tracing
rays in 406 directions corresponding to a split of the sky hemi-
sphere following Dulk’s TURTLE model (Dulk 1989; Dauzat
et al. 2001, 2007). Light extinction through the forest canopy
was then calculated using the Beer-Lambert law:

In ¼ Io ∑406
θ wθ ∏nvox

i exp −0:5� PADi � lið Þ, with Iowθ the
solar radiation in the direction θ considered for a given period.

Solar position and atmospheric conditions integrated over
the year were used to weigh the contribution of each direction
to the global light budget. Radiative conditions were
characterised by a clearness index kt defined as the ratio of
the global irradiance at ground level over the extraterrestrial
global solar irradiance above the atmosphere at a month scale
(Table S2 in Online resources). Transmittance values for each
sampled direction were then summed to calculate multidirec-
tional light penetration index (mLPI) in a 1-m

3 voxel space on
a 2-m resolution grid at 1.5 m above ground.

All the computations required to compute the volume-based
light penetration index were conducted with the AMAPvox soft-
ware. Documentation and software can be accessed at https://
amap-dev.cirad.fr/projects/voxelidar and the source code can be
found at https://github.com/AMAP-dev/AMAPVox.git.

2.5 Vertical light penetration index

As an alternative to mLPI, we derived a simpler quantification
of canopy transmittance called vertical light penetration index
(vLPI) from the LiDAR data. It approximates the probability for
a ray to reach the ground, and it was calculated as the number of
ground LiDAR echoes divided by the total number of LiDAR
echoes in a column of 5 × 5m2 section (Bode et al. 2014). Point
counts were performed with the LASgrid tool of LAStools
(Insenburg) and weighted as described above. To compensate
for the effect of lateral shading and lack of ground points, data
were smoothed assigning the average values of an 8-cell 2D
Moore neighbourhood to the central cell.

2.6 Ground measurement of the micro-environment

Environmental sensors were established at 50 locations within
the Nouragues Station in December 2013, and they were op-
erated continuously until June 2015. Some sensors
malfunctioned, and data from 47 locations were retained for
the present study. Two sensors were coupled at each location
(see Fig. 1). The first sensor measured light and temperature
(HOBO Pendant UA-002-64). It was mounted horizontally at
the top of a 1-m pod, to avoid disturbance caused by under-
story animals and to provide light level at a reference height
above the ground vegetation. The second sensor measured
temperature and relative air humidity (HOBO U23-001), and
it was mounted immediately below the temperature/light sen-
sor. Measurements were logged at 15-min intervals.
Temperature measurements were obtained from both sensors,
and they are reported at 0.5 °C accuracy, according to manu-
facturer’s specifications. To control these values, we com-
pared the two recordings and found that the median percent
difference was of 0.41% (95% confidence interval (0.05,
2.92)). This represents a mean difference of 0.08 °C (95%
confidence interval (0.01, 0.74)). Relative humidity was re-
ported with a 2.5% absolute accuracy.

The HOBO UA-002 light sensor is based on silicon pho-
tocells. The technology and the bandwidth of the HOBO UA-
002 is similar to that of the LI-COR LI-200SA Pyranometer
Sensor with a 150–1200-nm wavelength range. Ross and
Sulev (2000) compared the LI-200SA data with the more
accurate light irradiance measurements obtained by the LI-
COR LI-190SA Quantum Sensor, an accurate silicon photo-
diode covered with a visible bandpass interference filter and a
coloured glass filter. They found that the LI-200SA was
underestimating light irradiance by up to 20% in high-LAI
forests (including reference data from a rainforest understory).
This is due to the narrower wavelength bandpass of the silicon
photodiode. Thus, the HOBO sensors might underestimate the
energy in the solar radiation spectrum at high-LAI condition.
Yet, these sensors still provide useful information when it
comes to measuring the long-term light variability at many
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points in a natural ecosystem. Long et al. (2012) compared the
outputs of a HOBO UA-002 with a LI-193SA PAR radiation
sensor in a light chamber experiment, and they showed that,
while less precise, the output of the HOBO sensor could be
related to the LI-COR-measured PAR value. Their primary
focus was to assess the light in underwater environments, so
it is difficult to directly use their calibration for our purpose.

