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Introduction
Network representations provide a formal framework to specify relationships between 
interconnected entities (nodes). In a number of scenarios, such frameworks annotate 
nodes with attributes to naturally identify groups whose members are related by, e.g., a 
particular similarity measure. In analyzing networks with node attributes, most studies 
assume that a node can take a finite number of possible values, each of which is called a 
class. A class may represent the gender of a user in a social network or the function asso-
ciated to a protein in a protein-protein interaction network.

The problem

The task of inferring or predicting missing node attributes from information available 
for other nodes in a network is called node classification (also referred to as attribute 
prediction) (Bhagat et al. 2011). Several formulations to the node classification problem 
have been proposed over the past decades. The problem of inferring an attribute from 
exactly one of two classes is referred to as binary classification (Khan and Madden 2010). 
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The extension of the binary classification problem to any finite (non-zero) number of 
classes is referred to as multi-class classification (Mills  2021). Furthermore, each type of 
problem is categorized as a multi-label classification, if a node is allowed to be simulta-
neously associated to more than one class (Prajapati et al. 2012).

For most techniques that address the above-mentioned problems, node classification 
is generally carried out independently for each class (Abu-El-Haija et  al. 2019; Bhagat 
et al. 2011; Hamilton et al. 2017; Kipf and Welling  2017; Xiao et al. 2021). The main limi-
tation of such compartmentalized approaches is that they ignore hidden relationships 
among classes, even when certain class relationships may serve as an input to improve 
the accuracy of attribute prediction.

In practice, classes may have explicit relations specifying their dependencies. For 
example, this is the case with the Gene Ontology hierarchy because genes and proteins 
associated to a function must also be associated to the ancestors of such function. The 
authors in Silla and Freitas (2011), amid this limitation, define dependencies between 
classes as ancestral relations by means of a hierarchy represented by a directed acyclic 
graph. A connection from class C1 to class C2 in the hierarchy means that every node 
with attribute C1 also has attribute C2 (i.e., the nodes having attribute C1 are a subclass of 
the nodes having attribute C2).

Formally, a classification problem is considered hierarchical if and only if its hier-
archy of classes is a strict partial order (i.e., a strict poset or, equivalently, a directed 
acyclic graph). A strict poset (C ,≺) over a finite set C of classes defines a binary rela-
tion ≺ on C that is asymmetric, anti-reflexive, and transitive. For instance, the hierar-
chy of biological processes can be defined over a strict poset according to which the 
functions cell death, programmed cell death, and apoptotic process are ordered by 
cell death ≺ programmed cell death ≺ apoptotic process (Gene Ontology Consortium  
2019). Note that the transitive property of the order ≺ guarantees that cell death is also 
the ancestor of apoptotic process. Note also that since the strict poset is anti-reflexive, no 
process can be ancestor of itself. Finally, the asymmetry property guarantees that apop-
totic process cannot be ancestor of programmed cell death. Indeed, any strict poset is 
isomorphic to a directed acyclic graph (DAG), a concept more closely related to graph 
and network analysis.

Given a graph with some labeled nodes (i.e., nodes associated to classes) and a class 
hierarchy, the expected outcome of a hierarchical classification problem is a collection 
of predicted associations between nodes and classes. An inconsistent prediction for a 
hierarchical multi-label classification problem refers to the fact that a node is inferred 
to have a particular class C, but the outcome of the classifier fails to infer the node’s 
association to all ancestor classes of C. In other words, an inconsistent prediction states 
that the prediction does not satisfy the ancestral relations for some class C. In many sce-
narios, it is desirable to rule out inconsistent prediction: that is, if a classifier predicts a 
particular class C for a node, then it should also predict all the ancestors of C for that 
node; conversely, if a classifier does not predict C for a node, then it should not predict 
any of C’s descendants for that node. This constraint is often referred to as the true-path 
rule in Gene Ontology (Ashburner et al. 2000; Valentini  2009).

The efforts to classify nodes generally aim to comply with the underlying ances-
tral relations between classes in scenarios where such a hierarchy is known (and thus 
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avoid inconsistent prediction). Consider a social network where nodes represent indi-
viduals and node attributes represent different levels of education. If a predictor out-
puts an individual without an undergraduate degree as candidate to have graduate 
degree, it fails to comply with the hierarchical organization of educational levels, in 
many reasonable scenarios, thereby violating the true-path rule.

