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Challenges with
• FFTW is de-facto standard interface for FFT
• Vendor libraries support the FFTW 3.X 

interface:
Intel MKL, IBM ESSL, AMD ACML (end-of-life), 
Nvidia cuFFT, Cray LibSci/CRAFFT

• Some Issues:
• No native support for accelerators (GPUs, Xeon 

PHI, FPGAs) and SIMT
• Parallel/MPI version does not scale beyond 32 

nodes
• No analogue to LAPACK for spectral method
• Complex data patterns may need to be 

expressed, FFTW currently falls short. But, 
extensions like FFTX could add new descriptors.
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C code:

Output = 
Ruletree, expanded into
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∑-OL:

Constraint Solver Input:

void dft8(_Complex double *Y, _Complex double *X) {
__m256d s38, s39, s40, s41,...
__m256d  *a17, *a18;
a17 = ((__m256d  *) X);
s38 = *(a17);
s39 = *((a17 + 2));
t38 = _mm256_add_pd(s38, s39);
t39 = _mm256_sub_pd(s38, s39);
...
s52 = _mm256_sub_pd(s45, s50);
*((a18 + 3)) = s52;

}

Motivation
Common characteristics of scientific codes:
• FFT-based simulations involve 
all-to-all communication
• High memory requirement 

Incompatibility with GPUs:
• GPUs haves small on-chip memory (~16GB)
• Various communication latencies

Case study: MASSIF
• Partial Differential Equation solved by Green’s 

function method
• FFT-based convolution and tensor contraction 

between rank-2 tensors and rank-4 Green’s 
• function
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Algorithm innovations such as compression or sampling reduce
communication and memory requirements, but it is highly di�-
cult to optimize these operations across various heterogeneous
platforms during implementation. The widely-used FFTW inter-
face [5] is not able to express some of these special pruning and
sampling patterns and hence the user cannot leverage the highly
optimized FFTW library for parallel computations. We develop new
descriptors for multi-resolution sampling and suggest their use
with suitable APIs for a user-friendly approach to implementing
this method. We use the example of a new API, FFTX [3], still in
early stages of development, to show that there is potential for de-
velopment of such extensions which can help e�ciently implement
domain decomposition algorithms on heterogeneous environments.

Thus, our contributions in this paper are:

• proposing an octree-based multi-resolution sampling strat-
egy for domain-local convolution results
• developing amulti-resolution accumulation algorithm across
the domains, which are processed individually on GPUs
• suggesting methods for high performance implementation
of the algorithm speci�cations using a user-friendly API.

The paper is organized as follows. The background section de-
scribes the original MASSIF simulation and discuss challenges in
scalability for existing Fortran code, followed by some background
on FFTX. Then, we describe our proposed domain decomposition
method which adapts MASSIF for implementation on GPUs. In par-
ticular, we focus on domain-local FFTs and sampling techniques to
store and accumulate the result in each iteration. The results section
contains �rst order performance models in three heterogeneous
environments: a large memory node, a node in the NVIDIA DGX2
workstation, and a node on the Summit supercomcputer (ORNL).
We also discuss use of APIs like FFTX and suggest extensions which
will allow the processing of irregular domains.

2 BACKGROUND
2.1 MASSIF Simulation
The Micromechanical Analysis of Stress-Strain Inhomogeneities
with Fourier transforms (MASSIF) is an FFT-based stress-strain
simulation method for composites [12], [11], [10], [16]. The method
discretizes amicrostructure (arrangement of grains in the composite
material, as seen in Fig. 1) on a regular three dimensional (3D) grid,
and a partial di�erential equation (PDE) with periodic boundary
conditions is formulated using the stress-strain constitutive relation
and equilibrium conditions. FFTs are used for solving the PDE
iteratively using the method of Green’s functions. FFTs are used to
perform convolutions with the Green’s function operator, which is
a rank-4 tensor at each grid point. Convolution in each iteration
requires computation of 3D FFTs of tensor �elds, thus requiring
extensive storage.