Because of the above limitations of published calibrations, we
performed an independent calibration of the HOBO UA-002
sensor. We set a HOBO UA-002 a few centimeters away from
a Hukseflux SR11 pyranometer, both placed in full sunlight at
our research station. The Hukseflux SR11 has a 285–3000 spec-
tral range and logs the data in watts per square metre. Both
sensors were logged at 1 min temporal resolution. We found that
the light intensity (I in lux) measured from the HOBOUA-002 (I
in lux) could be related to the net solar irradiance (R in W m−2)
measured by the SR11 through a second-order polynomial

regression. To reduce the discrepancy due to slight difference
in the time of measurement, we smoothed the data with a 3-min
moving window. We obtained the relation:

R ¼ 5:15 10−3 � I−4:55 10−9 � I2

The relation was highly significant (p < 0.001, df = 5790)
and accurate (RMSE, 33.2 W m−2). We used this conver-
sion to report all irradiance values in watts per square
metre (see also Appendix 1).

The r.sun module (Hofierka et al. 2002) coded in GRASS
7.0 (GRASS Development Team 2012) was used to simulate
the expected irradiance on the ground in absence of trees. This
module accounts for the solar position, atmospheric parame-
ters and a DEM complemented with values of slope and as-
pect at each position to compute the instantaneous incoming
direct and diffuse radiation or time-integrated values. We ran

Fig. 2 Predicted micro-
environment over the area of
interest. All maps have a
resolution of 2 m. a Canopy
height is shown by map colours
and 10-m-spaced elevation lines
are shown. b mLPI at 1.5 m above
the ground. c Average maximal
temperature over the year
modelled using mLPI at 1.5 m
above the ground. d Average
minimal relative humidity over
the year at 1.5 m above the
ground modelled using mLPI and
topography (adjusted R2 = 0.53;
RSE = 3.34 on 33ddl; p < 0.001;
LOO MSE = 1.37%)

Table 1 Linear relations
expressing measured
environmental variables as a
function of mLPI

Measured variable Intercept slope RSE Adjusted R2 LOO MSE

FeildLPI (%) 3.9 ± 0.6 0.84 ± 0.12 2.0 0.51 4.3 × 10−2

Mean relative humidity (%) 99.5 ± 0.4 −22.7 ± 8.4 1.17 0.15 1.8

Minimal elative humidity (%) 98.1 ± 1.4 −97.4 ± 27 3.815 0.25 19.6

Maximal temperature (°C) 26.0 ± 0.2 22.8 ± 3.6 0.513 0.51 0.37

Values are given as mean ± standard deviation

LOO MSE leave-one-out mean square error
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this function every day in 2014 to calculate the average daily
top-of-canopy solar irradiance. For these calculations, atmo-
spheric turbidity was assumed constant over each month and
set according to Remund et al. (2003). To correct the modelled
irradiance for average cloudiness, which is not explicitly

modelled, we compared the model predictions against the
values measured by the meteorological station. The difference
between modelled and observed was assumed to be due to the
monthly average cloudiness. The ratio of irradiance measured
in the understory divided by the (predicted) top-of-canopy

Fig. 3 Plant area density profile
within the canopy. Values of PAD
at a resolution of 1 m were
averaged at every height in
225 m2 windows around 30
randomly selected positions in
each forest type. Black lines
represent mean values, and grey
lines are the standard deviations

Fig. 4 Example of a gap in the
high-canopy forest. In every
panel, solid lines represent values
averaged every meter along a 10-
m-wide and 100-m-long transect.
Dashed lines represent the
mean ± 1 standard deviation.
Vertical grey dashed lines
represent the limits of a gap
defined following Brokaw
definition (canopy below 2 m,
area over 20m2). a Top-of-canopy
height; b averageminimal relative
humidity over the year at 1.5 m
above the ground modelled using
mLPI and topography; c average
maximal temperature at 1.5 m
above the ground modelled using
mLPI; d mLPI at 1.5 m above the
ground
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irradiance was computed daily, defining the ground-based
(field) light penetration index (fieldLPI).

