
TemporalRI: subgraph isomorphism
in temporal networks with multiple contacts
Giovanni Micale1*  , Giorgio Locicero2, Alfredo Pulvirenti1 and Alfredo Ferro1 

Introduction and related works
Graphs (or networks) are mathematical objects that are suitable to represent complex
systems formed by a set of entities that interact each other. Entities are called nodes
while their interactions are called edges. In many applications graphs are considered as
static objects, without taking into account when or how long two nodes interact. How-
ever, complex systems are inherently dynamic and evolve during time. For example, in a
remote communication system, users may enter the network anytime to start commu-
nications with other users. In a protein-protein interaction network a protein can estab-
lish temporary interactions with one or more proteins to perform a biological process
or transmit a signal to a cell. Therefore, time is crucial to understand the formation and
the evolution of such systems. By associating a time information to each edge, a network
becomes temporal.

There are several definitions of temporal networks in literature (Holme and Saramaki
2012; Masuda and Lambiotte 2020), which are commonly referred to as dynamic (Car-
ley et al. 2007), evolutionary (Aggarwal and Subbian 2014) or time-varying (Casteigts
et al. 2011). In this paper, we define temporal network as a multigraph (i.e a graph with

Abstract 

Temporal networks are graphs where each edge is associated with a timestamp denot-
ing when two nodes interact. Temporal Subgraph Isomorphism (TSI) aims at retrieving
all the subgraphs of a temporal network (called target) matching a smaller temporal
network (called query), such that matched target edges appear in the same chrono-
logical order of corresponding query edges. Few algorithms have been proposed to
solve the TSI problem (or variants of it) and most of them are applicable only to small
or specific queries. In this paper we present TemporalRI, a new subgraph isomorphism
algorithm for temporal networks with multiple contacts between nodes, which is
inspired by RI algorithm. TemporalRI introduces the notion of temporal flows and uses
them to filter the search space of candidate nodes for the matching. Our algorithm can
handle queries of any size and any topology. Experiments on real networks of different
sizes show that TemporalRI is very efficient compared to the state-of-the-art, especially
for large queries and targets.

Keywords:  Subgraph isomorphism, Temporal networks, Dynamic networks, Network
analysis

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Micale et al. Appl Netw Sci (2021) 6:55
https://doi.org/10.1007/s41109-021-00397-0 Applied Network Science

*Correspondence:
giovanni.micale@unict.it
1 Department of Clinical
and Experimental Medicine,
University of Catania, Catania,
Italy
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-4953-026X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-021-00397-0&domain=pdf

Page 2 of 22Micale et al. Appl Netw Sci (2021) 6:55

one or more edges between any two nodes) where each edge is associated with an inte-
ger, called timestamp, denoting when two nodes interact.

Several frameworks have been proposed to study properties of temporal networks.
Analysis of temporal networks includes network centrality (Lv et al. 2019; Tsalouchidou
et al. 2020), network clustering (Crawford and Milenkovic 2018), community detection
(Rossetti and Cazabet 2018), link prediction (Divakaran and Mohan 2020), graph min-
ing (Sun et al. 2019a), graph embedding (Torricelli et al. 2020), network sampling (Rocha
et al. 2017), random models (Singh and Cherifi 2020; Petit et al. 2018; Hiraoka et al.
2020) and epidemic spreading (Tizzani et al. 2018; Masuda and Holme 2020; Williams
et al. 2019). Comprehensive reviews of temporal networks and their main properties can
be found in Holme and Saramaki (2012, 2019) and Masuda and Lambiotte (2020).

Here, we focus on Temporal Subgraph Isomorphism (TSI) problem. Given two tem-
poral graphs Q and T, called query and target, respectively, and a time interval � , TSI
problem aims at finding a subgraph S of T (called occurrence of Q in T) such that: (1) Q
and S are isomorphic, i.e. structurally equivalent, (2) edges in S follow the same chrono-
logical order imposed by corresponding matched edges in Q, (3) all interactions in T
are observed in a time interval less than or equal to � . The problem can have more than
one solution, i.e. there can exist two or more occurrences of Q in T. Figure 1 shows a toy
example of TSI.

Subgraph isomorphism problem in static graphs have been widely investigated and
several methods have been presented (Cordella et al. 2004; Carletti et al. 2017; Bonnici
et al. 2013; Bonnici and Giugno 2017; Han et al. 2019; Sun and Luo 2020; Han et al. 2013;
Bi et al. 2016). However, as far as we know, few algorithms have been proposed for TSI
or similar definitions of the problem (Redmond and Cunningham 2013b, 2016; Mackey
et al. 2018; Sun et al. 2019b; Kim et al. 2018).

Redmond and Cunningham (2013b, 2016) introduce for the first time the TSI prob-
lem, where: (1) queries are static graphs with no timestamps, (2) all paths in the matched
target subgraph must be time-respecting, i.e. any outcoming event from a node has to
follow any incoming event from the same node, and (3) consecutive events are d-adja-
cent, i.e. the difference between their timestamps must not exceed a threshold d. The
authors also presented a modified version of the subgraph isomorphism algorithm VF2
(Cordella et al. 2004) capable to check the time constraints of the query during the
search. The same definition of the TSI problem we introduced above is given in Mackey
et al. (2018) and Sun et al. (2019b). Mackey et al. (2018) describe a general algorithm
which orders both query and target edges before matching. By doing so, whenever a new
match between a target edge t and a query edge q is found, the algorithm can continue
the search from the target edge following t in the ordering. Sun et al. (2019b) illustrate
a method for counting the number of occurrences of a temporal query in a temporal
target, based on partitioning the graph into subgraphs and then counting the pattern in
each subgraph while matching motif topology.

A problem closely related to TSI is temporal motifs search, which consists in finding
all small and recurrent temporal subgraphs of interactions, called motifs, having k nodes
and/or m edges (Kovanen et al. 2011; Paranjape et al. 2017; Liu et al. 2019; Hulovatyy
et al. 2015). The main difference between TSI and motif search is that TSI enumerates
all the subgraphs matching a specific query, while motif search counts the occurrences

Page 3 of 22Micale et al. Appl Netw Sci (2021) 6:55 	

of all possible subgraphs with a specified number of nodes and edges. Due to the compu-
tational complexity of the problem, motif search algorithms usually focus on very small
motifs or on specific topologies. Temporal motifs were introduced for the first time by
Kovanen et al. (2011) and are defined as ordered sets of events such that: (1) the time dif-
ference between two consecutive events is within a threshold �t and (2) adjacent events,
i.e. events sharing a node, are consecutive, so the node cannot participate in any other
event in the meanwhile. Hulovatyy et al. (2015) relax the latter constraint and introduce
the concept of dynamic graphlets to capture how the neighborhood of a node changes
over time. This is done to reduce the computational complexity while obtaining approxi-
mate results. As in Mackey et al. (2018) and Sun et al. (2019b), Paranjape et al. (2017)
define a temporal motif as a subgraph with a temporal order of edges. The authors pre-
sent an algorithm to efficiently calculate the frequencies of 2-node, 2-stars and 3-node
triangle temporal motifs. For bigger motifs they use a naive algorithm that first com-
putes static matches, then filters out occurrences which do not match the temporal
constraints. To tackle with the NP-completeness of temporal motif search problem, Liu
et al. (2019) propose a general sampling framework to estimate motif counts. It consists
in partitioning time into intervals, finding exact counts of motifs in each interval and
weighting counts to get the final estimate, using importance sampling.