The pseudocode for MASSIF kernel is as given below. Strain and
stress �elds are rank-2 tensors at 3-D grid point x , and are denoted
by � (x) and � (x) respectively. Cmnk` (x) is the rank-4 sti�ness ten-
sor at x. E is initial average strain. The Green’s operator in Fourier
space at frequency point ��� is �̂mnk` (��� ). The convergence error is
es and tolerance error is etol. ��k` is the computed perturbation in
component (k, `) of the strain tensor. Superscripts indicate iteration

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Figure 1: Illustration a possible composite microstructure,
composed of individual grains.

Boundaries	are	critical	
regions		of		interest

Figure 2: Single component of stress �eld tensor in a sample
composite microstructure simulated using MASSIF. The im-
age shows behavior of stress at the grain boundary between
3 grains, which is a region of interest.

number. The iterative scheme continues till convergence is reached.
This is a single time step simulation.

Algorithm 1 MASSIF Inner loop
1: Initialize:

�

0  E, �

0
mn (x)  Cmnk` (x) : �0k` (x)

2: while es > etol do
3: �̂

(i )
mn (��� )  FFT(� (i )

mn (x))
4: Check convergence
5: ��̂ (i+1)k` (��� )  �̂k`mn (��� ) : �̂

(i )
mn (��� )

6: Update strain: �̂ (i+1)k` (��� )  �̂

(i )
k` (��� ) � ��̂ (i+1)k` (��� )

7: �

(i+1)
k` (x)  iFFT(�̂ (i+1)k` (��� ))

8: Update stress: � (i+1)
mn (x)  Cmnk` (x) : �

(i+1)
k` (x)

In Algorithm 1, line 3 computes the FFT of the stress �eld. Next,
line 4 checks convergence in Fourier domain for computational
e�ciency as advised in [10]. Line 5 computes a Fourier domain
convolution and tensor contraction with the Green’s function oper-
ator. Fourier domain strain is updated on line 6. This is followed by
an inverse FFT on the updated strain �eld. Finally, line 8 updates
the stress in the entire volume as per the stress-strain constitutive
relation. The memory requirement of the serial code is as seen in
table 1. The maximum size simulated currently with MPI and FFTW
is 1, 024 ⇥ 1, 024 ⇥ 1, 024 with a memory requirement of more than
2TB, and for larger sizes, the memory required is prohibitively large.
Scaling and accelerating the MASSIF simulation has a wide range
of applications where micromechanical properties of polycrystals
are studied.

To reducememory requirements, our method, originally outlined
in [9] and outlined in ??, proposes domain decomposition such

2
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Algorithm innovations such as compression or sampling reduce
communication and memory requirements, but it is highly di�-
cult to optimize these operations across various heterogeneous
platforms during implementation. The widely-used FFTW inter-
face [5] is not able to express some of these special pruning and
sampling patterns and hence the user cannot leverage the highly
optimized FFTW library for parallel computations. We develop new
descriptors for multi-resolution sampling and suggest their use
with suitable APIs for a user-friendly approach to implementing
this method. We use the example of a new API, FFTX [3], still in
early stages of development, to show that there is potential for de-
velopment of such extensions which can help e�ciently implement
domain decomposition algorithms on heterogeneous environments.

Thus, our contributions in this paper are:

• proposing an octree-based multi-resolution sampling strat-
egy for domain-local convolution results
• developing amulti-resolution accumulation algorithm across
the domains, which are processed individually on GPUs
• suggesting methods for high performance implementation
of the algorithm speci�cations using a user-friendly API.

The paper is organized as follows. The background section de-
scribes the original MASSIF simulation and discuss challenges in
scalability for existing Fortran code, followed by some background
on FFTX. Then, we describe our proposed domain decomposition
method which adapts MASSIF for implementation on GPUs. In par-
ticular, we focus on domain-local FFTs and sampling techniques to
store and accumulate the result in each iteration. The results section
contains �rst order performance models in three heterogeneous
environments: a large memory node, a node in the NVIDIA DGX2
workstation, and a node on the Summit supercomcputer (ORNL).
We also discuss use of APIs like FFTX and suggest extensions which
will allow the processing of irregular domains.