2.7 Statistical analyses

Model validation was assessed by comparing modelled LPI to
field data. Values of the two modelled LPI values (vLPI and

mLPI) were computed for the entire area of interest and extract-
ed at the sensor positions. Positional error of the sensors was
assumed to follow a normal distribution centred on 0 inX and Y
coordinates and with a standard deviation independently
assessed based on four GPS positioning recorded at more than
4-day intervals for each sensor. Modelled LPI values were ex-
tracted for 1000 random choices of position in the distribution
of coordinates around the position of each sensor andwere used
to compute the average and standard deviation due to position-
ing error of modelled LPI.

To assess the ability of metrics derived from LiDAR to
estimate ground-level micro-environmental variables, we test-
ed bivariate correlations between yearly average fieldLPI, daily
minimal relative humidity, average relative humidity or daily
maximal temperature on the one hand, and modelled LPI on
the other hand. We used both ordinary least square regressions
and a method of parameters estimation which takes into ac-
count errors in measurement of both variables (Deming
regression, see Linnet 1993; Glaister 2001). Leave-one-out
cross-validation (LOOC) was performed on these relations
and mean square error of prediction (MSE) was computed.

3 Results

3.1 Modelling of micro-environmental condition

mLPI was a slightly better descriptor of fieldLPI than vLPI (ad-
justed R2 = 0.51, MSE = 4.3 × 10−2% for mLPI versus 0.47,
MSE = 4.5 × 10−2% for vLPI; Table 1). The use of Deming
regression yielded similar results (Table S3 inOnline resources).

Annual average daily maximal temperature was positively
related to mLPI (R

2 = 0.51, MSE = 0.37 °C; Table 1). The
mean annual value of daily average and minimal relative hu-
midity were both negatively related to mLPI (R

2 = 0.15,
MSE = 1.8% and R2 = 0.25, MSE = 19.6%, respectively;
Table 1). Including topography improved the prediction of
mean relative humidity (R2 = 0.39, MSE = 1.37%) and min-
imal relative humidity (R2 = 0.52, MSE = 12.8%) but had no
effect on the other predicted variables.

3.2 Spatial variability of the micro-environment

Maps of light availability, maximal temperature and minimal
relative humidity were built from mLPI (and topography for
humidity) through models described above (Fig. 2). The predic-
tion error on thesemaps is assumed to be close to the square root
of the leave-one-out mean square error (0.21% for LPI, 0.6 °C
for maximal temperature and 3.58% for minimal humidity).
Micro-environmental conditions differed clearly between
high-canopy forest (mean mLPI, 5.7 ± 1.1%; maximal temper-
ature, 26.5 ± 0.2 °C; minimal relative humidity, 98.3 ± 1%) and
low-canopy forest (mean mLPI, 11.8 ± 7.6%; maximal temper-
ature, 27.7 ± 1.5 °C; minimal relative humidity, 93 ± 6.7%;
Appendix 2). Micro-environmental variation at ground level
was associated with difference in the vertical profiles of vegeta-
tion density derived from lidar data (Fig. 3).

Within forest type, mLPI was on average 4.3 times higher in
canopy gaps regardless of their size than in closed forest
(25.9 ± 0.3% versus 6.1 ± 0.01%). mLPI was positively related
to gap area (slope, 0.2% m−2; adjusted R2, 0.15, p < 0.001).
Average daily maximal temperature was also higher
(30.5 ± 0.07 °C versus 26.6 ± 0.002 °C) and minimal and
mean relative humidity were both lower in canopy gaps
(73.1 ± 0.4% versus 97.2 ± 0.01% and 98.4 ± 0.02% versus
100%). These variations were still noticeable within ca. 20 m
around the gaps (Fig. 4; Appendix 2).

3.3 Variability of the micro-environment between dry
and rainy season

Using ground sensors, we quantified the intra-annual variabil-
ity of the micro-environment. Light availability was ca. 18%
higher during the dry season than during the wet season in the
open area while it was 32% higher in the tall forest (Table 2).
Temperature was 1.9% higher in the clearing and 2.0% higher

Table 2 Variation of mean radiant energy, mean temperature and mean
relative humidity between dry and rainy season

High-canopy forest Clearing

Daily energy (Wh m−2)

Dry season 151 ± 14 4366 ± 148

Rainy season 114 ± 10 3711 ± 71

Differences 32%*** 18%**

Temperature (°C)

