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ABSTRACT

Under current practice, the means to fight noise and vibration on ship structures are
applied on already finalized designs of ships. This is the more expensive solution to the
problem. The most efficient design with less cost can be achieved if from the beginning of the
design process, the acoustic silencing requirements are implemented. The author put forth for
himself as the purpose of this book, a plan to systematize such an approach, gained through his
research experience on the acoustic characteristics of vibration and radiation of ship structures,
sources of the main contributors of vibrations and noise on ships, causes of their origins, and
methods of mitigating those vibrations and noise.

This book is intended for research scientists, engineering, and technical experts involved
in the field concerned with the reduction of vibration and noise in ships and other means of
transportation.

PREFACE

Equipment operating on ships causes vibration and noise. Ambient noise and vibration in
ship’s areas results in the deterioration of working conditions, crewmembers’ health, and brings
discomfort to passengers. The intensity and persistence of naval structures’ vibration often cause
damage of equipment and a shortening of its service life. All this prompts designers and ship-
builders to take measures to reduce naval structures’ vibrations and ambient noise levels.

Note that vibration and ambient noise reduction means introduced after general design
work has been completed do not fully eliminate the problem and are more expensive [28].
Acoustic mitigation devices mounted on ships already built are 3.5 times the cost of those
incorporated at the design stage [45].

A significant decrease in vibration and noise levels at lower costs is made possible by
taking acoustic conditions into account and making provisions for meeting acoustic design
requirements at the earliest stages of a general design.

Acoustic design implies the selection of acoustically efficient naval architecture, acoustic
design of equipment to minimize its vibration, acoustic design of naval structures, and design of
vibration and noise suppressing devices and their on board placement.

A single monograph volume does not allow for the precise handling of all acoustic design
problems. This reference book basically offers principles of acoustic design of naval structures,
as well as selection of acoustically efficient naval architecture depending on a specific ship’s
purpose. It contains data on vibro-acoustic characteristics of basic naval equipment which, when
used at early design stages, may help in the selection of the best type of equipment based on
acoustic considerations.

A considerable part of the book covers the vibro-acoustic characteristics of naval
structures such as foundations, bulkheads, floors, and hull plating. Means of maximum in-design
improvement of these structures’ intrinsic vibro-acoustic characteristics (vibration excitability,
vibration conductivity, sound insulation and sound projection) are described.

The dependence of vibration and noise canceling devices’ acoustic effectiveness on the
structural and geometric parameters of naval structures on which the devices are to be mounted



is analyzed. The book contains recommendations on naval structure design aiming at an increase
in efficiency of the above devices.

Included are various vibro-acoustic characteristics of materials to be used for naval
structure fabrication, equations to determine these characteristics, results of calculations and
measurements obtained. Most of the equations have been categorized and displayed in tables,
each for the relevant section of the book. Data and recommendations given here allow selection
of optimal values of naval vibro-acoustic characteristics.

The equations and definitions most frequently used in calculations are given specific
examples and drawings. To look for data and reference material required, use the index. A
listing of the conventional designations is placed at the beginning of the text.

It is important to note that introduction of naval acoustic design on a broader scale is
restrained by lack of full understanding of its basic principles. This book is meant to fill in the

gap.
Conventional Designations
B - flexural rigidity
D - tensile strength
E - Young’s modulus
F - dynamic force
G - modulus of shear
I, 1, - axial and polar moments of inertia
K - rigidity (stiffness)

L, - level of sound pressure relative to po =2 e 10° Pae m? dB

L - level of vibration (vibrating acceleration) relative to EO =3.10" m/s?,dB

M - weight (mass) of rod (plate, casing), moment
N - frequency of rotation

N, - SOUNd power

R - radius, sound insulation

S -area

Z - mechanical resistance

Y - mechanical sensitivity (vibration excitability)
C - wave’s phase speed

f — frequency

h - plate (casing) thickness

J - imaginary unit

k - wave number



| - length

m - mass per unit length (surface)

p - sound pressure

t-time

n — loss factor

& —amplitude of transverse vibrations of rod (plate, casing) sections
¢ —amplitude of longitudinal vibrations of rod (plate, casing) sections
6 — angle of rotation of rod (plate, casing) sections

A —wavelength

4 — value ratio

p — density

o — Poisson’s ratio

@ — circular frequency

() v-averaging of parameter v

Vv',v"— coordinate derivatives

v,v — time derivatives

A — difference in values

E (D)- effectiveness

Re v— substantial (real) part of complex value v

Im v—imaginary part of complex value v

Indices: nx or pl - plate, ct or rod- rod, c— casing, p or r— stiffening rib, mor p -
dilatational wave, u or fl - flexural wave, cx or s— shear wave, x or tor— torsional wave.



1 FUNDAMENTAL PHYSICS OF MARINE STRUCTURES VIBRATIONS AND
SOUND RADIATION

1.1 Dynamic System Research Methods

Ship hull structures together with their mounted equipment vibrating within the
surrounding water environment make for a complex dynamic system. The study of such a
dynamic system includes the determination of the frequency response of its elements, vibration
amplitudes, and the resulting radiated airborne noise.

Classic vibration and sound radiation theory is based on differential equations derived
using the inertial and impedance (stiffness) properties of separate elements of the system while
accounting for their interaction with the environment. Also, solutions are combined using
boundary conditions formulated on the basis of material continuity in areas where elements are
joined with each other and the environment.

Seeking such solutions takes much time and effort and is sometimes spent in vain through
our inability to predict the solution pattern required for complex components of the dynamic
system under study. In addition, the classic theory well suited for basic dynamic systems does
not ensure the precision required for complex engineering structures due to differences between
realistic boundary conditions and their mathematical idealizations.

Considering the above, practical application necessitates approximate methods for the
study of vibrations and sound radiation of dynamic systems. Basic among these are:

1. The statistical (energy) method of vibrations and sound radiation of dynamic systems
based on principles of statistical physics. This method defines average vibro-acoustic
characteristics of the system elements provided the number of resonance frequencies of the
elements mentioned in the frequency ranges under study is substantial. This method was
primarily developed by R. Lyon [47] and further developed in [19] specifically for naval
structures. The statistical theory is precise enough at medium and high audio frequencies.

2. Approximate mathematical methods for the solution of problems on vibrations and
sound radiation of dynamic systems based on classic vibrations and sound radiation theory for
realistic structures where only the basic parameters of these structures affecting the results are
taken into consideration. These methods are well illustrated in [19, 35].

3. The method of modal analysis of dynamic structures based on approaches from the
well-developed theory of electric circuits. This method [27] is based on the assumption that
specific modes of natural vibrations of systems with both distributed and localized parameters
may be viewed as analogous to electrical filters. This analogy allows for relatively simple and
sufficiently exact description of very sophisticated dynamic systems’ behavior. The practical
value of the method of modal analysis is, above all, in its provision for the use of matrix methods
for calculations.

4. Method of finite elements based on sub-dividing structures into areas whose dimensions
are much smaller than the typical vibrational wavelengths in these structures. The method
allows for calculation of the vibration field for any structure but requires the use of powerful
computers.



All of the above methods of study of vibrations and sound radiation for dynamic systems
have been employed to some extent in working out the calculation equations given in the book.

1.2 Typical Naval Structures and Their Components

Vibration-conducting naval structures are schematically shown in Fig. 1.1. These
structures fall into three major groups: plates supported with stiffening ribs (ribbed plates); rib-
free plates (uniform plates); and one-dimensional structures (beams, rods, etc.).

The first group is represented by bulkheads, decks, floors, the hull plating, i.e. most of the
structures that form the ship hull. These structures (Fig. 1.2) are flat or curved plates with a
mutually perpendicular set of parallel stiffening ribs (frames). Curvature of the above plates is
generally found in the stern and bow sections of the hull plating and on its bilges as well. The
geometric features of ribbed plates are plate thickness, cross-section of stiffening ribs, and the
distance between them.

Figure 1-1. Typical naval structure layout.

1 - bulkhead; 2 - stiffening rib; 3 - cantilever foundation’s mounting plates; 4 - cantilever
foundation support links; 5 - air duct; 6 - board plating; 7 - pipeline; 8 - inner-bottom plating;

9 - stringer; 10 - bottom plating; 11 - floor; 12 - frames; 13 - support links (brackets) of support
foundation; 14 - support foundation’s mounting plates; A4, 6, f - typical joints of naval structures.

Figure 1-2. Rib-stiffened ship structure layout.



The second group largely consists of plates that provide the foundations for mounting of
ship’s equipment. The most frequently used are those that support foundations and cantilever
foundations (Fig. 1.3).
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Figure 1-3. Equipment-mounting naval foundations drawing.
a - support foundations; é - cantilever foundations;
1 - vibration-active mechanism;
2 - foundation’s mounting plate;
3 - knees;
4 -foundation’s support plates (brackets);
5 - mounting hull structure.

Both types of foundations consist of a set of uniform plates connected in a special way.
These seatings feature mounting plates to which equipment is attached with or without shock
absorbers (isolators), support links (brackets) to connect the foundation’s mounting plates with
mounting structures accommodating the foundation. To ensure the strength required for the
foundation plates, reinforcing knees (angle brackets) are frequently used dividing the plates into
several parts. The second group foundations are characterized by one peculiarity: mounting
plates and structures of the support foundations are mutually parallel, those of the cantilever
foundations are perpendicular. The basic geometrical parameters of the above foundations are
given in Fig. 1.3.

The third group of structures consists of air ducts, pipelines, and shafts. Air ducts
represent a box-type structure; pipelines and shafts are cylindrical casings (shells). Geometrical
parameters typical for the former are the thickness of plates forming the structures, and for the
latter - external or internal radii and wall thickness.

Standard elements of naval structures are rods (stiffening ribs, frames); plates (seats,
bulkheads, floors, stringers, hull plating, air ducts); casings (pipelines, shafts). Typical joints of
naval structures are connections of the above-mentioned components (see Fig. 1.1). These can
be corner, T- and cross-shaped joints of plates as well as connections of rods with plates as
exemplified by pipelines running through hull structures.



1.3 Elastic Waves in Ship Structures

1.3.1 General

There are two possible types of deformations in an infinite solid medium- compression
and shear. These deformations propagate in solids in the form of dilatational and shear waves at

their respective speeds
Y L G (L.1)
p(l+o)(1l-20)

c,=+Glp . (1.2)

The two types of waves available in a solid arise from the fact that elastic forces originate
in it with both volume (compression) and shape (shear) distortion.

Equations (1.1) and (1.2) show that the speed c; and c; values for elastic solids are
determined by three physical and mechanical parameters of these solids - the Young’s modulus
E, shear modulus G and density p. Values of these parameters as well as the velocity of elastic
waves of some shipbuilding materials are given in Table 1.1.

Unlike solids, elastic restoring forces in liquids and gases come solely from volume
distortion only. Therefore, there can only be dilatational or compressional (acoustic) waves in
them. The propagation speeds of these waves are:

— For liquids

¢, =K/ p (1.3)

— For gases

¢ =yRlp (1.4)

where K - liquid’s bulk modulus; P, - gas static pressure; y— gas specific heat ratio with pressure
and speed constant.

Equations (1.3) and (1.4) reveal a specific feature of acoustic wave speed in liquids and
gases - there is no speed value dependence on static pressure and temperature for liquids, but a
clearly expressed relationship between these parameters exists for gases. The presence of gas
bubbles in a liquid media significantly lowers its bulk modulus K resulting in a significant
decrease of the speed of acoustic waves propagating in such liquids. For example, with 0.1% air
content in water, the speed of sound drops from 1500 m/sec to 400 m/sec (at atmospheric
pressure).

The velocity values for acoustic waves in liquids and gases most common in naval
practice are given in Table 1.2. Mass density for these substances is also found there.
Conversion of values for a speed of sound in gases at temperature T other than 20°C can be
performed by Eq. [29]

¢, (T) =, (20)y1+ (T —2)/273 .



Table 1-1. Physical and Mechanical Parameters of Some Ship-Building Materials.