2 BACKGROUND
2.1 MASSIF Simulation
The Micromechanical Analysis of Stress-Strain Inhomogeneities
with Fourier transforms (MASSIF) is an FFT-based stress-strain
simulation method for composites [12], [11], [10], [16]. The method
discretizes amicrostructure (arrangement of grains in the composite
material, as seen in Fig. 1) on a regular three dimensional (3D) grid,
and a partial di�erential equation (PDE) with periodic boundary
conditions is formulated using the stress-strain constitutive relation
and equilibrium conditions. FFTs are used for solving the PDE
iteratively using the method of Green’s functions. FFTs are used to
perform convolutions with the Green’s function operator, which is
a rank-4 tensor at each grid point. Convolution in each iteration
requires computation of 3D FFTs of tensor �elds, thus requiring
extensive storage.

The pseudocode for MASSIF kernel is as given below. Strain and
stress �elds are rank-2 tensors at 3-D grid point x , and are denoted
by � (x) and � (x) respectively. Cmnk` (x) is the rank-4 sti�ness ten-
sor at x. E is initial average strain. The Green’s operator in Fourier
space at frequency point ��� is �̂mnk` (��� ). The convergence error is
es and tolerance error is etol. ��k` is the computed perturbation in
component (k, `) of the strain tensor. Superscripts indicate iteration

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is
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Figure 1: Illustration a possible composite microstructure,
composed of individual grains.

Boundaries	are	critical	
regions		of		interest

Figure 2: Single component of stress �eld tensor in a sample
composite microstructure simulated using MASSIF. The im-
age shows behavior of stress at the grain boundary between
3 grains, which is a region of interest.

number. The iterative scheme continues till convergence is reached.
This is a single time step simulation.

Algorithm 1 MASSIF Inner loop
1: Initialize:

�

0  E, �

0
mn (x)  Cmnk` (x) : �0k` (x)

2: while es > etol do
3: �̂

(i )
mn (��� )  FFT(� (i )

mn (x))
4: Check convergence
5: ��̂ (i+1)k` (��� )  �̂k`mn (��� ) : �̂

(i )
mn (��� )

6: Update strain: �̂ (i+1)k` (��� )  �̂

(i )
k` (��� ) � ��̂ (i+1)k` (��� )

7: �

(i+1)
k` (x)  iFFT(�̂ (i+1)k` (��� ))

8: Update stress: � (i+1)
mn (x)  Cmnk` (x) : �

(i+1)
k` (x)

In Algorithm 1, line 3 computes the FFT of the stress �eld. Next,
line 4 checks convergence in Fourier domain for computational
e�ciency as advised in [10]. Line 5 computes a Fourier domain
convolution and tensor contraction with the Green’s function oper-
ator. Fourier domain strain is updated on line 6. This is followed by
an inverse FFT on the updated strain �eld. Finally, line 8 updates
the stress in the entire volume as per the stress-strain constitutive
relation. The memory requirement of the serial code is as seen in
table 1. The maximum size simulated currently with MPI and FFTW
is 1, 024 ⇥ 1, 024 ⇥ 1, 024 with a memory requirement of more than
2TB, and for larger sizes, the memory required is prohibitively large.
Scaling and accelerating the MASSIF simulation has a wide range
of applications where micromechanical properties of polycrystals
are studied.

To reducememory requirements, our method, originally outlined
in [9] and outlined in ??, proposes domain decomposition such
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FFTX is..

References
[1]V. Tari,R. A. Lebensohn, R. Pokharel,T. J.Turner,P. A.Shade, J. V. Bernier, and A. D. Rollett. 2018. Validation of micro-mechanical FFT-based simulations using High Energy Di raction Microscopy on Ti-7Al. Acta Materialia 154 (8 2018). 
https://doi.org/10.1016/j.actamat.2018.05.036 
[2] M. Frigo and S. G. Johnson. 2005. The Design and Implementation of FFTW3. Proc. IEEE 93, 2 (Feb 2005), 216–231. https://doi.org/10.1109/JPROC.2004.840301 
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Table 1: Extremememory requirement ofMSCBasic Scheme
(serial version)

Input data size 323 643 1283 2563 5123 10243

Memory
required (GB) 0.07 0.55 4.44 35.5 284 2272

CPU
GPU

Load	domain	from	
main	memory

Compress	domain	
(all	tensor	

components)