Hierarchical classification problems may further be categorized depending on 
the approach used for training the underlying model. On the one hand, a top-down 
approach involves a binary classifier for each class in the hierarchy. In this case, the 
classifier associated to each class is trained iteratively from the roots (i.e., the classes 
without ancestors in the hierarchy) to the leaves (i.e., the classes without descendants 
in the hierarchy). In addition, local information about the ancestors and descend-
ants of a class in the hierarchy is used to avoid independent predictions. On the other 
hand, a big-bang approach involves a multi-label classifier that considers the entire 
hierarchy of ancestral relations at once. The multi-label classifier is trained just once 
with the information of every class in the hierarchy and its dependencies.

Related work

Several studies have applied both top-down and big-bang approaches across differ-
ent domains (Jiang et al. 2008; Dimitrovski et al. 2010; Bi and Kwok  2011; Ramírez-
Corona et al. 2016). The authors in Jiang et al. (2008) proposes a top-down approach, 
called Hierarchical Binomial-Neighborhood (HBN), to predict protein functions in 
yeast Saccharomyces cerevisiae. It is shown by the authors that the hierarchical struc-
ture of functions can be exploited to completely avoid inconsistent predictions and, 
at the same time, outperform approaches based on independent class prediction. 
However, they point out that the main limitation of their approach is the high com-
putational effort required for assigning probability weights to every protein-function 
pair. The authors in Ramírez-Corona et  al. (2016) introduce a top-down approach 
based on Chained Path Evaluation (CPE), which uses a classifier to train each non-
leaf class (i.e., each class with at least one descendant) in the hierarchy. Information 
on ancestral relations is included in the classifier by adding an extra feature with the 
prediction of parents of each class. As in Jiang et al. (2008), the computational cost 
of the CPE model grows exponentially as a function of the number of paths in the 
hierarchy. The use of big-bang approaches is, in general, also limited by their high 
computational demands. In Dimitrovski et  al. (2010), for example, the authors pre-
sent a big-bang approach that addresses hierarchical multi-label classification based 
on Predictive Clustering Trees (PCTs). The computational cost of the PCT approach 
is directly proportional to the size of the hierarchy.

Other studies address the node classification problem and obtain state-of-the-art 
performance for different case studies (see, e.g., Abu-El-Haija et al. 2019; Chen et al. 
2021; Hamilton et al. 2017; Kipf and Welling  2017; Makrodimitris et al. 2020; Xiao 
et  al. 2021). However, they do not take into account dependencies between classes 
(hierarchical or not), for they focus on multi-class instead of multi-label problems. 
For this reason, such developments can not be compared directly to assess hierarchi-
cal multi-label classification prediction.
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Main contribution

This work introduces a top-down classification approach that addresses hierarchi-
cal multi-label classification (HMC) using supervised learning. Given a network 
G = (VG,EG) , an assignment of classes to nodes in the network, and a class hierarchy 
specified as a directed acyclic graph H = (VH,EH) , the hierarchical multi-label classifi-
cation problem is addressed by building a binary classifier for each class. Classifiers are 
built iteratively from the roots of the hierarchy to the leaves. The approach uses a cor-
rection mechanism to guarantee that the true-path rule is satisfied by the classifier’s out-
come; it is enforced by computing cumulative probabilities along the paths of classes in 
the input hierarchy.

The results in this work support the working hypothesis that the proposed approach 
can achieve good levels of prediction efficiency, while scaling up in relation to the state 
of the art. This approach is showcased with a case study on the prediction of gene func-
tions for Oryza sativa Japonica, a variety of rice. It is compared to the probabilistic HBN 
model (Jiang et al. 2008), by evaluating both approaches in terms of prediction perfor-
mance (by means of the true positive and true negative rates) and in terms of their com-
putational cost (by means of a comparison of the execution time). In the case study, the 
prediction task uses two inputs. Namely, (i) a gene co-expression network (GCN), in 
which a node represents a gene and a class of a node represents a gene function; and (ii) 
the hierarchical structure of biological processes defined in Gene Ontology Consortium  
(2019). The goal of the prediction task is to infer gene attributes from 15 sub-hierarchies 
grouping 1938 biological processes associated to 19663 genes.