Here, we present a new algorithm for the TSI problem, called TemporalRI, inspired
by RI algorithm for subgraph matching in static networks (Bonnici et al. 2013; Bonnici
and Giugno 2017). TemporalRI can be applied to queries of any size, in terms of num-
ber of nodes and edges. This paper extends in several directions the preliminary work
presented in Locicero et al. (2021) where a first implementation of TemporalRI was
presented. From a theoretical point of view, the definition of TSI has been refined by
introducing a parameter � to set a maximum temporal interval in which interactions
should be observed. The concept of temporal flow introduced in Locicero et al. (2021)
has been better formalised to include more types of flows, improve filtering and speedup
the matching process. From an algorithmic point of view, TemporalRI has been rede-
signed in order to support multiple edges between two nodes. More specifically, the new
version of the algorithm performs matching edge-by-edge, while the preliminary version
presented in Locicero et al. (2021) executes matching node-by-node as the original RI
algorithm (Bonnici et al. 2013; Bonnici and Giugno 2017). We compare TemporalRI with
Mackey’s algorithm (Mackey et al. 2018) on a dataset of real temporal networks, show-
ing that our method is faster, especially for large targets and queries with many nodes
and edges, independently of �.

Preliminary definitions
In this section we formally define the Temporal Subgraph Isomorphism (TSI) problem
and the concept of temporal flows, which are used by TemporalRI to filter candidate
pairs of query and target nodes for the matching. Through the paper we will use the
terms “graph” and “network” interchangeably.

Temporal subgraph isomorphism

A temporal graph (or network) is a pair G = (V ,E) , where V is the set of nodes and
E ⊆ V × V × R is the set of edges. Each edge is a triplet (s, d, t), where s is the source of

Page 4 of 22Micale et al. Appl Netw Sci (2021) 6:55

e, d is the destination of e and t is the timestamp of e. Triplets in E are distinct, therefore
multiple edges between two nodes having the same timestamp are not allowed.

If ∀(s, d, t) ∈ E also (d, s, t) ∈ E , then G is undirected, otherwise G is directed. With
the notation e.source, e.dest and e.time we represent the source, the destination and the
timestamp of an edge e, respectively. If (s, d, t) ∈ E or (d, s, t) ∈ E we say that s and d are
neighbors. With Neigh(u) we denote the set of all neighbors of node u. The out-degree of
a node u, outDeg(u), is the number of edges having u as source. Likewise, the in-degree
of u, inDeg(u), is the number of edges having u as destination. The total degree of u is the
sum of its in- and out-degree.

Given two temporal graphs Q = (VQ,EQ) and T = (VT ,ET) , called query and target,
respectively, and an integer � , the Temporal Subgraph Isomorphism (TSI) problem con-
sists in finding an injective function f : VQ → VT , called node mapping and an injective
function g : EQ → ET , called edge mapping, such that the following conditions hold:

1	 ∀ eQ = (u, v, tQ) ∈ EQ , g(eQ) = (f (u), f (v), tT);
2	 ∀ eQ, e

′
Q ∈ EQ s.t. eQ.time ≤ e′Q.time , g(eQ).time ≤ g(e′Q).time;

3	 ∀ eQ, e
′
Q ∈ EQ , |g(eQ).time − g(e′Q).time| ≤ �;

Condition 1 ensures that edge mapping g is consistent with node mapping f. Condition
2 means that the chronological order of query edges based on their timestamps must
be respected in the target too. So, timestamps of query edges are more like indexes
denoting in which order target interactions should happen. Condition 3 implies that all
matched target edges must be observed within a fixed time window. This is a reason-
able constraint in many real contexts, because interactions that occur far apart in time
are likely to be unrelated each other. For example, in a communication network, node B
receives a message from node A and then after a finite amount of time it may reply back
to A or act like a broker and send another message to a third node C. Notice that Condi-
tion 3 only applies to the target, indeed timestamps in the query can assume any value.

The TSI problem can have one or more solutions. Given an edge map-
ping g, a match of Q in T is the set of pairs of query and target matched edges
M = {(q1, g(q1)), (q2, g(q2)), . . . , (qk , g(qk)} , where k = |EQ|.

An occurrence of Q in T is a graph O formed by edges g(q1), g(q2), . . . , g(qk) and all
nodes that are sources or destinations of at least one of these edges.

Figure 1 illustrates an example of application of the TSI problem with � = 5 . There
is exactly one match of query Q in target T, which is M = {((a, b, 1), (C ,A, 11)),
((b, c, 2), (A, B, 13)), ((c, b, 3), (B, A, 15)), ((c, d, 3), (B,D, 15))} , and nodes and edges of
the corresponding occurrence are drawn in red. The two subgraphs on the right, S1 and
S2 , are not occurrences of Q in T because S1 violates the � constraint, while S2 does not
satisfy the chronological order imposed by query edges.

Temporal flows

Two edges e1 and e2 of a temporal graph G sharing at least one node u form a temporal
flow, denoted as F = {e1, e2} . u is the center of the flow. Depending on the number of
nodes shared by e1 and e2 , the timestamps of the two edges and whether G is directed or
not, we can distinguish among different types of flows. Figure 2a depicts the 3 possible

Page 5 of 22Micale et al. Appl Netw Sci (2021) 6:55 	

types of flows for undirected networks, while Fig. 2b, c illustrates the 12 different classes
of flows in directed networks.

For simplicity, each flow is uniquely identified by a code of the form “ x − y ” for undi-
rected and “ x − y− z ” for directed networks, where:

•	 x is the number of nodes involved in the flow (2 or 3);
•	 y represent the temporal direction of the flow:

•	 Asynchronous (AS) e1 and e2 have the same direction but different timestamps;
•	 Synchronous (S) e1 and e2 have the same direction and equal timestamps;
•	 Forward (F) a flow where e1.dest = e2.source and e1.time < e2.time (only in

directed networks);
•	 Backward (B) a flow where e1.dest = e2.source and e1.time > e2.time (only in

directed networks).

•	 z denotes the combination of directions of e1 and e2:

•	 Input–Input (II) a flow where e1.dest = e2.dest;
•	 Input–Output (IO) a flow where e1.dest = e2.source;
•	 Output–Output (OO) a flow where e1.source = e2.source.

Note that the undirected flow “2-S” is not allowed, because by definition of temporal
graph we cannot have multiple edges between two nodes with the same timestamp.

Given a node u, we can build, for each flow type C, the set of all flows of class C cen-
tered in u. The result is a vector of temporal features S(u) , called temporal signature,
where each feature is a set of flows of a certain type. With S(u)[i] we denote the ith com-
ponent of the vector and with |S(u)[i]| the cardinality of the corresponding set. Figure 3
shows the temporal signatures of each query and target node of Fig. 1.

By comparing temporal signatures of different nodes, we can derive a partial order
binary relation � , called temporal inclusion. Given two nodes u and v with temporal sig-
natures S(u) and S(v) , respectively, of length l, we say that u is temporally included in
v ( u � v ) iff ∀ 1 ≤ i ≤ l |S(u)[i]| ≤ |S(v)[i]| . In other words, u � v iff u contains all the
types of flows centered in v and, for each of such types, at least the same number of flows
of that type centered in v.

By looking at the temporal signatures of nodes in Fig. 3, we observe that node A con-
tains at least one occurrence of all types of flows centered in node b, so b � A . Instead,
b �� B because there is no “2-B-IO” flow centered in node B.

