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Abstract:

7 Met.demonstrateshow to model the following common programing constructs in

terms of an applicative order language similar to LISP:
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.GO TO and Assignment,
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--visjcape Expressions
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Call by Name, Call by Need, and Call by Reference.
The models require only (possibly self-referent) lambda application.
conditionals, and (rarely) assignment. No complex data structures such as
stacks are used. The models are transparent, involving only local syntactic
transformations.

Some of these models, such as those for GO TO and assignment, are already well
known, and appear in the work of Landin, Reynolds, and others. The models for
escape expressions, fluid variables, and call by need with side effects are
new. This paper is partly tutorial in intent, gathering all the models
together for purposes of context /
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People who like this sore of tihing will find this ias the ort of thing they like.
-- Abraham iUncoln

Introduction

We catalogue a number of common programming constructs. For each
construct we examine "typical" usage in well-known programming languages, and
then capture the essence of the semantics of the construct in terms of a
common meta-language.

The lambda calculus (Note Alonzowins) is often used as such a meta-
language. Lambda calculus offers clean semantics, but it is clumsy because it
was designed to be a minimal language rather than a convenient one. All
lambda calculus "functions" must take exactly one "argument"; the only *data
type" is lambda expressions; and the only *primitive operation* is variable
substitution. While its utter simplicity makes lambda calculus ideal for
logicians, it is too primitive for use by programmers. The meta-language we
use is a programming language called SCHEME (Note Schemepaper) which is based
on lambda calculus.

SCHEME is a dialect of LISP. [McCarthy 62] It is an expression-
oriented, applicative order, interpreter-based language which allows one to
manipulate programs as data. It differs from most current dialects of LISP in
that it closes all lambda expressions in the environment of their definition
or declaration, rather than in the execution environment. (Note Closures)
This preserves the substitution semantics of lambda calculus, and has the
consequence that all variables are lexically scoped, as in ALGOL. [Naur 63]
Another difference is that SCHEME is implemented in such a way that tail-
recursions execute without net growth of the interpreter stack. (Note
Schemenote) We have chosen to use LISP syntax rather than, say, ALGOL syntax
because we want to treat programs as data for the purpose of describing
transformations on the code. LISP supplies names for the parts of an
executable expression and standard operators for constructing expressions and
extracting their components. The use of LISP syntax makes the structure of
such expressions manifest. We use ALGOL as an expository language, because it
is familiar to many people, but ALGOL is not sufficiently powerful to express
the necessary concepts; in particular, it does not allow functions to return
functions as values. We are thus forced to use a dialect of LISP in many
cases.

We will consider various complex programming language constructs and
show how to model them in terms of only a few simple ones. As far as possible
we will use only three control constructs from SCHEME: LAMBDA expressions, as
in LISP, which are Just functions with lexically scoped free variables;
LABELS, which allows declaration of mutually recursive procedures (Note
Labelsdef); and IF, a primitive conditional expression. For more complex
modelling we will introduce an assignment primitive (ASET). We will freely
assume the existence of other common primitives, such as arithmetic functions.

The constructs we will examine are divided into four broad classes.
The first is Simple loops; this contains simple recursions and iterations, and
an introduction to the notion of continuations. The second is Imper rel'e
ConAtrurs; this includes compound statements, GO TO, and simple variable
assignments. The third is Continuaeions, which encompasses the distinction
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between statements and expressions, escape operators (such as Landin's J-
operator [Landin 65] and Reynold's escap expression [Reynolds 72]), and fluid
(dynamically bound) variables. The fourth is Parnme ler Passing 4flpehanisms. such
as ALGOL call-by-name and FORTRAN call-by-location.

Some of the models presented here are already well-known, particularly
those for GO TO and assignment. (McCarthy 60] (Landin 65] [Reynolds 72]
Those for escape operators, fluid variables, and call-by-need with side
effects are new.

1. Simple Loops

By aimpl o lops we mean constructs which enable programs to execute the
same piece of code repeatedly in a controlled manner. Variables may be made
to take on different values during each repetition, and the number of
repetitions may depend on data given to the program.

1.1. Simple Recursion

One of the easiest ways to produce a looping control structure is to
use a recursive function, one which calls itself to perform a subcomputation.
For example, the familiar factorial function may be written recursively in
ALGOL:

integer procedure fact(n): value n: integer n-
fac :a if nO then I else n,)fact(n-l):

The invocation fare(n) computes the product of the integers from I to n using
the identity n!zn(n-l)! (n)O). If n is zero, 1 is returned; otherwise fare
calls itself recursively to compute (n-l)!, then multiplies the result by n
and returns it.

This same function may be written in SCHEME as follows:

(DEFINE FACT

(LA BDA (N) (IF . 0) 1
(N u (FACT (- N 1))))))

SCHEME does not require an assignment to the 'variable" fact to return a value
as ALGOL does. The IF primitive is the ALGOL if-then-else rendered in LISP
syntax. Note that the arithmetic primitives are prefix operators in SCHENE.

1Z. Iteration

There are many other ways to compute factorial. One important way is
through the use of iteration.

A common iterative construct is the DO loop. The most general form we
have seen in any programing language is the MacLISP DO (Moon 74]. It permits -
the simultaneous initialization of any number of control variables and the
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simultaneous stepping of these variables by arbitrary functions at each
iteration step. The loop is terminated by an arbitrary predicate, and an
arbitrary value may be returned. The DO loop may have a body, a series of
expressions executed for effect on each iteration. A version of the MacLISP
DO construct has been adopted in SCHEME.

The general form of a SCHEME DO is:

(DO ((<varl> (initl) <stepl))
((verZ) (init2> (stepZ)

((varn> (tnitf (stepn>))
(<prod> (value))

<optional body>)

The semantics of this are that the variables are bound and initialized to the
values of the <initi) expressions, which must all be evaluated in the
environment outside the DO; then the predicate (pred> is evaluated in the new
environment, and if TRUE, the (value> is evaluated and returned. Otherwise
the (optional body> is evaluated, then each of the steppers <stepi) is
evaluated in the current environment, all the variables made to have the
results as their values, the predicate evaluated again, and so on.

Using DO loops in both ALGOL and SCHEME, we may express FACT by means
of iteration.

( integer procedure fart(n) value n; integer x;
begin

integer m, ans;
ans :u 1;

for m :@ n step -i until 0 do ans :a means;
/arl :. ans;

end:

(DEFINE FACT
(LAMBDA (N)

(DO ((M N (- M 1))
(ANS 1 (0 M ANS)))

((a M 0) ANS))))

Note that the SCHEME DO loop in FACT has no body -- the stepping functions do
all the work. The ALGOL DO loop has an assignment in its body; because an
ALGOL DO loop can step only one variable, we need the assignment to step the
the variable *manually".

In reality the SCHEME DO construct is not a primitive; it is a macro
which expands into a function which performs the iteration by tail-recursion.
Consider the following definition of FACT in SCHEME. Although it appears to
be recursive, since it "calls itself", it is entirely equivalent to the DO
loop given above, for it Is the code that the DO macro expands into! It
captures the essence of our intuitive notion of iteration, because execution
of this program will not produce internal structures (e.g. stacks or variable
bindings) which increase in size with the number of iteration steps.

Ism
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(DEFINE FACT

(LAMDA (N)
(LABELS ((FACTI (LAMODA (M ANS)

(IF (e M 0) ANS

(FACTI (M N 1)
(* M ANS))))))

(FACTI N 1))))

From this we can infer a general way to express iterations in SCHEME in
a manner isomorphic to the MacLISP DO. The expansion of the general DO loop

(DO (((vail) (initl) (stepi))
((var2) (nit2) (step2))

((vOra) (tnit) (stepn)))
((pod) (value))

(body>)

Is this:

(LABELS ((DOLOOP
(LAMBDA (DUMMY <vail> (var2) ... <varn')

(IF (prod) (value)

(DOLOOP (body) (stepi) (stop2) ... (stop>)))))
(DOLOOP NIL <init> (nit?) ... (initn)))

The identifiers DOLOOP and DUMMY are chosen so as not to conflict with any
other identifiers in the program.

