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Chapter

Intelligent Workload Scheduling
in Distributed Computing
Environment for Balance
between Energy Efficiency

and Performance

Larysa Globa, Oleksandr Stryzhak, Nataliia Gvozdetska
and Volodymyr Prokopets

Abstract

Global digital transformation requires more productive large-scale distributed
systems. Such systems should meet lots of requirements, such as high availability,
low latency and reliability. However, new challenges become more and more
important nowadays. One of them is energy efficiency of large-scale computing
systems. Many service providers prefer to use cheap commodity servers in their
distributed infrastructure, which makes the problem of energy efficiency even
harder because of hardware inhomogeneity. In this chapter an approach to finding
balance between performance and energy efficiency requirements within inhomo-
geneous distributed computing environment is proposed. The main idea of the
proposed approach is to use each node’s individual energy consumption models in
order to generate distributed system scaling patterns based on the statistical daily
workload and then adjust these patterns to match the current workload while using
energy-aware Power Consumption and Performance Balance (PCPB) scheduling
algorithm. An approach is tested using Matlab modeling. As a result of applying the
proposed approach, large-scale distributed computing systems save energy while
maintaining a fairly high level of performance and meeting the requirements of the
service-level agreement (SLA).

Keywords: energy efficiency, performance, SLA, distributed computing system,
scheduling, horizontal scaling

1. Introduction

Nowadays information technologies penetrate all spheres of human life.
According to the Gartner Top 10 Strategic Technology Trends for 2019 [1], the new
world-driving trends are going to include augmented analytics, immersive technol-
ogies, edge computing and blockchain in the nearest future. These technologies
require extremely highly efficient distributed computing systems that could process
large amounts of data, consuming as little resources as possible.
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Figure 1.
Electricity usage of data centres 2010-2030 estimation [2].

Electrical power is one of the most demanded resources for the large-scale
distributed computing systems. Both science and industry have made tremendous
efforts to reduce the power consumption of large-scale computing systems over the
past 10 years. According to the Huawei Technologies Sweden estimation, presented
in [2], power consumption of data centres all over the world is still going to grow in
the nearest future. However, due to the newly developed techniques, we can expect
much lower growth up to 2967 TWh. On the contrary, in the worst case, data
centres could consume up to 7933 TWh of energy without the use of any energy-
saving approaches (Figure 1).

Although the fruitful cooperation between science and industry has already
brought very good results in terms of reducing data centre power consumption,
there is still a very high demand for approaches that would allow to cope with new
challenges associated with the rapid development of distributed computing.

Within this study we propose an intelligent workload scheduling approach,
which is aimed at improving energy efficiency of distributed computing systems
through the application of energy-aware scheduling combined with scaling, taking
into account data processing performance as well. An approach considers first of all
inhomogeneous distributed systems designed to use cheap commodity hardware as
much as possible.

The chapter is structured as follows: Section 2 contains state-of-the-art analysis
of distributed computing system energy efficiency problem. Section 3 explains the
problem to be solved by proposed approach. Section 4 introduces proposed intelli-
gent workload scheduling approach efficiently combined with dynamic scaling
approaches. Section 4.1 presents a model of proposed approach implementation,
and Section 5 concludes the work with a summary and outlook on future work.

2. State of the art and background

Many approaches to increasing energy efficiency of the large-scale distributed
computing systems (power management approaches) already exist. According to
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the paper [3], these approaches can be divided into static and dynamic in terms of
decision-making process. Both static and dynamic approaches can be applied either
at the hardware level or at the software level. At the same time, these approaches
are also classified according to the scope (cloud environment, single server, etc.).
The overall structure of approach classification proposed in [3] is depicted in
Figure 2.

Since the load on computing systems usually changes dynamically (in particular,
in the cloud environment), it is worth to pay attention to the dynamic approaches to
power management, respectively. Thus, within this study we mainly focus on
dynamic energy-efficient approaches.

Considering hardware-based approaches, one of the most common approaches
is dynamic voltage and frequency scaling (DVFS). DVFS is a power management
technique that is effective in reducing power dissipation by lowering the supply
voltage [4]. DVFS is widely used to manage the energy and power consumption in
modern processors; however, for DVFS to be effective, there is a need to accurately
predict the performance impact of scaling a processor’s voltage and frequency
[5, 6]. Moreover, the implementation of hardware-based approaches may be chal-
lenging, especially when it comes to inhomogeneous systems consisting of com-
modity hardware. Such approaches usually require additional expenses in order to
adapt the system to their use. However, hardware-based approaches are very effi-
cient. And they might bring even more energy efficiency when used in conjunction
with software-based techniques.