Material Young’s Shear Poisson’s | Mass Compressional | Shear Loss
modulus, | modulus | ratio o density | wave speed wave factor
Ee10® |Ge10% 0e10° |cie10% misec | P4 |4 4107
Pa Pa kg/m® C./10°,
/sec
Steel 21 8.14 29 7.8 5.94 3.22 0.1
Aluminum 7.2 2.77 3 2.8 5.78 3.14 0.5
alloys
Fiber glass 2.1 .955 0.1 1.7 3.55 2.36 13
Plywood .34 - - 0.8 - - 13
Wood-fiber 3 - 0.17 1 - - 20
plates
Glass 6 - - 25 4.9 - 1
Wood 0.1-05 - - 0.4-08 |2-3 - 10
Copper 125 4.5 0.35 8.9 3.7 - 2
Brass 9.5 3.6 0.33 8.5 3.2 - 1
Organic glass | .56 - - 1.15 2 - 20
Concrete 2.6-9.5 - - 1.3-23 |1.8-35 - 4-10
Cork - - - 0.24 0.48 - -
Sand - - - 1.6-2.2 |0.15 0.1 0.1




Table 1-2. Physical and Mechanical Parameters of Some Liquids and Gases
Common in Naval Practice.

Medium Mass density | Speed of sound | Acoustic impedance | Temperature,
p, kg/m® Co ® 10%, m/sec | poCo, kg/m? e sec °C

Sea water (3% salt) | 1.03.10° 15 1.545-10°3 10

Distilled water 1.00-10° 1.43 1.430-10° 0

Air (1013 hPa) 1.29 0.333 0.433-10° 0
1.24 0.344 0.416 - 10° 20

Water vapor 0.54 0.45 0.243-10° 130

Ethylene 0.79-10° 1.15 0.91-10° 20

Gasoline 0.75.-10°3 1.19 0.89-10° 20

Oil 0.92-10° 1.39 1.28-10° .

The presence of boundaries in real structures (rods, plates and casings) gives rise to the
appearance of additional types of elastic waves described below.

All types of elastic waves have the following parameters:

+ speed of propagation (transmission) ¢, of deformation or wave energy which is sometimes

called group speed; there is also a phase speed c of elastic waves to oscillate in-phase which
determines their length, i.e. distance between points in the medium; with no variation
(dependence on frequency), phase speed and group speed coincide in value;

+ wave number
k=wlcC (1.5)
+ wavelength is determined by the distance between the closest points in the medium which
oscillate in-phase,
A=clf=2rlk

+ particle displacement amplitude x of the vibrating structure when an elastic wave passes
through; for harmonic time variation of the form e displacement is related to vibration
speed x and acceleration X by the equations X = joxand X = jox = —w*x (when oscillating
harmonically);

+ w elastic wave energy density, i.e. quantity of energy contained in the vibrating structure’s
characteristic volume,

w:%m% (1.6)



where m - mass of the characteristic volume;
+ flow of elastic wave energy, IT, i.e. quantity of energy that passes through a characteristic
area of a vibrating structure per unit time,

IT = we, :%mxzcg (1.7)

where ¢, — speed of an elastic wave’s energy transmission along the normal to the characteristic
area.

The units of measurement for the above-listed parameters related to elastic waves and
their correlation are given in Table 1.3.

Elastic waves originate in structures as a result of dynamic stress applied. In practice this
stress is normally manifested as forces and moments. Depending on the structure’s geometry
and dynamic stress applied, this or that type of elastic waves originates in the structure.

Table 1-3. Basic parameters related to elastic waves.

Parameters Designation Unit of measurement Equation of
S| CGS relationship with
other parameters
Displacement X m cm X=X/ jo=-Xlw®
Vibration speed X m/sec cm/sec X=jox=—jXlw
Vibration % m/sec’ cm/sec” X = —w°X = jaX
acceleration
Wave speed c m/sec cm/sec c=Af
Wavelength A m cm A=clf
Ener [ 2 2
gy density w Wesec/m“  erg/cm We 1 e
2
Energy flow 7 wim? 17 =wc
erg/(sececm?)
Frequency f Hz Hz
Vibration level (of | L, -- - X
vibration L= 20-Iog()_T)
acceleration) ) .
X, =5-10"m/s

10



1.3.2 Elastic Waves in Rods

There are three possible types of elastic waves in rods or beams: dilatational (longitudinal),
flexural (bending), and torsional waves (Fig. 1.4).

Figure 1-4 Rods with deformations in longitudinal (a) torsional (¢) and flexural (e)
vibrations.

When applying a force in the direction of a rod’s axis, a dilatational (longitudinal) wave with
displacement amplitude x = {p is generated in it. This wave causes displacement of the rod’s cross
section along its axis. The equation to determine speed o Of dilatational (longitudinal) wave
propagation in rods is given in Table 1.4.

Energy density in a rod segment of unit length in dilatational (longitudinal) vibrations is
determined by Eq. (1.6) with substitution of m=mjy (m - rod’s mass/unit length) and x = (.
Energy flow in the rod, i.e. quantity of energy passing through the rod’s cross section per unit
time, in dilatational vibrations is calculated by Eq. (1.7) with values of m=my, , X = o, Cg=Cp
inserted.
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Table 1-4.

Phase speeds of elastic waves in rods, plates, and casings with
various types of elastic waves.

Structural Longitudinal waves Flexural waves Torsional Shear wave
Component waves
Rod:
oo | G =BT Copar = 0535 ar,a o =Glp| -
Round Cioar =VE/ P Cripar = 0707, R C=yGlp|
section Chpar =0.707 /e, R, C, =4G/p
H CI bar — V E/,D

Ring-type ’
section
Plate Co =VE/[pL-c?)] | Cap=0.707,Jax;h, — C. =G/ p
Cylindrical
shell 0707 ac,RyV1-o”

f << f, =" fosh n

_ Coor =+/G/
f << fr Cl,sh = E/[p(l—gz)] Cf,p - 0'535 anbhsh s, tor P

Note: a - dimension of a rod’s rectangular section in the direction of displacement &;
R - external radius of a round or ring-type rod; R; - internal radius of a ring-type rod;

R, =+ R*+ R/ , Ro— mean radius of casing; h - casing (shell) thickness; n - number of waves
around circumference of casing (shell); f =c, g /(27R)

When a moment acts upon a rod about its longitudinal axis, torsional waves are generated
in the rod characterized by a twisting of the rod’s cross section through the angle y. Equations
to determine the speed c; of propagation of a torsional wave along the rod with various cross
sections are given in Table 1.4. The parameter o when related to the speed of torsional waves in
a rectangular-section rod with axb dimensions has the following value.

a/b

1 1.5

o

0.92 0.85

0.74

0.56

0.32

~ 2bla
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The expressions for a torsional wave speed in a rectangular-section rod are correct under
condition thatk,a <1, where k, --is the wave number of flexural vibrations in a plate of the

same material with thickness b (a>b) which is determined with the use of Eg. (1.5) and Table
14,

Density and flow of torsional wave energy in a rod are determined by the equations:
ws = (1/2)pl y75 and, 77, = wgCg where I, -- polar moment of inertia for the rod’s cross

section, o -- amplitude of the angle of rotation for the rod’s cross section.

Flexural vibrations originate in the rod under the action of forces applied perpendicular
(transverse) to the rod axis. These vibrations are characterized by a transverse displacement, &,
of the rod cross-section and angle of its rotation ¢ (see Fig. 1.4). Displacement and angle of
rotation of the rod’s cross-section in flexural vibrations are related via ratio ¢y = kt&, where
ki =wl/c, (¢t from Table 1.4).

Speed of flexural waves in a rod is dependent on frequency, i.e. the phenomenon of wave
dispersion takes place. In this connection it should be noted that the speed of propagation of
flexural wave energy is double the phase speed. Table 1.4 gives equations for flexural waves’
phase speed in rods of various cross section shapes. Generally phase speed is:

(1.8)

Equations of Table 1.4 are correct for a rectangular section, if condition cp/f>6a (a - size
of the rod’s cross section in the direction of displacement &), for round and ring-type sections
Co/ f>6R, is met.

Density of flexural waves’ energy in a rod is determined by Eq. (1.6) with m=m;, x =&
inserted; and energy flow - by Eq. (1.7) with c4=2c:.

1.3.3 Elastic Waves in Plates

There are three possible types of elastic waves in plates: dilatational, flexural (bending) and
shear (Fig. 1.5).

13



Figure 1-5. Elastic waves and deformations in plates (a) longitudinal (6) shear (s)
flexural.

With forces evenly distributed along the straight line and acting in the plane of the plate
in the direction perpendicular to the line, a dilatational (longitudinal) wave is generated in the
plate and characterized by displacement of the plate’s cross section in the direction of the wave
propagation. The velocity of this wave is determined by equation given in Table 1.4. The speed
velocity exceeds that of a dilatational wave in a rod.

Density of dilatational vibrations energy in a plate, i.e. quantity of energy to be contained
in the plate section of unit surface area, mp, is determined by Eq. (1.6) with m=my and x=¢,
inserted. The dilatational wave energy flow in the plate, i.e. quantity of energy to pass per unit
time through the plate’s cross section segment in a unit length which is perpendicular to the wave
propagation direction, is determined by Eq. (1.7) with m=my, x=¢g, and cg=Cpp inserted.

With forces acting upon the plate plane along the straight line, a shear wave is generated
and propagates perpendicular to the above line and is characterized by displacement y of the
plate’s cross section. Speed of a shear wave in a plate is determined by equation given in Table
1.4. Density and flow of the shear wave energy are determined by equations similar to those for
dilatational waves with substitution of cy p=Cs.

With forces acting transverse to the plane of the plate, flexural waves are generated and
characterized by displacement, &, of cross section and its turn through ¢ angle. The latter values
correlate via ratio ¢p = jKpido, Where kipi = @/Crpi, and Cipi - phase speed of flexural waves in a
plate - is determined by the equation given in Table 1.4. Phase speed of a flexural wave for
metal plates can roughly be determined by the equation

iy =107 /h, (1.9)

pl

where hy - plate thickness in meters; f -- frequency in Hz. Expressions for c;p are correct
provided cspi/ f<6hp. For example, with a steel plate 6-10"m thick, frequency limit of Eq. (1.9)
applicability is 40 kHz with maximum 10% error (0.85 dB). Density and flow of energy for a
flexural wave in a plate are determined by the Egs. (1.6) and (1.7) respectively with m=my,
x=Cg, and cg=2csp inserted.

14



1.3.4 Elastic Waves in Cylindrical Shells
The nature of cylindrical shell vibrations is largely dependent on the value of frequency
v=awR/c, (1.10)

where R - is the mean radius of shell (Fig. 1.6), ¢, - speed of a dilatational wave in a plate with
thickness equal to h, the thickness of the shell. Frequency at which v=1 is called the ring
frequency f=cip/(2nR). The length of a longitudinal wave in the shell fits along the shell
perimeter at this frequency.

Generally, the shell surface deforms transversely (radially), lengthwise (axially) and
tangentially with amplitudes &, C and y respectively (see Fig. 1.6).

Curvature has negligibly little effect on the shell behavior at frequencies where v>1.
Depending on the nature of the excitation, flexural, dilatational and shear waves can be generated
in the shell, with all parameters of such waves matching those of similar waves in a plate of
thickness h (see Table 1.4).

Figure 1-6. (a) Dimensions of a cylindrical (shell) casing and (6) its deformations
patterns in flexural vibrations.

At frequencies where v<1 the curvature of shell does have a significant effect on nature
of waves excited in it. Analysis of the vibrational behavior of a cylindrical shell performed in
[19] shows that, with v<1, only waves having transversely displacement of shell’s walls can
propagate there. These waves are similar to flexural waves in plates. Shapes of shell
deformation with n=2 and n=3 are shown in Fig. 1.6. Wave numbers for shell vibrations with
displacements £ and y (in-plane motions) with v<1 are complex and, therefore, the respective
waves attenuate.

Phase speed of a flexural wave in a shell with v<1 is given in Table 1.4 with the
following conditions: n > 2, B >>h?/(12R?), 2B n> < v < 0.5, where A = h/~/12R and n=i/2 (i -
number of nodal points on the deformed circumference of a shell).

Phase speed of a flexural wave in a shell with v<1, as shown in Table 1.4, is largely
dependent on n, diminishing as this number rises. Its physical explanation is in the fact that

flexural waves in a shell propagate in a spiral. The bigger n, the more frequently waves round
the shell at its fixed segment.

15



With n=1 vibrations of a shell with v<1 are similar to those of a ring-type section rod. As
in the case of a plate, the speed of flexural wave energy propagation in the shell is double the
phase speed. That is why the energy density and flow of energy in the shell for this wave may be
calculated by the Egs. (1.6) and (1.7) respectively with substitution of m=mg,, X=& and cg=2cx .