Description of RI algorithm
TemporalRI is inspired by the RI-DS algorithm for subgraph isomorphism in static
graphs (Bonnici et al. 2013; Bonnici and Giugno 2017), which introduces in RI the con-
cept of compatibility domains to filter candidate pairs of query and target nodes before
starting the matching. The three main steps of RI are: (1) computation of compatibility
domains, (2) computation of the ordering of query nodes for the matching, (3) matching
process. In the following, we briefly describe each step.

Page 6 of 22Micale et al. Appl Netw Sci (2021) 6:55

Computation of compatibility domains

In the first step, RI computes, for each query node q, the compatibility domain Dom(q)
which consists of the set of nodes in the target graph that could match q based on
node in- and out-degrees. Formally, a target node t is compatible to a node q iff: (1)
inDeg(q) ≤ inDeg(t) , (2) outDeg(q) ≤ outDeg(t) . This step speeds up the matching
process, because only target nodes in Dom(q) are considered as possible candidates
for a match to q during the search.

Ordering of query nodes

Before starting the matching, RI computes the order in which query nodes have to be
processed during the search. The processing order is computed without considering
the target graph. The key idea is that query nodes which both have high degree and
are highly connected to nodes already present in the partial ordering come earlier in
the final ordering. The first node of the ordering is randomly chosen among the nodes
with highest total degree. The next node in the ordering is chosen among the remain-
ing nodes as the one with the maximum number of neighbors already present in the
ordering. In case of tie, the algorithm chooses the node with the maximum number of
neighbors, which in turns are also neighbors of nodes already present in the ordering.
In case of further tie, the node with highest total degree is chosen. The process is iter-
ated until all query nodes are in the ordering.

Matching process

Following the previously defined ordering of query nodes, RI performs matching to
find occurrences of the query within the target. The matching process starts with the
first node of the ordering and an initially empty match M . If a new match between
a query node q and a target node t is found, the pair (q, t) is added to M and RI
continues the search with the next node in the ordering. If all query nodes have
been matched, M constitutes a new match of Q in T, so it can be added to the list
of matches found. Whenever all query nodes have been matched or no match has
been found for a query node, the algorithm performs backtracking and continues the
search from the last matched node. Target nodes evaluated for a match with a query
node q are chosen from a list of candidates. For the first node of the ordering the set
of candidate target nodes for matching is its compatibility domain, while for any other
query node q candidates are both: (1) neighbors of the target node t ′ that has been
already matched to the previous query node q′ in the ordering, (2) compatible to q.
The choice to add a candidate pair (q, t) to M is made based on the following feasi-
bility rules: (1) t has not been already matched, (2) for every already mapped node q′
neighbor of q, there must be an edge between t and f (q′) in T (recall that f is the node
mapping function). The latter rule ensures the consistency of the partial mapping M
in case the new pair (q, t) is added to M.

Page 7 of 22Micale et al. Appl Netw Sci (2021) 6:55 	

Description of TemporalRI
As in the original RI-DS algorithm, the three main steps of TemporalRI are: (1) com-
putation of compatibility domains, (2) ordering of processing query edges for the
matching, (3) matching process. In the following subsections we will detail each step.

For the description of the algorithm and its time complexity analysis we refer to a
temporal query Q = (VQ,EQ) with k nodes and a temporal target T = (VT ,ET) with n
nodes. To help the reader understand the functioning of TemporalRI, a toy example is
presented in Fig. 4.

Compatibility domains

In order to build compatibility domains of query nodes, TemporalRI exploits not only
node degrees but also the temporal signature of query and target nodes. Computation
of compatibility domains is outlined in Algorithm 1.

First, temporal signatures for query nodes are built (lines 1–2). Then, for each target
node t, we compute the relative signature (line 4) and check if t is mappable to some
query node (lines 7–11). t is added to the domain of a query node q iff:

1	 outDeg(q) ≤ outDeg(t);
2	 inDeg(q) ≤ inDeg(t);
3	 q � t.

The first two conditions apply the standard degree rules that are valid also for sub-
graph isomorphism in static networks. The third condition is based on the temporal
signatures of both nodes.

To efficiently compute the temporal signature S(u) of a node u (lines 2 and 4), we
scan all pairs of edges incident in u. Each pair of edges defines a flow of a certain
class, that can be added to the corresponding entry of S(u).

In Fig. 4 the compatibility domain of query node b contains only target node A. In
fact, b has both in-degree and out-degree equal to 1, while target nodes C and D have
no incoming edges. Target node B is not compatible to b because there is a 2-B-IO
flow centered in b that is missing for B.

Page 8 of 22Micale et al. Appl Netw Sci (2021) 6:55

Ordering of processing query edges

TemporalRI follows an iterative approach to search for a match between Q and T.
Starting from an empty match, the algorithm looks for a mapping between a first
query edge and a target edge. Once the first edge has been mapped, TemporalRI tries
to match a second edge, and so on, until all query edges have been mapped.

To this aim, it is crucial to find an optimal ordering of processing query edges. A
simple greedy approach consists in choosing at each step the query edge with the
minimum number of candidates. Ideally, this choice should be done dynamically (i.e.
during the search). However, this would be computationally expensive because the
number of candidates also depends on the target edges and nodes we have already
mapped. Instead, TemporalRI uses a static approach that consists in defining the
ordering before starting the matching process. Algorithm 2 details the computation
of the ordering.

First, TemporalRI computes an ordering of nodes µ mainly based on their total degree
(lines 1–10). This is very similar to RI’s ordering of query nodes, described in the previ-
ous Section.

The first node in the ordering is the one with highest degree (line 2). In case of tie, the
node with smallest compatibility domain is chosen (line 3). In case of further tie, one
of the candidate nodes is chosen randomly (line 4). A similar approach is followed for
choosing the next nodes (lines 6–10), selecting, at each step, the node with the highest
number of connections with nodes that are already present in the current ordering (line
7). Ties are handled as previously described (lines 8–9).

In the toy example of Fig. 4, the node ordering is µ = [b, c, a] . In fact, b is the node
with highest degree. Nodes c and a are both linked to b, but c precedes a because c has a
smaller compatibility domain.

Starting from the resulting ordering of query nodes µ , TemporalRI derives an ordering
of query edges O (lines 11–18). For increasing values of i, we consider the ith node u in
µ and all nodes that precede u in µ and are neighbors of u (lines 12–14). Following the
ordering of such nodes in µ , we add all edges between them and u to O (lines 15–17).

Page 9 of 22Micale et al. Appl Netw Sci (2021) 6:55 	

Therefore, in the computation of edge ordering each query edge is considered only once
and immediately added to the partial ordering.

In Fig. 4 edges eq2 and eq3 link nodes b and c that come before a in µ . Hence, edge eq1
which connects nodes a and b, must follow both eq2 and eq3 , yielding the final ordering
O = [eq2 , eq3 , eq1].

Matching process

Following the previously defined ordering of query edges, TemporalRI performs match-
ing to find occurrences of the query within the target. The matching process is outlined
in Algorithm 3.

Matching is done by building a node mapping function f : VQ → VT , an edge map-
ping function g : EQ → ET and the corresponding match M . The list of candidates to
scan during the search is stored in variable Cand. To ensure that the chronological order

Page 10 of 22Micale et al. Appl Netw Sci (2021) 6:55

imposed by query edges is satisfied each time the partial match is extended, a sorted
list tTimes with timestamps of mapped target edges is also stored. A similar list qTimes
is calculated for the query before starting the match (line 1). Finally, variables minTime
and maxTime contain the lower and upper bounds of timestamps of candidate target
edges during the search. All such information must be kept updated during the process
to guarantee the correctness of the results.