Dry season 24.4 ± 0.1 29.9 ± 0.1

Rainy season 23.9 ± 0.1 24.4 ± 0

Differences 2.03%*** 1.88%***

Relative humidity (%)

Dry season 97.2 ± 0.5 92.3 ± 0.7

Rainy season 99.1 ± 0.2 94.8 ± 0.3

Differences −1.9%*** −2.7%***

N 27 1

Differences are indicated as percentage of rainy season radiant energy.
Comparisons were made per forest type between rainy season and dry
season values. Statistical significance was assessed by Wilcoxon test.
Values are given as mean ± standard deviation

‘–’ not significant

**p < 0.01; ***p < 0.001, levels of significance
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in the tall forest. Finally, during the dry season, relative hu-
midity was 2.7% lower in the clearing and only 1.9% lower in
the tall forest (Table 2; Appendix 3).

4 Discussion

We modelled micro-environmental conditions in the forest
understory over large area using LiDAR data. Most previous
studies were based on LAI and gap fraction estimation and
considered only vertical light fluxes when modelling light
environment in tropical forest understory (Stark et al. 2012,
2015; Heiskanen et al. 2015). The multidirectional method
presented here (mLPI) represents a significant advance over
these previous methods. Moreover, Stark et al. (2012, 2015)
did not ground truth the results with field measurements. We
did it in our study, and the irradiance values found in the
understory of less than 5% of full sunlight are commensurate
to, albeit slightly higher than, previously published observa-
tions (Chazdon and Fetcher 1984; Bongers et al. 2001).

Our study confirms the existence of consistent micro-
environmental differences in the understory of different forest
types. This suggests that distinction of forest types is mean-
ingful because differences in micro-environmental conditions
will potentially impact forest dynamics, ecosystem processes
and composition in habitat.

Light availability assessments have direct implications for
the study of plant demography because ambient light, and
notably its diffuse component, has been shown to impact di-
rectly plant demographic rates (Scanga 2014) and plant ger-
mination (Baskin and Baskin 2001). Light availability is also
essential for carbon assimilation and plant growth (Nicotra
et al. 1999; Dalling and Hubbell 2002; Montgomery and
Chazdon 2002). Ground-level light maps derived from
LiDAR could be thus of great interest in providing better
predictive underpinnings for the demographic studies of un-
derstory plants (Ackerly and Bazzaz 1995; Baraloto and
Goldberg 2004 Laurans M et al 2012; Vincent G et al 2011).
Species composition and vegetation abundance in the under-
story also vary with differences in micro-environmental con-
ditions (e.g. Dirzo et al. 1992; Svenning 2001). In the liana-
infested forest for instance, understory vegetation is extremely
dense, which could result from the higher light availability.
The 3D model gives the opportunity to test such relations at
every level of the canopy for instance in the study of epiphytes
which biomass and diversity were shown to be related to air
humidity in our study zone (Gehrig-Downie et al. 2011;
Obregon et al. 2011). Prediction of micro-climatic conditions
can also serve to define habitat for animals (Goetz et al. 2010).

Canopy gaps are important loci of forest regeneration
(Hubbell et al. 1999; Svenning 2001). We here confirm that
even small gaps receive considerably more light than the gap
surrounding (less than 20m of a gap edge) are also warmer and

receive more light than average understory. Temperature is
directly linked with metabolic processes, such as heterotro-
phic soil respiration, and it thus alters biogeochemical pro-
cesses (Salinas et al. 2011), notably through modifications of
the dynamics of microbial populations (Hudson 1968). The
volume-based model gives the opportunity to approximate
micro-environmental variables within the canopy at the land-
scape scale. This might help improve predictions of photosyn-
thesis levels, gas fluxes and other physiological processes in
tall structurally complex forests. Conversely, relative air mois-
ture was lower in canopy gaps and around, which may result
in a lowered soil moisture and then lower seed survival and
germination rates (Marthews et al. 2008) as well as lower
microbial populations (Hudson 1968).

Our estimations of the transmittance of the different forest
canopies are related with the plant area index (PAI). If we
assume similar proportion of wood and leaves in the PAI
across forest types, it appears that LAI is lower in the low
forest than in the liana-infested forest and the flooded forest,
where it is lower than in the high-canopy forest. The lower
LAI in liana-infested compared with high-canopy forests has
also been demonstrated in a previous study at a smaller scale
(Tymen et al. 2016).