It is necessary to consider entrained liquid mass when calculating elastic wave speed,
wave number and other weight-dependent parameters of ship structures in contact with liquid
(ship’s hull plating, liquid-containing pipelines)

1.3.5 Elastic Waves in Infinite Structures

Elastic waves generated in infinite structures propagate obstacle-free. Such waves are
called traveling waves. For example, in infinite rods there can be two traveling waves that
propagate along the y direction with a point force acting upon the rod:

X, (y) = x,e*" (1.11)

where x,— wave amplitude at the drive point (y=0); a plus in the exponential index corresponds
to a wave propagating in the direction of negative values of the y coordinate; minus corresponds
to a wave propagating in the direction of positive values of the y coordinate.

Flexural waves in infinite rods feature evanescent waves originating in close proximity to the
external stress application point, with amplitude

*’:Zf (y) :éoe

where &, -- is the amplitude of the evanescent wave at the external stress application point; plus

in the exponential index corresponds to the inhomogeneous wave to the left of the drive point,
minus - to the right of the point.

*kfy

(1.12)

Amplitude of an inhomogeneous wave attenuates exponentially as it moves farther away
from the external stress application point. Therefore, it does not carry energy.

With in-phase forces acting upon a plate along the straight line (line-drive), plane
traveling waves are generated in the plate and described by the expression (1.11), while flexural
waves in a plate feature inhomogeneous waves described by Eq. (1.12) with k= ki .

With point stress acting upon a plate, cylindrical waves originate in it with amplitude
decreasing as it moves farther away from the excitation point through an expansion of the wave
front. For example, with transverse point stress acting upon a plate, a divergent wave originates
with the amplitude

£ = &I HE (k) = (Ko (k 1) (113)

where & - wave amplitude at the excitation point; Ho® " Hankel function of the second kind that
describes a traveling cylindrical wave; K - McDonald’s function describing an inhomogeneous
cylindrical wave.

If a torsional force acts upon a plate, the latter generates a divergent cylindrical shear
wave with amplitude
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2(r) = 2, HP (k). (1.14)

As could be seen from (1.14) inhomogeneous waves are not generated in the case of
cylindrical shear deformations in a plate, nor do they in the case of cylindrical dilatational
(longitudinal) waves.

With consumption of elastic waves energy taking place in an infinite structure, the
amplitude of such waves attenuates exponentially: exp(—k, 7y /4) for flexural (bending) waves

and exp(-kny/2) for waves of other types (n -- loss factor in a structure).

1.3.6 Elastic Waves in Bounded Structures

Elastic waves in infinite structures can exist at any frequency. Free elastic waves
(without external excitation) in bounded structures (rods, plates, and shells) can only be
generated at frequencies where boundary conditions are met. These frequencies are called
natural (or resonance) frequencies for the bounded structure’s free vibrations. A flexurally
vibrating rod provides an elementary bounded structure. Its behavior is similar to that of a plate
or shell. Basic boundary conditions for such a rod are: free end (no transverse forces and
bending moments at the boundary); hinged end (no transverse displacement and bending
moments at the boundary); and clamped end (no transverse displacement and no rotation of the
rod’s end section).

Hinged ends of a rod are most suitable for analysis as no inhomogeneous flexural waves
are generated, making it easier to solve vibration problems for this rod.

Each natural frequency matches its bounded structure’s vibration type. For hinged I-long
rod this type is represented as

&i(y) =&, sin(k; ;y) (1.15)

where &; - amplitude of the rod’s free vibrations at frequency w;. Combination of natural

frequency and a matching type of bounded structure’s vibrations is called a mode. Function
describing a natural vibration type is called characteristic and normally designated wi(y). In the
case of a rod with hinged ends

vi(y) =sin(k,y /1) (1.16)

Figure 1.7 shows shapes of the first four modes of an I-long rod’s flexural vibrations
drawn in accordance with Eq. (1.16). Modes of even order have vibration nodes in the middle of
the rod; modes with odd ordinal numbers have nodes that are characteristic of standing waves.
Expression (1.16) can be represented as
kit ki

Y
& (y) —z—j(e

This equation shows that the standing wave &; sin(k;y) is result of summation of two
waves traveling towards each other with the same amplitude.
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Figure 1-7. Patterns of the first four modes of flexural vibrations for a rod with
hinged ends.

The characteristic functions allow for the description of any bounded structure vibration
type caused by time-harmonic forces to be in the form of an infinite series. For a bounded rod, it

is represented as &(y) = ié‘o,il//i (y) and stems from external stress acting upon a bounded
i=1

structure and generally trigger all vibration modes.

Amplitude spectrum for bounded structure modes depends on boundary conditions,
nature, and area of application of excitation forces. Specifically, for a flexurally-vibrating
hinged I-long rod driven in the middle by a transverse point force Fo, i-component of the
spectrum is represented as [27]

3 2F,
mi[w’ L+ j7) - o°]

Soi

where m - the rod’s mass per unit length; 7-- loss factor of the rod’s vibrating energy. Thus
uneven modes are driven only. Dependence of &; on i with two values of the loss factor (<

1) is shown in Fig. 1.8. Amplitudes of modes in which wij<<® are not dependent on their mode
number and loss factor &~ -2Fq/(m | ®?). These modes are conventionally called low-frequency
modes (mass controlled) as they oscillate at frequency w that far exceeds their natural
frequencies ;.

Modes whose natural frequencies are close to driving frequency (Egi~ 2Fo/(j m | & 7))
have the maximum amplitude. Amplitude of these modes (called resonance modes) is inversely
proportional to loss factor 7.

Modes whose natural frequencies are well beyond frequency w are called high-frequency
(stiffness controlled) modes. Their amplitude diminishes as i increases and its dependence on 7
is negligible
2F,

=———"  (normally n<<1).
mlw?(L+ j7) ( yir<<l)

So,
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Figure 1-8. Dependence of mode amplitudes on mode number of a flexurally-
vibrating rod for harmonic excitation at frequency o.
1 - low-frequency modes
2 - resonance modes
3 - high-frequency modes.

The vibration mode pattern for finite plates is of a two-dimensional nature. For example,
for a flexurally-vibrating rectangular plate with hinged edges, the fundamental functions are
represented as

l//i,n = Sir](kx,i X)Sin(ky,n y)

where Ky i, ky n - projections of wave number vector of plate k on the coordinate axes x and
y at frequency of its natural vibrations i, Ky, i = mi/l1; kny = wn/ly; 1y, 12 - plate side dimensions.

Patterns for the first three modes of flexural vibrations of a rectangular plate are shown in
Fig. 1.9. Vibration mode patterns in a cylindrical shell are also two-dimensional. Specifically,
for a shell of length | with hinged edges, the characteristic function for transverse displacement is
represented as y n(X,) = sin(ksin X) cos(ne), where ki, - wave number of transverse vibrations
at frequency of the shell’s natural vibrations, K,in = @in/Ctin; Ctin - phase speed of vibrations
along the shell axis to be determined based on Table 1.4; n - number of waves along the shell
circumference.

Transverse vibration mode patterns for a cylindrical shell at some natural vibration
frequencies are shown in Fig. 1.10.
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Figure 1-9. Patterns of vibration for the first three modes of flexural vibrations of
rectangular plate with hinged edges.
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Patterns of vibrations of some modes o vibrations of a cylindrical

Figure 1-10.
shell with hinged ends (simply supported).

Energy W contained in a vibrating bounded structure equals total of energies of all modes
set in oscillation. Specifically, for a flexurally vibrating rod
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W = i%'g;iwz . (1.17)

i=1

Equations for calculating main resonance frequencies of some ship structures are given in
Table 1.5.

The characteristic functions for the above bounded structures reveal substantial
unevenness of the surface deformation. If several vibration modes with roughly similar
amplitudes are driven simultaneously, this unevenness is smoothed out. With a considerable
number of such modes, amplitude of deformation over the structure surface becomes essentially
the same. In the process a so-called diffuse vibration field is formed in the structure.

To determine a sufficient number of the structure’s vibration modes driven
simultaneously, we should know the number of the structure’s natural (resonance) frequencies N
(Af) included within a given frequency range Af. Equations for calculating N (Af) are given in
Table 1.5. When calculating bounded structure parameters by equations from Table 1.5, one
must keep in mind the necessity of factoring in the influence of entrained liquid mass on natural
frequencies whenever it contacts the structure under study.

1.3.7 Entrained Liquid Mass

Some ship structures like fuel tank walls, and hull plating, below the waterline, come in
contact with liquid. Among structures of this kind are pipeline rods of hydraulic ship systems
through which liquid is pumped. For flexural (bending) vibrations of such structures, an increase
in the structure’s weight is typical due to a certain quantity of liquid joining in the vibrations.
The above liquid is called entrained or associated. In calculating the above vibrations, this liquid
is to be added to the structure’s weight.

Entrained liquid mass for a beam of finite length | submerged in liquid and vibrating as a
solid - perpendicular to its axis - is calculated by Eq. [26]

Ms =V po (1.18)

where V - beam volume. In this case entrained liquid is of the same mass as liquid to fill the
volume of the solid submerged in it. A prerequisite to Eq. (1.18) applicability is satisfying
inequality koL<1, where L - beam length. For a round section R-radius beam, entrained mass M;
= IR?L po.

For a cylindrical liquid- submerged shell (for instance, a pipeline passing through a tank)
that vibrates in flexure, linear entrained mass [26] ms = nR’po, where R - shell radius. This
equation is suitable whenever inequality 6X<A is satisfied. For a pipeline 0.15 m in diameter
with 610 m thick walls, this equation is applicable for frequencies below 10 kHz, i.e.
essentially in the entire audio frequency range.

With liquid-filled shell (for instance, hydraulic system pipeline), mass of this liquid is
added to the pipeline weight at frequency below fo, equal to fo = co/6R. Comparison of this
frequency with the shell’s circular frequency determined by Eqg. (1.10) reveals relationship of
these frequencies as fi/fo = Cisn/Co, 1.€. frequency fo is roughly 3.3 times lower than the shell’s
circular frequency (with cpsn = 5010° m/sec and ¢ = 1.5010° m/sec).
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With flexural vibrations of a plate in contact with liquid, the latter’s response to these
vibrations is of inertial nature at frequencies below critical which is [19]

. ci/3(L-0?)

c
7h,C,

For a metal plate in contact with water, f. = 0.23/h, kHz, where h; - plate thickness, m.
With up to 10% error, this equation is approximately applicable to fuel and oils.

For plate thickness up to 210 m typical for ship structures, response of liquid to
vibrations of a contacting plate is of inertial nature at frequencies below at least 11.5 kHz.
Inertial nature of the response means the entrained liquid manifests itself as a mass, which is
additive to the plate weight.

Entrained liquid mass with a plate’s flexural vibrations may be taken into account
assuming thickness of a liquid layer to join vibrations is roughly 1/6 of a flexural wavelength in
the plate

Poti _ py

m. =—— 1.19
) 2 ¢/ ( )

where A's and K's refer to a liquid-contacting plate. Entrained mass of a flexurally-vibrating plate
diminishes as vibration frequency rises.

Wave number for a flexurally-vibrating plate that comes in contact with liquid is
calculated by the equation

2
. w (mIO| +my)

A= .

:kf,pl\ll"'/'lm

where ke refers to a plate in vacuum; pm = ms/mp;, here ms is determined by Eq. (1.19).
Dependence of un, on f/ £ is given in [20].

pl
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1.4 Sound Radiation of Ship Structure Components

1.4.1 General

Any structure whose surface vibrates in the direction of its normal is a radiator (source)
of acoustic energy towards the acoustic environment.

The acoustic field generated by vibrating structures features the following parameters:
wave number Ko = w/Co;
wavelength Ao, the distance between the closest points of a medium that vibrate in-phase;

amplitude of sound pressure is p and the vibratory particle velocity v, generated at the point
of a medium when an acoustic wave passes through it;

density of acoustic waves energy w, i.e. quantity of energy contained in a unit volume of
the medium;

flow of energy (intensity) of acoustic waves I, i.e. quantity of energy passing per unit time
through unit surface in the direction of normal;

acoustic power N, i.€. quantity of energy to pass (beyond to infinity) per unit time
through a closed surface in the acoustic field that surrounds the acoustic source;

directivity pattern for the source’s sound radiation, i.e. angular dependence of sound
pressure generated around the source (for sound radiation in closed ship’s room
structures, directivity pattern is of little importance as multiple reflections against walls
of the enclosed volume give rise to an essentially uniform distribution of sound
pressure amplitude and, therefore, density of energy).