Note that, unlike most implementations of DO. there are no side effects
In the steppings of the iteration variables. DO loops are usually modelled
using assignment statements. For example:

for % :o a step 6 until r do <statemene';

can be modelled as follows: [Naur 63]

begin
r :8 ts;

L: if (r-ds)gn(b) ) 0 then go to Endloop

3r :t r, :

go to IA
Kndleop:

end;

Later we will see how such assignment statements can in general be
modelled without using side effects.
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2. Imperative Prograuming

Lambda calculus (and related languages, such as "pure LISPO) is often
used for modelling the applicative constructs of programming languages.
However, they are generally thought of as inappropriate for modelling
imperative constructs. In this section we show how imperative constructs may
be modelled by applicative SCHEME constructs.

2.1. Compound Statements

The simplest kind of imperative construct is the statement sequencer.
for example the compound statement in ALGOL:

begin
SI:

S2:
end

This construct has two interesting properties:
(1) It performs statement Sl before S2, and so may be used for sequencing.
(2) S is useful only for its side effects. (In ALGOL. S2 must also be a
statement, and so is also useful only for side effects, but other languages
have compound expressions containing a statement followed by an expression.)
The ALGOL compound statement may actually contain any number of statements,
but such statements can be expressed as a series'of nested two-statement
compounds. That is:

begin
S1
S2;

Sn;
end

Is equivalent to:

I

j,, I I . .. .. . .I -' . . .. ll~l- T- *',4d -'h'P, b4 lz . . . ..



Steele and Sussman March 10, 1976 6 LAMBDA: The Ultimate Imperative

begin
SI;
begin

$21
begin

begin
Sn- I:
Sn;

end;

end;
end:

end

It is not immediately apparent that this sequencing can be expressed in a
purely applicative language. We can, however, take advantage of the implicit
sequencing of applicative order evaluation. Thus, for example, we may write a
two-statement sequence as follows:

((LAMBDA (OUPY) SZ) Si)

where DUMY is an identifier not used in S2. From this it is manifest that
the value of Sl is ignored, and so is useful only for side effects. (Note
that we did not claim that Si is expressed in a purely applicative language,
but only that the sequencing can be so expressed.) From now on we will use the
form (BLOCK 51 S2) as an abbreviation for this expression, and (BLOCK 51 S2
... Sn-I Sn) as an abbreviation for

(BLOCK S1 (BLOCK S2 (BLOCK ... (BLOCK Sn-1 Sn)...)))

2.2. The GO TO Statement

A more general imperative structure is the compound statement with
labels and GO TOs. Consider the following code fragment due to Jacopint.
taken from Knuth: [Knuth 74]

begin
LI: if III then go to L2

Si.
if 112 then go to IA
S2:
go to LI;

1.2: 53
end

It is perhaps surprising that this piece of code can be syntactically
transformed Into a purely applicative style. For example, In SCHEME we could

:..



Steele and Suasman March 10, 1976 7 LAMBDA: The Ultimate Imperative

write:

(LABELS ((Li (LAMBDA ()
(IF S1 (L2)

(BLOCK S1

(IF 62 (1Z)

(BLOCK S2 (LI)))))))
(L2 (LAMBDA () S3)))

(Ll))

As with the DO loop, this transformation depends critically on SCHEME's
treatment of tail-recursion and on lexical scoping of variables. The labels
are names of functions of no arguments. In order to *go to" the labeled code,
we merely call the function named by that label.

2.3. Simple Assignment

Of course, all this sequencing of statements is useless unless the
statements have side effects. An important side effect is assignment. For
example, one often uses assignment to place intermediate results in a named
location (i.e. a variable) so that they may be used more than once later
without recomputing them:

begin
real a2, .iqridisc;
a2 :- 2*a:
sqrldiw :- sqrt(bt2 - 4*now
root I :a (- 4 , sqrldiiw) a a2
rooU2 :a ( - sqredisc) a .
print(root 1);,
print(rooi2)
prin(root I - rooi2),

end

It is well known that such naming of intermediate results may be accomplished
by calling a function and binding the formal parameter variables to the
results:

((LAMBDA (A2 SQRTOISC)
((LAMBDA (ROOTI ROOT2)

(BLOCK (PRINT ROOTI)
(PRINT ROOTZ)

(PRINT (+ ROOTI ROOT?))))

(/ (5 ( B) SORTOISC) AZ)

(I (- (- B) SQRTDISC) A2)))
(" 2 A)
(SQQ T (- (9 B 2) (4 4 A C))))

t This technique can be extended to handle all simple variable assignments which
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appear as statements in blocks, even if trbitrary GO TO statements also appear
In such blocks. (Note Mccarthywins)

For example, here is a program which uses GO TO statements in the form
presented before; it determines the parity 'of a non-negative integer by
counting it down until it reaches zero.

begin
LI: if a a 0 then begin parity :x 0; go to I.& end:

a :a a - 1;
If a a 0 then begin parity :a I: go to .2; end;
a := a - 1;
go to 1,I;

1,2: prin(parity):.
end

This can be expressed in SCHEME:

(LABELS ((LI (LAMBDA (A PARITY)
(IF (- A 0) (LZ A 0)

(L3 (- A 1) PARITY))))

(L3 (LAMBDA (A PARITY)

(IF (. A 0) (LZ A 1)

(LI (- A 1) PARITY))))

(LZ (LAMBDA (A PARITY)

(PRINT PARITY))))

(LI A PARITY))

The trick is to pass the set of variables which may be altered as arguments to
the label functions. (Note Flowgraph) It may be necessary to introduce new
labels (such as 13) so that an assignment may be transformed into the binding
for a function call. At worst, one may need as many labels as there are
statements (not counting the eliminated assignment and GO TO statements).

2.4. Compound Expressions

At this point we are almost in a position to model the most general
form of compound statement. In LISP, this is called the "PROG feature". In
addition to statement sequencing and GO TO statements, one can return a value
from a PROG by using the RETURN statement.

Let us first consider the simplest compound statement, which in SCHEME
we call BLOCK. Recall that

(BLOCK S1 S2) is defined to be ((LAMBDA (DUMMY) S2) SI)

Notice that this not only performs Si before SZ, but also returns the value of
S2. Furthermore, we defined (BLOCK Si S2 ... Sn) so that it returns the value
of Sn. Thus BLOCK may be used as a compound expression, and models a LISP
PROGN, which Is a PROG with no GO TO statements and an implicit RETURN of the
last Ostatement* (really an expression).

& --.------ -- _________
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Most LISP compilers compile DO expressions by macro-expansion. We have
already seen one way to do this in SCHEME using only variable binding. A more
common technique is to expand the DO into a PROG, using variable assignments
Instead of bindings. Thus the iterative factorial program:

(DEFINE FACT

(LAMBDA (N)

(DO ((M N (- M 1))
(ANS 1 (' ANS)))

((-. 0) ANS))))

would expand into:

(DEFINE FACT

(LAMBDA (N)

(PROG (M ANS)

(SSETQ M N
ANS 1)

LP (IF (a M 0) (RETURN ANS))
(SSETQ ( M 1)

ANS (' NANS))

(60 LP))))

where SSETQ is a simultaneous multiple assignment operator. (SSETQ is not a
SCHEME (or LISP) primitive. It can be defined in terms of a single assignment
operator, but we are more interested here in RETURN than in simultaneous
assignment. The SSETQ's will all be removed anyway and modelled by lambda
binding.) We can apply the same technique we used before to eliminate GO TO
statements and assignments from compound statements:

(DEFINE FACT
(LAMBDA (N)

(LABELS ((LI (LAMBDA (M ANS)
(LP N 1)))

(LP (LAMBDA (M ANS)

(IF (M N 0) (RETURN ANS)

2 M ANS))))
(1W (LAMBDA (M Axt)

(LP (- M 1) (' M ANS)))))
(LI NIL NIL))))

We still haven't done anything about RETURN. Let's see...