Among the software approaches, the most commonly used are scheduling and
consolidation [7]. Scheduling approaches are aimed at distributing the workload
among the servers in a way that no servers are underutilized, jobs’ processing
performance is high enough and, in the case of energy-aware scheduling, the power
consumption of the whole computing system is minimized. Consolidation
approaches concern virtualized environments and are designed to balance virtual
machines (VMs) so that they can run on as few servers as possible. Idling servers are
then shut down or switched to a standby mode. It means that the consolidation is
tightly coupled with horizontal scaling approaches.

The authors of [8] proposed the performance and energy-based cost prediction
framework that dynamically supports VMs auto-scaling decision and demonstrates
the trade-off between cost, power consumption and performance. This framework
allows to estimate auto-scaling total cost, which is essential when using consolida-
tion and horizontal auto-scaling approaches. Dynamic auto-scaling can be a big gain
in energy efficiency, but estimating the cost of automatic scaling should not lead to
excessive overhead. Thus, in some cases, it may be worthwhile to avoid constant
dynamic auto-scaling and basically rely on statistics instead, while adjusting the
scale of the system when it is really needed.

‘ Power Management Techniques ‘
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’ Hardware Level ‘ ’ Software Level ‘ ‘ Hardware Level ‘ ‘ Software Level ‘
[ [
[ | ] I ]
’ Circuit Level ‘ ‘ Logic Level ‘ ‘ Architectural Level ‘ Single Server Multiple Servers, Data

Centers and Clouds

‘ OS Level ‘ ’ Virtualization Level ‘

Figure 2.
Classification of power management approaches to increasing energy efficiency of computing systems [3].
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In this chapter we use this idea, and we are mainly focused on the efficient
combination of horizontal scaling and energy-aware scheduling approaches. In the
field of energy-aware scheduling, there are many approaches developed so far.
Some of them are also aimed to combine different fundamental ideas of
energy-efficient computing.

The authors of the paper [9] proposed adaptive energy-efficient scheduling
(AES) approach which combines scheduling with the dynamic voltage scaling
(DVS) technique. This approach is proposed to be used in homogeneous computing
systems. It consists of two phases—in the first phase, an adaptive threshold-based
task duplication strategy is used, which can adjust the optimal threshold according
to the specified schedule length, network power, processor power and application;
in the second phase, DVS-enabled processors that can scale down their voltages are
used for processing. A proposed approach gives a gain of 31.7% in terms of energy
efficiency without performance loss that is quite a good result. Within this study we
also use an idea of combining scheduling approaches with other methodologies;
however, the authors of [9] use DVS and are limited by using DVS-enabled hard-
ware. Their approach is designed for homogeneous computer environments, while
we are focused on inhomogeneous environments, since it makes sense for service
providers to use cheap commodity hardware with different physical parameters in
order to reduce capital expenses.

Another example of energy-aware scheduling approach is Min_c [10]. This
strategy takes into account the variety of tasks that comes to the computing system
and the fact that the resources required by these tasks are different. The main
drawback of this approach is that the model of energy consumption is the same for
each node. It has nonlinear character that is close to reality, but the characteristics
of different machines can differ. Therefore, we propose defining
P = f(CPU) dependencies for each machine individually.

Within our previous research [11-13], energy-aware scheduling approach called
power consumption and performance balance (PCPB) was proposed and experi-
mentally tested. In [13] two possible modifications to the PCPB were described—
one of them uses tasks classification; another one applies scaling in addition to
energy-aware scheduling in order to further increase energy efficiency. It was
determined that developed energy-aware scheduling approach PCPB gives the best
results in terms of energy efficiency (energy savings up to 33.59%) while being used
in conjunction with horizontal scaling (scale-in and scale-out). Thus, in this chapter
we elaborate on this basic idea and propose to enhance PCPB with scaling tech-
niques and smartly power off and on idling servers while distributing the workload
between them using PCPB.

