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Abstract—Large scale iterative simulations involving parallel
Fast Fourier Transforms (FFTs) have extreme memory require-
ments and high communication overhead. This prevents scaling
to higher grid sizes, which is necessary for high resolution
analysis. In this work, we describe an algorithm to overcome
these limitations and run stress-strain simulations for larger
problem sizes using irregular domain decomposition and local
FFTs. Early results show that our method lowers iteration cost
without adversely impacting accuracy of the result.

I. INTRODUCTION

Large scale simulations running on machines with many
cores are required to study and model various phenomena
in physics, biological sciences and engineering. Particularly,
simulations involving partial differential equations (PDEs)
usually make use of large parallel FFTs, which use all-all
communication. However, the chief limiting factors while
scaling problem size are prohibitive memory requirements
and communication bottlenecks [1], which make high res-
olution analysis with finer and finer grids impossible. One
such method is the Moulinec-Suquet Composite (MSC) Basic
Scheme, which is a FORTRAN scheme for local stress-strain
computation in composites [2].

In MSC Basic Scheme, the microstructure (i.e. arrangement
of grains in the composite) is discretized onto a regular grid
and a PDE with periodic boundary conditions is formulated
using the stress-strain constitutive relation and equilibrium
conditions. The PDE is solved iteratively using convolution
with Green’s functions [3]. Increasing the resolution is de-
sirable to study interesting behavior at grain boundaries, but
larger problems require parallel FFT computations (3-D FFT
for each tensor component). For serial code, Table 1 shows
the memory requirement for various simulation sizes. This
severely limits scaling to larger grid sizes.

In this work, we present MSC Alternate Scheme, an al-
gorithm designed to run stress-strain simulations for large
datasets on heterogenous platforms with GPUs. To reduce
parallel FFT communication, we operate on different parts of
the 3D volume using smaller, local FFTs. To reduce memory
requirement, we propose using lossy compression to com-
pactly represent stress field in the grains of the microstructure.

In the background section, we describe the MSC Basic
Scheme and pseudocode. The MSC Alternate Scheme is
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TABLE I
MEMORY REQUIREMENT OF MSC BASIC SCHEME (SERIAL VERSION)
BASED ON [2] AND [4]

Input data size | 323 643 1282 2563 5123 10243
Memory
required (GB) | 0.07 055 444 355 284 2272

described in the next section, followed by some proof-of-
concept results.

II. BACKGROUND

In this section, we describe the MSC Basic Scheme in more
detail. Note that Einstein notation is used to represent tensor
components and operations. Thus, A;; refers to component
(i,7) of the rank-2 tensor A. Repetition of indices implies a
summation over those particular indices. An important tensor
operation is the contraction of indices (denoted by ‘:’). Eg.,
Cijie © Dij = > CijreDij = Eye and yields a rank-2

i

tensor.

The MSC Basic Scheme is a fixed-point iterative numerical
method used as an alternative to Finite Element Methods
(FEM) to compute local stress and strain fields using Hooke’s
law. The pseudocode for MSC Basic Scheme is as given below.
€(x) and o(x) are strain and stress tensor fields at point x
respectively. C;;r¢(x) is the rank-4 stiffness tensor. E is initial
average strain. f‘mnkg(ﬁ) is the Green’s operator in Fourier
space at frequency point £. The convergence error is e, and
tolerance error is ey). Acge is the computed perturbation in
component (k, ¢) of the strain tensor. Superscripts indicate iter-
ation number. The iterative scheme continues till convergence
is reached. For more details, refer to [2].

The convolution with Green’s function requires computation
of 3D FFTs of each of the 9 components of the stress field,
hence the need for extensive resources for large grids. MSC
Basic Scheme is implemented in serial FORTRAN and MPI
parallel (using FFTW) versions.

III. PROPOSED METHOD: MSC ALTERNATE SCHEME

This section briefly describes the proposed algorithm, de-
signed to be implemented on a CPU-GPU hardware setup.



Algorithm 1 MSC Basic Scheme

1: Initialize:
@ «— E,
.o-gnn (X) — Cmnk[(x) : Egé(x)
whlle_ es > e do _
On (&) < FFT(07,,(x))
Check convergence

AEENE)  Trimn(®) 5 61nl€)
Update strain: éib! (€) < €,(&) — AeLF1(€)
b (x)  TFFT(E1(6)) |
Update stress: oit1(x) < Crunre(X) : €4 (X)
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A MATLAB-FORTRAN workflow has been used to build a
prototype and obtain preliminary results, which are discussed
here.

We observe that grain interiors have smooth stress and
strain fields that are compressible. Hence, after initializa-
tion on the CPU side, an irregular domain decomposition
method decomposes the volume into smaller grain volumes
with smooth fields. Data models are used to communicate
initial stress fields in the smaller volumes to GPUs. In each
GPU-based iteration, a method for performing local FFTs
on these fields has been developed by us and is used for
convolution with the Green’s function in the Fourier domain.
Then, communication between GPUs serves to transfer parts
of the result to respective grains on different GPUs so that
stress update for a grain is a self-contained problem. The
effect of convolution is summarized by data communicated
from different GPUs. This makes the GPU part of the code
intrinsically parallel. In this way, stress and strain fields are
updated till convergence.

IV. RESULTS

For proof-of-concept results, a simple microstructure test
dataset with two types of grain orientations was created using
MATLAB for various grid sizes. Grains in each grid of size
N XN xN are N/2x N/2x N/2 cubes arranged in a periodic
lattice. The cubical shape makes it easier to test the prototype
with simple windowing techniques. More complicated pre-
processing will be used for irregularly shaped grains.

In the MSC Alternate Scheme, n lower cost iterations
of the fixed-point method are to be performed on GPUs
using data models and local FFTs. A few (4 to 5) high cost
iterations are performed using the MSC Basic Scheme to
reduce approximation errors in the final answer. The plot in
Fig. 1 shows the convergence of stress fields in MSC-Basic
Scheme and MSC Alternate Scheme for different values of n
in a simulation of size 128 x 128 x 128. We observe that for
equal error thresholds for both methods, number of iterations
for convergence changes depending on n, but not drastically.
Fig. 2 shows mismatch in stress field between the original
and proposed method, arising due to approximations. Metrics
for iteration cost are not provided here. However, the all-all
communication is reduced since GPUs communicate only a
few coefficients to summarize the effect of convolution, as
opposed to all-all communication for transposes in FFTW.
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Fig. 1. Convergence in stress for problem size 1283. Case 1 of n=10 refers

to performing iterations 5 to 15 on GPUs, and case 2 refers to performing

iterations 10 to 20 on GPUs.
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Fig. 2. Mismatch in stress field for problem size 1283 compared to MSC

Basic Scheme, showing convergence to a different local minimum with a

small deviation (about 2 — 4%).

V. CONCLUSIONS

The proposed MSC Alternate Scheme is a co-design of
algorithm and software for heterogenous platforms. It en-
ables scaling of stress-strain simulations to large grids by
overcoming high memory requirements and communication
bottlenecks. The algorithm uses small local FFTs and data
modeling to perform iterations with a lowered cost, which
converge to the same solution as the MSC-Basic Scheme with
a small accuracy tradeoff, as is seen in proof-of-concept results
presented here.
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