Collect	update	from	
GPU

Decompress	tensor	
component

Domain-local	FFT,	
Convolution,	
Sampling

Compress	result	and	
copy	data	to	CPU

Copy	data	to	GPU

Synchronize

Offload

Figure 3: Flow diagram of the proposed method. The CPU
o�loads individual domains to the GPU for iterative update.

that a domain is an individual grain. The stress and strain �elds
within a grain are smooth and hence, compressible. A naïve regular
domain decomposition algorithm that ignores locations of grain
boundaries would present problems in scalability because a single
domain could contain parts of multiple grains, each of which has
certain properties and rank-2 tensor �elds at each point. Since
grain boundaries are regions of interest, the domain data cannot be
compressed due to a possible large loss in accuracy, and therefore
this method could su�er from a large data movement overhead
from the CPU to the GPU. Thus, our method aims to lower storage
and communication requirements by using grains as domains. The
work in [9] deals with error analysis due to domain compression
and savings in memory. In the following sections, we will describe
the domain-local sampling and result accumulation strategies used
in more detail.

2.2 Non-uniform FFTs and Pruned FFTs
Non-uniform FFTs and pruned FFTs can be used to reduce stor-
age of large FFTs, but have certain drawbacks, which make them
unattractive to use in the context of MASSIF.

When the data is irregularly sampled in either the time/space
or the frequency domain, the fundamental assumptions of the Dis-
crete Fourier Transform (DFT) are not satis�ed, and the FFT, a fast
algorithm to compute the DFT, does not apply. A number of algo-
rithms have been developed to overcome this limitation, and the

transform they perform is generally referred to as non-uniform
FFTs (NUFFT) [2], A fast implementation can be found in [8]. The
choice of the most e�cient algorithm however, depends on the
problem parameters. However, in the case of MASSIF, since high
frequency components are found at grain boundaries and low fre-
quency components dominate grain interiors, dropping samples
from the frequency domain could impact the solution accuracy.

When an FFT is being computed but only a small number of
points in the result are actually required, a pruned FFT [1], [15],
[14], is sometimes used. The data �ow of the pruned structure is
derived from the normal FFT structure by keeping only the branches
corresponding to non-zero inputs. Usually, pruning algorithms
require that the non-zero data are grouped together and may not
work well when the non-zero values are scattered in the grid. In our
case, we require the dense convolution result to be sampled sparsely
in sub-regions, since eliminating all samples in the sub-region will
lead to wrong computation. Hence, standard pruning techniques
will not work well here.

Hence, we propose a multi-resolution sampling pattern to reduce
storage while maintaining the ability to reconstruct solutions with
good accuracy. This has not been implemented for domain-local
scienti�c calculations, to the best of our knowledge.

2.3 Optimized FFT libraries and APIs
For most of today’s large science applications that depend on FFTs,
the implementation consists of transforming multidimensional
problems into a sequence of 1D FFT calls, with the latter being
performed by a library. Over the last decade or so, the FFTW API
became the de-facto standard FFT interface[5]. High performance
libraries by Intel (with its Math Kernel Library, MKL [7], and the
Cluster MKL), IBM (with ESSL [6] and PESSL), and Nvidia (with
cuFFT [13]) implement (at least a subset) of the FFTW interface.

However, due to increasing complexity of node architectures
and memory heirarchies that are to varying extents user-controlled,
mode complex mappings of multidimensional FFT-based applica-
tions are needed to the core 1D FFTs in order to maximize the e�ec-
tive use of the �oating point capabilities and minimize data move-
ment across the memory hierarchy. Some of these are simply not
expressible in the current FFTW interface; others can be expressed,
but with great e�ort on the part of the applications programmer, and
often with an outcome of not yielding the theoretically-predicted
performance due to unexpected and opaque behavior of the FFT
library software. Also, current support of FFTW is limited and ex-
panding the feature set of FFTW to enable more e�ective use of new
architectures is not feasible. Hence, new alternatives are emerging.

