Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks

Anuva Kulkarni Filipe Condessa Jelena Kovacevic Carnegie Mellon University Carnegie Mellon, IST-Lisbon Carnegie Mellon University

Outline

- Motivation
 - Training-free methods
 - Hashing
 - Related work
- Approach
 - Winner Take All (WTA) Hash
 - Clustering based on Random Walks
- Some experimental results

Motivation

Goals:

Segment images where no. of classes unknown)

- Eliminate training-data (may not be available)
- Fast computation as a pre-processing step for classification
- Segmentation is similarity-search
- Machine learning concept of "hashing" data for fast similarity-search

Hashing

- Used to speed up the searching process
- A 'hash function' relates the data values to keys or 'hash codes'
- Hash table: shortened representation of data

Hash table

Hash value	Data		
001	Bird_type1		
010	Bird_type2		
011	Dog_type1		
100	Fox_type1		

Hashing

 Similar data points have the same (or close by) hash values

- Hash function:
 - Always returns a number for an object
 - Two equal objects will always have the same number
 - Two unequal objects may not always have different numbers

Hashing for Segmentation

- Each pixel is described by some feature vectors (eg. Color)
- Hashing is used to cluster them into groups

Segmentation and Randomized Hashing

Used by Taylor and Cowley (2009) for image segmentation

Algorithm:

- Hash the features of each pixel into *n*-bit codes
- Find local maxima in the space of hash codes. These are "cluster centers"
- Assign feature vector to closest maxima → get clusters
- Use a connected components algorithm

Parallelizable

Segmentation and Randomized Hashing

 Random hashing i.e using a hash code to indicate the region in which a feature vector lies after splitting the space using a set of randomly chosen splitting planes

Winner Take All Hash

- A way to convert feature vectors into compact binary hash codes
- Rank correlation is preserved
- Absolute value of feature does not matter; only the ordering of values matters
- Distance between hashes approximates rank correlation (?)

- Consider 3 feature vectors
- Step 1: Create random permutations

• Step 2: Choose first K entries. Let K=3

•Step 3: Pick the index of the max. entry. This is the hash code 'h' of that feature vector

Notice that Feature 2 is just Feature 1 perturbed by one, but Feature 3 is very different

Random Walks

- Understanding proximity in graphs
- Useful in **propagation** in graphs

 Similar to electrical network with voltages and edge weights inversely proportional to resistances

Consider a feature vector

 Step 1: Create P=4 random permutations

4 random permutations

7	1	5	33	12	15
33	7	15	12	5	1
5	12	7	1	15	33

15

12

33

5

 Step 2: Pick first K entries of the permuted vectors

• K=3

Pick first K entries K=3

 Step 3: Index of the maximum element is the hash code

 Thus a binary code is associated with our feature vector

 Step 4: Bin features according to the similarity in their hash codes

MinHash is a special case of WTA Hash

Our Approach

- 1. Similarity Search using WTA Hash
- 2. Transformation to graph with nodes and edges
- 3. Probability map using Random Walks
 - Automatic seed selection
- 4. Clustering

Block I: WTA hash

- Image Dimensions: P x Q x d
- Project onto R randomly chosen hyperplanes
 - Each point in image has R feature vectors

Block I: WTA hash

Run WTA hash N times.

K=3 Hence possible values of hash codes are 00, 01, 11

Repeat this N times to get PQ x N matrix of hash codes

Block II: Create Graph

- Run WTA hash N times → each point has N hash codes
- Image transformed into lattice
- Edge weights: $w_{i,j} = \exp(-\beta v_{i,j})$

Where:

$$v_{i,j} = \frac{d_H(i,j)}{\gamma}$$

```
d_H(i,j) = avg. Hamming distance over all N hash codes of nodes i and j

\gamma = Scaling factor

\beta = Weight parameter for RW algorithm
```

- Needs initial seeds to be defined
- Unsupervised draws using Dirichlet processes
- DP(G₀,a)
 - G_o is base distribution
 - a is concentration parameter
- DP draws values around G_0 . Samples are less cor

- Draw seeds from Dirichlet process DP(G,a) with base distribution G₀
- X_1 , ... X_{n-1} are samples drawn from the Dirichlet process
- Behaviour of the next sample X_n given the previous samples is:

$$X_n \mid X_1, ... X_{n-1} = \begin{cases} X_i \text{ with prob. } \frac{1}{n-1+\alpha} \\ \text{New draw from } G_0 \text{ with prob. } \frac{\alpha}{n-1+\alpha} \end{cases}$$

- Probability that a new seed belongs to a new class is proportional to a
- Posterior probability for the ith sample with class label y_i:

$$p(y_i = c | \boldsymbol{y}_{-i}, \alpha) = \frac{n_c^{-i} + \frac{\alpha}{c_{tot}}}{n - 1 + \alpha}$$

where

 C_{tot} = Total number of classes

 $y_i = \text{Class label } c, c \in \{1, 2 \dots C_{tot}\}$

 $\mathbf{y}_{-i} = \{ y_j | j \neq i \}$

 n_c^{-i} = number of samples in *c*th class excluding the *i*th sample

• Unsupervised, hence C_{tot} is infinite. Hence,

$$\lim_{C_{tot}\to\infty} p(y_i = c|\mathbf{y}_{-i}, \alpha) = \frac{n_c^{-i}}{n-1+\alpha}, \quad \forall c, n_c^{-i} > 0$$

"Clustering effect" or "rich gets richer"

Class is non-empty

Probability that a new class is discovered:

$$\lim_{C_{tot}\to\infty}\sum_{c}p(y_{i}=c|\boldsymbol{y}_{-i},\alpha)=\frac{\alpha}{n-1+\alpha}, \quad \forall c,\, n_{c}^{-i}=0$$
 Class is empty or new

 Use the RW algorithm to generate c probability maps, c= Number of classes found so far.

- Entropy calculated with probability maps
- Entropy-based stopping criteria
 - Cluster purity ↑, Avg. image entropy ↓

Histology images

Berkeley segmentation subset Avg. accuracy = $91.42\% \pm 4.57$

TexGeo Avg. accuracy = 95.14% ± 2.97

TexBTF Avg. accuracy= $98.36\% \pm 0.78$

- Comparison measure: Global Consistency Error (GCE)*
 - Lower GCE indicates lower error

Value Of R	GCE Score			
OI K	BSDSubset	TexBTF	TexColor	TexGeo
10	0.179	0.063	0.159	0.102
20	0.180	0.065	0.159	0.129
40	0.186	0.061	0.156	0.134

- Comparison measure: Global Consistency Error (GCE)
 - Lower GCE indicates lower error

Value Of R	GCE Score			
OI K	BSDSubset	TexBTF	TexColor	TexGeo
10	0.179	0.063	0.159	0.102
20	0.180	0.065	0.159	0.129
40	0.186	0.061	0.156	0.134

Comparison with other methods**:

Method	Human	RAD	Seed	Learned Affinity	Mean Shift	Normalized cuts
GCE	0.080	0.205	0.209	0.214	0.260	0.336

^{**}E. Vazquez, J. Van De Weijer, and R. Baldrich, "Image segmentation in the presence of shadows and highlights," pp. 1–14, Springer, 2008.

Conclusion

- WTA enables fast similarity search
- Parallelizable
- Completely unsupervised Random Walks-based clustering
- Can be used as pre-processing step in classification for images where number of classes is unknown