Figure 4b shows a computational graph describing all the steps performed dur-
ing matching for the toy example of Fig. 4a. Each node of the computational graph is
annotated with the state of the computation, i.e. the current values of all the auxiliary
variables previously described. Edges correspond to transitions from one state of the
computation to another one, which happen whenever a new match between a query
edge and a candidate target edge is examined. Numbers attached to edges indicate the
order in which transitions are performed.

The matching process starts with the first edge e in the ordering (line 2). An initial
list of candidates Cand(e) is calculated (line 3) and the list is scanned starting from the
first element. A given candidate c can be matched with e iff: (1) c has not been mapped
yet, (2) by adding c, the resulting match M satisfy the chronological order imposed by
query edges (line 12). The latter condition can be easily verified by comparing the rank
of e’s timestamp in qTimes with the rank of c’s timestamp in tTimes. Whenever a new
match is found, the current matching M is updated (line 13). If e was the last query
edge to match, M is added to the list of matches found (line 15) and the search goes on
with the next candidate (line 16). Otherwise, we first update the mapping and the tar-
get’s time information (lines 18–25), then we continue the search with the next query
edge to match (lines 26–27) and find the set of candidates for such edge (line 28). In the
computational graph of Fig. 4, transitions 1 and 2 imply an update of mapping and time
information, while transition 4 updates only current matching. If candidate c does not
match e, the algorithm just skips to the next candidate (line 31). In Fig. 4b, this is repre-
sented by transition 3. When all candidates for e have been examined (line 6), Tempo-
ralRI performs backtracking, i.e. restores mappings and target’s time information to the
previous values (line 7) and goes back to the previous query edge (lines 8–9). Backtrack-
ing implies removing: (1) the mapping for the last matched query edge eq , (2) the last
match from M and (3) optionally, the mapping for one or both nodes of eq (e.g. in tran-
sition 7). Moreover, we need to remove the timestamp of the last target matched edge
from tTimes and, if needed, update minTime and maxTime. In the computational graph
of Fig. 4, backtracking corresponds to transitions 6 and 7 which restore the computation
to the previous state. To guarantee that every time we do backtracking the search con-
tinues from last examined candidate for the previous query edge, TemporalRI uses a set
of list iterators CandIndex, one for each query edge. CandIndex(e) contains the position
of the last examined candidate in Cand(e). Every time we pass to the next candidate, the
corresponding iterator is incremented (lines 16 and 31). The search ends when no more
candidates are available for the first query edge. At the end of the process, TemporalRI
returns the list of all matches found (line 32).

The procedure used to find the set of candidates Cand(e) for a query edge e = (u, v) is
detailed in Algorithm 4.

Page 11 of 22Micale et al. Appl Netw Sci (2021) 6:55 	

The content of Cand(e) depends on whether u and/or v have already been mapped
or not. Moreover, except for the first edge in the ordering, we can also use temporal
information about already mapped target edges to constraint the search for candidates.
In fact, minTime and maxTime define the time interval of the current match and � is
the maximum desired time interval between any two edges. This implies that we can
look for edges whose timestamp is between minTime and maxTime, as well as below
minTime and beyond maxTime of at most a quantity η = �− (maxTime −minTime)
(line 4). So, the temporal interval where to search candidates is given by
T = [minTime − η,maxTime + η] (line 5).

We distinguish four cases:

1	 If both u and v are unmapped (line 1), then Cand(e) is the set of all edges between
any target node compatible to u and any target node compatible to v (line 2);

2	 If both u and v have been mapped (line 6), then Cand is the set of all possible target
edges between f(u) and f(v) with timestamp t ∈ T (line 7);

3	 If only u has been mapped (line 8), then Cand is the set of all possible target edges
between f(u) and any node compatible to v with timestamp t ∈ T (line 9);

4	 If only v has been mapped, then Cand is the set of all possible target edges between
any node compatible to u and f(v) with timestamp t ∈ T (line 11).

Note that the case where both u and v are unmapped is possible iff e is the first edge in
the ordering. In fact, by construction of the ordering O (Algorithm 2) each following
edge must have one or two nodes in common with at least one of its predecessors in O.

Complexity analysis

In this subsection we analyze the time complexity of TemporalRI.
Suppose, for simplicity, that � = ∞ and m << n is the average number of edges (with

different timestamps) connecting two nodes both in the query and in the target. Let dQ
and dT the average number of ingoing and outgoing edges in query and target nodes,
respectively. In the worst case both Q and T are complete graphs, so dQ = O(mk) and
dT = O(mn) ≃ O(n) . Moreover, |EQ| = O(k2) and |ET | = O(n2).

Page 12 of 22Micale et al. Appl Netw Sci (2021) 6:55

The first step of TemporalRI is the computation of compatibility domains (Algo-
rithm 1). The complexity of this step mainly depends on the efficiency of the computa-
tion of temporal signatures, especially in the target (line 4). To calculate the signature
of a node n we have to consider all possible pairs of distinct edges incident in n. Then,
for each such pair of edges we identify the flow type they form and increment the cor-
responding count. In the query, there are on average dQ ∗ (dQ − 1)/2 possible pairs of
edges to examine for each node. Therefore building the temporal signature for all k query
nodes (lines 1–2) requires O(m2k2k) = O(m2k3) . Likewise, computing the temporal sig-
nature of a target node t (line 4) takes O(n2) . However, in practice � is usually finite,
so computing signatures is much faster because we can just consider pairs of edges for
which the difference between timestamps is within � . Since temporal signatures have
small and finite lengths, checking if a query node q is temporally included in t (lines
6–9) can be done in constant time and the check for all query nodes only requires O(k).
Therefore, the overall computation of domains takes n ∗ O(n2) ∗ O(k) = O(kn3) time.

Then, TemporalRI computes the ordering of query edges for the matching process
(Algorithm 2). The preliminary ordering of query nodes (lines 1–10) is an iterative pro-
cess. The first node of the ordering can be identified in O(k) time by simply looking at
the total degree of all query nodes and eventually the cardinality of their domains (lines
2–3). For the next steps, we need to count, for each node u not yet in the ordering, how
many neighbors of u are already in the ordering and this requires scanning the list of u’s
neighbors (line 7). Therefore, ordering nodes takes O(mk ∗ k) = O(mk2) time. Ordering
of query edges (lines 12–17) requires scanning the list of neighbors of each node, so it
takes O(mk2) time.

The core of TemporalRI is the matching process (Algorithm 3). The computational
complexity of this step mainly depends on the number of examined candidate edges for
the matching, which can be retrieved in constant time from the adjacency lists of target
nodes using Algorithm 4. Assuming � = ∞ , all |ET | target edges are candidates for the
first query edge in the ordering. Candidates for next query edges are chosen among the
target edges sharing at least one node with one or more previously matched edges and
they are at most dT = O(n) . Again, in practice � is finite, so much less candidates are
examined. Any combination of |EQ| candidates, one for each query edge, is a possible
match between Q and T.

