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What’s a discriminant anyway?

▶
Vd ,n := C[x0, . . . , xn](d)

▶
Σd ,n = {f ∈ Vd ,n|∃p ∈ Pn, f (p) = 0, df (p) = 0}

▶
Ud ,n = Vd ,n − Σd ,n

Polynomials with smooth zero locus in Pn

▶ More generally have discriminant varieties Σ(L) ⊆ H0(X , L),
where X - smooth proj. variety, L ample line bundle,

U(L) = H0(X , L)− Σ(L)



Stability properties

▶ Tommasi(2014)

H∗(Ud ,n,Q) ∼= H∗(GLn+1(C),Q)

for ∗ < d
2 .

▶ (B -2020) X - Riemann surface, deg(L) = d ,

H∗(U(L),Z) ∼= H∗(Gd(X );Z) for ∗ << d

Gd(X ) - group associated to braid group on X .

▶ Aumonier(2021) - for all (X , L), spaces U(L) satisfy
homological stability.



Limits of stability (Work in Progress)

1. Thm (B, WIP)

H∗(Ud ,n,Q) = H∗(GLn+1(C),Q) for ∗ < 2d − O(1)

H∗(Ud ,2,Q) = H∗(GL3(C),Q) for ∗ < 4d − O(1)

, this is sharp.

2. Trying to improve bound for Pn to ∗ < 2nd − O(1) (Conj.
optimal).

3. Need to understand stratification of Confk(Pn).

4. Arithmetic consequences?
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Result

Proposition let h be a generating function for 4. The function
I : CM ( h ; F) ✗ CM1H ; F) → 2 defined on the generators via
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Thank you for your attention .
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∆ = Spec C[[x]] = infinitesimal disk

η = Spec C((x)) = infinitesimal loop

πét
1 (η) ≃ Ẑ = lim←−n

Z/nZ

Suppose W ↷ V by real reflections.

BrW := π
top
1 (V

◦
/W )

where V ◦ ⊆ V is the free locus.

Ex Sn ↷ Cn gives BrW = Brn.

Maps(η, V ◦/W )
πét

1−−→
B̂rW

conjugacy
f 7→ [βf ]

Df [β] algebraic iff ∃f st [β] = [βf ].

Prob Classify algebraic braids.

πW ∈ Z(BrW ) full twist

Thm If [β] = [βf ] is algebraic, then

β
n ∼ π

e1
W1
· · ·πek

Wk

for some n and W = W1 ⊇ · · · ⊇ Wk.

If f extends to ∆→ V � W , then can
take n, e1, . . . , ek ≥ 0.

Ex For Sn ↷ Cn, recover that links
of plane curves are iterated torus type.

Knot of y = x
3
2 + x

6
7 is closure of

β = (σ2σ1σ3σ2)3
σ

7
1 ∈ Br4.

Have β4 ∼ π6
S4 πS2×S2 , where:

πS4 = (σ1σ2σ3)4 ∈ Br4

πS2×S2 = (σ1σ3)2 ∈ Br2 × Br2

Cor If Σ(β) is the set of Burau
eigenvalues of β, then

max
λq∈Σ(βf )

max
|q|=1

λq = 1.

For Sn ↷ Cn, stronger: reducible
with periodic components.

Proof of Thm Reduce to f lifting to
f̃ : ∆→ V . Then lift to wonderful
compactification Ṽ ⊇ V ◦:

D = Ṽ − V ◦ has normal crossings.
Winding numbers ei are intersection
numbers with components of D.
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