3. Problem definition

Consider a distributed computing system consisting of N nodes. Each node N; is
described by the following:

* V,—the amount of available RAM

. ﬂopsj—the productivity of the node Nj, which has k_coresj of the computing
cores

*P=f (CPU]-)—the power consumption function of the node, which is
experimentally determined for each N;
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Job is the unit of computing. The component of job is called a task. Physically,
one job is represented as a single computing process of a computer. Subprocesses or
child processes in turn appear to be tasks.

We will use the term “job” to determine the atomic computational problem that
can be located and executed on one of the computing nodes of the system (i.e. “job”
is the unit of load distribution). The income jobs form the queue.

Let us introduce the assumptions:

1. The queue consists of Q positions.

2.Jobs come to the queue at random moments of time 7. If the length of the queue
is 0 <l < Q, the job is placed on a free space in the queue. Otherwise, the job is
rejected.

3. All jobs in the queue are independent to each other.

4.The job may have one of the five possible states: “preparation for execution”,
“readiness for execution”, “in process of execution”, “execution successfully
completed”, and “execution interrupted”.

5.Each i job is characterized by the following parameters:

* The volume of job—the number of floating-point operations that must be
performed by the machine within this job (the number of floating-point
operations is not natively used to measure the jobs’ volume; however, we use
this artificial unit to express the amount of work that is required by job to be
performed):

V; = const [operations]
¢ The maximum execution time (or timeout):

Atyxi = const | sec|

is the time period from the moment the job arrives at the processing, after which
it must be completed. If the job has not been transferred to the state of “execution
successfully completed” after the time At,,,,;, it is transferred to the state of “exe-
cution interrupted” and is output from the system.

* Minimal amount of resources required to complete the job:
o Minimal amount of RAM needed:
RAM_min_i [Gb]
o Minimal required number of processing cores:
k_cores_min_i [cores]
An optimal parallelization for the task is not considered within this study. Let us
consider that the tasks are parallelized beforehand and just declared how many

cores they require to be processed, as an input data for processing system.

o Minimal required volume of persistent storage:
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Figure 3.
Workload statistic for the Google web search service (11 March 2019) [14].

storage_min_i [GD)|
* Job’s priority is an optional numeric parameter that can be set for a job and

determine the priority of its execution in comparison with other jobs. Let the
priority priority; be determined by an integer from 1 to 10. In this case,
priority processing requires tasks with priority 1. Let the default value of

the priority of the job be 10 units.

Consider the daily workload curve to be a part of an input data for the problem.
Every service provider is able to gather the daily statistics of the workload in his
computing system. As a result, the pattern of the day workload can be generated.
For example, Google provides such statistics of using its web search service in the
Transparency Report [14] (Figure 3).

Under the certain circumstances (holidays, festivals, special events, etc.), this
pattern can be changed. It means that it is possible to create certain system config-
uration patterns for the stable workload, respectively, but there is a need to adapt
the system in the case of changes being foreseen.

Given an input data, the problem is formulated as follows: to reduce total
power consumption of considered computing system while increasing the
performance of data processing and meeting service-level agreement (SLA)
requirements.

4. Proposed approach

Within the previous studies [11-13], it was determined that the use of energy-
aware scheduling is most effective when used in conjunction with consolidation
approaches and further scaling the whole system in and out. In [13] it was shown
that powering off idle servers could save up to 33.59% of the energy in the
considered computing cluster.

Within the current study, the system model and main idea of proposed approach
were modified and can be described as follows:
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1. To define experimentally individual dependencies P; = f (CPU;) for all
computing nodes of the system as power consumption functions. Having
power consumption functions and performance value of each node, to range all
nodes according to their integrated performance and power consumption
criteria from the best one to the worst one.

2.To use energy-aware PCPB scheduling approach proposed in [11] to distribute
the workload in the system.

3.On the basis of the daily workload statistics, to determine a set of scaling
patterns describing the state of the computer system (in particular the number
of active nodes of the system) such that:

* The probability of job loss is minimized and is less than what is required
by SLA.

» Workload is processed with sufficient performance.

* Total energy consumption of the system is minimized. Individual
functions of power consumption are used to define the total energy
consumption of the system.

Scale the system horizontally with the respect of defined patterns. Patterns should
be formed only once on the basis of long-term workload statistics.