The types of vibrating systems and their interrelation equations are given in Table 1.5.
The units of measurement of the above parameters and their interrelation equations are given in
Table 1.6. Applications require knowledge of the sound pressure in the acoustic medium for the
area under study, or knowledge of the sound power radiated by a vibrating structure.
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Table 1-6. Basic parameters characterizing acoustic waves.

Parameter Design | Unit of measurement Equation of

ation Slsystem  CGS interrelation with
system other parameters

Sound pressure p Pa ubar P = vpoCo

Vibration speed Y m/sec cm/sec v = plpoCo

Wavelength o m cm Ao = Colf

Wave speed Co m/sec cm/sec Co = Aof

Energy density w Wesec/m*® erg/cm® | w = p%/2poco

Flow (intensity) of energy I W/m?  erg/(sececm?) | I = wco = pv

Sound power N W erg/sec N=1S

Frequency f Hz Hz --

Noise level (of sound Ly -- -- L, = 20lg p/ po

pressure) (po = 2010°° Pa)

If the vibratory velocity & of the source surface is known, the sound power radiated by

the source is characterized by the radiation impedance R4 Or radiation loss factor ng and these
are related by the ratios

Nrad = Rrad <§>2 = Mrag oM <§>2 (120)

0\ 2 . . . .
where <§> -- space- and time-mean value of the acoustic source vibratory velocity; Nrag =
Rrag/®M; M - vibrating source mass.

Sometimes the acoustic source radiation is characterized by the radiation factor o 44 related to
Rrad and myrag by the ratios

R
— rad — 77rad (121)
PoCoS  PoCoS
where S - area of the source surface in contact with the acoustic medium; poCo - characteristic
acoustic impedance of the medium.

O_rad

Radiation resistance R4 is the real part (resistive) of the vibrating source’s radiation
impedance, Zrag = Rrag + j@Ma, Where M, is the entrained mass of the acoustic medium directly
in contact with the vibrating source.

If the amplitude of the excitation force Fq driving the acoustic source is known, the sound
power radiated by the source is given by
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_ I:OZRrad
Nrad - 2|ZT| (122)

where Z; =Z,,, +Z,,,and Z,,is the internal impedance of the source.

If Zaq IS governed by its imaginary component, i.e. the entrained mass, and if this
combines with the stiffness characteristic of the internal impedance, the radiated sound power
can rise considerably when these reactive components balance each other out (resonance effect).

If the vibratory power N that enters the source from outside is known, the source-radiated
sound power in accordance with the law of conservation of energy is

N, =N T (1.23)
nrad + 77in

where ni, is the vibration energy loss factor for the source.

With several sources operating simultaneously, the total aggregate density of energy
created by them at an arbitrary point of the acoustic field is not equal to the total of densities
from each source separately. For two sources, each creating sound pressures p; and pz ,
respectively at some point of a field, the total sound pressure is pt = p1 + p2. The total aggregate
density of energy is determined by the expression [27]

2
L
2p4Cy  2poCy

Wy [P +p; +2Re(p,p,)] =W, +W, +2w;,  (1.24)

where p; and p; are the complex values of sound pressure; po* is the complex-conjugate value of
p2. Equation (1.24) shows that, in addition to the density of energy w; and w, generated in the
medium at a given point from each source, there is a so-called reciprocal energy w; , caused by
the acoustic interaction of the sources. The reason for this interaction is that the sound pressure
created by the other source acts upon a source's vibrating surface.

With interaction between two identical concentrated sources (for instance, small-diameter
pulsating spheres) in a point to lie at equal distance from each source (w; = w, = W), we have
[27]
sin(k,l)

Wy =2w,[1+ o
0

]

where | - distance between sources; (+) corresponds to in-phase vibrations of sources, and (-)
corresponds to anti-phase vibrations.
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Figure 1-11. Dependence of ratio ws/(2 wo) on kol for two point acoustic sources.
1 - in-phase vibrations of sources
2 - anti-phase vibrations of sources

The dependence of ratio w/2 wy on kol is shown in Fig. 1.11. With in-phase operation of
sources, their interaction causes doubling of density of energy in the field, if kol <<1. With
sources vibrating in opposite phase when kol <<1, aggregate density of energy tends to zero.
Reciprocal influence of the sources is essentially absent, if kol > 2, that comes about with
distance between the sources exceeding approximately 1/3 of the acoustic wave, i.e. at a
relatively high frequency.

The reason for such a considerable change in aggregate density of energy generated by
the simultaneous operation of two sources at low frequencies is that, with the sources operating
in-phase, each one has to overcome both its own sound pressure and the sound pressure radiated
by the other source. In this case these pressures are equal. With the sources vibrating in
opposite phase, the above-mentioned sound pressures offset each other. As the result, in range
the kol—0, the sound pressure in proximity to the sources equals zero and radiation of acoustic
energy stops.

All of the proceeding comments related to the independence of point sources of sound are
applicable to extended sources, too.

1.4.2 Simple Sources of Sound

Simple sources of sound are the sources that have in-phase vibration with equal
amplitude of displacement of either the entire surface in contact with acoustic medium or the
source as a whole. These sources are called zero-order and first-order sources respectively.

Simple zero-order sources comprise, among other things, pulsating spheres and cylinder,
as well as circular pistons oscillating in-phase in a rigid screen. Simple first-order sources are
represented, for instance, by oscillating sphere and cylinder.

Simple zero-order sources with the wave dimension far below 1 are also called acoustic
monopoles; first-order sources are called acoustic dipoles. A dipole is formed by two identical
monopoles, oscillating in opposite phase, spaced from each other by a distance, small compared
to an acoustic wavelength.

The parameters characterizing radiation for the above sources of sound are given in Table
1.7 for small wave dimensions of sources (koa < 1), which are most common in practice.

32



Analysis of data given in the table allows the following conclusions as to frequency band, where
koa < 1.

1. Radiating capabilities of sound sources are largely dependent upon the latter’s wave
dimension kea. For source order up by 1, its radiating capabilities are (koa) times down.
Increase in one of the source’s wave dimensions beyond 1 boosts its radiating capabilities
(kod) times.

2. The entrained mass of a source corresponds to the mass of the medium occupying a
specific volume. For an oscillating sphere, the entrained mass is equal to its half-volume,
for an oscillating cylinder-to its full volume. The entrained mass of an oscillating piston
in a rigid baffle on both sides occupies volume of a cylinder with the same cross-
sectional section shape as the piston surface and height of 0.4 d (d - piston diameter).

3. Oscillating spheres and piston with koa << 1 have identical radiating capabilities with
regard to difference in surface area of these sources. This prompts a practically valuable
conclusion that oscillating solids of different shape whose wave dimensions are much
lower than 1 have the same radiating capabilities.

4. Sources of the monopole type produce non-directional radiation whereas dipole sources
feature directional radiation with maximum in the direction of their oscillations.

1.4.3 Sound Radiation of Flexurally-Vibrating Plates

The sound radiation of flexurally-vibrating plates is largely dependent on the so-called
critical frequency f. at which the wavelength A5 of a flexural wave in a plate is the same as
length 2, of a radiated acoustic wave. The critical frequency [19] is given by:

¢ _ Goy3e-v) (1.25)

¢ meyh,

At frequencies below f., the radiation resistance per unit area of an infinite flexurally-
vibrating plate is imaginary (purely reactive) and is given by

Z ; — jpoco
()7 -1

where m, - entrained mass of acoustic medium coming in contact with the plate,
2 2\-1/2
m, =p0CO(a)c - )

c

The inertial nature of the plate impedance at frequencies f < f. is due to the fact that the
distance between neighboring plate segments, vibrating in anti-phase, is shorter than the length
of an acoustic wave. This is why particles of the medium can flow, back and forth, between the
above segments of the plate in an incompressible manner. Thus, at frequencies f < f., the
infinite flexurally-vibrating plate does not radiate acoustic energy into the adjoining acoustic
medium.
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At frequencies above f., radiation impedance of the plate under study is of a resistive
nature and equals

Z ] — pOCO )
1= (1)

At these frequencies, the entire surface of the plate radiates. Moreover, with f >> f¢, Z g
— poCo and orag — 1.

(1.26)

At the frequency f = f. and with no losses in the plate, Z,q — . At this frequency,
acoustic waves propagate along the plate surface; and as the result of summation of radiation
from the entire plate surface, an infinitely large sound pressure exists, and accordingly, an
infinitely large impedance to radiation is generated on the surface. However, with the finite
bounded dimensions of the plate and losses in it considered, Z;,g becomes finite and has a
maximum at the given frequency (Fig. 1.12).
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Figure 1-12. Dependence on frequency of radiation resistance of an infinite
flexurally-vibrating plate with (n # 0) and no loss(n = 0).
1-Ziag = jmmc
2 - Zrag = poco [1-(fel )1 .

For a point excitation transverse force Fq acting upon an infinite plate, radiation is largely
dependent on the medium/plate impedance ratio poCo/mp. With poco << wmy (light acoustic
medium like air), the plate radiation is non-directional, and the radiated sound power is [28]

for frequencies f < f.

c kS F2
= PCoCoKo o2 (1.27)
4z (cm )
at frequencies f > f.
2
Nppg =0 =M (1.28)

rad — -
161/ mp| Bp| 77rad + 77p|
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PoCo .
P =1,
a)mpl Vl_ :uf_z
Comparing Eqg. (1.27) with the expression for sound power of a circular piston oscillating

in a rigid screen (see Table 1.7) shows that they are virtually identical assuming the piston radius
a = An/4. The remaining part of the plate does not radiate in accordance with the above.

where n, is the internal loss factor for plate; 7,4 =

With poCo >> wmp, typical for a water-submerged plate at low frequencies, radiation of
the plate is directional, similar to a dipole source. The reason for it is that, with poCo >> wmy,
plate becomes acoustically permeable and medium forced out by one side of the radiating
circular segment of the plate flows over, as it were, to its opposite side as exemplified by the
oscillating sphere with koa < 1.

With f > f. and poCo << @my, vibratory energy reaches the plate equal to
F/16 m,B, = F&. This energy is partially absorbed in the plate as dictated by its loss factor
np and the remaining energy is radiated into the acoustic medium as given by Eq. (1.28). In this

case, radiation occurs over the plate’s entire surface. With no losses in the plate, the whole
energy received from force source will be radiated into the acoustic medium.

With a linear transverse force acting upon an infinite plate when poCo << ®mp;, sound
power radiated per unit length is

at frequency f < f.
2 2
= MKOFOZ (1.29)
4z (com )
at frequency f > f.
2
F _ nrad (130)

rad
2\/_m pl c fl 77rad + 77p|

[notations are the same as in Eq. (1.28)].

Radiation of the plate acted upon by a line force with poCo << wmy, is also non-directional
as in the case of a point force excitation.

Comparison of Eg. (1.29) with the expression for sound power radiated by a pulsating
cylinder (see Table 1.7) shows a plate strip located on both sides of the force application line
2)\1/3 wide that provides a direct source in this case. The remaining plate surface does not
radiate at f < f.. Atfrequency f > f, the entire plate surface radiates. In the process, the force

source passes on to it vibrating power F22+/2m 0 Cyq to be partially absorbed in the plate, with
the remaining part being radiated into the adjacent acoustic medium.

With a transverse force evenly distributed along a limited I-long straight line segment
acting upon an infinite plate, radiated sound power is

pOCkFI

e BoZ0T0 70 15 (k1) - [L— cos(k, )] /(Ko1)} (1.31)
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where Si is the Sine integral and Fy is the linear density of force acting upon the plate.

Dependence of Nrag 0n Kol is shown in Fig. 1.13. At low frequencies, N4 calculated by
Eq. (1.31) agrees with that calculated using Eq. (1.27) for a point force; at high frequencies, it
coincides with that calculated by Eq. (1.29) for a linear force. The approximate limit of (1.27)

and (1.29) applicability is value kol = &, the frequency at which half of an acoustic wavelength %o
fits along the segment length 1.

