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Duality spaces

The following notion of duality is due to Bieri and Eckmann (1978).

Let X be a connected, finite-type CW-complex, and set π “ π1pX , x0q.

X is a duality space of dimension n if H i pX ,Zπq “ 0 for i ‰ n and
HnpX ,Zπq ‰ 0 and torsion-free.

Let D “ HnpX ,Zπq be the dualizing Zπ-module. Given any
Zπ-module A, we have H i pX ,Aq – Hn´i pX ,D b Aq.

If D “ Z, with trivial Zπ-action, then X is a Poincaré duality space.

If X “ K pπ, 1q is a duality space, then π is a duality group.

Davis, Januszkiewicz, Leary, and Okun (2011): Complements of
(linear) hyperplane arrangements are duality spaces.
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Abelian duality spaces
We introduces in [Denham–S.–Yuzvinsky 2016/17] an analogous
notion, by replacing π ; πab.

X is an abelian duality space of dimension n if H i pX ,Zπabq “ 0 for
i ‰ n and HnpX ,Zπabq ‰ 0 and torsion-free.

Let B “ HnpX ,Zπabq be the dualizing Zπab-module. Given any
Zπab-module A, we have H i pX ,Aq – Hn´i pX ,B b Aq.

Finitely generated free groups Fn are both duality groups and abelian
duality groups.

Surface groups of genus at least 2 are not abelian duality groups,
though they are (Poincaré) duality groups.

Let H “ xx1, . . . , x4 | x
´2
1 x2x1x

´1
2 , . . . , x´2

4 x1x4x
´1
1 y be Higman’s

acyclic group, and let π “ Z2 ˚ H. Then π is an abelian duality group
(of dimension 2), but not a duality group.
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Theorem (DSY)
Let X be an abelian duality space of dimension n. Then:

b1pX q ě n ´ 1.
bi pX q ‰ 0, for 0 ď i ď n and bi pX q “ 0 for i ą n.
p´1qnχpX q ě 0.
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Characteristic varieties
Let X be a connected, finite-type CW-complex. Then π “ π1pX , x0q

is a finitely presented group, with πab – H1pX ,Zq.

The ring R “ Crπabs is the coordinate ring of the character group,
CharpX q “ Hompπ,C˚q – pC˚qr ˆ Torspπabq, where r “ b1pX q.

The characteristic varieties of X are the homology jump loci

V i
spX q “ tρ P CharpX q | dimHi pX ,Cρq ě su.

Theorem (DSY)
Let X be an abelian duality space of dimension n. If ρ : π1pX q Ñ C˚
satisfies H i pX ,Cρq ‰ 0, then H jpX ,Cρq ‰ 0, for all i ď j ď n.

Corollary
Let X be an abelian duality space of dimension n. Then the characteristic
varieties propagate, i.e., V1

1 pX q Ď ¨ ¨ ¨ Ď Vn
1 pX q.
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Resonance varieties
Let A‚ be a graded, graded commutative algebra over C.

We assume A is connected (A0 “ C) and of finite-type (dimAi ă 8,
for all i).

For each a P A1, we have a cochain complex,

pA‚, δaq : A0 δ0a // A1 δ1a // A2 δ2a // ¨ ¨ ¨ ,

with differentials δiapuq “ a ¨ u, for all u P Ai .

The resonance varieties of A are the sets

Ri
spAq “ ta P A

1 | dimH i pA‚, δaq ě su.

These sets are homogeneous subvarieties of A1.

If X is a connected, finite-type CW-complex, we let
Ri

spX q :“ Ri
spH

‚pX ,Cqq.
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We say that the resonance varieties of a graded algebra A propagate if
R1

1pAq Ď ¨ ¨ ¨ Ď Rn
1pAq.

(Eisenbud–Popescu–Yuzvinsky 2003) If X is the complement of a
hyperplane arrangement, then its resonance varieties propagate.

Theorem (DSY)

Suppose the C-dual of A has a linear free resolution over E “
Ź

A1.
Then the resonance varieties of A propagate.
Let X be a formal, abelian duality space. Then the resonance varieties
of X propagate.
Let M be a closed, orientable 3-manifold. If b1pMq is even and
non-zero, then the resonance varieties of M do not propagate.
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Arrangements of smooth hypersurfaces

Let Y be a smooth, connected complex manifold, and let
A “ tW1, . . . ,Wmu be a finite collection of smooth, connected,
codimension-1 submanifolds of Y .

Let D “
Ťm

i“1 Wi be the corresponding divisor, and let MpAq :“ Y zD
be the complement of the arrangement A.