4.To detect the deviation of the current workload from the statistical one and
adjust scaling patterns dynamically for the fulfillment of the conditions listed
above.

4.1 Individual P; = f (CPU;) dependencies definition

As the first step of the approach, it is proposed to define individual power
consumption functions P; = f (CPUj) for each node of the system. This process is
described in details in [12]. In a nutshell, it is done as follows:

* An appropriate stress test is chosen in order to load each node’s CPU from 0 to
100%.

* A power consumption of each node is measured for a set of CPU utilization
levels (this can be done using special hardware (multimeter/wattmeter) or
software that also evaluates power consumption according to computer
hardware models. It is recommended to use hardware measurement tools as
they provide higher measurement accuracy).

* An analytical function is obtained from the experimental data using
interpolation [15].

As aresult, P; = f (CPU;) functions are obtained in a form of polynomials
(Eq. (1)).

P;(CPU;) = a* CPU} +b % CPU; + ¢+ CPU; +d +CPU} +¢xCPU} (1)
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where 4, b, ¢, d and e are fourth degree polynomial coefficients, defined within
interpolation process. An example of the P; = f (CPUj) curves obtained for five
computing nodes is presented in Figure 4.

Having P; = f (CPUj) functions and performance values flops; (in FLOPS) for all

nodes in the system, we can range them from the worst one to the best one as
follows:

1. For each node calculate the area under power consumption curve using Eq. (2).

100
5= | p(cruacru, @
0
In Eq. (2) CPU load is expressed as a percentage from 0 to 100%.

2. Sort all nodes by their Sj value in descending order.

3.Sort all nodes by their flops; value (performance metric) in ascending order.

4.Grant each node with a mark that equals the sum of the node positions in two
sorted arrays. The node with the highest mark is considered to be the best one.

Thus, using this simple approach, we are able to form sorted list of nodes in
order to make a decision, in which the node is the most inefficient one and should
be switched off first during scale-in process (Figure 4). Obviously, this only makes
sense for inhomogeneous systems where nodes are different from each other and
can be sorted.

4.2 Basic scheduling scheme

As a basic scheduler in a system, it is proposed to use PCPB energy-aware
scheduler that was proposed and further developed in [11-13]. The main idea of this

Best . s .
Pviﬁcf:{:;n; P]:f] (CPU] )
k_coresq 160

P2 (CPU2) 140

.
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RAM3 = s —8—Node2.1
k_cores3 g O ey
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Figure 4.

Sorted list of five nodes according to their integrated performance and power consumption criteria and their
P; =f(CPU;) curves obtained experimentally.
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scheduler is to use individual power consumption functions P; = f (CPU;) within
the scheduling process in order to determine dynamically, on which node the task is
going to consume less power. This approach considers performance criteria as well.
The main idea of approach is similar to that one described for the nodes’ ranging;
however, in PCPB the current state of computing nodes is considered. As it possible
to see in Figure 4, the increase in energy consumption at different levels of CPU
load is different (the curves grow steeper when the load changes from 0 to 25% and
flatter when the load changes from 75 to 100%).

The PCPB scheduling algorithm is described by Figure 5.

Scheduler gathers the data regarding current load of the nodes in a system. In
Step 1 it evaluates the CPU utilization of each node at the time moment 7;_;, before
scheduling the next job in a queue.

Having the knowledge on how many resources the job; requires, scheduler
excludes those nodes that currently do not have enough RAM or cores available for
the execution (Step 2).

In Step 3 scheduler calculates the theoretical total power that is going to be
consumed by the whole computing system supposing that job; is given for the
processing to the node Nj in the moment 7;, (Eq. (3)):

Ps, ‘Tk&Nj = PZ}kal + APji|t, (3)

where Py|t)_; is the total power consumption of the whole system at the
moment T,_1 and APy|t, = f (CPUj|rk) is the increase of power consumption, in the
case of job; being allocated to the node N; at the moment 7.

After that the nodes are sorted according to the current Py, |1, &Nj values and
according to their performance value flops;. The nodes get the mark for their posi-
tion in both sorted lists. The job is allocated to the node with the maximal mark (the
detailed description of PCPB approach is presented in [11]).