:z> the value of (FACT 0) is the value of (LI NIL NIL)
z=> which Is the value of (LP 0 1)
am> which is the value of (IF (a 0 0) (RETURN 1) (LZ 0 ))
=z> which is the value of (RETURN 1) Notice that if RETURN were the identity

function (LAMBDA (X) X), we would get the right answer. This is In fact a

general truth: if we Just replace a call to RETURN with Its argument, then

our old transformation on compound statements extends to general compound

expressions, i.e. PROG.
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3. Continuations

Up to now we have thought of SCHEME's LAMBDA expressions as functions.
and of a combination such as (G (F X Y)) as meaning "apply the function F to
the values of X and Y, and return a value so that the function G can be
applied and return a value ... " But notice that we have seldom used LAMBDA
expressions as functions. Rather, we have used them as control structures and
environment modifiers. For example, consider the expression:

(BLOCK (PRINT 3) (PRINT 4))

This is defined to be an abbreviation for:

((LAMBDA (DUMMY) (PRINT 4)) (PRINT 3))

We do not care about the value of this BLOCK expression; it follows that we
do not care about the value of the (LAMBDA (DUMMY) ... ). We are not using
LAMBDA as a function at all.

It is possible to write useful programs in terms of LAMBDA expressions
in which we never care about the value of any lambda expression. We have
already demonstrated how one could represent any "FORTRAN" program in these
terms7 all one needs is PROG (with GO and SETQ), and PRINT to get the answers
out. The ultimate generalization of this imperative programming style is
continuation-passing. (Note Churchwins)

3.1. Continuation-Passing Recursion

Consider thp following alternative definition of FACT. It has an extra
argument, the continuation, which is a function to call with the answer, when
we have it, rather than return a value.

procedure fnrt(n, ): value it, r:
integer i: procedure c(integer value):
if i10 ten r() else

beg in
procedure temp(a) value n: integer a;

fnaC(n-l, I' Flp)

end;

(DEFINE FACT

(LAMBDA (N C)
(IF (. N 0) (C 1)

(FACT (- N 1)

(LAMBDA (A) (C (' N A)))))))

It is fairly clumsy to use this version of FACT in ALGOL; it is necessary to
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do something like this:

beg i n
integer vns:
procedure temp(r), value Y; integer r;

a n. :m x;
far$(3, temp):
comlllent Now the variahle "ans" haA 6:

end:

Procedure fart does not return a value, nor does letnp; we must use a side
effect to get the answer out.

FACT is somewhat easier to use in SCHEME. We can call it like an
ordinary function in SCHEME if we supply an identity function as the second
argument. For example, (FACT 3 (LAMBDA (X) X)) returns 6. Alternatively, we
could write (FACT 3 (LAMBDA (X) (PRINT X))); we do not care about the value
of this, but about what gets printed. A third way to use the value is to
write

(FACT 3 (LAMBDA (X) (SORT X)))

instead of

(SORT (FACT 3 (LAMBDA (X) X)))

In either of these cases we care about the value of the continuation given to
FACT. Thus we care about the value of FACT if and only if we care about the
value of its continuation!

We can redefine other functions to take continuations in the same way.
For example, suppose we had arithmetic primitives which took continuations; to
prevent confusion, call the version of 0+0 which takes a continuation 0++".
etc. Instead of writing

(- ( B 2) (1 4 A C))

we can write

(LAMBDA (X)
(** 4 A C

(LAMBDA (Y)
(-- X Y (the-continuation>))))))

where <the-continuation> is the continuation for the entire expression.
This is an obscure way to write an algebraic expression, and we would

not advise writing code this way in general, but continuation-passing brings
out certain important features of the computation:
[1] The operations to be performed appear in the order in which they are
performed. In fact, they must be performed in this order. Continuation-
passing removes the need for the rule about left-to-right argument evaluation.
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(Note Evalorder)
[2] In the usual applicative expression there are two implicit temporary
values: those of (t B 2) and (* 4 A C). The first of these values must be
preserved over the computation of the second, whereas the second is used as
soon as it is produced. These facts are manifest in the appearance and use of
the variable X and Y in the continuation-passing version.

In short, the continuation-passing version specifies exactly and
explicitly what steps are necessary to compute the value of the expression.
One can think of conventional functional application for value as being in
abbreviation for the more explicit continuation-passing style. Alternatively,
one can think of the interpreter as supplying to each function an implicit
default continuation of one argument. This continuation will receive the
value of the function as its argument, and then carry on the computation. In
an interpreter this implicit continuation is represented by the control stack
mechanism for function returns.

Now consider what computational steps are implied by:

(LAMBDA (A B C ...) (F X Y Z ...))

When we "apply" the LAMBDA expression we have some values to apply it to; we
let the names A, B, C ... refer to these values. We then determine the values
of X, Y, Z ... and pass these values (along with "the buck", i.e. control!) to
the lambda expression F (F is either a lambda expression or a name for one).
Passing control to F is an unconditional transfer. (Note Jrsthack) (Note
Hewitthack)

Note that we want values from X, Y, Z, ... If these are simple
expressions, such as variables, constants, or LAMBDA expressions, the
evaluation process is trivial, in that no temporary storage is required. In
pure continuation-passing style, all evaluations are trivial: no combination
is nested within another, and therefore no *hidden temporaries" are required.
But if X is a combination, say (G P Q), then we want to think of G as a
function, because we want a value from it, and we will need an implicit
temporary place to keep the result while evaluating Y and Z. (An interpreter
usually keeps these temporary places in the control stack! ) On the other hand,
we do not necessarily need a value from F. This is what we mean by tail-
recursion: F is called tail-recursively, whereas G is not. A better name for
tail-recursion would be "tail-transfer", since no real recursion is implied.
This is why we have made such a fuss about tail-recursion: it can be used for
transfer of control without making any commitment about whether the expression
expected to return a value. Thus it can be used to model statement-like
control structures. Put another way, tail-recursion does not require a
control stack as nested recursion does. In our models of iteration and
imperative style all the LAMBDA expressions used for control (to simulate GO
statements, for example) are called in tail-recursive fashion.

AA I
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3.2. Escape Expressions

Reynolds [Reynolds 72] defines the construction

escape r in r

to evaluate the expression r in an environment such that the variable r is
bound to an escape function. If the escape function is never applied, then
the value of the escape expression is the value of r. If the escape function
is applied to an argument a, however, then evaluation of r is aborted and the
escape expression returns a. (Note J-operator) (Reynolds points out that
this definition is not quite accurate, since the escape function may be called
even after the escape expression has returned a value; if this happens, it
"returns again"'!)

As an example of the use of an escape expression, consider this
procedure to compute the harmonic mean of an array of numbers. If any of the
numbers is zero, we want the answer to be zero. We have a function harnsm
which will sum the reciprocals of numbers in an array, or call an escape
function with zero if any of the numbers is zero. (The implementation shown
here is awkward because ALGOL requires that a function return its value by
assignment.)

begin real procedute mrmsum(a, n, esrfuu.

real array a; integer n; real procedure erfuu(real);
beg i n

real sum;
sum :, 0
for i :a 0 until n-I do

begin
if aji].O then esefun(0)
sum :- sum * lla(ij

end:
harmsun :- sum:

end;
real array b[0:99]:
print(escape r in l00/Aarmsum(b, 100. r));

end

If harmsum exits normally, the number of elements is divided by the sum and
printed. Otherwise. zero is returned from the escape expression and printed
without the division ever occurring.

This program can be written in SCHEME using the built-in escape
operator CATCH:

I

.€-" .
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(LABELS ((HARMSUM

(LAMBDA (A N ESCFUN)

(LABELS ((LOOP
(LAMBDA (I SUM)

(IF (- I N) SUM
(IF (. (A 1) 0) (ESCFUN 0)

(LOOP ( 1 1)

(+ SUM (/ I (A I)))))))

(LOOP 0 0)))))

(BLOCK (ARRAY B 100)

(PRINT (CATCH X (/ 100 (HARMSUM B 100 X))))))

This actually works, but elucidates very little about the nature of ESCAPE.
We can eliminate the use of CATCH by using continuation-passing. Let us do

for HARMSUM what we did earlier for FACT. Let it take an extra argument C.

which is called as a function on the result.