We assume that the intersection of any subset of A is also a smooth
manifold, and has only finitely many connected components.

We also require that, for each point y P D, there is a chart containing
y for which each element of the subcollection Ay :“ tWi | y PWiu is
defined locally by a linear equation.

In other words, the hypersurfaces comprising A have intersections
which, locally, are diffeomorphic to hyperplane arrangements.
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Let LpAq denote the collection of all connected components of
intersections of zero or more of the hypersurfaces comprising A.

Then LpAq forms a finite poset under reverse inclusion, ranked by
codimension. We write X ď Y if X Ě Y and rpX q “ codimX .

For every submanifold X in the intersection poset LpAq, we let
AX “ tW P A | X ĎW u: the closed subarrangement for X .

AX “ tW X X |W P AzAX u: the restriction of A to X .

Then MpAX q :“ X zDX , where DX “
Ť

ZPLpAq:ZăX Z .

We also let TAX be the hyperplane arrangement in the tangent space
to Y at a point in the relative interior of X .
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Theorem (DSY)
Let A be an arrangement of hypersurfaces in a compact, smooth manifold
Y . Let M be the complement of the arrangement, and let F be a locally
constant sheaf on M. There is then a spectral sequence with

Epq
2 “

ź

XPLpAq
H

p`rpX q
c pMpAX q;Hq´rpX qpMpTAX q,FX qq,

converging to Hp`qpM,Fq, where FX is the restriction of F to MpTAX q.
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Wonderful compactifications

Let A be an arrangement of smooth, algebraic hypersurfaces in a
smooth, connected complex projective variety Y .

For each x P Y , there is a linear hyperplane arrangement TAX in the
C-vector space V “ TxY tangent to AX , where X “

Ş

xPZPLpAq Z .

We apply De Concini and Procesi’s construction of the wonderful
model of a subspace arrangement to TAX Ă V .

The construction blows up the arrangement to one with simple normal
crossings; let p : rV Ñ V denote the blowup.

The (total) divisor components are indexed by a ‘building set’ GX .

A subset S Ď GX indexing divisor components that have non-empty
intersection is called a nested set.
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The collection of all nested sets forms a simplicial complex, called the
nested set complex, N pTAX q.

For a nested set S P N pTAX q of size r , let DS denote the
corresponding intersection of r divisor components in rV .

For a point z in the relative interior of DS , let Dz be a sufficiently
small closed polydisc in rV centered at z .

Set US :“ Dz XMpTAX q. Then US » pS
1qr and π1pUSq – Zr .

Lemma (Denham–S.)
For every X P LpAq and every nested set S P N pTAX q, there is a naturally
defined homomorphism αX ,S : π1pUSq Ñ π1pMpAqq which is injective.

Let G “ π1pMpAqq. Let CS,X be the conjugacy class of the subgroup
αX ,SpCSq ă G ; this is a free abelian group of rank |S |.
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Stein manifolds

A complex manifold M is said to be a Stein manifold if it can be
realized as a closed, complex submanifold of some complex affine
space.

Alternatively, holomorphic functions on M separate points, and M is
holomorphically convex.

The Stein property is preserved under taking closed submanifolds and
finite direct products.

A Stein manifold of (complex) dimension n has the homotopy type of
a CW-complex of dimension n.
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Maximal Cohen–Macaulay modules
Definition
Let k “ Z or a field, let R “ krZns, and let I be the augmentation ideal of
R . We say that an R-module A is a maximal Cohen–Macaulay (MCM)
module provided that depthRpI ,Aq ě n.

Definition (DS)
A (left) krG s-module A is a MCM module if the restriction of A to each
subalgebra krCS ,X s is MCM, for all X P LpAq and all S P N pTAX q.

Theorem (DS)

Suppose that MpAX q is Stein for each X P LpAq. Then, for any MCM
module A on MpAq, we have HppMpAq,Aq “ 0 for all p ‰ n.

The Stein hypothesis in this theorem is indispensable. For instance, let
X “ Cn, with n ě 2, and let A “ t0u. Then U “ Cnzt0u is not Stein, and
also not an abelian duality space, since U » S2n´1.
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Duality and generic vanishing of cohomology
Theorem
Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

(1) Components of Y zU form an arrangement of hypersurfaces A.

(2) MpAX q is a Stein manifold for each submanifold X P LpAq.
Then U is both a duality space and an abelian duality space of dimension n.

Consequently, the characteristic varieties of such “recursively Stein”
hypersurface complements propagate.