* Evaluate the state of the cluster at the moment 75,4

s Exclude all the impropriate nodes (by RAM and cores available)

* Find the set of summary consumptions Py = {sz}

* Sort the set N;by theoreticallyinserted gain of the consumed power: Np = {NP]_}

* Sort the set of leftover nodes by performance (FLOPS): Nrrops = {prp_g].}

* Grant each nodein sets Np and Ng;gps with the marks according to its positionin
these sets

* Allocatethe task; to the node with maximal total mark

€L€E€LELELEL

Figure 5.
PCPB scheduling algorithm.
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4.3 System state pattern determination

Since within previous research [13], it was determined that energy-aware
scheduling gives the best results in terms of energy efficiency while being used in
conjunction with horizontal scaling; let us define the optimal system scale patterns
in a form of set {n, 4, tena }, Where n is a number of active computing nodes in the
system and {Zya,t.nq } denotes the boundaries of time interval of the day, during
which these patterns remain optimal. These patterns are formed with respect to the
power consumption and job loss probability metrics. In order to find an optimal
pattern for each time interval, it is a need to determine these two metrics as
functions of number of active nodes in the system.

The certain level of system availability for service user is guaranteed by the SLA
as the probability that service will be available (i.e. the user’s job will be served)
when it is requested. Let the probability of the job loss required by SLA be defined
as in Eq. (4):

plOSSSLA = 1 _pSLA (4)

where Pg; 4 is guaranteed by SLA probability that the job will be served.

The more nodes available in the system, the less likely it is that a new incoming
task will find the system in a state where all nodes and the queue are fully loaded. It
means that the probability of job loss depends on the number of available nodes in
computing system and can be presented as a function p, . = f(n), where 7 is the
number of active nodes in the system.

Thus, the purpose of scaling patterns is to answer the question: How many active
nodes does the system need to have in order to fulfill the requirements to p,, . and
minimize total power consumption Py?

In order to estimate the dependency between the probability of job loss p;, . and
number of active nodes 7, consider the queueing system with a finite queue. The
basic concepts of queuing theory are requests (or customers) and servers [16]. The
natural way of modeling considered system as a queueing system would be to treat
jobs as requests and computing nodes as servers. However, in this case we would
have to eliminate the fact that the job may be served by several cores of one server
and one server may serve several jobs simultaneously as well. These facts bring the
certain complexity to the queueing system modeling. To be more precise, consider
one computing core to be a server in terms of queueing system. In order to model
input workload as requests of queueing system, we introduce a correction factor
k = coresminay; that denotes how many cores in average are requested by an input
job. Using this correction factor, we can represent an input workload as a number of
queueing system requests per time unit [Eq. (5)]:

At) = ke Aggar (), (5)

where Aq,(t) is the statistical workload represented as a number of
computational jobs.

Input data for queuing system:
* Number of active servers in the system:

* n computing nodes or n’ = Z;?:lkcmj servers in terms of queueing system,

where k., is the number of cores of jth node.

10
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* Queue length: Q jobs or k * Q queueing system requests

* Service discipline:

Serving discipline is basically defined by scheduler that is being used. In consid-
ered case, using PCPB, the jobs are selected from the queue according to the first-
in-first-out (FIFO) discipline.

o The mean arrival rate:

The mean arrival rate can be defined on the basis of the workload statistics as it
is done in Eq. (5).

However, in order to build a model, it is worthy to operate with the value A7,
that is the maximal value of load during the period T (T defines the time of one
pattern validity).

o The mean service rate:

In general case, in order to evaluate the service rate for a particular server of the
system, it is necessary to determine the average number of requests that leave the
server after a successful processing per time unit. This is a random value; within
this study we will consider service rate to be determined experimentally (on the basis of
statistic of load processing for a particular system) and defined by its mean value .

In this case, the model is actually simplified, but still allows us to estimate the general
relationship between the probability of loss and the number of nodes in the system.

Queueing system problem:

To define the probability of job loss, p,, .. = f(n) as the function of the number of
active servers n (nodes of computing system), such that 2 <z <N, where N is the
total number of nodes in the system.

This system can be represented with a Markov chain (Figure 6), where S
denotes the state of the system, when 0 servers are occupied and the queue is
empty, S; — S,y denotes there are 1¢o n'occupied servers, and S, 11 — Sy1q denotes
all servers are occupied and some requests are placed to a queue.