The FFTX interface [4] is a new framework for building FFT-
based applications which proposes to overcome the above limi-
tations. In particular, FFTX provides a backwards-compatible ap-
proach that builds on the FFTW interface but extends it to enable
extraction of high-performance on exascale machines. The FFTX
API can express complex mappings of multidimensional data to
well-optimized FFT-based kernels, while a SPIRAL-based code gen-
eration back-end [3] handles optimizations across various hardware
platforms. Thus, the advantage of FFTX is that it e�ectively decou-
ples algorithm speci�cation and code optimization. Thus, we believe
using APIs like FFTX that make algorithm speci�cation much easier
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Algorithm innovations such as compression or sampling reduce
communication and memory requirements, but it is highly di�-
cult to optimize these operations across various heterogeneous
platforms during implementation. The widely-used FFTW inter-
face [5] is not able to express some of these special pruning and
sampling patterns and hence the user cannot leverage the highly
optimized FFTW library for parallel computations. We develop new
descriptors for multi-resolution sampling and suggest their use
with suitable APIs for a user-friendly approach to implementing
this method. We use the example of a new API, FFTX [3], still in
early stages of development, to show that there is potential for de-
velopment of such extensions which can help e�ciently implement
domain decomposition algorithms on heterogeneous environments.

Thus, our contributions in this paper are:

• proposing an octree-based multi-resolution sampling strat-
egy for domain-local convolution results
• developing amulti-resolution accumulation algorithm across
the domains, which are processed individually on GPUs
• suggesting methods for high performance implementation
of the algorithm speci�cations using a user-friendly API.

The paper is organized as follows. The background section de-
scribes the original MASSIF simulation and discuss challenges in
scalability for existing Fortran code, followed by some background
on FFTX. Then, we describe our proposed domain decomposition
method which adapts MASSIF for implementation on GPUs. In par-
ticular, we focus on domain-local FFTs and sampling techniques to
store and accumulate the result in each iteration. The results section
contains �rst order performance models in three heterogeneous
environments: a large memory node, a node in the NVIDIA DGX2
workstation, and a node on the Summit supercomcputer (ORNL).
We also discuss use of APIs like FFTX and suggest extensions which
will allow the processing of irregular domains.

2 BACKGROUND
2.1 MASSIF Simulation
The Micromechanical Analysis of Stress-Strain Inhomogeneities
with Fourier transforms (MASSIF) is an FFT-based stress-strain
simulation method for composites [12], [11], [10], [16]. The method
discretizes amicrostructure (arrangement of grains in the composite
material, as seen in Fig. 1) on a regular three dimensional (3D) grid,
and a partial di�erential equation (PDE) with periodic boundary
conditions is formulated using the stress-strain constitutive relation
and equilibrium conditions. FFTs are used for solving the PDE
iteratively using the method of Green’s functions. FFTs are used to
perform convolutions with the Green’s function operator, which is
a rank-4 tensor at each grid point. Convolution in each iteration
requires computation of 3D FFTs of tensor �elds, thus requiring
extensive storage.

The pseudocode for MASSIF kernel is as given below. Strain and
stress �elds are rank-2 tensors at 3-D grid point x , and are denoted
by � (x) and � (x) respectively. Cmnk` (x) is the rank-4 sti�ness ten-
sor at x. E is initial average strain. The Green’s operator in Fourier
space at frequency point ��� is �̂mnk` (��� ). The convergence error is
es and tolerance error is etol. ��k` is the computed perturbation in
component (k, `) of the strain tensor. Superscripts indicate iteration

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Figure 1: Illustration a possible composite microstructure,
composed of individual grains.

Boundaries	are	critical	
regions		of		interest

Figure 2: Single component of stress �eld tensor in a sample
composite microstructure simulated using MASSIF. The im-
age shows behavior of stress at the grain boundary between
3 grains, which is a region of interest.

number. The iterative scheme continues till convergence is reached.
This is a single time step simulation.