Theorem
Let G “ π1pUq, and let A be a finite-dimensional representation of G over
a field k. Suppose that Aγg “ 0 for all g in a building set GX , where
X P LpAq. Then H i pU,Aq “ 0 for all i ‰ n.

Consequently, the cohomology groups of U with coefficients in a ‘generic’
local system vanish in the range below n.
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Let `2G denote the left CrG s-module of complex-valued,
square-summable functions on G .

Let Hred i pU, `2G q be the reduced L2-cohomology groups of U with
coefficients in this module.

Theorem
Let U and G “ π1pUq be as above. Then Hred i pU, `2G q “ 0 for all i ‰ n.

Consequently, the `2-Betti numbers of U are all zero except in
dimension n.

A basic fact about `2-cohomology is that `2-Betti numbers compute
the usual Euler characteristic. Therefore, we see once again that
p´1qnχpUq ě 0.

Alex Suciu (Northeastern) Arrangements¨duality¨local systems Workshop on Braids 16 / 21



Linear, elliptic, and toric arrangements
Theorem
Suppose that A is one of the following:

(1) An affine-linear arrangement in Cn, or a hyperplane arrangement in
CPn;

(2) A non-empty elliptic arrangement in En;
(3) A toric arrangement in pC˚qn.
Then the complement MpAq is both a duality space and an abelian duality
space of dimension n ´ r , n ` r , and n, respectively, where r is the corank
of the arrangement.

This theorem extends several previous results:
Davis, Januszkiewicz, Leary, and Okun (2011);
Levin and Varchenko (2012);
Davis and Settepanella (2013), Esterov and Takeuchi (2014).

Liu, Maxim, and Wang (2018) proved that very affine varieties are
abelian duality spaces.
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Orbit configuration spaces

Let Γ be a discrete group that acts freely and properly discontinuously
on a space X .

The orbit configuration space FΓpX , nq is the subspace of the
cartesian product Xˆn consisting of n-tuples px1, . . . , xnq for which the
Γ-orbits of xi and xj are disjoint for all 1 ď i ‰ j ď n.

If |Γ| “ 1, then FΓpX , nq “ F pX , nq, the classical (ordered)
configuration space.

When X “ M is a smooth manifold of dimension d and Γ acts by
diffeomorphisms, FΓpM, nq is a smooth manifold of dimension dn.

Let M “ Σg ,k be a Riemann surface of genus g with k ě 0 punctures,
and assume Γ is finite.

When k “ 0, the complement in Σˆng of FΓpΣg , nq is the union of an
arrangement of smooth, complex algebraic hypersurfaces.
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Xicoténcatl showed that the classical Fadell–Neuwirth fibration applies
in the more general case of orbit configuration spaces:

FΓpΣg ,k`|Γ|, n ´ 1q // FΓpΣg ,k , nq // Σg ,k .

Consider the ‘tautological’ compactification of the orbit configuration
space U “ FΓpΣg ,k , nq, namely Y “ Σˆng .

The components of the boundary divisor, D “ Y zU, form an
arrangement of hypersurfaces,

Bn :“
!

Hγ
ij | γ P Γ, 1 ď i ‰ j ď n

)

Y tKi ,l | 1 ď i ď n, 1 ď l ď ku,

where Hγ
ij is given by the equation xi “ γ ¨ xj and Ki ,l by xi “ pl ,

where p1, . . . , pk P Σg are the punctures of Σg ,k .

The intersection poset LpBnq can be described in terms of labelled
partitions via a slight generalization of the Dowling lattice.

If k ą 0, then for each flat X P LpBnq, the complement MpBX
n q is a

Stein manifold.
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Theorem
Suppose Γ is a finite group that acts freely on a Riemann surface Σg ,k of
genus g with k punctures. Let FΓpΣg ,k , nq be the orbit configuration space
of n ordered, disjoint Γ-orbits.
(1) If k ą 0, then FΓpΣg ,k , nq is both a duality space and an abelian

duality space of dimension n.
(2) If k “ 0, then FΓpΣg , nq is a duality space of dimension n` 1, provided

g ě 1, and is an abelian duality space of dimension n ` 1 if g “ 1.
(3) If k “ 0, then F pΣg , nq is neither a duality space nor an abelian

duality space if g “ 0, and it is not an abelian duality space if g ě 2.

Corollary
If Γ is a finite group acting freely on Σg ,k , the characteristic varieties
propagate for the orbit configuration spaces FΓpΣg ,k , nq, where either
k ě 1, or k “ 0 and g “ 1.
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