The probability of loss for the queueing system with a finite queue is defined by
Eq. (6) [16]:

pn’ +kQ
Ploss =Po * n,!n,kQ (6)
where
ATmax ATmax ATmax
Mavg 2avg n'pavg n'pavg
Figure 6.

System model as a Markov chain.

11



Scheduling Problems - New Applications and Trends

Q -1
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n'—number of servers in queueing system.

kQ—Ilength of the queue.

Thus, the simplified model described above allows us to estimate the depen-
dency between the number of nodes of the system and probability of the loss. This
model should be precisely adjusted to each real system, but the general principle
may still stay the same.

Let us estimate the power consumption of the system in order to find an optimal
number of nodes so that the power consumption is minimized and probability of
loss does not exceed the permissible by SLA value.

As the first step, we defined individual functions of power consumption
P; = f(CPU;) for each node in the system. These functions may be formally
represented in the form of polynomials (Eq. (1)).

The total power consumption of the whole system (as a sum of nodes’ individual
power consumptions) depends on the load that is being processed by the nodes. We
have the daily workload on the system as an input data. However, according to the
system model, current load of each system node highly depends on the scheduling
technique.

Initially, input workload is represented as a “number of jobs per time unit”. Each
job may differ computationally and can be evaluated by its maximal execution time
or job volume (as a number of floating-point operations). For the sake of simplicity,
let us consider the static situation in some point of time, when we have k jobs that
would totally fit to the processing nodes. Assume that these jobs in total form the

load to the system of ZLV,' loperations]. In this case, scheduler will schedule these
jobs accordingly to its policy. In the simplest case, if round-robin fair scheduler is
used [17], it would schedule tasks in a way that each node would get an average

s = % of load. Let s be a scheduler coefficient, which should be defined for each

concrete scheduler. In the case of using round-robin, the dependency of power
consumption of the node from its load can be formulated as Eq. (7):

k k 4 k 3
Pj:f(CPU) :f<¥ *C) =ax (¥ *C) + b * <¥ *C) +c *

(7)
x (71‘1 ’ *c> +dx <71 *c> +ex (—1 *C> .
n n n

where C is a constant, which expresses how the input load is converted into a
CPU load in percentages. And for the more general case, Eq. (7) is transformed into

Eq. (8):

P; =f(CPU) =f(sxC) —ax(sxC)" +bhx(sxC)>°+

8
+cx(s%C)Y +dx(s%C) +ex(sxC)° ®)

This formula is very simplified though. Depending on scheduler being used, the
load of the system’s nodes may be different.

12
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There is another more generalized approach to evaluate power consumption of
system nodes. Usually, servers are kept to be utilized at some average level CPU,y,

that may be defined statistically for each system. It is actually more precise solution
in comparison with analytical definition of CPU utilization that depends on sched-
uling being used and incoming load. For the whole system, total power consump-
tion is then defined by Eq. (9):

Py zé Py (CPUa ) 9)

where P; <CPUﬂUg],> is the individual functions of nodes’ power consumption.

The mathematical models of total power consumption and loss probability men-
tioned above lead us to the optimization problem that can be formulated as follows:

To define an optimal number of active nodes of the distributed computing
system #, the objective function (Eq. (10)) is minimized subject to Eq. (11).

Py=YP (CPUng ) . min (10)
j=1
subject to:
(iT >n’+kQ
Hagg
ploss = pO * n;g'n,kQ <plossSLA’ 1<n<N (11)

To solve this problem, we need to choose the time intervals T for which we will
create the patterns. Since patterns are created statically on the basis of statistical
workload, it is possible to define the time moments, when thresholds are achieved
so that p, . = p,..sr 4- When it happens there is a need to increase the number of
nodes (thus, to change the pattern). In case the load is decreasing, it is possible to
define the moment when Py is not minimal anymore for the current statistical load.

The above problem solved for each time interval T would allow to determine the
optimal number of processing nodes 7 for each time interval depending on the
incoming load. Meanwhile, the following conditions will be fulfilled:

1. Energy consumption of the system will be minimal.
2.Job loss probability will meet the SLA requirements.

On the basis of the obtained values of n, T, it is possible to create patterns for the
number of nodes of the system for periods of the day. These patterns may be
created once for the regular workload and be corrected during further system
operation. Since the dependencies of energy consumption and loss probability from
the number of active nodes in system are already defined, it requires only minimal
effort to adapt the system to a new workload pattern.