(LABELS ((HARMSUM

(LAMIBDA (A N ESCFUN C)

(LABELS ((LOOP

(LAMBDA (I SUM)

(IF (. I N) (C SUM)
(IF (- (A 1) 0) (ESCFUN 0)

(LOOP (+ 1 1)

(4 SUM (/ I (A I)))))))))
(LOOP 0 0)))))

(BLOCK (ARRAY 9 100)

(LABELS ((AFTER-THE-CATCH

(LAMBDA (Z) (PRINT Z))))

(HARMSUM 8

100
AFTER-THE-CATCH

(LAMBDA (Y) (AFTER-THE-CATCH (/ 100 Y)))))))

Notice that if we use ESCFUN. then C does not get called. In this way the
division is avoided. This example shows how ESCFUN may be considered to be an
"alternate continuation".

3.3. Dynamic Variable Scoping

In this section we will consider tile problem of dynamically scoped, or

"fluid", variables. These do not exist in ALGOL, but are typical of many LISP
implementations, ECL, and APL. We will see that fluid variables may be
modelled in more than one way, and that one of these is closely related to
continuation-passing.

I

-- ' ,-*
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3.3.1. Free (Global) Variables

Consider the following program to compute square roots:

(DEFINE SORT
(LAMBDA (X EPSILON)

(PROG (ANS)

(SETQ ANS 1.0)

A (COND ((< (ABS (-S X (0$ ANS ANS))) EPSILON)

(RETURN ANS)))

(SETO ANS (//S (+S X (//S X ANS)) 2.0))
(Go A))))

This function takes two arguments: the radicand and the numerical tolerantce
for the approximation. Now suppose we want to write a program QUAD to compute
solutions to a quadratic equation.

(DEFINE QUAD

(LAMBDA (A S C)

((LAMBDA (A2 SQRTOISC)

(LIST (/ (+ (8 B) SORTDISC) AZ)
(/ (- (- B) SORTDISC) AZ)))

(2 2 A)
(SORT (- (9 B 2) (0 4 A C)) <tolerance>))))

It is not clear what to write for (tolerance>. One alternative is to pick
some tolerance for use by QUAD and write it as a constant in the code. This
Is undesirable because it makes QUAD inflexible and hard to change. Another
Is to make QUAD take an extra argument and pass it to SQRT:

(DEFINE QUAD
(LAMBDA (A 5 C EPSILON)

(SORT ... EPSILON) ...

This is undesirable because EPSILON is not really part of the problem QUAD Is
supposed to solve, and we don't want the user to have to provide it.
Furthermore, if QUAD were built into some larger function, and that into
another, all these functions would have to pass EPSILON down as an extra
argument. A third possibility would be to pass the SQRT function as an
argument to QUAD (don't laugh!), the theory being to bind EPSILON at the
appropriate level like this:

(QUAD 3 4 S (LAMBDA (X) (SORT X (tolerance))))

where we define QUAD as:

(DEFINE QUAD

(LAMBDA (A B C SORT) ...
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This is as bad as the second case. The user shnuld no more have to provide a
SQRT function than a tolerance for a SQRT function.

We might also consider providing several SQRT functions with severdi
built-in tolerances (versions for single, double, and triple precision...).
But then we would have to write several versions of QUAD, and several versions
of anything which called QUAD.

Now suppose that not only SQRT but all the arithmetic functions were to
take tolerances as arguments (to specify single or double precision, say). It
would then be very inconvenient to write QUAD at all using any of the above
approaches. The algorithm for QUAD is independent of tolerance
considerations. What we would like is a way to say, just before running QUAD
(or the larger system which calls QUAD), "I want the tolerance to be r from
now on until I say otherwise." In some ways this is the approach taken by many
compilers, such as those for FORTRAN. We could write QUAD in FORTRAN, and
then tell the compiler the tolerance (precision) we want Just before
compilation. The tolerance would be a freeprameaer in QUAD (and in SQRT.
which would take only one argument), a parameter which is not bound anywhere.
Thus we would write SQRT like this:

(DEFINE SORT

(LAMBDA (X)
(PROG (AMS)

(SETO ANS 1.0)

A (COND ((< (ADS (-S X ('S ANS ANS))) EPSILON)
(RETURN ANS)))

(SETO ANS (//% ( S X (//S X ANS)) 2.0))

(GO A))))

The variable EPSILON is free in SQRT. What does this mean in a lexically
scoped language such as SCHEME? ALGOL provides no clues; such a free variable
is not allowed. We will say that free variables in SCHEME are "bound at the
top level", i.e. that around all programs is an implicit global environment in
which all variables are bound; free variables refer to these global bindings.
We can modify these global bindings by using assignments. Thus we might say
(ASET 'EPSILON I.OE-5), and then use QUAD for a while, and SQRT would see
EPSILON as being 1.OE-5. Subsequently we might set EPSILON to some other
value, and use QUAD some more with the new value in effect. Although perhaps
not formally aesthetic, this solution offers a great deal in convenience.

3.3.2. Dynamic Binding

Suppose now we want to write a function FOO which uses SQRT in such a
way that for FOO to compute a single-precision result it must calculate square
roots in double precision. We could write:

I-t
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(DEFINE FO0

(LAMBDA ...

((LAMBDA (OLDEPSILON)

(BLOCK (ASET -EPSILON (' EPSILON EPSILON))

((LAMBDA (ANSWER)

(BLOCK (ASET -EPSILON OLDEPSILON)

ANSWER))
... (SORT ... ) . ) )

EPSILON)))

That is, we save the current value of EPSILON, square it to double the
precision, calculate the answer using SQRT, and then set EPSILON back to its
original value. This will work, but is very clumsy. The setting and
resetting of EPSILON reminds us of variable binding. What we would like to do
is to bind EPSILON across the usage of SQRT within FO0.

We could try writing:

(DEFINE FO0

(LAMBDA ...

((LAMBDA (EPSILON)
... (SORT ...) . )

( EPSILON EPSILON))))

but this will not work. Because SCHEME is a lexically scoped language, SQRT
must always refer to the "top level" binding of EPSILON; it is not affected
by the binding of EPSILON within FO0. In other dialects of LISP this would
work; this is usually accomplished at the expense of lexical scoping. Thus,
while FO0 would work "correctly" in such LISP systems, some of our other
examples would not. The standard view is that in such dialects functions are
closed in the activation environment rather than in the definition
environment, and so free variables take on values determined by the caller's
environment. Fluid variables are thus considered to be a consequence of the
function closing discipline. jNote Funoffun) As a result, some languages
offer just lexical scoping (ALGOL and SCHEME) while others offer just dynamic
scoping (most LISPs, ELI, and APL).

Some LISP dialects allow a function to be closed in either environment,
thus allowing that function's free variables to be either lexical or fluid.
using the "funarg device". But suppose we wanted to have two free variables
in a function, one lexically scoped and the other fluidly scoped? Consider
this example:

(DEFINE GENERATE-SORT-Of -GIVEN-EXTRA-TOLERANCE

(LAMBDA (FACTOR)

(LAMBDA (XI
((LAMBDA (EPSILON) (SORT X))

(a EPSILON FACTOR))))) I

We want GENERATE-SQRT-OF-GIVEN-EXTRA-TOLERANCE to return a function which will
always compute a square root to a tolerance which is more precise than the

t current EPSILON by the factor specified. This generated function is to accept

=di == . . . .. .... .... . ... . .. .. . ... ... .. .... . .. ...... ..... . . .€e . l A . . .
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I

an argument X and compute SQRT in an environment in which EPSILON is
dynamically bound to (* EPSILON FACTOR). Here we have a dilemma: in which
environment should the (LAMBDA (X) ...) be cloted? If it is closed in the
definition environment, then in the expression (* EPSILON FACTOR) the variable
EPSILON will refer to the top level value and not to the dynamic binding. If
it is closed in the activation environment, then the variable FACTOR will
refer to its dynamic binding and not to the lexical binding within GENERATE-
SQRT-OF-GIVEN-EXTRA-TOLERANCE.