For an infinite plate excited by a point bending moment My at frequency f < f. with poCo
<< @My, the sound power radiated is
~ /Oocok(;ll\/lo2
™ 127(0m )

The moment My can be represented as a resultant of two forces Fo , with arm b (that is
small as compared to Ao (kob << 1). The sound power radiated in the process is

_ ,Oocokdzb2 I:02

— ) 1.32
rad 127(wm )? (52
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Figure 1-13. Dependence of sound power, radiated by an infinite plate excited by
a transverse force evenly distributed along I-long straight line
segment, upon parameter Kol.
1 - calculation by Eq. (1.31)
2 —calculation by Eq. (1.27)
3 —calculation by Eq. (1.29).

Comparison of Egs. (1.32) and (1.27) shows that the radiation resulting from a moment
acting upon the plate is lower than radiation resulting from force excitation by the ratio
(kob)?/3 << 1. Thus, structure radiation when driven by moments is negligible.
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With flexural waves passing through plate-located obstacles, forces and moments are
generated at the obstacles’ attachment points. The resultant field generated on the plate in this
case can be represented as a superposition of a wave, existent on the plate in the absence of the
obstacle, and of a wave caused by the obstacles’ response to a wave passing through it.

The corresponding radiation from an infinite plate, with point connected or line
connected obstacles placed on it, can be calculated by Egs. (1.27)-(1.30), if the response
(reaction) forces are known. With two linear parallel obstacles of a hinged type between which a
linear force Fq acts in the middle of the obstacle-created strip, the reaction forces are also of
linear forces Fy nature. The amplitude of these forces is governed by the force transmission
coefficient of the system the maximum value of which occurs at the resonance frequencies of the
strip and is equal to [22]

where n -- loss factor in the obstacle-limited strip of plate dependent on the absorption of
vibrational energy in the plate and outflow of energy through the obstacles; f; - resonance

frequencies of the strip (i ==1,2,3,...). In practice 1 << 1 normally, so the amplitudes of reaction
forces at resonance frequencies will exceed the force Fy applied to the plate.

Radiation of the plate with obstacles can be calculated by Egs. (1.29) and (1.30). At
frequencies f < f. this radiation of the plate is dictated by its segments in the vicinity of the
obstacles and have overall width of approximately 24q4/3. This radiation at frequencies f = f;
and f < f. is called resonance radiation. Radiation governed by the force Fq is non-resonance.
The larger the plate’s loss factor, i.e. the greater vibration energy absorption, the smaller is the
value of the plate’s resonance radiation.

Non-resonance plate’s radiation does not depend upon energy loss in the plate.

The above for the f < f. frequency range is explained in Fig. 1.14, in which flexurally-
vibrating plate/acoustic medium interaction patterns for various one-dimensional wave fields are
depicted. With traveling flexural waves in a plate at the given frequencies, the fluid medium
flows over and between the plate’s neighboring segments with opposite oscillation signs, with a
complete cancellation between the medium’s flowing-out volumes and the emptied volumes.
Radiation is absent over the plate’s entire surface.
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Figure 1-14 Patterns of interaction between flexurally-vibrating plate and medium
placed above the plate.
a) - plate with a traveling flexural wave;
0) - linear force-driven plate;
6) - linear force-driven plate with hinged obstacles.
1 -medium overflow;
2 - sound radiation.

With a plate driven by a line-force, the above offset is no longer valid in the proximity of
the force application line due to the presence of inhomogeneous flexural waves. The plate
segment adjacent to the force application line and having overall width of approximately
224 o 13 starts radiating.

With linear obstacles placed on a line-force-driven plate, the medium mass overflow
offset is also disrupted near the above obstacles through the difference in flexural wave
amplitude on both sides of the obstacles. As a result of this disruption, plate segments adjacent
to obstacles, that are 24, , /3 wide each, will also radiate.

With flexural vibrations driven in a limited-dimension plate at frequency f < f., segments
of its surface adjacent to driving force application area and to the plate’s edges will radiate.
Acoustic interactions of the plate’s edges provided they are separated at a distance shorter than
1/3 of acoustic wavelength can be evaluated by Eq. [27]

Nrad = Nrad,o[li Jo(kol)] (133)
where N 6o " sound power radiated by the plate’s edges given no interaction between them;

Jo(kol) - zero-order Bessel function; | - distance between the plate’s opposite edges; sign «+»
corresponds to a symmetrical wave field in the plate in the direction of I, sign «-» corresponds to
an asymmetrical field.

Additional information about the radiation of flexurally-vibrating plates can be found in
[27, 28].
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1.4.4 Sound Radiation of Cylindrical Shells

The process of sound radiation of a cylindrical shell is much more complex than that of a
flexurally vibrating plate due to the curvature of the shell surface. However, for some practical
purposes, relatively simple expressions suitable for engineering assessment can be offered. For
example, with a flexurally vibrating cylindrical isotropic shell whose length exceeds an acoustic
wavelength, the sound power radiated by the shell can be evaluated by the equation for an
oscillating cylinder given in Table 1.7. For this case we have
N, = %ﬂ'lepOCO(koR)?’foz . (1.34),

rad

where | and R - length and radius of shell; éo— amplitude of shell surface velocity along the
direction of vibrations.

Equation (1.34) is suitable for frequencies at which the length of a flexural wave in the
shell far exceeds its diameter (Aniex >> 2R). The shell radius, in its turn, is to meet condition koR
<1 (see Table 1.7).

Equation (1.34) is correct at frequency f < f», i.e. that frequency at which the first
pattern of shell vibrations (lobar modes) in a cylindrical shell (n = 2) is formed. For example,
for a the case of the shell length far exceeding its diameter, with equation for resonance
frequencies of cylindrical isotropic shell from Table 1.5 taken into account, we have with n = 2
and A—o0

f, ~c, yhy, /(4R?). (1.35)

At high frequencies, the wavelength of flexural waves, propagating along the shell and
around its circumference, exceeds that of an acoustic wave, so that the shell’s entire surface
becomes an effective source (o,,, =1). In accordance with Egs. (1.20) and (1.21), we have for

this case

rad

N, = 27Rp,C,lEL . (1.36).

The estimated frequency limit of (1.34) and (1.36) applicability can be obtained from the
condition koR = 2.
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2 SOURCES OF ACOUSTIC VIBRATION ON SHIPS AND ITS MODES OF
PROPAGATION

2.1  Sources of Acoustic Vibration on Ships, Spectra and Levels

The major sources of acoustic vibration on ships are its main engines, auxiliary
machinery, ventilation and air conditioning systems, hydraulic systems, and propellers.

The main engines of most modern ships are internal combustion engines (ICE), gas, and
steam turbines.

The vibrations of ICE's are caused by the explosive-like combustion of fuel in cylinders
and impacts of reciprocally-moving parts (piston reset, valve impacts, etc.). Its exhausts and air
intakes, plus the internal compressors of ICE’s further enhance ICE vibration activity. Sources
of ICE vibration are normally of an impulsive nature; that is why ICE vibration typically appears
as a wide-band spectrum as the background in which some discrete ingredients caused by
compressor rotation sometimes appear. A typical spectrum of this type is shown in Fig. 2.1. The
discrete components in ICE vibration spectrum appear at relatively high frequencies (above
about a kilohertz).

Empirical equations to evaluate vibration levels for engine foundations depending on
power at propeller shaft rate are given in [55].
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Figure 2-1. ICE vibration spectrum at Af = const. f; - blade frequencies for air
intake compressor, i =1,2,3; Frequency - Hz.

An estimate of vibration levels for foreign-made ICE's in third-octave frequency bands is

given by the equation taken from [29]
NP *(1+PR /M)
1+ (f /1500)°M /P

L,(dB) =10log +3OIogN£+ZOlog f -16 (2.1)

where M - engine weight, kg; N; - rated frequency of engine rotation, min™; N - operating
frequency of engine rotation, min™; P; - rated power, kW: - dB.

For Russian ICE's, Eq. (2.1) can be used with comparative assessment of value L, when
the above parameters have different values.
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Data on ICE vibration are given in [11]. Vibration levels for one of the ICE types,
measured in octave-band frequencies, are given in Fig. 2.2. Note that the ICE is the most
vibroactive of the ship's equipment.

Gas and steam turbines are normally used on ships in combination with reduction gears.
In such cases the vibration spectra differ from that of an ICE alone since multiple discrete
ingredients occur over the entire audio frequency range both at rotation frequencies of the rotor
and gears and their harmonics f. =N,i/60, f, =N;i/60, (N, -rotor rotation frequency, mint;

i=1,2,3...) and at gear mesh frequencies of gears f, = N z/60 (N - frequency of gear rotation
in reduction gear, min'; z - number of its teeth).

Levels of vibration in third-octave frequency bands are roughly calculated by Eq. [29]
L,(dB)=5.5logP. +10log(P/P,)—-13log(f /32)+20log f (2.2)

where P;. rated turbine power, KW; P - power transmitted to reduction gear, KW.

The auxiliary machinery maintaining ship operation are primarily diesel-generators and
various electric current converters.

The vibration spectra of diesel-generators resemble those of ICE (see Fig. 2.1), with the
possible addition of discrete components resulting from the inhomogeneous nature of the
magnetic field in the gap between stator and generator rotor (magnetic vibration). These
components’ frequencies are within the range of 0.1 - 4 kHz.
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Figure 2-2. Levels of vibration for ICE of 64 PIIH 36/45 type in octave frequency
bands; klMu— kHz.

The vibrations of electric converters comprising electric motors and generators stems
from rotation of bearings, friction of brushes, aerodynamic phenomena around rotating parts, as
well as magnetic vibration. Discrete components at rotation rate and magnetic vibration
frequencies and their harmonics are usually visible as the background of the continuum of
converter vibration spectrum.
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Figure 2-3. Levels of vibration of electric converter in third-octave frequency
bands.
1 - rotation frequency
2 - blade frequency of a cooling fan
3 - generator’s magnetic vibration
4 - engine’s magnetic vibration.

Vibration level spectrum for electric converters [13] is shown in Fig. 2.3. Discrete
components at converter’s rotation frequency, cooling fan’s blade frequency, as well as
frequencies of the engine’s and generator’s magnetic vibrations are clearly visible.

The fan is a major source of vibration in a ship's ventilation system. Aerodynamic forces
acting upon the air duct walls as a result of turbulent air flow also provide a vibration source in
these systems.

A fan’s vibration spectrum normally consists of both wide-band and discrete components.
The wide-band part of the spectrum originates from the rotation of the fan and drive bearings, as
well as aerodynamic phenomena resulting from motion of rotating parts (vortex separation, etc.).
Discrete components are caused by the imbalance of rotating parts and interaction between fan
rotor blades and the inhomogeneous nature of the air flow. Frequencies of these components
match frequencies N of fan rotation and its harmonics f, = N i/60, as well as blade frequency

and its harmonics f,, = N zi/60 (z - number of rotor blades; i = 1,2,3,...).

A typical fan vibration spectrum is shown in Fig. 2.4. We see intense discrete
components with frequencies in the low and medium audio frequency range. Similar phenomena
also take place in air-conditioning systems. There are no data in the reference literature on
vibration levels for ship fans and air-conditioners.

In hydraulic ship systems, the major sources of vibrations are pumps, which are
predominantly of the centrifugal, piston or screw type. In addition, vibrational energy originates
in the shutoff and regulating valves of systems, with moving fluids as the operating medium, as
well as in pipeline walls excited by the moving liquid.
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Figure 2-4. Fan vibration spectrum with Af = const. if, - rotation frequency and its
harmonics; ify, - blade frequency and its harmonics; i=1,2,3;
frequency - Hz.

Pump vibration spectra, like those of fans, contain both wide-band and discrete
components. The wide-band component owes its appearance to rotation of pump and drive
rotation, as well as turbulent pressure pulsations and eddies in the operating medium flow. The
discrete components are caused by mechanical and hydrodynamic misbalance in the pump plus
interaction between blades or teeth and the inhomogeneous nature of the fluid flow. The
frequency of misbalance-related discrete components is  fur = Ni/60; the frequency of discrete
components related to the inhomogeneous nature of the flow is f; = N z i/60 (N - frequency of
rotation of the pump’s operating element, min™; z - number of blades, pistons or teeth: i =
1,2,3,..).

Vibration spectrum typical for pumps is given in Fig. 2.5. The spectrum contains a
considerable number of discrete components at low and medium audio frequencies. The least
distinct are discrete components at frequencies if; for screw pumps. There are no data in the
reference literature on ship pump vibration levels.

