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Abstract—We describe a co-design of algorithm and software
for high-performance simulation of a partial differential equation
(PDE) numerical solver for large-scale datasets. Large-scale
scientific simulations involving parallel Fast Fourier Transforms
(FFTs) have extreme memory requirements and high communi-
cation cost. This prevents scaling to higher grid sizes, which is
necessary for high resolution analysis. Moreover, legacy scientific
codes used for numerical simulations are not highly efficient or
scalable, and are not adapted for modern hardware accelerators.
With a view to overcoming these challenges, our proposed method
uses signal processing techniques such as lossy compression and
domain-local FFTs to lower iteration cost without adversely
impacting accuracy of the result.

Index Terms—Irregular domain decomposition, algorithm de-
sign, GPU, lossy compression

I. INTRODUCTION

Scientific simulations developed in Fortran are used to
study and model physical phenomena in many fields including
physics, biology and materials science. These Fortran legacy
codes are handed down and often evolve over the course
of decades because rewriting them from scratch is both
risky and costly. Discrete models are simulated on refined
grids for high resolution analysis of interesting phenomena.
However, refining a grid increases the scale of the problem,
and the scaled implementations of old codes face significant
memory and communication bottlenecks on modern multi-core
machines. For example, large-scale FFT-based PDE solvers
face limitations in scaling because all-all communication in
parallel FFTs dominates runtime [1]. Hardware platforms
such as Graphical Processing Units (GPUs) provide a lot of
compute power and are a relatively inexpensive alternative
for large computing clusters. But high memory requirement
of Fortran code prevents GPUs from being used since they
have small on-chip memory (less than 16 GB). How can
legacy scientific simulations be scaled to larger grid sizes
using modern hardware such as GPUs?

First, it is necessary to recognize that a co-design of algo-
rithm and software is required to achieve maximum perfor-
mance on modern hardware platforms [2]. Algorithms which
address the issue of high communication must be developed
using knowledge of hardware, while software design must
take into account tolerable approximation error and potential
savings in resources used. To show our approach towards
developing such a co-design solution, we consider a particular
simulation of stress-strain in composites, the Moulinec Suquet
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Fig. 1. Single component of stress field tensor in a sample composite mi-
crostructure simulated using MSC Basic Scheme. The image shows behavior
of stress at the grain boundary between 3 grains, which is of interest.

TABLE I
MEMORY REQUIREMENT OF MSC BASIC SCHEME (SERIAL VERSION)

Input data size 323 643 1283 2563 5123 10243

Memory
required (GB) 0.07 0.55 4.44 35.5 284 2272

Composite (MSC) Basic Scheme. In this scheme, a PDE
is solved iteratively using FFT-based convolution with the
Green’s function corresponding to the PDE, which is rapidly
decaying in space domain but dense in Fourier domain [3].
Table I shows the prohibitive memory requirement for various
simulation sizes.

Contribution. In this paper, we present MSC Alternate
Scheme, an algorithm design for heterogeneous platforms.
Highlights of the method are:

1) Irregular domain decomposition
2) Lossy compression
3) Domain-local FFTs on different parts of the 3D volume.

(1) uses the observation that irregular grains are highly com-
pressible domains because of the smooth-varying fields within
them. (2) uses splines to compress data and hence reduce
communication overhead. (3) ensures that convolutions can
be performed on the limited memory of a GPU.

Synopsis. The next section describes MSC Basic Scheme,
followed by sections describing MSC Alternate Scheme and
early results.

II. BACKGROUND

Tensor notation. Throughout this paper, Einstein notation
is used to represent tensor components and operations. Thus,
Amn refers to component (m,n) of the rank-2 tensor A.



Repetition of indices implies a summation over those par-
ticular indices. An important tensor operation is the con-
traction of indices (denoted by ‘:’). E.g., Cmnk`:Dmn =P
m

P
n
Cmnk`Dmn = Ek` and yields a rank-2 tensor.