4.4 Deviations from patterns detection and system reconfiguration

In order to cope with unpredictable service workload deviations that can be
caused by different reasons (e.g. holidays, special events, etc.), there is a need to
detect significant deviations from the statistic workload curve, predict the workload
for the next chosen time period and reconfigure the system, respectively.

13
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The authors of the research [18] have proposed an approach to hybrid resource
provisioning in virtualized networks. The main idea of this approach is as follows:

¢ To use workload statistics to create a baseline resource allocation scheme
¢ To monitor deviation of the actual workload from the statistical one

* To react dynamically to deviations from the base workload, which exceeds the
permissible value

* To predict the workload for the next time interval T and adjust the resource
allocation accordingly

This approach can be briefly explained using Figure 7, where an example of
applying the approach is highlighted by red circle.

Within the current study, this approach may be adapted to serve the need of
detecting deviations from the statistical workload in considered distributed systems
and to adjust the number of active system nodes in accordance with defined opti-
mization problem.

Consider that the system has k scaling patterns that correspond to the daily
workload (Figure 8). Pattern in this context means the number of active nodes that
remains optimal for the certain time period, so the pattern may be denoted as a set
{n,tart,tena > Where n is the number of active nodes and ty,s, t,,s show the interval
of the day, during which these patterns remain optimal. These patterns may contain
other configuration information as well, but it lies beyond the scope of the current
study.

According to the adapted approach proposed in [18], the current workload
should be monitored throughout the day, but the intensity of the monitoring may
vary according to the deviation between the statistical workload and the current
one. Let I}, be a baseline time monitoring interval. This interval should be deter-
mined empirically for each system. Monitoring interval then should be adjusted
according to Eq. (12):

t—1 maX<O§/10bs () — Aprea (t))

W(t) - Iba:e - K Z A Ibase: (12)
j=t—h
Workload, e - Statistical workload curve
[number of requests]/ - e - actual workload curve
Resource amount, = = - permissible deviation

[resource unit] === - resources to be allocated

time

Figure 7.
The main idea of hybrid resource provisioning approach [18].
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Workload Number of
active nodes

time

Figure 8.
Scaling patterns of the system that correspond to the daily workload.

where:

W is an new monitoring interval.

Ipsse is the baseline predefined monitoring interval.

K is the normalization constant that should be defined for each system individually.
Aobs (t) is the current load arrival rate during the time ¢.

Apred(t) is the predicted load arrival rate during the time ¢ (according to the

statistical workload curve).

h is the number of preceding intervals considered by the algorithm.

If Apaseprea (t) is @ basic (statistical) load arrival rate for a period of time ¢ and
Aobs (t) is the current load arrival rate during the time #, the load predicted for the
next interval should be adjusted according to Eq. (13):

i1 /lbs ) — A red )
lpred(t) - /lba:epred(t) + Z 2 (]) P <]

(13)
j=t—h h

This approach is described in details in [18].

Thus, having the predicted value of workload for the next time period, we can
recalculate the pattern for that period and change the number of nodes in the
system according to the calculated optimal number.

As a result of applying proposed steps, we get formed patterns {#, s, tena } for
the static day workload and may adjust them according to the deviation between
current workload and statistical one.

5. Modeling

Within the modeling the system with comparatively low workload and number
of computing nodes was chosen for clarity, but such model can be scaled for larger
systems as well. Matlab system was used to create the model.

Suppose we have a daily workload curve depicted in Figure 9 (the value of
workload is defined for each minute, so we also have value A for each minute).

For this workload let us define static scaling patterns that describe the optimal
numbers of active nodes and time periods, for which these numbers remain optimal.
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Day workload
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Figure 9.

Daily workload curve used for modeling.