Some LISP dialects provide hybrid scoping, in which lexically bound
variables are lexically scoped, and lexically free variables are "dynamically*
scoped as in FOO. This is easy for a compiler to do correctly, but fairly
difficult to do in an interpreter. Furthermore, it will not generally solve
problems of the GENERATE-SQRT-OF-GIVEN-EXTRA-TOLERANCE type.

We want to treat fluid variables as interesting objects in their own
right, rather than as consequences of various function closing and variable
lookup disciplines. Let us distinguish fluid variables from lexically scoped
variables by prefixing them with a colon. Thus :EPSILON is a reference to the
fluid variable EPSILON. We can now write GENERATE-SQRT-OF-GIVEN-EXTRA-
TOLERANCE as follows:

(DEFINE GENERATE-SORT-OF-GIVN-EXTRA-TOLERANCE

(LAMBDA (FACTOR)

(LAMBDA (X)

((LAMBDA (:APSILON) (SORT X))

(0 EPSILON FACTOR)))))

The (LAMBDA (X) ...) is closed in the definition environment, and so FACTOR is
correctly scoped, while the : in front of EPSILON indicates that it is
dynamically scoped rather than referring to the top level binding. (For now
we will ignore the problem of exactly what (LAMBDA (:EPSILON) ...) means.)

We want the semantics of fluid variables to be "the value of a fluid
variable is determined by the caller's environment; or if not there, by his
caller's environment, and so on". How can we model these semantics in a
purely lexically scoped language such as SCHEME? One way for the caller to
specify the values of variables is to pass them down as arguments to the
called function. This leads us back around to our original definition of
SQRT, in which EPSILON is passed as an argument.

Another way is to provide a way to ask the caller what the value of a
fluid variable is. Suppose we let every function take an extra argument FENV
which represents the dynamic environment for fluid variables. Then we could
replace occurrences of :EPSILON by (LOOKUP 'EPSILON FENV), where LOOKUP is
defined as:

(DEFINE LOOKUP

(LAIBDA (VAR FENV)

(IF (NULL FENV)

(TOP-LEVEL-VALUE VAR)

(IF (EQ VAN (CAAR FENV))
(COAl FENV)
(LOOKUP VAR (CDR FENV))))))

. : , I . . . . . ........ ................. ..... ..... ..... ... . .. . .. ... ... . ...
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The fluid environment FENV is structured here as a standard LISP a-list: a
list of association pairs, each of which is a variable name and a value consed
together.

In order to make this work we must arrange for every caller to pass its
FENV to all the functions it calls, so that they may access fluid variables.
Thus we would have to write:

(DEFINE GENERATE-SORT-OF-GIVEN-EXTRA-TOLERANCE

(LAMBDA (FACTOR FENV)

(LAMBDA (X FENV)

((LAMBDA (:EPSILON) (SORT X FENV))

(4 (LOOKUP -EPSILON FENV) FACTOR FENV)))))

There is still the problem of modelling (LAMBDA (:EPSILON) ...); thus far all
we have done is pass the same FEW from caller to caller. But all that is
needed to bind a fluid variable is to add a binding to the a-list:

(DEFINE GENERATE-SORT-OF-GIVEN-EXTRA-TOLERANCE

(LAMBDA (FACTOR FENV)

(LAMBDA (X FENV)
(SORT X (CONS (CONS 'EPSILON

(' (LOOKUP 'EPSILON FENV)
F AC TOR

FENV))
FENV)))))

What we have done, in effect, is to bundle all the variables that would have
to be passed down into a single data structure which is passed down.

Now functions such as * (or, for that matter, GENERATE-SQRT-OF-GIVEN-
EXTRA-TOLERANCE itself) which do not use fluid variables need not have FENV
passed to them. But if we define all functions to receive FENV as an extra
argument, then in practice we may uniformly suppress this fact In our
notation! (This is in fact a good criterion by which to Judge a language of
any kind: it should allow one to suppress that which carries little
information.) This demonstrates how to implement fluid variable primitives In
a lexically scoped language without the problems of FOO.

Recall that the interpreter already supplies an implicit extra argument
to every function, the default continuation. We stated earlier that this
Implicit continuation may be identified with the interpreter's control stack;
just now we saw that fluid variables are scoped according to control depth
rather than lexical depth. (Note Stackfluids) We can combine these two
mechanisms.

We have implemented FENV as a data structure and used a separate
function, LOOKUP, access it. An alternative would he to let FENV be a lookup
function which accepts an identifier and returns its fluid binding. Instead
of (LOOKUP 'X FEW), we write (FEW IX). In order to create new bindings, we
create a new function which "knows about" the new bindings, and passes the
buck if the given variable is not among them. For example:

I
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(DEFINE GENERATE-SQRT-OF -GIVEN-EXTRA-TOLERANCE

(LAMBDA (FACTOR FENV)

(LAMBDA (X FENV)

(SORT X ((LAMBDA (EPSILON-VALUE)

(LAMBDA (VAR)

(IF (EQ VAR 'EPSILON)

EPSILON-VALUE
(FENV VAR))))

(* (FENV 'EPSILON)

FACTOR

FENV)))))))

The second argument to SQRT is the (LAMBDA (VAR) ... ), closed in an
environment in which EPSILON-VALUE has the fluid binding for EPSILON,
calculated Just before SQRT is called, and in which FENV has the old fluid
environment.

Now that both the continuations and fluid environments are functions,
we may combine them into a single function if we want. The function can take
two arguments. The first is RETURN to do the continuation action, or LOOKUP
to look up a variables. The second is the return value or the variable to
look up. Another way would be to let the continuation take a single argument
with the data packaged up: (LOOKUP X) or (RETURN X). We could then extend
this set of messages to the continuation to include (ASSIGN X Y), to assign a
value to a fluid variable, or (BAXTRACE (output-file>) to print a LISP 1.5 or
MacLISP style backtrace. (Note Plasmafluids)

it
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4

4. Parameter Passing Mechanisms

Parameter passing mechanisms, such as "call-by-name", are not usually
considered to be control structures. Such mechanisms may be used to get the
effects of complex control structures such as coroutines. We have seen that
fluid variables are closely related to control structures. It will be
instructive to model these other parameter mechanisms in SCHEME as we have
modelled the more conventional control structures.

4.1. Call-By-Name

Consider this example (Note Consgenerators) of a recursive definition
of an infinite sequence:

list procedure terms(n) value n; integer no
terms := rons(lI(n?2). torn,,(n+i)

Here we have assumed the existence of a list data type in ALGOL and made the
appropriate extensions. The function eons takes two arguments and returns a
data structure such that the function car, when applied to the value of cotoA,
returns the first argument given to eons; similarly the function rdr extracts
the second argument given to eons. The function terms is intended to produce
an infinite list whose elements are elements of the sequence

1 1 1 1
-p p *p

1 4 9 n

beginning with the nth term. Thus

eer(cdr(rdr(trrm(3)))) - 1/25

If eons takes its arguments by value, then this function will diversje.
If it takes its arguments by name, then it need not diverge. It is possible
to implement ro's in such a way that its arguments are not evaluated until car
or rdr is applied to the data structure which is its value. (Note Funargcons)
To explain this requires the use of functions which return functions as
values. Here ALGOL fails us, and it will be necessary to use only SCHEME for
explanations. For the moment, let us pretend that SCHEME has call-by-name
parameters, indicated by writing each parameter, x, called by name, as
(NAE X). Later we will see how to simulate call-by-name in an applicative
order language.