MSC Basic Scheme. The MSC Basic Scheme is a fixed-
point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. ✏(x) and
�(x) are strain and stress tensor fields at 3-D grid point x

respectively. Cmnkl(x) is the rank-4 stiffness tensor. E is
initial average strain. �̂mnk`(⇠⇠⇠) is the Green’s operator in
Fourier space at frequency point ⇠⇠⇠. The convergence error is
es and tolerance error is e

tol

. �✏k` is the computed pertur-
bation in component (k, `) of the strain tensor. Superscripts
indicate iteration number. The iterative scheme continues till
convergence is reached. For more details, refer to [4] and
[5]. This is a single time step simulation. An outer loop also
simulates viscoplastic deformation over multiple time steps,
however that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0  E, �0

mn(x) Cmnk`(x) : ✏0k`(x)

While es > e
tol

, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence
3) Fourier domain convolution with Green’s function.

�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1

k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1

k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏
i+1

k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section briefly describes the proposed algorithm, de-
signed to be implemented on a CPU-GPU hardware setup, and
discusses its highlights, namely irregular domain decomposi-
tion, lossy compression and domain-local FFTs.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe

that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �

grain

(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏

local

(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏

local

(x))j . The effect of convolution is summarized by the
�✏

total

(x) field, which is the sum over all local convolutions
(�✏

local

(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏

grain

(x)
is extracted from �✏

total

(x) by each GPU using windows.
Now stress and strain fields can be updated locally for the
grain. This makes the GPU part of the code parallel for grain
volumes and stress update for the grain is a self-contained
problem. The algorithm flow is summarized in Figure 2.
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Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0  E, �0

mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > e
tol

, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

�̂i
grain,mn(⇠⇠⇠) Domain-local FFT(�i

grain,mn(x))

2) Compute Fourier domain convolution.



�✏̂i+1

local,k`(⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
grain,mn(⇠⇠⇠)

3) Inverse transform to get updated strain �✏
local

.
�✏i+1

local,k`(x) iFFT
�
�✏̂i+1

local,k`(⇠⇠⇠)
�

4) Compress sub-sampled field around grain. Communicate
to other GPUs.

5) Obtain summarized convolution result �✏
total

by sum-
ming �✏

local

from other GPUs.

�✏i+1

total

(x) =
JP

j=1

�
�✏i+1

local

(x)
�
j

6) Obtain �✏
grain

in local grain volume from summarized
convolution results using corresponding window W (x).

�✏i+1

grain

(x) = �✏i+1

total

(x) · W (x)

7) Update strain.
✏i+1

grain,k`(⇠⇠⇠) ✏i
grain,k`(⇠⇠⇠)��✏i+1

grain,k`(⇠⇠⇠)

8) Update stress.
�i+1

grain,mn(x) Cmnk`(x) : ✏
i+1

grain,k`(x)

9) Check convergence.
Irregular Domain Decompositions. The large 3-D volume

is decomposed into smaller volumes (grain interiors) using
windows. Number of voxels to be excluded at the grain
boundary must be specified depending on the requirements
of the simulation. For the test case discussed in this paper, we
use a dataset with cubic grains. The cubical shape makes it
easier to test the prototype with simple tapering windowing
techniques such as trapezium or Tukey windows.

Datasets with irregular grains present a challenge in descrip-
tion of smooth regions because they do not have a compact
representation. More complicated pre-processing is used in
such cases. For e.g., a heuristic packing algorithm is used
to pack the irregular shape with compressible regular shapes
(such as rectangles).

Lossy Compression. Lossy compression methods can lead
to higher compression as compared to lossless methods [7],
[8], [9]. A number of lossy compression techniques are being
increasingly used to deal with the problem of storing expo-
nentially growing scientific data [10], [7]. One such scheme is
ISABELA [11], which uses sorting and B-spline fitting [12]
to compress random, noisy data. However, there is a tradeoff
between compression ratio and error because indices of the
sorted data have a storage requirement. In our case, we observe
that grain interiors have smooth stress and strain fields. Hence,
there is no need for sorting data. The stress field in each XY-
plane of the windowed grain volume is modeled using cubic
B-splines, which gives high compression ratios.

Domain-local FFTs. For large grids, GPU memory is a
limiting factor in computing Fourier domain convolution of the
N

1

⇥N
2

⇥N
3

stress signal with Green’s function. However,
by processing each grain separately on the GPU and using
adaptive downsampling, we can compute the full convolution
without storing entire large 3-D signals.