In the worst case (i.e. assuming no early backtracking), all possible combina-
tions of candidates are examined and the number of combinations is given by
|ET | ∗ dT

|EQ|−1
= O(n2) ∗ O(mknk) = O(mkn2k) . Checking if a candidate edge c

matches a query edge e (Algorithm 3, line 12) requires a comparison between two ranks
in sorted lists of length at most |EQ| = O(k2) which takes O(k2logk2) . All remaining
operations consist in updating mappings and time information and require constant
time. Therefore, the complexity of the matching process is O(mkn2k) , which is also the
time complexity of TemporalRI.

Experiments
In this section we assess the performance of TemporalRI considering a dataset of 7 real
medium and large networks and queries of different sizes randomly extracted from
such networks. As far as we know, this is the first comprehensive evaluation of temporal

Page 13 of 22Micale et al. Appl Netw Sci (2021) 6:55 	

subgraph isomorphism algorithms, since all previous works only consider few small
queries (Mackey et al. 2018; Redmond and Cunningham 2016; Sun et al. 2019b).

For the comparison with other tools, we only focused on exact motifs counting or
subgraph isomorphism algorithms having the same or very similar definition of tempo-
ral queries (Mackey et al. 2018; Sun et al. 2019b; Paranjape et al. 2017). Among these,

Table 1  Dataset of real networks used for the experiments

Network Nodes Edges Static edges Timestamps Resolution (s)

SFHH-conf 403 70,261 9,889 3,509 20

as-topology 34,761 155,507 114,496 32,824 1

contacts-dublin 10,972 415,912 52,761 76,944 20

enron-email 86,978 1,134,990 320,154 213,218 1

digg-friends 279,374 1,729,983 1,729,983 1,644,369 1

yahoo-messages 100,001 3,157,315 898,174 1,492,800 1

prosper-loans 89,269 3,343,284 3,330,225 1,259 86,400

Fig. 1  Example of temporal subgraph isomorphism with � = 5 . Target T contains exactly one occurrence
of query Q, which is the subgraph formed by nodes and edges colored in red. Subgraph S1 is not a solution
because contacts do not all occur within time interval � . Subgraph S2 is not a solution because contacts do
not follow the chronological order imposed by query edges, though all contacts occur within time interval �

Fig. 2  Types of temporal flows. a Temporal flows in undirected networks; b temporal flows with 2 nodes in
directed networks; c temporal flows with 3 nodes in directed networks

Page 14 of 22Micale et al. Appl Netw Sci (2021) 6:55

Mackey’s algorithm (Mackey et al. 2018) was the only one we managed to compare with
TemporalRI. However, we had to slightly modify the original implementation of Mack-
ey’s algorithm, because the latter does not work correctly with queries and/or networks
having simultaneous contacts. For all other tools, it was impossible to make any com-
parison. Sun et al. (2019b) did not provide any implementation of their algorithm. SNAP
temporal algorithm (Paranjape et al. 2017) works only for 2-node and specific 3-node

Fig. 3  Temporal signatures for: a nodes of query Q of Fig. 1, b nodes of target T of Fig. 1. Based on this, only
target node A temporally includes query node b, because A contains, for each flow type C, at least the same
number of flows of type C centered in b 

Fig. 4  Toy example describing the matching process performed by TemporalRI. a A query Q, a target T and
the values of all variables computed before starting the matching process, including compatibility domains
Dom, ordering µ and O of processing query nodes and edges, respectively, and sorted list qTimes of query
timestamps. b Computational graph describing all steps performed by the algorithm during matching. Each
node represent a state of the process and is annotated with the values of all the auxiliary variables described
in Algorithm 3. Edges correspond to transitions from one state of the computation to another one. Numbers
indicate the order in which transitions from one state to another one in the SST are done

Page 15 of 22Micale et al. Appl Netw Sci (2021) 6:55 	

queries, namely 3-edge stars and 3-edge cliques. The general algorithm described in
their paper is not actually temporal, because it performs subgraph matching in a static
graph and then, in a post-processing step, it removes the occurrences that do not match
the temporal constraints.

TemporalRI has been implemented in Java. All experiments have been performed on
an Intel Core i5-8259U with 16 GB of RAM. The source code of TemporalRI is available
on Github at https://​github.​com/​GMica​le/​Tempo​ralRI. For reproducibility purpose, in
the same Github repository, we also make available the source code of the modified ver-
sion of Mackey’s algorithm together with the temporal networks and queries used in our
experiments.

Dataset and setup

Temporal networks for the experiments were downloaded from Network Reposi-
tory (Rossi and Ahmed 2015; http://​netwo​rkrep​osito​ry.​com). Table 1 reports, for each
network, the number of nodes, the number of edges, the number of static edges (i.e.
ignoring timestamps), the number of timestamps and the resolution, i.e. the minimum
difference between consecutive timestamps.

SFHH-conf is a proximity network describing the face-to-face interactions of 405
participants to the 2009 SFHH conference in Nice, France (Génois and Barrat 2018).
as-topology is a peer-to-peer communication network of Autonomous Systems (AS)
with data collected between February and March 2010. contact-dublin is a dynamic
contact network of people participating to the Infectious SocioPatterns event that
took place at the Science Gallery in Dublin, Ireland (Isella et al. 2011). email-enron
describes e-mail exchanges between employees of the Enron corporation between 1999
and 2003 (Cohen 2009). digg-friends is a network of friendship links between users
of the American news aggregator web service Digg collected over a period of one month
in 2009 (Hogg and Lerman 2012). yahoo-messages contains email exchanges between
users of Yahoo Mail in a one-month interval in 2010. prosper-loans is a directed
network of transactions occurring from November 2005 to September 2011 between
members of Prosper.com, a website where people can either invest in personal loans
or request to borrow money (Redmond and Cunningham 2013a). Edges link lenders to
borrowers and are timestamped with the origination date of the loan.

Queries with k = 3, 6, 9 edges were randomly extracted from each network. The query
extraction procedure is iterative and works as follows. First, an edge is randomly sam-
pled from the target. At each iteration, an edge having at least one node in common with
(i.e. incident to) at least one of the already sampled edges is added to the partial query.
To avoid any bias, this is done by picking uniformly at random one of such incident
edges. If no incident edge exists, the extraction process is repeated from scratch start-
ing from a new edge. The procedure ends when a query with k edges is obtained. Finally,
edge timestamps of the extracted query are randomly sampled with replacement from
the set {1, 2, . . . , k} . We extracted 100 queries for each value of k from each network, for
a total number of 2100 queries.

For each network and each query, we ran TemporalRI and Mackey’s algorithm with
different values of time interval � . The choice of � is not easy, because � depends both
on the size of the query and on the rate at which interactions have been measured to

https://github.com/GMicale/TemporalRI
http://networkrepository.com

Page 16 of 22Micale et al. Appl Netw Sci (2021) 6:55

build the target network. We considered � = kr, 2kr, 3kr , where r is the resolution of the
network. In each experiment, we set a timeout of 30 min for both algorithms.