Vortex separation and cavitation are a cause for vibration in shutoff and regulating valves
of hydraulic systems. This vibration spectrum is typically identified by its wide-band high-
frequency nature provided there is no self-excited vibration originating with the liquid flowing in
valves. Some data on valve vibration are given in [28].

With liquid flowing in pipelines of hydraulic systems, acoustic vibration is caused in
pipeline walls due to pressure pulsations in the operating medium flow. This vibration spectrum
is normally of wide-band nature. Its levels may be determined, according to [29], by equation

L,(dB)=L, +25log f +5logr —10Iog(1+16£) —106 dB (2.3)
r
where r - internal radius of pipeline, m; h - pipeline wall thickness, m; L, - level of sound

pressure in the operating medium; values of L, for some types of pumps may be roughly
determined from Fig. 2.6 [29].
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Propellers also provide a source of sound vibration on ships. Rotation of propeller blades
gives rise to intensive hydrodynamic forces that act upon a ship's aft plating and excite vibration.
These forces result from interaction between propeller blades and the inhomogeneous nature of
the incoming water flow and have discrete spectrum with frequencies f, =Nz i/60 (N -
frequency of propeller rotation, min™; z - number of propeller blades; i = 1,2,3,...).
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Figure 2-5. Spectrum of pump vibration at Af = const. if, - rotation frequency

and its harmonics; if; - pump frequency and its harmonics;
i=1,2,3,4; f—Hz.

el

Figure 2-6. Levels of sound pressure in pipeline on the side of intake for some
types of pumps in third-octave frequency bands.
1 - piston pump
2 - screw pump
3 -- centrifugal pump; Frequency klNu— kHz.
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Figure 2-7. Levels of vibration of the ship aft plating above cavitating propellers
in octave frequency bands.
1 - vibration range measured on ships with various clearances
between propeller edges and hull
2 - calculation with 0.6-m clearance; Frequency kI'y - kHz.

In addition, because of propeller blade cavitation occurring, the stern overhang plating is
acted upon by wide-band forces at medium and high audio frequencies. There also are wide-
band hydrodynamic forces stemming from turbulence of counter water flow. These forces
originate at low and medium audio frequencies.

The larger the distance between propeller blade edges and the hull, the milder are the
forces acting on the hull. The magnitude of these forces also depends on the inhomogeneous
nature of the water flow velocity field in the propeller disc, and on the number and shape of the
propeller blades.

Levels of hull plating vibration above cavitating propellers measured on ships with
various values of the above-mentioned clearance are given in Fig. 2.7 [29]. Also shown are
values for these levels calculated in [28] with 0.6-m clearance. The good agreement between
measured and calculated results is obvious. The maximum levels of hull plating vibration caused
by a cavitating propeller are found at low frequencies.

Experimental equations to evaluate hull plating vibration levels in proximity to propellers
depending on shaft power are given in [55].

Vibration related to structural excitation by a liquid flow occurs in areas below the
waterline. External walls of these rooms may vibrate intensely driven by pressure pulsation in
the turbulent boundary water layer.

The spectrum of hydrodynamic forces acting on these walls is normally of a wide-band
nature. Spectrum of vibration driven by these forces in room walls may include discrete
ingredients caused by more intensive vibrations of overflowed structures at their resonance
frequencies. At low speed this vibration is negligible.

Vibration in air duct walls results from pressure pulsations in the gas flow coupled with
vibration in the same walls caused by the sound pressure of noise transmitted via the air duct
from a fan of an ICE.
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Collisions (impacts) of loosely fixed bilge boards, pipelines, and other elements of ship
structures that result from hull vibration of a moving ship provide acoustic vibration sources.
These collisions produce jarring and clanging that is extremely unpleasant for hearing.

Acoustic vibration in room walls is induced by excitation of a room floor by sound
pressure of air noise radiated by equipment placed in the room. Level of this vibration is
determined by Eq. [20]

L; :Lp+10|ogﬂ+10|og’7f—ad (2.4)
Shp Trad T+ in
where L, - level of sound pressure in the room; V - room volume, m®; S, h, p -- area, thickness
and density of the driven floor material respectively; 7raq - l0Ss factor in the driven floor dictated
by its sound radiation; 7, - internal loss factor in the same floor; « = ni/n, - density ratio for
resonance frequencies of the room and driven floor, n; = &®V/(27 ¢o°), N, = @ S I(7cq?); Co -
speed of sound in the room; cy - phase speed of flexural waves in the excited floor.

Main vibration sources layout on board is shown in Fig. 2.8.

7'2/11 10

Figure 2-8. Main vibration sources on board and their ways of spreading over
ship structures.
1-ICE; 2 - thrust bearing; 3 - propeller; 4 - fan; 5 - air flow and noise
in ventilation system air duct; 6 - air flow and noise in ICE exhaust
system air duct; 7 - point of noise-induced vibration origination in the
room; 8 - hydraulic system fittings; 9 - pump; 10 - water overflowing
hull plating; 11 - vibration sources; 12 - vibration spreading routes;
13 - sound radiation of room walls
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3 VIBRO-ACOUSTIC CHARACTERISTICS OF SHIP STRUCTURES
3.1 Mechanical Impedance of Ship Structures

3.1.1 Basic Definitions

The mechanical impedance of a structure is defined as the ratio of the structure-
exciting dynamic force to the force-induced vibration velocity (assuming harmonic time

dependence of the form e’ ). The real and imaginary parts are defined as the
mechanical resistance and inertia respectively. With F, the force driving a structure, its

input impedance Z_ equals the force divided by the vibration velocity él and is given
by
Zp, =F & . (3.1)
For a moment M, driving a structure, its input impedance is the ratio of the
moment to the angular velocity 6, of the structure at the drive point Zy, =M, 16,.

The transfer mechanical impedance Z, , with the force F, acting on the

structure, is the ratio between this force and the vibration velocity éz at any point of the
structure (other than the excitation point)

Z.,=F1& . (3.2)
Similarly with a moment M; driving a structure:
Zy, =M, 16, . (3.3)

By multiplying and dividing right parts of expressions (3.2) and (3.3) by él and
6, , we obtain

ZF12 :Zﬁlélléz :ZFll’uflz

ZM12 - ZM1101/02 - ZMnﬂélz

where 1o and My, are transfer characteristics of the structure describing the

relationship between vibrations at an arbitrary point of the structure to those at the
excitation point.

The input mechanical impedance of a structure is an important parameter as it
determines the magnitude of vibration power received by the structure from a source.
For example, with F; the amplitude of the force driving a structure, this power is given
by [28]
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_ F? cos¢ _ F’ Re{Z . }
" Yz, Jz.,.|

where ¢ - phase angle between the force F; and the vibratory velocity &, , and
Re{Z, } -real part of Zg1y; ‘Z Fn‘ is the modulus of Z .

The larger the mechanical impedance of a structure, the lower is the vibrational
power transmitted to the excited structure from a source. Therefore, to reduce such
power and, subsequently, the acoustic vibration in hull structures, an increase in their
mechanical impedance at the source attachment area is needed. Increasing this
impedance also increases the effectiveness of the structure-mounted equipment vibro-
isolation.

There are three types of mechanical impedance: these are inertial, elastic
(stiffness), and resistive. Inertial resistance is a characteristic of the undeformed (rigid)
mass M, given by Z. = joM . The elastic or stiffness-like impedance characteristic of a

mass-less spring with rigidity K is
Zr=Kljo . (3.4)
Resistance results from the absorption of vibration energy in structures. In ship
structures, this resistance R is normally proportional to the vibration velocity. Generally,

the impedance of a vibrating system with one degree of freedom, made up of impedances
of M, K and R with respect to the force F, applied to the mass is equal to

Z.=ReZ. +jlmZ. =R+ j(oM —K /o) .

If Re Zg =0, then ¢ = +n/2 and cose =0. Note that N = 0, since the phase shift
between force and the force-induced velocity equals n/2, and, therefore, the velocity
vector projected to the force application line is zero. In this case, as is known from
mechanics, the work expended by this force is equals to zero.

For a structure, in which R = 0, there are no traveling acoustic vibrations.
Interaction between a force source and the driven system involves energy exchange. In
the process energy accumulated by the system for a quarter of the oscillation period is
returned to the source within the following quarter period.

For the case Re Zg # 0 (cos¢ = 0), some energy is not returned to the source; the
remaining energy spreads over the structure in the form of vibrations. With Im Zg=0
(cos @ = 1), energy exchange between the source and the systems stops. In this case, all
energy passes from the source to the structure, spreads over it in the form of vibrations,
and has its maximum value. The frequency at which Im {Zr }= ® M - K/® = 0 is called
the resonance frequency of the system. This frequency is given by the equation

f, =1/27)vK/M . Atthe frequency f = f,, the value Zg¢ is minimal and equals the
effective resistance, i.e. Zg min = R.

The frequency response for the impedance of a vibrating system with one degree
of freedom is given in Fig. 3.1. At low frequencies, the system impedance is stiffness-
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like; the impedance becomes minimal at the frequency f = f, and then rises proportional
to frequency as the inertial component predominates in the system.

With excitation through the spring element of a vibrating system with one degree
of freedom, with M, K, and R impedances, its impedance dynamics are totally different.
This impedance with respect to force F equals

oM (4 R)
Jo

Z, =
joM + £ +R

jo
when oM = K/, Z reaches its maximum value. The frequency at which this happens is
called anti-resonance, and it equals f,, =(1/27)vK/M . Frequency response for
resistance Zg is shown in Fig. 3.1.

In the low frequency range, the system impedance is of the inertial type and
increases with frequency passing through its maximum, which equals Z_  ~ o’ M?[R,

max2
and then decreases as frequency increases since the elastic component of impedance
becomes dominant in the system.

a)

Ze

Figure 3-1. Frequency response for mechanical resistances Zg of systems
with various degrees of freedom.
(a) - one degree of freedom (force acts through mass)
(6) - one degree of freedom (force acts through the spring)
(8) - two degrees of freedom.

With an increase in the number of inertial and stiffness elements of a vibrating
system, the impedance frequency response becomes more complex. For example, for a
system with two degrees of freedom from Fig. 3.1, the frequency response of the
impedance has two extreme values: maximum at frequency f,, and minimum at
frequency f,. Therefore, the system has one resonance frequency and one anti-resonance
frequency.

The general principle of determining the number of extreme values in the
impedance frequency response for vibrating systems with several degrees of freedom is

50



that such values number equals i-1, where i - number of inertia and elastic elements in the
system.

The term mechanical resistance is sometimes used instead of mechanical
impedance. The reciprocal of mechanical impedance is called mechanical compliance Y,

Y =1/Z. (3.5)

Another term for Y could be suggested to better reflect this value’s physical
essence. This term, in our opinion, could be vibration excitability since the larger the Y
of a structure, the greater is the excitation of vibration in this structure.

For cases in which energy parameters of acoustic vibration are used for noise
level calculation, for example, energy density in a structure proportional to the root-

. . . N\ 2 .
mean-square velocity at a given structure point <§> , effective (or energy) structure
impedance [28] is sometimes used:

Ze =N, 1(&) (3.6)

where Ng - vibrational energy flow (vibration power) passing through the same structure
point. Expression (3.6) is derived directly from Eq. (3.1) by multiplying of numerator

and denominator by &.

3.1.2  Mechanical Resistance (Impedance) of Simple Structures

Real ship structures are normally modeled as three-dimensional structures made
up of rods, plates, and shells. That is why it would be reasonable to start the impedance
calculation for these structures by determining the impedance of simple (elementary)
structures of finite dimensions.

The precise determination of the mechanical impedance of such finite dimension
structures as rods, plates, or shells is in most cases impeded by the complexity of
boundary conditions. The approximation for this parameter is possible as exemplified
below by a cantilever-type finite rod with a free end.

The input mechanical impedance of an I-length free-ended rod to a transverse
force F acting at either end [27] is

D(v)

Zp =—]Zy BU)

where Z,. - rod’s wave impedance, Z,. =mc,, D(v),B(v) - Krylov Functions [18],
D(v) =coshvcosv -1, B(v) =coshvsinv —sinhvcosv -1, v =k;1.

Losses in the rod are accounted for by the complex representation of the flexural
wave number K =k, o(L- jr, /4).