4.1 Limitations and sources of error

Part of the unexplained variation in micro-environmental
conditions is due to inherent issues in the model, but
another part is only due to noise in the experimental
data.

First, in the irradiance model itself, we neglected
possible anisotropy of canopy transmittance. This is
equivalent to assuming a spherical leaf distribution in
the canopy (Monteith and Unsworth 2013) while
neglecting the contribution of woody components to
light interception. According to Heiskanen et al.
(2015) and data from terrestrial laser scanning collected
in another forest site in French Guiana (Vincent et al.
2015), leaf angle distribution in tropical forests is not
spherical and transmittance is then anisotropic. Hence,
the PAI profiles given here should be considered with
caution. They provide a mean of comparing forest veg-
etation structure through normalised profiles. A true PAI
should consider possible transmittance anisotropy during
inversion. Obtaining a LAI estimate would further re-
quire separating foliage from wood. Clumping of cano-
py elements at a smaller scale than 1 m is also
neglected in our model. This increases light availability
heterogeneity in the understory and leads to underesti-
mation of plant area index. Further issues are related to
experimental conditions and simplifying assumptions

On average, the coefficient of variation of fieldLPI during
the year was 47%. This variation is partly due to phenological
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variation of canopy such as leaf loss not considered in our
model. Short-scale local variations in atmospheric conditions
were not corrected in our estimation of the top-of-canopy light
when undetected by the meteorological station (for instance
small cloud shadows at sensor position), The above men-
tioned issues contribute to the uncertainty affecting fieldLPI,
the response variable of the model (Table 2).

Moreover, linking measured to modelled values of LPI is
subject to errors due to inaccurate sensor positioning by GPS.
Error varies between sensors, depending on local conditions,
canopy density in particular. Considering that positioning error
is normally distributed, the coefficient of variation for mLPI was
found to be on average 24%. Our evaluation of the goodness of
prediction of ourmodel is then probably underestimated.A better
positioning of field sensor could demonstrate that fact.

Another issue is that sensors used in this study do not
directly measure radiant energy (in W m−2) and do not give
information on the radiation spectrum. The transformation
performed to provide values of radiant energy may not hold
in the understory because the light spectrum is altered (Lee
1987; Endler 1993; Long et al. 2012). However, a significant
portion of the light contributing to our measures may pass as
sunflecks through small openings in the canopy (Bone et al.
1985) and is not altered by canopy filtering.

5 Conclusion

In this study, using LiDAR data and a simple light transmis-
sion model, we were able to predict more than 50% of the
observed spatio-temporal variation in light availability at
ground level in a tropical forest. This suggests that our model
can be useful in various ecological studies in tropical forest
understory.

A substantial part of the unexplained variation in un-
derstory light regime comes from identified sources of
error that can be reduced drastically based on the present
study and new measurements. Moreover, terrestrial LiDAR
scanner can alleviate most of the limitations encountered
in our study. Low sampling of the understory due to in-
sufficient aerial LiDAR penetration can be overcome by
terrestrial LiDAR, which allows a much denser sampling
pattern. It may also ultimately provide robust leaf area
index estimates as it has the potential to separate leaf from
non-leaf material (Raumonen et al. 2013; Calders et al.
2015; Newnham et al. 2015) and to provide a more accu-
rate description of the spatial arrangement of the foliage
(clumping and orientation).
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Appendix 1: Comparison between the HOBO
UA-002 and the Hukseflux SR11

Fig. 6 Comparison of daily mean HOBO outputs in full sunlight and
daily mean SR11 pyranometer outputs. Measures were compared for
most of year 2014 (n = 256 days). The most sunlit days had peak net
irradiance values above 1000 W m−2

Fig. 5 Comparison of daily HOBO outputs in full sunlight and SNR11
pyranometer outputs. Measures were compared every 5 mm for 20 days
between 9 and 29 of September 2015 (n = 5792). We computed the mean
daily output of one HOBO sensor placed in full sunlight (H35, in lux) and
also the output from a pyranometer also placed in full sunlight (Hukseflux
SR11 in W m−2). The SR11 sensor was logged at 1-min temporal
resolution. We found that the mean light intensity (in lux) could be
related to the net solar irradiance through a second-order polynomial
regression (R2, 0.99, p < 0.001): irradiance (W m−2) = 8.7 × 10−3 ×
HOBO − 7.3 × 10−8 × (HOBO)2
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Appendix 2: Spatial variability of micro-environment