Outline. The remainder of the paper is organized as follows. “Section  Hierarchical 
classification” introduces the approach for node classification where classes have a hier-
archical organization. “Section Gene function prediction” describes the problem of pre-
dicting gene functions. It also presents the results of applying the proposed model to 
Oryza sativa Japonica. Finally, “Section Conclusion and future work” draws some con-
cluding remarks and future research directions.

Hierarchical classification
This section presents a top-down classification approach in the form of a supervised 
learning model for hierarchical multi-label classification.

The input of the model are a graph G = (VG,EG) specifying an undirected network 
with nodes VG and edges EG , a directed acyclic graph H = (VH,EH) , with vertices VH and 
edges EH disjoint from VG and EG , respectively, representing the hierarchy of classes, and 
a function φ : VG �→ 2VH with a partial assignment of classes to nodes in the network. 
For v ∈ VG , the set φ(v) ⊆ VH is the collection of classes initially associated to v. It is 
assumed that φ satisfies the true-path rule for the hierarchy H , meaning that if a node 
v satisfies C ∈ φ(v) for a class C ∈ VH , then φ(v) must contain all the ancestors of C in 
H . As mentioned in the introduction, the DAG H uniquely represents a strict poset. The 
goal of the model is then to build a function φ′ : VG �→ 2VH extending φ with new assign-
ments of nodes in VG to classes in VH . Figure 1A depicts an example of the input of the 
model where the nodes of the network G are labeled with classes A-E and the hierarchy 
of classes H is a DAG. According to the true-path rule, nodes labeled with class E are also 
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related to classes A, B, and C. The objective is to predict new associations between nodes 
and classes for either nodes with or without labels.

The rest of this section is devoted to describe the main steps behind the construction 
of the supervised learning model.

Hierarchy normalization

Hierarchies are represented as directed acyclic graphs where, in general, nodes can have 
any (finite) number of parents. Since the approach presented in this work assumes that 
every node has at most one parent, a topological traversal algorithm for directed graphs 
(see, e.g., Knuth 1997) is used to transform H into a tree, when required. In this way, the 
resulting model can take as input any hierarchy.

This algorithm uses the structure of H (not its tree version) and its distribution of 
classes. Given an ancestral relation A → B (i.e., class A is a direct ancestor of class B), 
a weight w(A, B) for such an edge is defined as the ratio between the number of nodes 
associated to B (i.e., the size of the set φ−1(B) ) and the number of nodes associated to A 
(i.e., the size of the set φ−1(A) ). Since all nodes associated to B must be associated to A, 
then by definition each weight w(A, B) is in the range [0, 1]. For any node B with n ≥ 1 
parents A1, . . . ,An in H (i.e., Ai → B in EH , for 1 ≤ i ≤ n ), the parent of B in the resulting 
tree is the node Aj maximizing w(Aj ,B) among all the Ai’s. Ties are broken arbitrarily. 
This process can be effectively computed in time and space O(|VH| + |EH|) , namely, in 

Fig. 1  A The classification approach gets as input a network with a node attribute and a set of known 
association between nodes and classes, and the hierarchy of ancestral relations represented as a DAG. 
Note that there are more nodes associated to class B than C. B The DAG representation of the hierarchy is 
transformed into a tree using a topological traversal algorithm, based on the distribution of the classes in the 
network. Since classes B and C are ancestors of E, the ratio of nodes associated to E and C is higher that the 
ratio for E, and B ( w(C , E) > w(B, E) ), the algorithm removes edge (B, E) and returns a tree
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resources linear in the size of H . Such a process, based on a topological-sorting traversal, 
is described in Algorithm 1. Finally, note that the topological sorting of the vertices of 
H in Algorithm 1, can be exploited to compute the value of function w(_, _) by dynamic 
programming in space �(|VH|) . More precisely, a function ρ : VH → N assigning to each 
class Bi its number of descendants ρ(Bi) in H can be computed from the direct descend-
ants of Bi , which are processed before Bi in the topological sorting of VH.