Experimental results

To compare the performance of TemporalRI and Mackey’s, we first focused on the
experiments completed by both algorithms before the timeout. In Figs. 5, 6 and 7 we
show boxplots of the running times obtained by TemporalRI and Mackey’s on the set of
queries completed by both algorithms with k = 3 , k = 6 and k = 9 edges, respectively,
on varying � . In all these experiments the two algorithms returned the same number of

1

10

100

1000

S−C A−T C−D E−E D−F Y−M P−L
Network

R
un

ni
ng

 ti
m

e
(s

ec
s)

TemporalRI Mackey

∆ = kr

1

10

100

1000

S−C A−T C−D E−E D−F Y−M P−L
Network

R
un

ni
ng

 ti
m

e
(s

ec
s)

TemporalRI Mackey

∆ = 2kr

1

10

100

1000

S−C A−T C−D E−E D−F Y−M P−L
Network

R
un

ni
ng

 ti
m

e
(s

ec
s)

TemporalRI Mackey

∆ = 3kr

Fig. 5  Comparison between TemporalRI and Mackey’s algorithm on the set of queries with k = 3 contacts
on varying � . Boxplots of running times are built on the set of experiments in which both algorithms ended
before the timeout. Network names are abbreviated

1

10

100

1000

S−C A−T C−D E−E D−F Y−M P−L
Network

R
un

ni
ng

 ti
m

e
(s

ec
s)

TemporalRI Mackey

∆ = kr

1

10

100

1000

S−C A−T C−D E−E D−F Y−M P−L
Network

R
un

ni
ng

 ti
m

e
(s

ec
s)

TemporalRI Mackey

∆ = 2kr

1

10

100

1000

S−C A−T C−D E−E D−F Y−M P−L
Network

R
un

ni
ng

 ti
m

e
(s

ec
s)

TemporalRI Mackey

∆ = 3kr

Fig. 6  Comparison between TemporalRI and Mackey’s algorithm on the set of queries with k = 6 contacts
on varying � . Boxplots of running times are built on the set of experiments in which both algorithms ended
before the timeout. Network names are abbreviated

1

10

100

1000

S−C C−D E−E D−F Y−M P−L
Network

R
un

ni
ng

 ti
m

e
(s

ec
s)

TemporalRI Mackey

∆ = kr

1

10

100

1000

S−C C−D E−E D−F Y−M P−L
Network

R
un

ni
ng

 ti
m

e
(s

ec
s)

TemporalRI Mackey

∆ = 2kr

1

10

100

1000

S−C C−D E−E D−F Y−M P−L
Network

R
un

ni
ng

 ti
m

e
(s

ec
s)

TemporalRI Mackey

∆ = 3kr

Fig. 7  Comparison between TemporalRI and Mackey’s algorithm on the set of queries with k = 9 contacts
on varying � . Boxplots of running times are built on the set of experiments in which both algorithms ended
before the timeout. Network names are abbreviated

Page 17 of 22Micale et al. Appl Netw Sci (2021) 6:55 	

occurrences. For k = 9 , Mackey’s didn’t manage to complete any query before the time-
out in the as-topology network (see also Table 4), therefore in this case boxplots for
the two algorithms are not drawn.

Results show that TemporalRI is almost always faster on average than Mackey’s algo-
rithm, independently of � and the size of query. The speedup is higher for larger queries
and denser networks. We believe that this is due to two aspects that distinguish Tempo-
ralRI from Mackey’s algorithm: (1) the effective filtering of candidates done using tem-
poral flows, (2) the ordering of query edges based on the degrees of query nodes. Indeed,
in Mackey’s algorithm there is no a-priori filtering of candidate edges. This may affect a
lot the running time, especially in the case of large queries, where there are more com-
binations of target edges to explore. In this scenario, temporal flows prove to be features
that are both fast to compute and effective to speedup matching. Concerning the order-
ing of processing query edges, Mackey’s algorithm just order them based on their times-
tamps. This strategy does not take into account the structure of the query. However,
nodes with high degree and edges incident in such nodes tend to have less candidates.
Though filtering seems to have the greatest impact on performance, there are several
works in the context of subgraph matching in static graphs showing that ordering can be
important too (Carletti et al. 2017; Bonnici et al. 2013; Bonnici and Giugno 2017; Han
et al. 2019; Bi et al. 2016). In general, for both algorithms � does not seem to impact a lot
on the running times.

In order to analyze the behaviour of TemporalRI and Mackey’s on the whole set of
experiments, we calculated, for every combination of values of query size k and � , in
each network, the percentage of queries completed before the timeout by: (1) both algo-
rithms; (2) only one of them; (3) none of them. Results are reporeted on Tables 2, 3 and
4.

As expected, when the query size increases the number of completed tests drops down
for both algorithms, but TemporalRI always manages to complete more experiments
than Mackey’s. Mackey’s algorithm seems to suffer in as-topology and prosper-
loans. This could be related to the low number of distinct timestamps in these two net-
works, yielding to an increased average number of occurrences of tested queries, even
for small values of � . Once again, except for enron-email, � does not seem to impact
on the percentage of experiments completed before the timeout. Overall, out of 6300
experiments, there were just 11 cases (0.17%) where only Mackey’s algorithm completed
before the timeout, while in 909 queries (14.43%) only TemporalRI ended before the
timeout. In 4675 (74.2%) queries and in 705 (11.19%) queries both algorithms and none
of the two completed before the timeout, respectively.

Finally, we compared the performance of TemporalRI and Mackey’s based on the topol-
ogy of the query. For each query size k, results were grouped according to the topology class
and the number of nodes of the query. We specified five distinct topology classes: paths,
stars, trees, cliques and cyclic graphs. The notation “x-class” indicate a cluster of queries
with x nodes and having one of the above topology classes (e.g. 3-path, 4-tree, etc.). Group-
ing was done ignoring edge direction, timestamps and possible multiple edges between two
nodes. For each cluster, we computed the percentage of tests in which TemporalRI was the
fastest algorithm and we did the same for Mackey’s. We excluded from this analysis all the

Page 18 of 22Micale et al. Appl Netw Sci (2021) 6:55

experiments in which none of the two algorithms ended before the timeout. Percentages for
each cluster of queries are reported in Figs. 8, 9 and 10.

Interestingly, in all three cases ( k = 3, 6, 9 ), Mackey’s algorithm seems to be generally
faster than TemporalRI in queries with very few (2 or 3) nodes, while TemporalRI is almost
always faster than Mackey’s in queries with many (from 4-5 on) nodes.

To sum up, TemporalRI is generally faster than Mackey’s algorithm, especially in large
queries and targets that are either large or have a limited number of timestamps. In que-
ries with very few nodes and many multiple contacts between nodes, Mackey’s algorithm
behaves generally better than TemporalRI. In all other cases, the latter is faster, indepen-
dently of the topology of the query.

0

25

50

75

100

2−path (99) 3−clique (33) 3−path (240) 4−path (813) 4−star (885)
Topology

Fa
st

er
 te

st
s

(%
)

TemporalRI Mackey

Fig. 8  Percentage of tests on queries with k = 3 edges in which TemporalRI or Mackey’s algorithm is
the fastest. Results are clustered by subgraph topology. Number of tests in each cluster are indicated in
parentheses. Experiments completed neither by TemporalRI nor by Mackey’s algorithm are excluded from the
analysis

Fig. 9  Percentage of tests on queries with k = 6 edges in which TemporalRI or Mackey’s algorithm is
the fastest. Results are clustered by subgraph topology. Number of tests in each cluster are indicated in
parentheses. Experiments completed neither by TemporalRI nor by Mackey’s algorithm are excluded from the
analysis