(DEFINE cuw-cONS
(LAMBDA ((NAME X) (NAME Y))

(LAMBDA (A)

(IF A X Y))))

INotice that CBN-CONS returns a value which is a function. The components of
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the data structure represented by CBN-CONS applied to two arguments are the
retained bindings of the variables X and Y. That is, the re*'rned function
has associated with it an environment in which X and Y are stiil bound to the
Othunks" [Ingerman 61] for the call-by-name arguments even though CBN-CONS has
returned. The reason why the arguments to CBN-CONS are not yet evaluated is
that CBN-CONS never referenced them. If, however, we were to apply the
returned function, it would then reference X or Y (as necessary) and return
the value. Thus we may express car and rdr in this manner:

(DEFINE CBN-CAR (LAMBDA (5) (S T)))

(DEFINE CBN-COR (LAMBDA (5) (S NIL)))

where T and NIL are the true and false Boolean constants.
In SCHEME the terms function is written:

(DEFINE TERMS
(LAMBDA (N)

(CBN-CONS (/ I (f N 2))
(TERMS (+ N 1)))))

Because SCHEME really uses applicative order (call-by-value), this function
always diverges, but we can simulate call-by-name by use of functional
arguments. (Note Landinknewthis)

(DEFINE TERMS
(LAMBDA (N)

(Cb%-CONS J%.AMSDA J) (/ I (t N 2)))
(LAMBDA () (TERMS (+ N 1))))))

(DEFINE CBS-CONS
(LAMBDA (X Y)

(LAMBDA (A)
(IF A (X) (Y)))))

The trick here is to explicitly pass the "thunk" that an ALGOL compiler
implicitly creates to handle a call-by-name parameter. The value is then
accessed by calling the thunk. Since SCHEME closes the lambda expression in
the lexical environment, the thunk will be evaluated in the lexical
environment as it should be.

This implementation of call-by-name is incomplete. We have not yet
considered the problem of assignment of a call-by-name parameter. For now we
consider only access mechanisms; later we will deal with assignment.

4.2. Call-By-Need

One problem with using call-by-name is that it is inherently
inefficient because several references to the same variable will require
several re-evaluations of the thunk.
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beg iit
real procedure cuhe(r); real r;

cube' : xtxtr;
print(ru he{sqrt (5))):

end

In this code the square root of 5 will be calculated three times, since ci,,e
takes its parameter by name and references it three times. The "call-by-need"
mechanism (Note Callbyneed) overcomes this difficulty. A call-by-need
parameter is passed as if it were call-by-name; but when the thunk is first
referenced, after computing the value it replaces itself with the value, and
all subsequent references happen as if it were call-by-value. We may express
this in SCHEME by:

(LABELS ((CUBE (LAMBDA (X) (A (X) (X) (X)))))
(PRINT (CUBE (NEED-THUNK (LAMBDA () (SORT 5))))))

where NEED-THUNK constructs a call-by-need thunk given a primitive thunk:

(DEFINE NEED-THUNK

(LAMBDA (VALUE)

((LAMBDA (FLAG)

(LAMBDA ()
(BLOCK (IF FLAG

(BLOCK (ASET 'VALUE (VALUE))

(ASET 'FLAG NIL)))

VALUE)))
T)))

The function ASET is the primitive SCHEME assignment statement. It produces a
true side effect on the value of the variable (as opposed to the assignments
we have expressed in terms of binding). The use of ASET reflects the fact
that the call-by-need thunk has state.

As before, the value of the parameter is referenced by calling it as a
function. The thunk contains two state variables VALUE and FLAG. If FLAG is
T, then the thunk has never been referenced, and VALUE contains the areal"

(call-by-name style) thunk. When the parameter is first referenced, the real
thunk is evaluated and the result stored in VALUE (thereby throwing away the
real thunk, which is no longer needed), and FLAG is set to NIL.

4.3. Fast Call-By-Name

Call-by-need does not fully capture the essence of call-by-name. If a
side effect occurs between two references of a parameter, the parameter will
yield the same value if passed call-by-need, but may yield different values if
passed call-by-name. (Note Jensensdevlce) For example:

moo"
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begin
real dx:
real prncedure inlv'grl(Iower, upper, exp, tar)

value lower, uppee

real lower, upper, exp. tal

begin
real sum:
sum :, 0:
for var :- lower 4 (dx/2) step dx until upper do

sum :a sum * exp:
integral :a sum;

end:
dx :a .001:
print(4 * integral(O. 1. 1/(l r12), ));

end

prints an approximation to pi by calculating

4 f dx

which is four times the arctangent of 1. It depends on the call-by-name
parameter er, changing value when the variable ,ar is changed. This example
in f-.1t brings out two problems. First, call-by-need does not allow the value
of a parameter to change when a variable used in the argument expression is
modified. Second, the example presses the issue of assignment to call-by-name
parameters.

The first problem can be fixed by modifying the call-by-need mechanism
to notice side effects and re-evaluate the parameter if its value might have
changed. Instead of NEED-rHUNK, we use the following function:

(DEFINE MEMO-THUNK

(LAMBDA (THUNK)

((LAMBDA (VALUE SAVED-COUNT)

(LAMBDA ()
(IF (- SAVED-COUNT (GLOBAL-SIDE-EFFECT-COUNT))

VALUE

(BLOCK (ASET 'SAVED-COUNT

(GLOBAL-SIOE-EFFECT-COUNT))
(ASET VALUE (THUNK))

VALUE)))

NIL

-1)))

The variable VALUE is used as a cache for the value of the parameter; the
counts are used to determine whether the cache data is valid. (Note
Pluddlevcells) The function GLOBAL-SIDE-EFFECT-COUNT returns a count of all the
side effects that have ever occurred which might affect the value of a thunk.

t'
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The function ASET is not intended to model the user's assignment statement.
It is a SCHEME function we use to model side effects. It is important that
the ASETs in MEMO-THUNK do not modify the global side effect count. The user
level assignment statement may be modelled by the ASSIGN functions:

(DEFINE ASSIGN-CALL-BY-VALUE

(LAMBDA (VAR VAL)

(BLOCK (INCREMENT-GLOBAL-SIDE-EFFECT-COUNT)

(ASET VAR VAL))))

(Note Envproblem) ASSIGN-CALL-BY-VALUE is used for assignment to call-by-value
parameters and locally declared variables. Assignment to call-by-name
variables is discussed below.

4.4. Assignment by Reference

The second problem, assignment to call-by-name parameters, may be seen
in this example:

beg in
procedure ,,#3(var): integer ,ar;

tnr :z 3;
in(eger qucr'
set.3(quit Y);
priptn(quir):

end

ALGOL defines assignment to a call-by-name variable to mean assignment to the
object supplied as the argument, in this case quu.. We would expect the
example to print the value 3. The problem is how to cause the assignment to
,ar to become an assignment to quux; somehow "assignment access" to quur must
be made available to the procedure t.~'3.

This is solved by some ALGOL compilers through the use of two thunks.
one for access and one for assignment. We can model this In SCHEME. In order
to access a parameter, we write ((CDR X)) instead of (X). In order to set the
parameter to a new value A. we write ((CAR X) A). Thus we may define:

(DEFINE ASSIGN-CALL-BY-NAME

(LAMBDA (VAR VAL) ((CAR VAR) VAL)))

For arguments which are not variables (i.e. they cannot be assigned
to), the argument (say jqrt(5)) is modelled as follows:

(CONS (LAMBDA (NEVVAL) (ERROR))

(LAMBDA () (SORT 5)))

If an argument is a variable, say QUUX, which is not itself a call-by-name
parameter, we write:

* -
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(CONS (LAMBDA (NEWVAL) (ASSIGN-CALLBY VALUE 'QUUX NEWVAL))

(LAMBDA () QUUX))

If QUUX is a call-by-name parameter, we could write:

(CONS (LAMBDA (NEWVAL) ((CAR QUUX) NEWVAL))

(LAMBDA () ((COR QUUX))))

thereby passing the buck to QUUX's thunks. However, it also works simply to
write:

OUux

which will also pass the buck correctly! (This was pointed out to the authors
by Richard M. Stallman.) Of course, the access thunk for each of these may
have a call to MEMO-THUNK wrapped around it to increase its efficiency.

As an example of this call-by-name transformation, consider this ALGOL
program:

begin
integer procedure foo(r, y) integer r. y

begin
X :2 Y i

foo :a r •
end;

integer z;
z :a 4:
print(foo(z, z • 2));

end

The value printed will be 16. When foo is called, it first references y.
which is call-by-name bound to z Z; since z is 4, this yields 6. This is
added to 1, and the resulting 7 is assigned to v, which is call-by-name bound
to z, and so 7 is assigned to z. Then both r and y are referenced, which are
a and z+2 respectively, yielding 7 and 9. The sum, 16, becomes the value of
foo and this is printed.