As an example, consider the hierarchy depicted in Fig. 1B. Note that class E has more 
than one parent, there exists an ancestral relation from B to E and from C to E (i.e, 
B → E and C → E , respectively). By the true-path rule, nodes associated to class D are 
also associated to class B, and the ones associated to class E are associated to both B and 
C. Since there are 4 nodes associated to E, 4 to D, 4 to B, and 2 to C, the weight w(B, E) 
is 0.33 and the weight w(C, E) is 0.66. Therefore, the topological-sorting traversal will 
remove edge B → E.

In the rest of this paper, it is assumed that hierarchy H is indeed a tree T.

The model

Given the network G and the hierarchy tree T , the model is built in a process comprising 
three stages. Figure 2 depicts the general approach.

Stage 0: data pre-processing. In this stage, topological features of G and T , and hier-
archical information in T are readied and combined for supervised learning.

Classes that are too specific or too general are ignored in the prediction to avoid over-
fitting and learning bias. In the case study presented in “Section Gene function predic-
tion”, a class is defined as too specific or too general if it is associated to less than 5 or 
more than 300 genes, respectively (Jiang et al. 2008). As a result, the input hierarchy T 
can be split into several sub-trees, each one representing a sub-hierarchy T′ = (VT′ ,ET′) 
with VT′ ⊆ VT and ET′ ⊆ ET , over which the model is applied independently. That is, a 
sub-hierarchy T′ is a subset of the classes and ancestral relations in T . As a matter of fact, 
this situation arises in the case study presented in “Section Gene function prediction”. 
Furthermore, each sub-hierarchy T′ is associated to the subgraph of G consisting of all 
nodes labeled with the root class of T′ , that is, each sub-hierarchy T′ is related to a differ-
ent subgraph G′ = (V ′

G
,E′

G
) with V ′

G
⊆ VG and E′

G
⊆ EG . In this way, sub-hierarchies are 

considered independent problems with smaller inputs (à la divide and conquer).
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For each sub-hierarchy T′ in T , datasets are built based on two types of topological 
properties, namely, hand-crafted features and node embeddings. For the first type, prop-
erties of nodes V ′

G
 such as degree, average neighbor degree, centrality, and eccentricity 

are computed. Additionally, for each class C in T′ , two features are computed to rep-
resent the probability of a node being associated to C and its parent in H based on the 
information of the neighborhood. For C and its parent, a node and its neighbors, and the 
associations between the neighbors and both classes, these new features represent the 
ratio between the number of neighbors associated to each class and the total number of 

Fig. 2  Framework of the hierarchical multi-label classification approach. The approach is split into three 
stages: data pre-processing, class prediction and performance evaluation. The approach is applied for every 
resulting sub-hierarchy H′ independently. Ancestral relations between classes are included in the model as 
features with the prediction of ancestors and are represented by the upward arrow in the prediction stage. In 
addition, a correction mechanism for inconsistencies is included by means of cumulative probabilities, which 
are computed according to the path of classes in the sub-hierarchy. If the probability of association between 
a node and a class is close to zero, then the cumulative probability of the association between the same node 
and the descendant classes will be close to zero as well
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neighbors. For the second type of properties, continuous representations capturing the 
characteristics of the nodes in G′ (i.e. node embeddings) are computed using node2vec 
(Grover and Leskovec  2016).

Stage 1: hierarchical classification. This stage comprises a top-down approach com-
bining different supervised machine learning techniques/tools. It builds prediction 
classifiers for each sub-hierarchy T′ independently. The approach uses stratified k-fold 
cross-validation, the Synthetic Minority Over-sampling Technique (SMOTE) (Chawla 
et al. 2002), hyper-parameter tuning (Bergstra and Bengio 2012), and a binary classifier, 
[e.g. XGBoost (Chen and Guestrin  2016) or graph convolutional networks (Kipf and 
Welling  2017)]. These techniques are combined sequentially in a pipeline, which is used 
iteratively from the root to the leaves of each sub-hierarchy T′ . Note that, since the top-
down approach builds a different classifier for each class in the sub-hierarchy, the pro-
posed model can be used for multi-class and multi-label problems. As a result, nodes 
can be independently associated to multiple classes.