Page 19 of 22Micale et al. Appl Netw Sci (2021) 6:55 	

Conclusions
In this paper we focused on Temporal Subgraph Isomorphism (TSI) problem, which
consists in finding all the occurrences of a small temporal graph (the query) in a larger
temporal graph (the target), such that timestamps of target edges follows the same
chronological order of corresponding matched query edges and all interactions occur
within a user-defined time interval � . TSI can be considered a baseline framework to
study related problems, such as motif search, anomaly detection and node centrali-
ties. We illustrated a novel algorithm for the TSI problem, called TemporalRI, which
introduces the concept of temporal flows to filter the set of candidates before starting
the matching. Experiments performed on a dataset of medium and large networks

0

25

50

75

100

2−
pa

th
 (1

8)
3−

cli
qu

e
(2

7)
3−

pa
th

 (7
)

4−
pa

th
 (3

6)
4−

st
ar

 (2
4)

5−
cy

cli
c

(2
4)

5−
pa

th
 (2

0)
5−

st
ar

 (1
4)

5−
tre

e
(6

)
6−

cy
cli

c
(3

8)
6−

pa
th

 (8
)

6−
st

ar
 (1

2)
6−

tre
e

(4
9)

7−
cy

cli
c

(4
4)

7−
pa

th
 (3

)
7−

st
ar

 (1
8)

7−
tre

e
(9

0)
8−

cy
cli

c
(4

7)
8−

pa
th

 (6
)

8−
st

ar
 (9

)
8−

tre
e

(9
8)

9−
cy

cli
c

(4
4)

9−
st

ar
 (2

1)
9−

tre
e

(1
68

)
10

−s
ta

r (
84

)
10

−t
re

e
(7

81
)

Topology

Fa
st

er
 te

st
s

(%
)

TemporalRI Mackey

Fig. 10  Percentage of tests on queries with k = 9 edges in which TemporalRI or Mackey’s algorithm is
the fastest. Results are clustered by subgraph topology. Number of tests in each cluster are indicated in
parentheses. Experiments completed neither by TemporalRI nor by Mackey’s algorithm are excluded from the
analysis

Table 2  Number of experiments with k = 3 completed by both algorithms, TemporalRI only,
Mackey’s algorithm only and none of them

S-C (%) A-T (%) C-D (%) E-E (%) D-F (%) Y-M (%) P-L (%) Total (%)

� = kr

 Both 100 64 100 98 100 100 62 89.14

 TemporalRI 0 27 0 2 0 0 37 9.43

 Mackey’s 0 0 0 0 0 0 0 0

 None 0 9 0 0 0 0 1 1.43

� = 2kr

 Both 100 63 100 98 100 100 62 89.0

 TemporalRI 0 28 0 2 0 0 37 9.57

 Mackey’s 0 0 0 0 0 0 0 0

 None 0 9 0 0 0 0 1 1.43

� = 3kr

 Both 100 64 100 98 100 100 62 89.14

 TemporalRI 0 27 0 2 0 0 37 9.43

 Mackey’s 0 0 0 0 0 0 0 0

 None 0 9 0 0 0 0 1 1.43

Page 20 of 22Micale et al. Appl Netw Sci (2021) 6:55

show that TemporalRI is overall faster than the state-of-the-art Mackey’s algorithm
independently of � and the number of query edges. The speedup is higher for large
queries and large networks.

It is worth noting that the concept of temporal flow and the techniques introduced
to prune the search space are general and therefore can be, in principle, plugged into
any subgraph matching algorithm to handle the TSI problem.

In this paper we decided not to consider labeled temporal graphs, i.e. graphs con-
taining node and edge labels, even though both TemporalRI and Mackey’s algorithm
are designed to handle such graphs. This is due to the fact that adding labels just

Table 3  Number of experiments with k = 6 completed by both algorithms, TemporalRI only,
Mackey’s algorithm only and none of them

S-C (%) A-T (%) C-D (%) E-E (%) D-F (%) Y-M (%) P-L (%) Total (%)

� = kr

 Both 100 5 100 98 100 100 18 74.43

 TemporalRI 0 26 0 2 0 0 71 14.14

 Mackey’s 0 0 0 0 0 0 0 0

 None 0 69 0 0 0 0 11 11.43

� = 2kr

 Both 98 5 100 92 100 100 18 73.29

 TemporalRI 2 20 0 5 0 0 70 13.86

 Mackey’s 0 0 0 1 0 0 0 0.14

 None 0 75 0 2 0 0 12 12.71

� = 3kr

 Both 98 5 100 77 100 100 18 71.14

 TemporalRI 2 16 0 7 0 0 69 13.43

 Mackey’s 0 0 0 3 0 0 0 0.43

 None 0 79 0 13 0 0 13 15

Table 4  Number of experiments with k = 9 completed by both algorithms, TemporalRI only,
Mackey’s algorithm only and none of them

S-C (%) A-T (%) C-D (%) E-E (%) D-F (%) Y-M (%) P-L (%) Total (%)

� = kr

 Both 81 0 100 83 100 99 13 68

 TemporalRI 19 5 0 12 0 1 85 17.43

 Mackey’s 0 0 0 1 0 0 0 0.14

 None 0 95 0 4 0 0 2 14.43

� = 2kr

 Both 43 0 100 74 96 97 13 60.43

 TemporalRI 44 5 0 17 0 3 85 22

 Mackey’s 0 0 0 3 0 0 0 0.43

 None 13 95 0 6 4 0 2 17.14

� = 3kr

 Both 18 0 88 69 95 91 12 53.29

 TemporalRI 18 5 6 21 1 9 84 20.57

 Mackey’s 0 0 2 1 0 0 0 0.43

 None 64 95 4 9 4 0 4 25.71

Page 21 of 22Micale et al. Appl Netw Sci (2021) 6:55 	

requires few additional checks without changing the structure of both algorithms and
affecting results.

For the future, we plan to optimize TemporalRI and implement it on top of a SPARK
framework to deal with very large networks. We also aim to adapt TemporalRI as
a general algorithm for counting temporal motifs. This implies the need of a clever
strategy to identify and count occurrences of different temporal subgraphs without
scanning the target several times.

Abbreviations
TSI: Temporal subgraph isomorphism; AS: Asynchronous; S: Synchronous; F: Forward; B: Backward; II: Input–input; IO:
Input–output; OO: Output–output.

Acknowledgements
Not applicable.

Author’s contributions
All authors conceived the project. GL and GM developed the algorithm. GM performed the experiments and was a major
contributor in writing the manuscript. All authors read and approved the final manuscript.

Funding
AP and AF have been partially supported by the following research Project: PO-FESR Sicilia 2014-2020 “DiOncoGen:
Innovative diagnostics” (CUP: G89J18000700007).

Availability of data and materials
Source codes of TemporalRI and the modified version of Mackey’s algorithm, networks and queries used in our experi-
ments are available on Github at https://​github.​com/​GMica​le/​Tempo​ralRI.

Declaration

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy. 2 Department of Maths and Com-
puter Science, University of Catania, Catania, Italy.