FFT of the sub-volume is computed pencil-wise, one di-
mension at a time. Pencils which are all zeros can be ig-
nored. Transformation in the X-dimension gives a beam of
N

1

⇥ k
2

⇥ k
3

non-zeros. By transforming in Y dimension,

we get a slab of N
1

⇥N
2

⇥ k
3

non-zeros. This is illustrated
in Figure 4. In the Z-dimension, we transform one pencil
at a time. Then, element-wise convolution is performed with
Green’s function, which is computed at required frequency
points using the closed form in [4]. The pencil is immediately
inverse transformed so that N

1

⇥N
2

⇥N
3

grid does not need
to be stored. Since the Green’s function is rapidly decaying in
space domain, convolution of the two signals results in a low-
magnitude and low-varying field in the volume surrounding
the grain. This important observation allows us to develop an
adaptive downsampling scheme to compress the convolution
result and further reduce memory required. Low-resolution
sampling is used in the low-varying part and sampling rate
is higher around grain boundary. This is illustrated for a 1-D
example in Figure 3. Similarly in 3-D, downsampling in the
areas around the k

1

⇥k
2

⇥k
3

sub-volume yields a compressed
model of the convolution result in that region.

Green’s	function

�
Green’s
function Different

sampling
rates

Fig. 3. Adaptive downsampling scheme to reduce memory for storage of
convolution result.
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Fig. 4. Illustration of convolution of isolated grain using domain-local FFT.
The .⇤ indicates element-wise multiplication.

IV. RESULTS AND DISCUSSION

We developed a MATLAB-Fortran prototype workflow of
the proposed method prior to GPU implementation. This sec-
tion describes results and analysis for the prototype. For proof-
of-concept results, a simple microstructure test dataset with
two types of grain orientations was created using MATLAB
for various grid sizes. Grains in each grid of size N3 are 8
cubes of

�
N
2

�
3 points arranged in a periodic lattice. We also

demonstrate results on grids of size N2 ⇥ 8 with 4 grains
of size

�
N
2

�
2 ⇥ 8 points arranged in a periodic lattice. These

microstructures simulate thin composite sheets.
Lossy Compression. Table IV shows results for two dif-

ferent values of grain boundary width (GBW), or the number
of voxels excluded from lossy compression at the boundary.
Reconstruction error (RE) is computed using Frobenius norm
and compression ratio (CR) with respect to original memory



requirement is as shown. For lower GBW (thinner boundaries),
CR is higher. Reconstruction accuracy for grain interior is
not affected adversely although low GBW might introduce
more error at grain boundaries. Domain scientists can select
appropriate boundary width required to study various physical
phenomena while keeping this trade-off in mind. High com-
pression and low error for very large grain sizes justifies using
lossy compression since we have higher savings in memory
and communication cost than smaller grains.

TABLE II
RECONSTRUCTION ERROR AND COMPRESSION RATIO

Grain 643 1283 1282 ⇥ 8 2562 ⇥ 8 5122 ⇥ 8
Size

Grain Boundary Width = 4
RE 1.49% 1.11% 0.52 % 0.44% 0.41%
CR 2.48 8.01 5.47 13 28.69

Grain Boundary Width = 8
RE 1.99% 1.25% 0.51 % 0.43% 0.38%
CR 1.46 4.19 3.37 7.32 15.29

TABLE III
ERROR IN CONVOLUTION BY LOCAL FFT METHOD

Grain 643 1283 1282 ⇥ 8 2562 ⇥ 8 5122 ⇥ 8
size

Error(%) 1.79 3.03 3.74 · 10�14 4.11 · 10�14 4.32 · 10�14

Domain-local FFTs. Using domain-local FFTs introduces
some approximations due to the post-convolution downsam-
pling of the smooth field around the grain. Table III shows er-
ror in convolution result for various grain sizes when domain-
local FFT is used to compute convolution grain-by-grain.
When field around the grain is downsampled by a factor of 8,
memory required for grains of size 643 and 1283 is reduced to
only 12.7% of original value. This enables computation of the
convolution on the limited resources of a GPU but grain edges
show larger error. An adaptive method can be used to reduce
this error by sampling more finely at the edges, with tradeoffs
in compression. For example, downsampling by a factor of 2
reduces convolution error for these grains to 0.52% and 0.92%
respectively and increases memory requirement by up to 1%.