The combination of the above-mentioned techniques/tools makes up the core of the 
approach; and each technique has a different objective. Stratified k-fold aims to over-
come overfitting by randomly selecting independent k subsets of the dataset where the 
distribution of the labels is similar for all folds. In this approach, 5 folds are used for 
cross-validation, that is the train-test ratio is 80/20. Over-sampling aims to overcome 
learning bias handling imbalanced datasets for underrepresented classes. SMOTE syn-
thesizes new examples of the minority class from the existing ones. Hyper-parameter 
tuning aims to improve the performance of the prediction by optimizing parameters of 
the classifier such as, e.g., learning rate, number of estimators, and maximum depth of 
trees.

Two types of classifiers were used; namely, the XGBoost (Chen and Guestrin  2016) 
gradient boosting decision trees and graph convolutional networks (Kipf and Welling  
2017). XGBoost was chosen for interpretability (Elshawi et  al. 2019; Rudin 2019) and 
graph convolutional networks for state-of-the-art performance. In general, any other 
binary classifier can be used in this stage. The typical parameter values used for XGBoost 
classifiers are: gbtree booster, area under Precision-Recall (aucpr) evaluation metric, 
learning rate (eta) of 0.05, maximum tree depth (max_depth) of 6, subsample ratio (sub-
sample) of 0.9, and minimum sum of instance weight in a child (min_child_weight) of 
3. For the graph convolutional networks, the implementation by Data61  (2018) was 
used with the following parameters: 16 layers of 16 units each, RelU activation function, 
dropout rate of 50%, learning rate of 0.01, and binary cross-entropy loss function. Fur-
ther details of the implementation can be founded in the repository https://​github.​com/​
migue​leci/​node_​class​ifica​tion.

Classifiers for each class in T′ are built independently, so that there is no relation 
between their predictions. Including information from the ancestors of a class C into its 
classifier is not enough to avoid inconsistent predictions. For this reason, a correction 
mechanism is included in this stage. Since ensuring the true-path rule is key in the pro-
posed approach, this stage computes cumulative probabilities along the paths of classes 
in T′ . Namely, the probability of association between a node v and C is directly related to 
the predicted probabilities of the node being associated to all ancestors of C. Intuitively, 
the principle is as follows: if the probability of association of C to v is close to zero, then 

https://github.com/migueleci/node_classification
https://github.com/migueleci/node_classification
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the probability of association for all descendant classes of C to v will be close to zero as 
well. The main consequence of enforcing the principle is that the classification computed 
from the cumulative probability satisfies the true-path rule and removes the inconsisten-
cies in the prediction.

Stage 2: performance evaluation. This stage comprises the evaluation of the metrics 
used for measuring the prediction performance of the classifiers. Performance evalua-
tion focuses on recall (true positive rate) and precision scores. It also evaluates the pre-
cision-recall curve instead of the accuracy, loss, or ROC curves. This is mainly because 
datasets are often imbalanced (w.r.t. the positive class in a binary classification), thus 
both positive and negative classes of the binary classifier need to be analyzed separately. 
Recall and precision scores are computed from the predicted cumulative probabilities as 
a function of the optimum threshold, which is defined as the threshold that maximizes 
the F1 score from the precision-recall curve for the cumulative probabilities.

Gene function prediction
This section presents a case study on the prediction of gene functions (i.e., biological 
processes in which genes are involved) for the Oryza sativa Japonica rice variety. First, 
the problem of predicting gene functions is introduced. Then, the results after apply-
ing the approach proposed in Section 2 to this problem are described. The probabilistic 
approach, proposed in Jiang et al. (2008), is used to compare the novel results.

Gene co‑expression networks

High-throughput sequencing technologies have enabled the identification of numerous 
genes and gene products. However, biological processes in which many such genes are 
involved remain largely unknown (i.e., relations between genes and biological processes 
have not been comprehensively validated through in vivo experimentation) (Rangana-
than et al. 2019). Identifying the functions of genes is key to enhance the understand-
ing on how to characterize the genome of a particular organism. In general, traditional 
in silico approaches to predict gene functions consider each function as an independ-
ent class. The task is generally defined as a binary classification problem based on gene 
expression.