At low frequencies
Z. =~ jomyl3/8, (3.7)
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which corresponds to the inertial impedance of an undeformed I-length rod segment that
rotates around the center of gravity as the force acts upon the rod. With the F-force
acting upon the center of gravity of the rod’s same segment, its resistance (impedance) at
similar frequencies, Z- = joml, i.e. it has a greater value since no rotation occurs in

this case.

At high frequencies (vn/4 >> 1), the rod impedance becomes
z .
Ze z%(l+ 1) =2 (3.8)

where Z_, — characteristic rod impedance, i.e. the impedance of a semi-infinite rod to F-

force. For arod of considerable length and high loss factor, flexural waves driven by F-
force and reflected from its opposite end do not return to the excited end and have

virtually no effect on its input impedance. Since Z,. =mc, « \/T the value of the
characteristic impedance increases proportional to the square root of frequency.

As the above rod provides a system with an unlimited number of degrees of
freedom, the resonance and anti-resonance minima and maxima of the rod impedance
occur at medium frequencies (Fig. 3.2). The same figure shows curves for values Zg min
and Zr max passing through the extreme points of the impedance Zg. These values are
given by the equations

cothv, + j

Z _  + J
*" 1+coth?v,

F,min =

(3.9)

Z )
ZF,max = ;F (cothv, + J)

where v, =k I /4. It seems obvious that Zr min Zr max = | Ze. |2 With vy >> 1, Egs.
(3.9) and (3.8) coincide. With v; <<1, Eq. (3.9) are approximated as

ZF min = Zor V1, ZF max = Zor/ (2v1), (3.10)
which corresponds to a specific case of the problem studied in [27].
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Figure 3-2. Frequency responses of input impedance modulus | Z¢ |for a
rod of a finite length driven by a transverse force F.
(a)-free-ended rod
(6) - rod with one fixed end and other free one (cantilever).

Figure 3.2 shows that the mean values of the finite length rod impedance may be
approximated at frequencies below f, by Eq. (3.7), and at higher frequencies - by Eq.
(3.8). The value of fy is determined from equality of expressions described by these

equations, f, =4c,r, /(-1)? where rg - radius of gyration of the rod section inertia.

If evaluation of minimal Z is needed, it can be carried out by Eqg. (3.9) or
approximately by Eq. (3.10).

Plots of the frequency response for the approximated mean values Zg of the given
rod is shown in Fig. 3.3. Besides Zg min, Zri and Zgy, the first resonance frequency fpi1 of
the rod to be determined by Egs. from Table 1.5 is needed to plot frequency response for
minimal values of Zr. Frequency f» value is found as the intersection point of the straight
lines drawn by the equations (3.8) and (3.10).

The input mechanical impedance of I-long rod with one end fixed and the other
one free that is driven by transverse force F equals [27]

E(v)

Z.=—jZy —2,
F | A B(v)

where E (v) and B (v) - Krylov’s functions [18], E(v) =1+coshvcosv and
B(v) = coshvsiny —sinhv cosv.

At low frequencies (v << 1)
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< 3B _Ka (3.11)

Z. =~
Fjel® jo

where Kg = 3B/I° - flexural rigidity of a cantilever with a static transverse force acting
upon it.

At high frequencies, rod resistance is described by Eq. (3.8). What differs is only
the position of resonance and anti-resonance frequencies of the rod.

The frequency response Zg for a cantilever is given in Fig. 3.2. In this case,
approximation for the mean value Zg can be done at frequencies below f, by Eq. (3.11),
at the higher frequencies - by Eq. (3.8). The frequency f, value is in this case

B 3r,c,
N7
Determination of the minimal value Zr min at the frequencies above fp; is carried

out be Eqg. (3.9). Plotting of the frequency response of input impedance modulus for the
cantilever with respect to the transverse force F is given in Fig. 3.3 (b).

2} e,

Z=| ) *F . Zr

|2

Figure 3-3. Plotting of frequency response of input impedance modulus
| Z¢ |for arod of afinite length driven by a transverse force F.
(a)-free-ended rod
(6) - rod with one fixed end and the other free one.
1 - mean values | Zr |
2 - minimal values | Z¢ |.
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Simpler but less accurate equations for determining Zg nin Of rods and plates of
finite dimensions are represented as:

-- for arod driven at its end,

Zg min & @ Mg /4 (3.12);
-- for a rod driven in the center,

Zg min & @OMyog1l2 (3.13)
-- for a plate driven at the edge,

ZE min & @M1y (3.14)
-- for a plate driven in the center,

Zr min & oMy nl4 (3.15)

where Myog = Mrog |; Mpi = My S; S - plate area. Equations (3.12) - (3.15) are suitable for
fo1 -- f2 frequency range wheref- is found from the equality Zg min = | Ze |

The impedance of structures having less than two dynamic connections (one end-
supported rod, free rod) at frequencies below £, is of an inertial nature. For structures
having two or more connections, the impedance at the given frequencies is stiffness-like
(two end-supported rods, cantilever, edge-supported plate, etc.). Ship structures are
normally of the second of the above types.

To calculate mechanical resistance of simple structures typical for a ship, it is
necessary to know:

-- flexural rigidity of the structure when acted upon by static force in the excitation
point (Table 3.1) to determine Z¢ at frequency below fp;

-- characteristic resistance of an infinite structure to incorporate the one of finite
dimensions under study (Table 3.2) to determine Zg at frequency above fp;

-- mass and loss factor of the structure to determine Zg min;
-- first resonance frequency of the structure’s flexural vibrations (see Table 1.5).

Equations to calculate mechanical resistance of some fundamental structures with
various dynamic forces are given in Table 3.2.
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Table 3-1. Static Rigidity of Structures

Structure Structure illustration Equation for calculating
structures stiffness
Cantilever & 3Brog /1°
9 1}'
E
Hinged rod excited at center 2 48B,oq /1°
of rod x=1/2 7
-G—D*F
L j
[ ——
Hinged rod excited at . 3B;oq!
distance x=I; from right end e a-1,)212
of rod
Clamped-clamped rod 12 192B,0q /13
excited at center ik
A
Circular plate: 1678 ) (1+0)

I R} T .
With hinged edges R?(3+0)

. . 2
With fixed edges 1678 /R
Square plate with hinged 37°B
edges ; 12 sin? (zx/1,)

- T
L
Rectangular plate Byl 102
ﬂ+ﬂ:4 a3 sin?(zx/1y)
iy '
Rectangular plate with three Byl 102
hinged edges and one edge

free at x=I,

F!Kl |
-3

8a2 sin?()
21,

Notes: 1. In Eq. (2) for a rectangular plate with hinged edges, value a equals 1.16; 1.38; 1.48;
1.57; 1.62; 1.65; for a clamped-edge plate - 0.56; 0.65; 0.69; 0.71; 0.72 with 1,/l, equaling 1; 1.2;
1.4; 1.6; 1.8; 2 respectively. 2. In Eq. (3), value o equals 1.16; 1.38; 1.48; 1.57; 1.62; 1.65 with
I,/1, equaling 2; 2.4; 2.8; 3.2; 3.6; 4 respectively.

56



Table 3-2. Mechanical impedance of various structures

Structure Drawing Equations to calculate structure’s
mechanical resistance
Simple structures
Mass Zg = joM
F
Spring Z. =K /(jo)
Eon
Infinite structures (characteristic resistance)
Infinite rod

ZF = 2mrodcf,rod
Z - 2mrodcf rod (1+ J)

2mrod Cf rod

2
I(f rod

Zy=—-——01-1]))

ZM = 2prod Ipcs rod

Semi-infinite rod

Trl| d kB

b=

LY

1

ZF = mrodcf,rod
ZF = mrodcf,rod (1+ J)

_ 2mrodc;f,rod

M T 2
2kf,rod

)

ZM = prod I RCs,rod

S7




Table 3-2. Mechanical impedance of various structures (Cont.)

Structure Drawing Equations to calculate structure’s
mechanical resistance

Infinite structures (characteristic resistance) (Cont.)

Infinite uniform plate i Z. =8/m B,

Z.=j8G N, o

pl" pl

BE 04

. 7 168pI
M 41
oll-"1In(0.9k, ,a)]
Vi
7 - j8zh,a’G,,
9

Infinite orthotropic plate

{

g

Semi-infinite structures

Semi-infinite uniform

! Z.=23,/m,B,
plate with a free end

, 5.3B,,
" w[1-1.46 jIn(0.9k, ,a)]

Infinite cylindrical
uniform shell

/ f .
Zp =4ymgpBgp E(l_ D f<fg

NIRARY

ZF =8 msthh, f>fR




Table 3-2. Mechanical impedance of various structures (Cont.)

Structure Structure illustration Equation for mechanical
impedance of structure

Finite Dimensional Structures

Finite length rod
ﬂ- 7 Zp =—]mgCy  COtuy,

o

L = jmstcf,st tanvy,

E(vq)
D(vy)
B(vq)

L
L,
L,
) L
__5 F = JMgCs o m
I'g

T 7 = My Cr o B(Vy)
‘5__:, F =
1 7 = -mstcf,st D(Vfl)
F

- - kﬁ,st A(vy)

ZF = _jmstc

ZF = _jmstc

kﬁ,st E(vy)

=

Note: a - radius of a plate’s rigid segment acted upon by bending moment; B1, B2 - flexural
rigidity of an orthotropic plate in mutually perpendicular directions;

Vi = ky 15 A(v), B(v), C(v), S(v), D(v), E(v) - Krylov’s functions;

A(v) = coshv sinv + sinhv cosv;

B(v) = coshv sinv - sinhv cosv;

C(v) = 2coshv cosv;

S(v) = 2sinhv sinv;

D(v) = coshv cosv - 1; E(v) = coshv cosv + 1.
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3.1.3 Mechanical Impedance of Composite Structures

There are few structures on board ships that are defined as simply as those
considered in 3.1.2. Most real-life structures consist of several simple structures joined
together to provide a complex composite structure. The physical and mathematical
modeling of the mechanical impedance of such composite structures is worked out based
on the following.

If the elements of the composite structure, when acted upon by a driving dynamic
force have identical vibration velocity, they are taken to be connected in parallel;
otherwise they are connected in series. The mechanical impedance of a composite
structure, consisting of n parallel connected elements, equals the sum total of the

mechanical impedances Z; of the individual elements, i.e. Z = zn:Zi .
i=1

For a structure made up of n in-series connected elements, their input mechanical

compliance values are summed asY = iYi . If the input impedance value of the
composite structure is to be known in tlﬁ}s case, refer to Eq. (3.5).
Example: Mass M with impedance Zyr = jo M is placed on an infinite plate with
impedance Z,, =8m . For the force F acting upon the mass in the direction
perpendicular to the plane of the plate, the displacement amplitudes of the mass

and plate are the same, and their impedances are summed, therefore, the
composite structures impedance becomes

g = Zp|,|: + ZM,F . (316)

If a spring with impedance Zx = K/ jm is placed on the same plate and force
F acts upon the spring along its axis, spring and plate displacement amplitudes are
different. Therefore, compliance values are summed: Y = Ypir + Yk

Composite structure impedance is governed by Eqg. (3.5) in this case

Z Z
Eo = L __PLFTKE (3.17).

Equations (3.16) and (3.17) are graphically displayed in Fig. 3.4. In the case of an
n-parallel connection of impedances, their total value is dictated by minimal values of the
separate elements’ impedances. With impedances connected in series, their total value Zx
is governed by maximum values of the separate elements’ impedances.
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3.1.4 Vibration excitability of ship structures

The vibratory response of hull structures, or the level of their response to applied
dynamic forces, is inversely proportional to these structures’ mechanical impedance.

Ship machinery is normally mounted on hull structures with the use of
intermediate-units called foundations (bed-plates). Therefore, ship structures’
mechanical impedances are calculated assuming they are composite structures that
consist of a foundation (bed-plate) and a floor (deck, bulkhead) to accommodate the
foundation (bed-plate).

Two types of foundations are most common: supported (bed-plate) foundations
and cantilevered (bed-plate) foundations. Let us take these types into consideration when
calculating mechanical impedance. We shall use for calculation the method given in
[54].