Sample convergence results. Next, we confirm that our
method converges in a comparable number of iterations from
the original method. In the MSC Alternate Scheme, n lower
cost iterations of the fixed-point method are to be performed on
GPUs. A few (3 to 4) high cost iterations are performed using
the MSC Basic Scheme on the CPU side as a part of initial-
ization to reduce approximation errors in the final answer. The
plots in Figures 5 and 6 show the convergence of stress and
strain fields in MSC Basic Scheme and MSC Alternate Scheme
for different values of n in a simulation of size 128⇥128⇥128.
We observe that for equal error thresholds for both methods,
number of iterations for convergence changes depending on n,
but not drastically. For this test example with n = 7, 10, 15,
the simulations converge to a final answer with a deviation of
about 2�4% from the original (n = 0). This deviation can be
due to convergence to a different local minimum. Additionally,
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Fig. 5. Convergence in stress for problem size 1283. Number of iterations
for convergence changes based on n, the number of iterations performed on
GPUs using approximations.
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Fig. 6. Convergence in strain for problem size 1283. Strain converges more
rapidly than stress in both MSC Basic and MSC Alternate Schemes.

B-spline compression on grain interiors smooths out artifacts
which are otherwise carried forward in MSC Basic Scheme
iterations.

V. CONCLUSIONS

The proposed MSC Alternate Scheme is a co-design of
algorithm and software for heterogenous platforms that en-
ables scaling of stress-strain simulations to large grids by
overcoming high memory requirements and communication
bottlenecks. The algorithm uses domain-local FFTs and data
modeling to perform iterations with a lowered cost, which
converge to the same solution as the MSC-Basic Scheme with
a small accuracy tradeoff, as is seen in proof-of-concept results
presented here. The analysis presented here is an important
step in the process of algorithm development at large scales.
Ongoing work includes using a setup of CPUs and GPUs to
implement the MSC-Alternate Scheme to observe performance
metrics on varied datasets.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Dr. Anthony Rollett, Dr.
Vahid Tari, Dr. Anirban Jana and Dr. Roberto Gomez for
their assistance and collaboration. This work used the Extreme
Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant
number ACI-1548562.



REFERENCES

[1] Y. Sabharwal, S. Garg, R. Garg, J. Gunnels, and R. K. Sahoo, “Optimiza-
tion of fast fourier transforms on the blue gene/l supercomputer,” High
Performance Computing - HiPC 2008: 15th International Conference,
Bangalore, India, December 17-20, 2008. Proceedings, pp. 309–322,
2008.

[2] J. Sun, C. Yang, and X.-C. Cai, “Algorithm development for extreme-
scale computing,” National Science Review, vol. 3, no. 1, pp. 26–27,
2016. [Online]. Available: http://dx.doi.org/10.1093/nsr/nwv088

[3] T. Mura, “Micromechanics of defects in solids,” The Journal of the
Acoustical Society of America, vol. 73, no. 6, pp. 2237–2237, 1983.
[Online]. Available: http://dx.doi.org/10.1121/1.389536

[4] H. Moulinec and P. Suquet, “A numerical method for computing the
overall response of nonlinear composites with complex microstructure,”
Computer methods in applied mechanics and engineering, vol. 157, no.
1-2, pp. 69–94, 1998.

[5] R. A. Lebensohn, “N-site modeling of a 3d viscoplastic polycrystal using
fast fourier transform,” Acta Materialia, vol. 49, no. 14, pp. 2723–2737,
2001.

[6] M. Frigo and S. G. Johnson, “The design and implementation of fftw3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, Feb 2005.

[7] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, Dec 2014.

[8] M. Burtscher and P. Ratanaworabhan, “Fpc: A high-speed compressor
for double-precision floating-point data,” IEEE Trans. Comput.,
vol. 58, no. 1, pp. 18–31, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1109/TC.2008.131

[9] J.-I. Gailly, “gzip: The data compression program,” 2016. [Online].
Available: https://www.gnu.org/software/gzip/manual/gzip.pdf

[10] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression
with sz,” in IPDPS 2016, IEEE. Chicago, IL: IEEE, 06/2016 2015.

[11] L. Sriram, S. Neil, E. Stephane, K. S. Hoe, C. C. S., K. Scott,
L. Rob, R. Rob, and S. N. F., “Isabela for effective in situ compression
of scientific data,” Concurrency and Computation: Practice and
Experience, vol. 25, no. 4, pp. 524–540. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.2887

[12] M. Unser, “Splines: a perfect fit for signal and image processing,” IEEE
Signal Processing Magazine, vol. 16, no. 6, pp. 22–38, Nov 1999.