Genes (or gene products) can be associated to more than one biological process and 
such processes may be related (e.g., by ancestral relationships). The assignment of func-
tions to genes obeys the true-path rule (Valentini  2009). Consequently, efforts to predict 
whether a gene is associated to a particular function should consider the ancestral rela-
tions of that function. Ignoring such a hierarchical structure leads to biological incon-
sistencies in the outcome of the prediction. On the contrary, when a gene is associated to 
multiple biological processes without ancestral relations, the prediction is done for each 
one of the functions independently.

As an example, consider two biological processes in which a gene may be involved: 
response to external stimulus and detection of light stimulus. According to the hierarchy 
of biological processes in Fig. 3, the former function is an ancestor of the latter (Ash-
burner et al. 2000). By the true-path rule, if a gene is associated to detection of light stim-
ulus, it must be associated to response to external stimulus.
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In addition, a common approach to integrate large volumes of transcriptional data and 
synthesize the hierarchical structure of gene functions is to characterize gene co-expres-
sion networks (GCNs). GCNs have been used to infer biological processes and pathways 
based on highly correlated expression patterns between genes (Oti et al. 2008; Dam et al. 
2017; Vandepoele et al. 2009). It is well-known that co-expressed genes, i.e., genes with 
similar expression profiles, tend to share the same function or be related to the same 
regulatory pathway (Emamjomeh et al. 2017; Serin et al. 2016; Zhou et al. 2002).

Predicting gene functions in Oryza sativa Japonica

The goal of this case study is to predict gene functions, that is, the biological processes in 
which some genes are involved. The problem is tackled by using the model proposed in 
Section 2 on the GNC of Oryza sativa Japonica (Obayashi et al. 2018) and a hierarchy of 
biological processes for this organism (Sakai et al. 2013). The computational experiments 
supporting the results in this section have been executed in a cluster with 5 nodes, each 
one with 64GB of memory and a AMD OpteronTM Processor 6376 with 64 CPU cores.

Formally, a gene co-expression network is represented as a undirected, weighted 
graph G = (VG ,EG , f ) , built from empirical data, where genes are represented by nodes 
VG , edges EG denote co-expression relationships, and the weight f : EG → R≥0 meas-
ures the level of co-expression between genes. Additionally, the graph H = (VH ,EH ) is 
a directed acyclic graph (DAG) which represents the hierarchical organization of bio-
logical processes, where EH represents the ancestral relations between functions. Genes 
are associated to one or more biological processes through a function φ : VG → 2VH , 

Fig. 3  Hierarchy for the biological process detection of light stimulus, represented as a DAG. Taken from 
QuickGO, https://www.ebi.ac.uk/QuickGO 
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where VH denotes the set of all biological processes. The predictive model combines the 
existing set of labels in φ , topological properties of G and the hierarchical information 
of H to obtain a new labeling function φ′ using the hierarchical multi-label classification 
approach. As a result, the function φ′ contains suggestions of previously unidentified 
associations between genes and functions satisfying the true-path rule.

The set of known associations between genes and functions used in this work contains 
19663 rice genes, 550813 co-expression relations, 3743 biological processes, 220598 
assignments of functions to genes, and 7185 ancestral relations of functions (all biologi-
cal processes belong to the same hierarchy). To avoid overfitting and learning bias in the 
proposed model, only those functions associated to more than 4 and at most 300 genes 
are considered (Jiang et al. 2008). Under this criterion, 1938 functions (52%) are used for 
prediction. As a result, the function hierarchy breaks down into 27 sub-hierarchies, from 
which 12 correspond to isolated functions or small sub-hierarchies (fewer than 7 func-
tions). The 15 remaining sub-hierarchies are described in Table 1, sorted from the small-
est to the largest in terms of the number of functions VT′ and number genes associated 
with each of them.

The prediction performance of the proposed approach is compared with the HBN 
model presented in Jiang et al. (2008). The HBN model uses a top-down approach that 
integrates relational data of protein-protein interaction network (PPI) with the hierar-
chical data of biological processes with the objective of predicting protein functions. For 
this case study, the HBN model is adapted to the problem of predicting gene functions 
based on GCNs. To predict the probability of a gene g being associated to function A, the 
local neighborhood information of g in the GCN and the ancestors of A in the hierarchy 
are considered. The HBN model computes the probability of gene g being associated to 
function A obeying the true-path rule.