Table 3 Variability of predictions with forest types

High forest Low forest Liana forest Flooded forest

LPI (%) 5.7 ± 1.1 11.8 ± 7.6 9.0 ± 5.0 6.9 ± 2.9

Daily radiant energy (Wh m−2) 15.6 ± 2.1 27.3 ± 14.7 21.8 ± 9.6 17.9 ± 5.7

Daily maximal temperature (°C) 26.5 ± 0.2 27.7 ± 1.5 27.2 ± 1.0 26.8 ± 0.6

Daily minimal relative humidity (%) 98.3 ± 1.0 93.0 ± 6.7 95.5 ± 4.5 97.3 ± 2.6

Daily average relative humidity (%) 100 ± 0.1 99.5 ± 0.6 99.7 ± 0.4 99.9 ± 0.2

Modelled values of mLPI, daily radiant energy, maximal temperature and minimal and mean relative humidity averaged over the year were extracted at
50 positions randomly chosen within the different forest types (mean ± SD)

Fig. 7 Micro-environment in canopy gaps and in concentric buffers
around canopy gaps. Gaps were defined following Brokaw’s (1982)
definition as area larger than 20 m2 with a canopy height lower than
2 m. On the zone of interest, 81 gaps were detected in every forest

types. Micro-environmental conditions in these gaps were compared
with condition in buffer around them regardless of the type of
vegetation in these buffers
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Appendix 3: Temporal variability in micro-environmental conditions

Table 4 Variation of measured
radiant energy, temperature and
relative humidity between dry and
rainy season

High forest Low forest Liana forest Flooded forest Clearing

Daily energy (Wh m−2)

Dry season 151 ± 14 236 ± 51 136 ± 24 159 ± 39 4366 ± 148

Rainy season 114 ± 10 190 ± 43 108 ± 15 123 ± 42 3711 ± 71

Difference 37 45 28 37 655

Difference 32%*** 24%*** 26%*** 30%*** 18%**

Temperature (°C)

Dry season 24.4 ± 0.1 24.6 ± 0.3 24.3 ± 0.1 24.3 ± 0.1 24.9 ± 0.1

Rainy season 23.9 ± 0.1 23.9 ± 0.2 24 ± 0.1 24 ± 0.1 24.4 ± 0

Difference 0.5 0.7 0.3 0.3 0.5

Difference 2.03%*** 3.17%*** 1.58%*** 1.23%*** 1.88%***

Relative humidity (%)

Dry season 97.2 ± 0.5 94.1 ± 1.1 97.8 ± 1.1 98.9 ± 0.4 92.3 ± 0.7

Rainy season 99.1 ± 0.2 98.3 ± 0.5 99.6 ± 0.3 99.9 ± 0.1 94.8 ± 0.3

Difference 1.9 4.2 1.8 1 2.5

Difference −1.9%*** −4.3%*** −1.8%*** −0.9%*** −2.7%***

N 27 8 3 8 1

Differences are indicated as percentage of rainy season values. Comparisons were made per forest type between
rainy season and dry season values. Significance was assessed by Wilcoxon test

‘–’ not significant

**p < 0.01; ***p < 0.001, levels of significance

Table 5 Average daily ranges of
variation in measured temperature
and humidity in different forest
types

High forest Low forest Liana forest Flooded forest

Light (W m−2) Dry season 0–32.8 0–50.4 0–26.6 0–34.4

Rainy season 0–24.7 0–45.5 0–19.4 0–27

Temperature (°C) Dry season 22.6–27.2 22.5–28.6 22.4–27.5 22.3–27.4

Rainy season 22.7–25.9 22.5–26.6 22.6–26.1 22.6–26.1

Relative humidity (%) Dry season 92.8–99.7 81.7–99.6 91.6–99.6 95.3–100

Rainy season 97.9–99.9 93.7–99.9 98.2–99.8 99.4–100

Values are indicated per season as follows: average of the minimal daily value – average of the maximal daily
value
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