Now consider this same program written in SCHEME using the call-by-name
transformations we have developed:

(LABELS ((FOO (LAMBDA (X Y)

(BLOCK ((CAR X) (+ ((CoR Y)) 1))
(+ ((COR X)) ((COR Y)))))))

((LAMBDA (Z)

(BLOCK (ASET 'Z 4)

(PRINT (FO0 (CONS (LAMBDA (NEVVAL) (ASET 'Z NEWVAL))

(LAMBDA () Z))

(CONS (LAMBDA (NEWRAL) (ERROR))

(LNMLA (+ Z 2)))))))
NIL))

Ad V -' ... ... ... ... .. .. .. . . . .. . ..
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In executing this, after Z is set to 4, FOO is called with the two sets of
thunks as arguments. First (CDR Y), i.e. (LAMBDA () (+ Z 2)), is called as a
function, yielding 6. This is added to 1, and (CAR X), i.e. (LAMBDA (NEWVAL)
(ASET 'Z NEWVAL)), is called on the result, thereby setting Z to 7. Next both
(CDR X) and (CDR Y) are called, yielding 7 and 9 respectively; FOO returns the
sum 16, which is then printed. Thus the SCHEME version reflects directly the
semantics of the ALGOL version, but using only call-by-value parameters.

The use of two kinds of thunks is similar to the notion of having two
kinds of values, called L-values and R-values. The distinction is that an L-
value may be assigned to, while an R-value is a pure value. LISP has only R-
values. One cannot write (SETQ (CAR X) 'B) to get the effect of (RPLACA X
'B). By the time the CAR operation has happened, the information about where
it came from is lost. CPL and related languages (Note Cplstuff) have
evaluation modes: most operators evaluate their arguments in R-mode, but
assignment evaluates its left argument in L-mode and its right argument in R-
mode. The L-mode result is a pointer to the:place to store the new value. In
ECL [Wegbreit 74a] [Wegbreit 74b], one may write X.CAR-3; X.CAR returns an
assignable value, because all expressi,;ns are evaluated in L-mode.
[Wegbreit 70] This is implemented by always returning a pointer to where the
car of X may be found. If this pointer is used for value, the pointer is
implicitly followed to get the value; if used in an assignment context, the
new value is placed in the location pointed to. BLISS always treats an
occurrence of a variable name as an L-value; a special "." operator is used to
convert an L-value to an R-value. Thus "X-Y" does not give the variable X the
same value as Y, but a value which points to Y; to get the effect of (SETQ X
Y) one must write "X-.Y". [BLISS 70] [Wulf 71]

We can easily modify our thunk strategy so that we could write, for
example:

begin
procedure elohber3(y); list y

y :- 3:
rIohher3(Car())

end

and expect the car of v to be altered to 3. All we need do is supply
appropriate value and assignment thunks:

(LABELS ((CLOBBER3

(LAMBDA (Y) ((CAR Y) 3))))

(CLOBBER3 (CONS (LAMBDA (NEWCAR) (RPLACA X NEWCAR))

(LAMBDA () (CAR X))))

The first thunk handles assignment to the car of X, and the second handles
references to it for value.

This works when the function CAR appears explicitly in the actual
argument to a called procedure. But suppose we write:

I
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begin
procedure rlobb.'r3(y): list Y.

y :s 3:
list procedure fourtlh(z): list 4:

fourth :a rar(rdr(dr(dr(x))).
clobberV(fourta( )):

end

If we consider only the body of the procedure rlohher3 and the call on it, it
is not clear how to write the thunks in SCHEME, since we cannot tell that the
last thing fourth does is a CAR. The general solution would involve having all
values really be two thunks. If fourth returned two thunks, then they would be
passed to rloher3. But this is the same as always passing around a pointer to
the value as ECL does; the assignment thunk knows where a datum came from. so
that it may assign to it.

s . . . .; . . . ..
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Conclusions

We have expressed a number of programming constructs in terms of a
simple applicative language, SCHEME, based on lambda calculus. It is not
surprising that this is possible, since SCHEME is universal. What is
surprising is that the translation is so natural. Most of the translations
are syntactically local. The translated program is recognizably equivalent to
the original, because the global structure is preserved. The translation
process does not increase the size of the program very much.

Landin [Landin 65] and Reynolds (Reynolds 72] have used similar
techniques to model programming constructs. However, their modelling
languages contained much more machinery than what we have used in SCHEME. For
example, Landin introduces a special J-operator to model GO TO, and L-values
to model assignment. We show that GO TO and most assignments can be modelled
using only the lambda-binding mechanism.

The transformations we provide for escape expressions and general L-
values (i.e. L-values for all data structures, not just variables) are not as
syntactically local as the others. The complexity of these transformations
may indicate that escape expressions and L-values are not subsumed by the
mechanism of lambda-binding (except in the trivial sense that lambda-binding
is Turing-universal). If they turn out to be desirable constructs, they
should be implemented as primitives.

It has been suggested that certain programming language constructs, in
particular the GO TO, lend themselves to obscure coding practices. Some
language designers have even gone so far as to design languages which
purposely omit such familiar constructs as GO TO in an attempt to constrain
the programmer to refrain from particular styles of programming thought by the
language designer to be "bad" in some sense. (Note Gotophobia) But any
language with function calls, functional values, conditionals, correct
handling of tail-recursions, and lexical scoping can simulate such "non-
structured" constructs as GO TO statements, call-by-name, and fluid variables
in a straightforward manner. If the language also has a macro processor or
preprocessor, these simulations will even be convenient to use. (Note
Features)

No amount of language design can force a programmer to write clear
programs. If the programmer's conception of the problem is badly organized,
then his program will also be badly organized. The extent to which a
programming language can help a programmer to organize his problem is
precisely the extent to which it provides features appropriate to his problem
domain. The emphasis should not be on eliminating "bad" language constructs,
but on discovering or inventing helpful ones.

I
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Notes

{Alonzowins)
The lambda calculus was originally developed by Alonzo Church as a

formal axiomatic system of logic. [Church 41) Happily, it may be re-
interpreted In several interesting ways as a model for computation.

(Callbyneed)
The term "call-by-need" is due to Wadsworth. [Wadsworth 71] This

technique Is similar to the "delay rule" of Vulllemin. [Vuillemin 74)

{Churchwins)
Reynolds uses the term "continuation" in (Reynolds 72]. Church clearly

understood the use of continuations; it is the only way to get anything
accomplished at all in pure lambda calculus! For example, examine his
definition of ordered pairs and triads on page 30 of [Church 41]. In SCHEME
notation, this is:

CM. N] means (LAMBDA (A) (A M N))

2 1  means (LAMBDA (A) (A (LAMBDA (B C) 8)))

22 means (LAMBDA (A) (A (LARBOA (B C) C)))

where 21 e.g. selects the first element of a pair. (Note that these functions

are isomorphic to CONS, CAR, and CDR!)

(Closures)
Most modern LISP systems, such as MacLISP [Moon 74] and InterLISP

[Teitelman 74], scope variables dynamically. They often provide a special
feature (the FUNARG device) for lexical scoping, but in most implementations
this feature is not completely general.

(Consgeneratorsl
This example is from [Friedman 75]. Landin uses a similar technique to

describe streams in [Landin 65]. Henderson and Morris [Henderson 76] present
several examples in this vein, including an elegant solution to the samefringe
problem of Hewitt [Hewitt 74] [Smith 75].

(Cplstuff)
CPL is described in [Barron 63] and [Buxton 66). BCPL is a simplified

version of CPL intended for systems programming. [Richards 69] [Richards 74]
Also related to CPL is the language C, in which UNIX is written.