Experimentally defined P=f(CPU) functions

400
(1= P l(m) = 0.0001*m"3 - 0.0139*m"2 +1.0443*m"1 + 15.8600*m"0;
2= | P_2(m) = 0.0000*m"3 - 0.0018*m*2 +0.8275*m"1 + 16.1300*m"0;
b= P 3(m) = 0.0001*m"3 - 0.0107*m"2 +0.9536*m"1 + 15.8600*m"0; 250 b
i- | P_4(m) = 0.0005*m"3 - 0.0328*m*2 +1.3271*m"1 + 73.9100*m"0; -g
Bl= P _5(m) = 0.0002*m"3 - 0.0212*m"2 +1.3389*m"1 + 76.3300*m"0; a
5 - P 6(m) = 0.0004*m"3 - 0.0149*m"2 +1.0443*m"1 + 17.8600*m~0; § 2
71— | B_7(m) = 0.0003*n"3 - 0,0118*m*2 +0.8275*m*1 + 36.1300*m"0; g
3- | P_8(m = 0.0001*m*3 - 0.0127*m*2 +0.9536*m"1 + 14.8600*m"0; & 5|
3= | BP_8(m) = 0.0003*m"3 - 0.0408*m*2 +1.3271*m*1 + 75.9100*m™0;
Y= | P_10(m) = 0.0002*m*3 - 0.0211*m*2 +1.3389*m"1 + 72.3300*m~0;
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Figure 10.

Analytical and graphical representation of the P = f (CPU) functions defined experimentally.

As an input data for modeling, we also have the following:

1. P = f(CPU) functions for N = 10 servers in the form of polynomials. These
functions were defined experimentally and interpolated using fourth degree
polynomials. Analytical and graphical representation of the P = f(CPU)

functions is presented in Figure 10.

2. Corresponding values of RAM volume, number of cores and performance for
these ten servers.

3.Scheduler algorithm that is being used—PCPB algorithm (the details regarding
PCPB algorithm modeling are provided within the previous research [11]).

4.Average serving rate for given servers: Hapg = 25 req/min.
5.Q =5, the length of the queue.

6.Let the probability of loss be defined by SLAbe p,, o, , = 107°.
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Figure 11.
Loss probability and power consumption calculations for the first workload value.

Patterns of system configuration

Number of nodes

0 500 1000 1500
Time (00:00-23:59)

Figure 12.
Created scaling patterns for the given input workload.

In order to create patterns for certain time periods, it is worthy to run calcula-
tions according to Eq. (1) for each minute at first. Then, as soon as the thresholds of
Do and Pj are defined, it is possible to derive {4, tnq} values for each pattern.

Let us build the curves described by Eq. (10) and Eq. (11) for the first minute
workload. Resulting curves are depicted in Figure 11.

In Figure 11 it is possible to see that in order to meet the SLA requirements
Pusssia = 107°, we need to have at least five nodes in the system. We can also see
that these five nodes will consume near 900 W of energy. As the nodes are sorted
from the worst one to the best one, these five leftover nodes are the most energy
efficient and productive among the others.

We need to do the same for the remaining part of workload curve. This process
was modeled using Matlab. As a result, we got all the scaling patterns for the given
input workload (Figure 12).

Let us introduce some deviation to the statistical workload in order to apply
pattern adjustment. Introduced workload deviation is circled in red in Figure 13.
Adjustment was made according to Eqs. 12 and 13 proposed in [18].

In Figure 13, the adjustment of the received patterns is shown in the right graph.
As it is possible to see, the interval of patterns optimality and number of nodes were
changed, respectively.
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Day workload Patterns of system configuration
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Figure 13.
Scaling patterns’ dynamic adjustment result.

Thus, created model fully illustrates the process of proposed intelligent work-
load scheduling approach which is improved through the use of scaling approaches.
The model shows the main idea of proposed approach; however, in real systems it is
worthy to add some redundancy and always keep at least one extra server active in
order to cope with unpredicted workload deviations.

6. Conclusion

In this chapter an intelligent approach to the workload scheduling in distributed
computing environment was proposed. According to the proposed approach, energy-
aware PCPB scheduling algorithm is combined with scaling approaches that allow to
achieve an optimal balance between energy efficiency and performance while fulfill-
ing the SLA requirements. In order to achieve these goals, we propose to create and
dynamically adjust system scaling patterns while using energy-aware scheduling. An
approach was modeled using Matlab. The simulation results showed that it is able to
cope with the efficient processing of statistical load, as well as load deviations.

Within the future research, the system representation as a queueing system is
going to be made more precisely, and proposed approach’s efficiency should be
proven by means of experiment.
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