The figures in this section show the mean performance for the proposed approach and 
the HBN model between multiple experiments, in which each experiment represents 
the mean performance between the k folds used for cross-validation. In all of them, the 

Table 1  Sub-hierarchies generated for the gene co-expression network of Oryza sativa Japonica 

Root Func Genes Desc

1 GO:0040007 10 108 Growth

2 GO:0002376 11 131 Immune system process

3 GO:0051704 22 144 Multi-organism process

4 GO:0044419 37 777 Interspecies interaction between organisms

5 GO:0044085 50 377 Cellular component biogenesis

6 GO:0000003 72 648 Reproduction

7 GO:0006796 118 1270 Phosphate-containing compound metabolic process

8 GO:0032501 118 1043 Multicellular organismal process

9 GO:0032502 149 1063 Developmental process

10 GO:0016043 140 661 Cellular component organization

11 GO:0051179 164 1350 Localization

12 GO:0050896 261 3319 Response to stimulus

13 GO:0065007 485 2224 Biological regulation

14 GO:0008152 775 5862 Metabolic process

15 GO:0009987 925 5900 Cellular process
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variation (error bar o standard deviation) is not included because it is negligible (and 
can add visual noise to the plots). Figure 4 illustrates the performance of the proposed 
approach using XGBoost (XGB) and graph convolutional network (GraphCN) classifi-
ers and the HBN model measured with the area under the ROC curve and the average 
precision score. Note that their performance seem to be similar in most sub-hierarchies 
and it is not possible to conclude which one performs better from Fig. 4. However, since 
only biological processes associated to more than 4 and less than 300 genes are consid-
ered (less than 2% of the genes in the GCN), datasets generated for the filtered biological 
processes are highly imbalanced. For this reason, the area under the ROC curve is not 
suitable for the case study (this measured is biased for the over-represented class in the 
classification task), and the analysis should focus on other metrics such as recall and F1 
score instead.

An outstanding difference between the performance of the proposed approach and the 
HBN model is observed when the confusion matrices are analyzed. Figure 5 shows the 
true positive rate (or the measure of recall) and the true negative rate for the 15 sub-
hierarchies. Note that the true positive rate of the proposed approach is higher than 
the HBN model for most of the sub-hierarchies, whereas the true negative rate of the 
HBN model is higher for all sub-hierarchies. However, the HBN model is biased for 
the negative class because the probability predicted by the HBN model for most of the 
associations between genes and functions is close to zero. As the datasets are highly 
imbalanced, the performance in terms of the positive class are key to determine which 
approach is adequate. Recall that a dataset is said to be imbalanced for binary classifica-
tion if one of the classes is under-represented in relation to the other one, i.e., the num-
ber of instances related to one class is much higher than the number of instances related 
to the other. For example, a dataset with 1000 instances that has 900 negative and 100 
positive samples is imbalanced.

The true positive rate illustrated in Fig. 5 shows that the proposed approach outper-
forms the HBN model in the identification of the (positive) associations between genes 

Fig. 4  Prediction performance of the hierarchical multi-label classification approach with XGBoost (XGB) 
and graph convolutional network (GraphCN) classifiers, and the probabilistic model (HBN) for the 15 
sub-hierarchies of Oriza sativa Japonica. Performance is measured with area under the ROC curve and the 
average precision score. Note that the notation used for the graph convolutional network is GraphCN to 
distinguish it from the gene co-expression network (GCN)
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and functions. The performance varies between XGBoost and graph convolutional net-
works, but both classifiers have better overall performance than the HBN model. The 
results suggest that graph convolutional networks are better for small sub-hierarchies, 
while XGBoost is better for larger ones. Even though the true negative rate of the HBN 
model is close to 1 for all sub-hierarchies, as illustrated on Fig. 5, the performance of the 
proposed approach in terms of the average of both recall and precision (i.e., F1 score) 
is better than the HBN model. Figure 6 presents the F1 score of the proposed approach 
and the HBN model for the 15 sub-hierarchies. In this case study there is no observ-
able correlation between the size/depth/span of a hierarchy and the prediction perfor-
mance, according to the experiments. This is coherent with the overall computational 