(Envprobleml
If the variable to be set is VAR or VAL, then this does not work

because of the so-called environment problem. However, a compiler can choose
the variables VAR and VAL to be different from all other variable names.

e .. . -r
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(Evalorder)
We can see that continuation-passing removes the need for the left-to-

right rule if we consider the form of SCHEME expressions in continuation-
passing style. In the style of Church, we can describe a SCHEME expression
recursively:
(1) A variable, which evaluates to its bound value in the current environment.
(2) A constant, which evaluates to itself. Primitive operators such as * are
constants.
(3) A lambda expression, which evaluates ti) a closure.
(4) A label expression, which evaluates its body in the new environment. The
body may be any SCHEME expression. Only closures of lambda expressions may be
bound to labelled variables.
(5) A conditional expression, which must ovaluate its predicate recursively
before choosing which consequent to evaluate. The predicate and the two
consequents may be any SCHEME expressions.
(6) A combination, which must evaluate all its elements recursively before
performing the application of function to arguments. The elements may be any
SCHEME expressions.

We say that an expression evaluates trivially if it is in category (I),
(2), or (3); or in cateqory (4) if the label body evaluates trivially; or in
category (5) if the predicate and both consequents of the conditional evaluate
trivially.

Lemma: expressions which evaluate trivially have no side effects.
We say that an expression is in continuation-passing form if it is in

category (1). (), (3); or in category (4) if the label body is in
continuation-passing form; or in category (5) if the predicate evaluates
trivially and the consequents are in continuation-passing form; or in
category (6) if all the elements of the combination evaluate trivially,
including the function.

Theorem: expressions in continuation-passing form cannot depend on
left-to-right argument evaluation.
Proof: all arumont.s to fun,:tions evaluate trivially, and so their evaluations
have no side effect.. Henc: they may be evaluated in any order QED

It is not too difficult to prove from this that an evaluator for
expressions in continuation-passing form can be iterative; it need not be
recursive or use a control stack. Another way to look at it is that
continuation-passing style forces the programmer to represent recursive
evaluations explicitly. What would be the control stack during evaluation of
an ordinary expression is represented in environment structures in
continuation-passing style.

(Features)
What if a programing language doe, not have all these features?

Function calls and conditionals are clearly desirable features. Functional
values are also valuable. It may be argued that dynamic scoping is just as
good as lexical; our view is that both are desirable, and we have shown how
to get dynamic scoping given lexical scoping. As for correct handling of
tail-recursions, it is not difficult to see that a lexically scoped language
which does not handle tail-recursions correctly is holding onto more

Iinformation than is strictly necessary to execute the program.

- -'i
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{Flowgraph)
The reader may have noticed that the variable PARITY is uselessly

passed around between Li and L3. This could easily be optimized out by a
compiler using analysis of data flow graphs. For example, the graph for the
parity example would be:

a :- aI

I L3

a :a a-I
par ly := 0 :pary 1

From this it can be deduced that the LI-L3 loop does not alter parity, and that
after this loop exits to LZ control cannot pass back to the loop, and so that
PARITY need not be an argument to LI or 13 in the SCHEME version.

(Funargcons)
Church understood the problem of divergent arguments; this is evident

in his distinction between lambda calculus and lambda-K calculus. Fischer
[Fischer 72] specifically discusses the use of functional values to simulate
CONS.

(Funoffun)
Moses gives a good description of this dichotomy in [Moses 70].

{Gotophobia)
The great 60 TO controversy was started by Dijkstra in 1968

[Dijkstra 68]. This issue was argued heatedly and came to a head at ACM 72.
One of the proponents of GO TO-less programming was Wulf, whose language BLISS
was purposely designed without GO TO statements. (BLISS 70] He soon
discovered that some compensation for the omission was needed, and so exit
expressions were introduced, followed by leave expressions. [Wulf 71]
[Wulf 72]

The extensible language ELI was designed before 1970, Just before the
60 TO statement became a real issue. It had no GO TO statement, but this was
more because Wegbreit was more interested in studying extensible data types in
his thesis than control structures, and he preferred to omit many control
structures from ELI rather than install a dozen features not well thought out.
[Wegbreit 70, p. 417] The ELI language definition became the basis for the ECL
programming system at Harvard. [Wegbreit 71] This implementation was
embellished with the GO TO statement. [Wegbreit 72] Partly because of GO TO

AdI.
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I

politics and partly for implementational expediency, the GO TO was later
removed from the ECL system. (Wegbroit 74b]

Nowadays it is common for a language designer to omit the GO TO
statement as a matter of course. [Liskov 73] [Liskov 74] [Smith 75]
Unfortunately, not all new languages which omit the GO TO provide reasonable
compensation for the omission.

Knuth presents an extensive history of the GO TO controversy (Knuth 74]
and asks, "NWill UTOPIA 84, or perhaps we should call it NEWSPEAK, contain GO
TO statements?" (p. 264) But perhaps we should ask instead, "Will UTOPIA 84
offer alternatives convenient enough that we won't need the GO TO very ofteno

{Hewitthack)
Not only does an unconditional transfer to F occur, but values may be

passed. One may think of these values as "messages" to be sent to the lambda
expression F. This is precisely what Hewitt is flaming about (except for
cells and serializers). [Smith 75]

4Jensensdevice)
The technique of repeatedly modifying a variable passed call-by-name in

order to produce side effects on another call-by-name parameter is commonly
known as Jensen's device, particularly in the case where the call-by-name
parameters are j and n[i]. We cannot find any reference to Jensen or who he
was, and offer a reward for any information leading to the identification.
arrest, and conviction of said Jensen.

{J-operator)
The escape function is analogous to the "program point" returned by

Landin's J-operator. (Landin 65] This program point contains the SECD "dump"
in exactly the way a SCHEME DELTA expression contains the "clink".
[Sussman 75]

(Jrsthack)
This statement is equivalent to the well-known "JRST hack", which

states that the sequence of PDP-10 instructions

PusJ P.oo is equivalent to Jest Foo

PopJ P.

except no stack slot is used.

(Labelsdef)
The LABELS construct of SCHEME is isomorphic to Landin's let rer

construct (Landin 65] and Reynold's letrer construct [Reynolds 72]. Its
purpose is to allow a function to refer to itself. It is more convenient than
the more familiar LABEL construct of LISP 1.5 because it allows definition or
several mutually referent functions. The general form of a LABELS construct
is:

W
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(LABELS ((<nsmel) <ambde-expl))

(<nsme2) (lmbda-expZ))

((namen) Oaimbda-expn)))

<body))

A new environment is created in which the names <namei> are bound to closures
of the lambda expresisons (lambda-expi>; the lambda expressions are closed in
this new environment, and so may refer to each other. The <body> Is then
evaluated in this new environment.

The LABEL construct of LISP 1.5:

((LABEL <name) (Iambda-exp)) (arg) (erg2) ... <srg>)

may be written as a LABELS in SCHEME:

(LABELS ((<name> (lambde-exp ))

(mname) <argl) (arg2> ... <argn)))

(Landinknewthis)
In [Landin 65] Landin uses this same technique to model call-by-name.

However, he modelled assignment to call-by-name parameters in a way much
different from the one we use later: he uses L-values rather than an extra
assignment thunk.

(Mccarthyvins)
This was realized as early as 1960 by John McCarthy. In section 6 of

[McCarthy 60] he describes a technique for transforming a flowchart into a
purely recursive procedure.

IMuddlevcells)
The MDL language (formerly knpwn as MUDDLE) (Galley 75] uses cached

value cells, but uses a process number rather than a side effect count to
determine the validity of the cache data, the purpose being to share a cache
among several processes.

(Plasmafluids)
This indicates an obvious method for implementing fluid variables in

PLASMA in a natural way. All that would be required t3 a slight change to the
implicitly supplied continuations.

(Schemenote)
This is discussed in detail in [Sussman 75], where an actual

implementation is described. The theoretical Justification is described
there, and later in this paper also.

(Schemepaper)
SCHEME is fully described in [Sussman 75], which contains a complete

reference manual as well as a fully documented implementation of the language
In MacLISP [Noon 74].
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{Stackfluids)
Real stack-oriented LISP Implementations ([Moon 74] (Teitelman 741 cf.

(Sussman 75]) in fact either keep fluid bindings on the control stack, or use

a separate stack which more or less pushes and pops in parallel with the
control stack.

I
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