Algorithm 1 MASSIF Inner loop
1: Initialize:

�

0  E, �

0
mn (x)  Cmnk` (x) : �0k` (x)

2: while es > etol do
3: �̂

(i )
mn (��� )  FFT(� (i )

mn (x))
4: Check convergence
5: ��̂ (i+1)k` (��� )  �̂k`mn (��� ) : �̂

(i )
mn (��� )

6: Update strain: �̂ (i+1)k` (��� )  �̂

(i )
k` (��� ) � ��̂ (i+1)k` (��� )

7: �

(i+1)
k` (x)  iFFT(�̂ (i+1)k` (��� ))

8: Update stress: � (i+1)
mn (x)  Cmnk` (x) : �

(i+1)
k` (x)

In Algorithm 1, line 3 computes the FFT of the stress �eld. Next,
line 4 checks convergence in Fourier domain for computational
e�ciency as advised in [10]. Line 5 computes a Fourier domain
convolution and tensor contraction with the Green’s function oper-
ator. Fourier domain strain is updated on line 6. This is followed by
an inverse FFT on the updated strain �eld. Finally, line 8 updates
the stress in the entire volume as per the stress-strain constitutive
relation. The memory requirement of the serial code is as seen in
table 1. The maximum size simulated currently with MPI and FFTW
is 1, 024 ⇥ 1, 024 ⇥ 1, 024 with a memory requirement of more than
2TB, and for larger sizes, the memory required is prohibitively large.
Scaling and accelerating the MASSIF simulation has a wide range
of applications where micromechanical properties of polycrystals
are studied.

To reducememory requirements, our method, originally outlined
in [9] and outlined in ??, proposes domain decomposition such

2
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Summary	of	Proposed	Work

¢ Contribution	2:	Performance	Modeling
§ For	irregular	domains
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DGX2 Workstation with 
16 GPUs connected by 
NVLINK
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many-node, with 
multiple GPUs/node.

Single node, multi-GPU
(HPE Apollo 6500 node)

Emerging interfaces like FFTX, extension of FFTW, 
enables algorithm specification as composition of sub-
plans

Proposed Solution:
Re-design the application algorithm using domain 
expertise and knowledge about high performance 
computing platforms.

Main issues faced:
As problem size increases for high 
resolution simulations, storage and 
communication requirements 
increase. Problems larger than 10243

grids not currently simulated.
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problem is estimated to take many hours to finish processing all domains once. For larger

domain sizes, GPU memory beyond current capacities is needed, hence the problem is marked

as infeasible. A single 64⇥ 64⇥ 64 domain in a problem of size 8192⇥ 8192⇥ 8192 requires

about 154 seconds in double precision computation, which means that if all 27, 648 available

GPUs on Summit are utilized, it will take about 3.25 hours to process the full volume.

However, the memory required for each domain is at the maximum GPU limit. With 128⇥

128⇥128 domains, the problem will run faster (0.4 hours) if memory is available (by reducing

precision, increasing downsampling, etc).

If all computation can be performed in single precision, the compute time and storage

needs will be very di↵erent. For example, a 4096 ⇥ 4096 ⇥ 4096 grid with 256 ⇥ 256 ⇥ 256

domains could run extremely fast (0.0004 hours/iteration) while an 8192⇥ 8192⇥ 8192 grid

with 64⇥ 64⇥ 64 domains could take 1.5 hours/iteration on Summit, with the domain-local

FFT needing 16 GB GPU memory. Error analysis and tradeo↵s due to single precision

computation remains to be theoretically determined.

Thus, the performance model provides estimates and insights into the expected gains of

our algorithm design. The gains look promising, justifying moving towards implementation

of this method.

Table 5: Estimated machine requirements for simulation of various problem sizes when

decomposed into equal sized domains as indicated. N = 1024 indicates that problem size

is 1024⇥ 1024⇥ 1024 and k = 128 means domain size is 128⇥ 128⇥ 128. (.) indicates

that the problem can be tractable with additional approximations and conversion to single

precision.

N = 1024 N = 2048 N = 4096 N = 8192
Machine k ! 128 512 128 512 128 512 1024 64 128 512 1024
HPE Apollo 6500 node
DGX2
Summit (ORNL) ( ) ( ) ( )

24

1024				1024				2048				2048				4096		4096			4096				8192			8192			8192		8192
128						512						128							512						128				512				1024						64							128					512			1024