Received: 3 March 2021 Accepted: 4 July 2021

References
Aggarwal C, Subbian K (2014) Evolutionary network analysis: a survey. ACM Comput Surv (CSUR) 47(1):10
Bi F, Chang L, Lin X, Qin L, Zhang W (2016) Efficient subgraph matching by postponing cartesian products. SIGMOD

’16, pp 1199–1214
Bonnici V, Giugno R (2017) On the variable ordering in subgraph isomorphism algorithms. IEEE/ACM Trans Comput

Biol Bioinform 14(1):193–203
Bonnici V, Giugno R, Pulvirenti A, Shasha D, Ferro A (2013) A subgraph isomorphism algorithm and its application to

biochemical data. BMC Bioinform 14(S13):1–13
Carletti V, Foggia P, Saggese A, Vento M (2017) Introducing vf3: a new algorithm for subgraph isomorphism. In:

Graph-based representations in pattern recognition, pp 128–139
Carley KM, Diesner J, Reminga J, Tsvetovat M (2007) Toward an interoperable dynamic network analysis toolkit. Decis

Support Syst 43(4):1324–1347
Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2011) Time-varying graphs and dynamic networks. In: Ad-hoc,

mobile, and wireless networks, pp 346–359
Cohen WW (2009) Enron email dataset (2005). http://​www.​cs.​cmu.​edu/​enron
Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub)graph isomorphism algorithm for matching large graphs.

IEEE Trans Pattern Anal Mach Intell 26(10):1367–1372
Crawford J, Milenkovic T (2018) Cluenet: clustering a temporal network based on topological similarity rather than

denseness. PLoS ONE 13(5):1–25
Divakaran A, Mohan A (2020) Temporal link prediction: a survey. New Gener Comput 38:213–258
Génois M, Barrat A (2018) Can co-location be used as a proxy for face-to-face contacts? EPJ Data Sci 7(11):1–18
Han W, Lee J, Lee J-H (2013) Turboiso: towards ultrafast and robust subgraph isomorphism search in large graph

databases. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data. SIG-
MOD ’13, pp 337–348 (2013)

Han M, Kim H, Gu G, Park K, Han W (2019) Efficient subgraph matching: harmonizing dynamic programming, adaptive
matching order, and failing set together. In: Proceedings of the 2019 international conference on management of
data. SIGMOD ’19, pp 1429–1446

https://github.com/GMicale/TemporalRI
http://www.cs.cmu.edu/enron

Page 22 of 22Micale et al. Appl Netw Sci (2021) 6:55

Hiraoka T, Masuda N, Li A, Jo H (2020) Modeling temporal networks with bursty activity patterns of nodes and links. Phys
Rev Res 2(2):023073

Hogg T, Lerman K (2012) Social dynamics of digg. EPJ Data Sci 1(1):1–26
Holme P, Saramaki J (2012) Temporal networks. Phys Rep 519(3):97–125
Holme P, Saramaki J (2019) Temporal network theory. Springer, Cham
Hulovatyy Y, Chen H, Milenkovic T (2015) Exploring the structure and function of temporal networks with dynamic

graphlets. Bioinformatics 31(12):171–180
Isella L, Stehlé J, Barrat A, Cattuto C, Pinton JF, Van den Broeck W (2011) What’s in a crowd? Analysis of face-to-face behav-

ioral networks. J Theor Biol 271(1):166–180
Kim K, Seo I, Han W, Lee J, Hong S, Chafi H, Shin H, Jeong G (2018) Turboflux: a fast continuous subgraph matching

system for streaming graph data. In: Proceedings of the 2018 international conference on management of data.
SIGMOD ’18, pp 411–426

Kovanen L, Karsai M, Kaski K, Kertész J, Saramaki J (2011) Temporal motifs in time-dependent networks. J Stat Mech
Theory Exp 2011(11):11005

Liu P, Benson AR, Charikar M (2019) Sampling methods for counting temporal motifs. In: Proceedings of the twelfth ACM
international conference on web search and data mining. WSDM ’19, pp 294–302

Locicero G, Micale G, Pulvirenti A, Ferro A (2021) TemporalRI: a subgraph isomorphism algorithm for temporal networks.
In: Complex networks and their applications IX, pp 675–687

Lv L, Zhang K, Zhang T, Bardou D, Zhang J, Cai Y (2019) Pagerank centrality for temporal networks. Phys Lett A
383(12):1215–1222

Mackey P, Porterfield K, Fitzhenry E, Choudhury S, Chin G (2018) A chronological edge-driven approach to temporal
subgraph isomorphism. In: 2018 IEEE international conference on big data (big data), pp 3972–3979

Masuda N, Holme P (2020) Small inter-event times govern epidemic spreading on networks. Phys Rev Res 2(2):023163
Masuda N, Lambiotte R (2020) A guide to temporal networks, 2nd edn. World Scientific, Singapore
Network Repository: an interactive scientific network data repository (2021). http://​netwo​rkrep​osito​ry.​com. Accessed 4

Jan 2021
Paranjape A, Benson AR, Leskovec J (2017) Motifs in temporal networks. In: Proceedings of the tenth ACM international

conference on web search and data mining. WSDM ’17, pp 601–610
Petit J, Gueuning M, Carletti T, Lauwens B, Lambiotte R (2018) Random walk on temporal networks with lasting edges.

Phys Rev E 98(5):052307
Redmond U, Cunningham P (2013a) A temporal network analysis reveals the unprofitability of arbitrage in the prosper

marketplace. Expert Syst Appl 40(9):3715–3721
Redmond U, Cunningham P (2013b) Temporal subgraph isomorphism. In: Proceedings of the 2013 IEEE/ACM interna-

tional conference on advances in social networks analysis and mining. ASONAM ’13, pp 1451–1452
Redmond U, Cunningham P (2016) Subgraph isomorphism in temporal networks. arXiv:​1605.​02174
Rocha LEC, Masuda N, Holme P (2017) Sampling of temporal networks: methods and biases. Phys Rev E 96(5):052302
Rossetti G, Cazabet R (2018) Community discovery in dynamic networks: a survey. ACM Comput Surv 51(2):1–37
Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visualization. In: Proceed-

ings of the twenty-ninth AAAI conference on artificial intelligence. AAAI’15, pp 4292–4293
Singh EA, Cherifi H (2020) Centrality-based opinion modeling on temporal networks. IEEE Access 8:1945–1961
Sun S, Luo Q (2020) Subgraph matching with effective matching order and indexing. IEEE Trans Knowl Data Eng 1:1–14
Sun X, Tan Y, Wu Q, Chen B, Shen C (2019) Tm-miner: Tfs-based algorithm for mining temporal motifs in large temporal

network. IEEE Access 7:49778–49789
Sun X, Tan Y, Wu Q, Wang J, Shen C (2019) New algorithms for counting temporal graph pattern. Symmetry 11(10):1188
Tizzani M, Lenti S, Ubaldi E, Vezzani A, Castellano C, Burioni R (2018) Epidemic spreading and aging in temporal networks

with memory. Phys Rev E 98(6):062315
Torricelli M, Karsai M, Gauvin L (2020) weg2vec: event embedding for temporal networks. Sci Rep 10:7164
Tsalouchidou I, Baeza-Yates R, Bonchi F, Liao K, Sellis T (2020) Temporal betweenness centrality in dynamic graphs. Int J

Data Sci Anal 9:257–272
Williams OE, Lillo F, Latora V (2019) Effects of memory on spreading processes in non-Markovian temporal networks. New

J Phys 21(4):043028

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://networkrepository.com
http://arxiv.org/abs/1605.02174

	TemporalRI: subgraph isomorphism in temporal networks with multiple contacts
	Abstract
	Introduction and related works
	Preliminary definitions
	Temporal subgraph isomorphism
	Temporal flows

	Description of RI algorithm
	Computation of compatibility domains
	Ordering of query nodes
	Matching process

	Description of TemporalRI
	Compatibility domains
	Ordering of processing query edges
	Matching process
	Complexity analysis

	Experiments
	Dataset and setup
	Experimental results

	Conclusions
	Acknowledgements
	References