Fig. 5  True positive rate (or recall) and true negative rate of the hierarchical multi-label classification 
approach with XGBoost (XGB) and graph convolutional network (GraphCN) classifiers, and the HBN model for 
the 15 sub-hierarchies generated for Oryza sativa Japonica 

Fig. 6  F1 score of the hierarchical multi-label classification approach with XGBoost (XGB) and graph 
convolutional network (GraphCN) classifiers, and the HBN model for the 15 sub-hierarchies generated for 
Oryza sativa Japonica 
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complexity of the algorithms. On the other hand, there is no experimental evidence to 
suggest that some degree of correlation exists between the number of label nodes and 
the prediction performance. However, these observations need to be further investi-
gated with other case studies.

Finally, the execution time of the proposed approach and the HBN model is illus-
trated on Fig. 7. The execution time for the graph convolutional network classifier is not 
included because the experiments were executed on CPUs rather than GPU. It is known 
that neural networks run much faster on GPUs; thus, it would not be fair to make a 
comparison with the available data. Note that the execution time is measured in seconds 
and plotted on a logarithmic scale. Except for the smallest sub-hierarchy (GO:0040007), 
the execution time of the proposed approach, using XGBoost classifier, is better than the 
HBN model. On average, the execution time of the HBN model is approximately 4 times 
as much of the proposed approach.

Conclusion and future work
By combining different techniques from machine learning, the hierarchical multi-label 
classification model presented in this paper introduces an approach to address the node 
classification problem for scenarios in which nodes can have attributes obeying a hierar-
chical organization. Taken into account hierarchical dependencies is shown to be a key 
aspect for obtaining more consistent predictions that satisfy the true-path rule.

A baseline comparison between the proposed approach using two different classifi-
cation methods, namely, gradient boosting decision trees and graph convolutional 
networks, and the HBN model introduced by Jiang et  al. (2008) is presented. Both 
approaches are applied to the problem of predicting gene function on the variety of rice 
Oryza sativa Japonica. The proposed hierarchical multi-label classification approach 
outperforms the HBN model in two aspects. First, using topological information of 

Fig. 7  Execution time of the hierarchical multi-label classification approach with XGBoost (XGB) classifier and 
the HBN model for the prediction of the 15 sub-hierarchies. The execution time is measured in seconds and 
plotted in logarithmic scale
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the network is a key feature to obtain the overall best performance of the prediction. 
In such setting, the true positive rates of the proposed approach are significantly higher 
than the HBN model, whereas the true negative rates yield similar values (close to one). 
This result suggests that the proposed approach can lead to good prediction of asso-
ciations between genes and functions in Oryza sativa Japonica and, potentially, in other 
organisms.

For scenarios in which the classes of the hierarchy are under-represented, i.e., datasets 
are imbalanced, it is important to center the performance analysis on metrics that are 
not biased by the imbalanced dataset. Such metrics include the true positive rate (or the 
measure of recall), the true negative rate, and the F1-score. Other widely-used metrics, 
like the area under ROC curve and the measure of average precision, are misleading for 
evaluating the performance of a classifier under such conditions.

Second, the execution time of the proposed approach for the XGBoost classifier is, 
on average, 4 times better than that of the HBN model. The reduction in computational 
cost of the proposed top-down approach can be attributed to the fact that it predicts the 
probability of associations between a class and every node of the network at the same 
time. Also, the efficient computation of the DAG into a tree helps in making the pro-
posed approach relevant to analyze larger networks and hierarchies.

Finally, although the performance of the proposed approach is promising, it requires 
to gather sufficient information from node classes, which in some cases is incomplete 
or unavailable. For example, information about gene functions is limited for many genes 
and gene products. For some organisms there is no such information available at all. The 
shortage of information may lead to over-fitting or learning bias in the approach, and 
consequently to misleading conclusions. Including other networks as additional sources 
of information for the classification problem seems to be interesting for future work. 
Other networks can be added with the help of transfer learning techniques. For exam-
ple, by creating new features that aggregate the information extracted from other net-
works that can be integrated in the proposed approach as additional input to improve 
the prediction performance. Furthermore, other approaches such as semi-supervised 
and transductive learning can also be considered for future work to handle the amount 
of data required for training.
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