A support foundation drawing is given in Fig. 3.5, (a). The total displacement at
the point of application of force F on such a foundation is composed of the mounting
floor displacement and the displacement (bending) of the foundation bed-plate. These
displacements are not generally equal. Therefore, the cumulative foundation impedance
Zg is determined by successively including Z, , the floor impedance, and Z ; , the

impedance of the foundation’s mounting plate. In this case, by using Eq. (3.17) the
impedance is given by

ZpLLpl

Zp =7l
ZpL + 2y

The mean impedance value for the floor, Z | at frequencies greater than foq, is
calculated by Eqg. (4) from Table 3.2, representing the floor characteristic impedance; and
at lower frequencies by Eq. (3.4). Here the static rigidity K, of the floor is determined by
the Eqgs. (1)-(3) of Table 3.1. For a rectangular floor, for example, the value of K is
calculated by Eq. (2) of this table. The value of frequency for is determined based on
the equality of Egs. (3.4) and (2) from Table 3.1 or the Z; frequency response diagram
(Fig. 3.6). When determining the characteristic impedance of the floor reinforced with
stiffening ribs, the ribs’ flexural rigidity is to be considered.

Mean impedance of the foundation’s mounting plate at frequencies above fo is
determined by Eq. (2) of Table 3.2, and at lower frequencies - by Eq. (3.4) in which K
can be evaluated by Eq. (1) of Table 3.2. Value of the frequency fo is determined
similarly to for..

Figure 3.6 shows frequency responses | Z¢ | for support foundation placed in the
center of a horizontal floor, with cross set of stiffening ribs. The geometric parameters
for the foundation (bed-plate see Fig. 3.5) are: Ly =0.9m, Hy =04 m, | =03m,L=
0.1 m, hy = 0.008 m (transverse force acts in the center of the middle mounting plate of
the foundation). The geometric parameters for the floor are: dimensions 2.1x2.1 m?, h; =
0.006 m, and the floor is reinforced with five stiffening ribs of bulbous-plate ribs (type
#12) in one direction and five stiffening ribs (type #8) in the other (all stiffening ribs are
positioned at equal distance one from another).
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The total impedance of a foundation-floor Zs with respect to a transverse force F
is governed by the impedance of the foundation’s mounting plate since the floor
impedance generally exceeds it considerably. Thus, for an approximate evaluation of Z¢
of the foundation-floor assembly, the evaluation of its mounting plate’s impedance is
enough.

The above prompts some suggestions concerning an increase in the mean
impedance Z,, of the support foundation. At frequencies over f, ,, augmentation of

Z , can be achieved by increasing the mounting plate’s thickness hy, only, since Z , is

proportional to hp|2 as seen from Eq. (2) of Table 3.2. Doubling of thickness hy, leads to a
fourfold rise inZ ;.

At frequencies below fop, in order to increase impedance Z , the static rigidity

K, of a foundation’s mounting plate has to be increased. To achieve this, it is suggested
that one position the force F application point as close to the plate’s fixed edges as
possible. This becomes obvious from Eq. (3) of Table 3.1. Increasing the mounting
plate’s thickness provides another way of increasing Ky as Kp is proportional to h°.
Reinforcement of a free edge of the foundation’s mounting plate with a strap is also
recommended as seen from comparing Eqgs. (2) and (3) of Table 3.1.

Fig 3.7 shows both calculated and measurement results for the mechanical
compliance of a floor whose geometric parameters are given above as compared to those
of a support foundation placed on this floor. Good agreement between these results is
obvious.

Figure 3.7 also provides calculated values for some resonance frequencies at
which the structure's compliance becomes maximum. First resonance frequency of
flexural vibrations of the floor (f,1 = 122 Hz), calculated by Eq. (9) of Table 1.5, agrees
well with measurement data (fp1 = 125 Hz). Also in good agreement are the first and
second resonance frequencies of flexural vibrations of the foundation-floor’s mounting
plate, calculated by the Egs. (5) and (6) of Table 1.5 (f,1 = 493 Hz, fy, = 2160 Hz), and
measurement results ((fp1 = 500 Hz, fp2 = 2000 Hz).

-1
pl,min
mounting plate, calculated by the Egs. (3.5) and (3.15) with n = 0.173. This value of the
loss factor is determined by Eqg. (3.30), considering the vibration energy leakage from the
plate through its perimeter for which the energy transmission coefficient is assumed as
0.2 in accordance with the equation of Table 3.4 for the plate’s angle connection.

Figure 3.7, (a) gives maximum compliance Y p| max = Z of the foundation’s

The total displacement at the point of application of a transverse force applied to a
cantilever foundation’s mounting plate (see Fig. 3.5(a)) is made up of the displacement
(bending) of the foundation’s mounting plate and displacement of the foundation as the
result of its rotation caused by the moment of force F centered at a distance Lg from a
bulkhead. These displacements displacement are not generally equal to each other.
Therefore, impedance Zor of the foundation governed by its rotation and impedance Z, of
the mounting plate is to be viewed as connected in series. According to Eq. (3.17),
impedance
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Zn,FLo,F
Zp = PETOF
Lo F+LpF

Value of mean impedance Z | ¢ for this case is calculated in a manner similar to
that of the support foundation.

The mean impedance Zy g at frequencies f < fpy is determined by the equation

4Bgl

ZoF = (3.18)

2
jal? (i +12)
3
where Bg - flexural rigidity of bulkhead-reinforcing vertical stiffening ribs directly
linked to the foundation knees (Fig. 3.8).
At frequencies f > fgy
_Aomg(1-j)

2.3
LEKS R

Zo, (3.19)

where m, -mass per unit length of stiffening ribs that reinforce a bulkhead vertically.

Frequency fgy is determined by either equating Egs. (3.18) and (3.19), or

plotting a chart as shown in Fig. 3.8 (a). Figure 3.8 (a) also provides the frequency
responses Zy F and Z, ¢ calculated by the Egs. (3.19) and (4) of Table 3.2, for a

cantilever foundation (bed-plate) with parameters L =0.2 m, Ls =0.3cm; ls = 0.3 m, hs
= 0.008 m placed on a bulkhead with parameters | =2 m, ;=1 m, B, = 3¢10° kgem?, m,
= 0.078 kg (stiffening ribs from bulb plate #12). Total mean impedance Zs of the
cantilever foundation is dictated by impedance of its mounting plate in all audio
frequency range. Similar results stem from [54].

Calculation of mechanical impedance of foundations of other types can be done in
the same fashion as for support foundation and cantilever foundation patterns.
Recommendations concerning a problem of increasing impedance of cantilever and other
foundations are analogous to those given above for a support foundation.

Elements of ship foundations are usually attached both to reinforcing framing and
to floor plates. Figure 3.9 gives frequency response for input impedance of stiffening rib-
reinforced floor driven by concentrated transverse forces directed to framing 1 cross and
a plate placed between neighboring stiffening ribs 2. Floor parameters are the same as in
the case illustrated in Fig. 3.6. Calculation of floor impedance with forces acting upon
the plate of the floor is done with reinforcing framing’s flexural rigidity taken into
account. Calculation of impedance at frequency above first resonance frequency of a
plate placed between neighboring stiffening ribs is carried out by Eq. (2) of Table 3.2.

Figure 3.9 shows that, with excitation of a ribbed floor directly to the plate, its
impedance, with the exception of very low frequencies, is considerably lower (up to 100
times) as compared to the excitation of the reinforcing framing. Hence it follows that the
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attachment of vibroactive elements to hull structure framing is recommended. The
attachment of framing is a major way of raising the mean impedance of floors.

Consider the case of distributed forces, driving ship structures, such as those
generated on the room-enclosing structures by incident noise acoustic pressures. The
vibratory response of the floor thus driven, represented as a ratio between root-mean-

square level of the floor’s vibration velocity <§E > and the root-mean-square sound

pressure < p§> in the room, equals [48]

()
F Vorlrad NFL

<p§> ~ SELMELPOCO (rad +77in) No

where Vo - room volume; S; - floor area; 7,,4and 7;, — floor loss factors governed by the

floor’s sound radiation and absorption of vibration energy, respectively, in it; ng and ng -
density of resonance frequencies of floor and room vibrations. By increasing its

mass mg,_, and lowering the density of its resonance frequencies by adding to its rigidity
the vibratory response of the floor in this case is decreased.

Zanr

i
%
7y %
-
;l

Figure 3-4. Frequency responses for composite structures’ impedance
modulus.
(a)— infinite plate with mass
(0) - infinite plate with spring

B
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Figure 3-5. A support (a) and cantilever (6) foundation drawing.

Figure 3-6.

1 - foundation’s mounting plate

2 - knees

3 - mounting floor
4 - foundation’s support links (brackets)

5 - bulkhead
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Frequency responses for mean impedance modulus of support
foundation and mounting floor.

1 - calculation of Z,. by Eq. (2) of Table 3.2

2 - calculation of Z,. by Eq. (3.4)

3 - calculation of Z,- by Eq. (4) Table 3.2
4 - calculation of Z - by Eq. (3.4).
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Figure 3-7. Frequency responses of mechanical compliance of rectangular

floor (a) and support foundation placed on this floor (0).

1-4 - designation analogous to Fig. 3.6

5,6 - measurement results (less vibration -absorbing facing)

7 - measurement results with vibration-absorbing facing on the
floor

8 - minimal compliance of the foundation’s mounting plate
[calculated by Egs. (3.5) and (3.15)]; f - kHz.
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Figure 3-8. Frequency response for mean impedance modulus of a
cantilever foundation (a) and its drawing (o).
1 - calculation of Z& by equation (3.18)
2 -- calculation of Zg by equation (3.19)
3 -- calculation of Zi by equation (3.4)
4 -- calculation of Zi by equation (4) of Table 3.2
5 - cantilever foundation
6 - stiffening ribs of bulkhead
7 - bulkhead.
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Figure 3-9. Frequency response of input mean impedance modulus for a
floor driven by transverse force directed to reinforcing framing
cross and a plate between neighboring stiffening ribs; f— kHz.

3.2 Spreading of Acoustic Vibration Along Ship Structures

3.2.1 General

The vibrational energy that resides on ship structures, due to the sources of
vibration excitation, spreads along structural elements to various areas of the ship hull.
This process is usually called propagation of acoustic vibration over ship structures.

The major part of vibrational energy spreads over the ship structure in the form of
flexural waves. This results from the higher compliance of these structures with respect
to transverse forces and bending moments as compared to other kinds of dynamic forces.
However, other types of waves may also transmit vibrational energy over ship structures.
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These arise due to the transformation of flexural waves at structural irregularities peculiar
to some ship elements.

The amplitude of acoustic vibration propagating over ship structures gradually
diminishes due to the absorption of some energy of vibration and reflection at obstacles
on its way. Among those obstacles are various structural irregularities of ship elements
such as changes in thickness of plates at their connection, stiffening ribs and others. In
two-dimensional structures, the decrease of acoustic vibration amplitude in propagation
also occurs by virtue of cylindrical spreading of the wave front.

The physical mechanism of acoustic vibration spreading over ship structures
largely depends on the vibration frequency. At low frequencies, wave representation is
usually utilized featuring amplitude and phase of structure’s acoustic vibration. At high
frequencies, energy representation of acoustic vibration spreading over ship structures
proves to be easier and more convenient for use. It employs energy parameters of this
vibration representation (density and flow of energy).

3.2.2 Propagation of Acoustic Vibration Along Uniform Structures (Wave Theory)

A uniform structure is one having no intrinsic obstacles in the way of elastic
waves, for example, a rod with constant cross section, a plate with constant thickness, a
cylindrical shell with constant parameters and wall thickness.

A decrease of vibrational energy during elastic wave propagation in such
structures occurs by absorption of these waves in the structure’s material. The
mathematical approximation of absorption involves the use of a complex representation
of the respective wave numbers k. The representation of the wave number is: for flexural
waves, ks = ko (1 - jn/4); for dilatational waves, k| = ko (1 - jn/2); for torsional waves, ks
=kspo (1 - jn/2); and for shear waves, ks = kso (1 - jn/2), where n -- loss factor for
vibration energy in a structure.

The distribution of flexural wave amplitude along a rod length is described by the
equation
E(y)=£(0)e e (3.20)
where y - coordinate plotted along the rod in the direction of positive values; & (0) -

flexural displacement amplitude at the excitation point; g If.0¥ multiplier describing
displacement phase; y -- wave amplitude damping indicator, y = kio /4 = 2 n/Aisp.

The flexural wave amplitude damping per unit length of the rod (beam) is given by:
A&(l) = 2.15k; gl dB. (3.21)

The larger the loss factor in the rod and number of wavelengths in the rod’s I-
length segment, the greater is the flexural wave amplitude decay on this segment. For a
low loss factor (in order of magnitude 0.01-0.001), flexural waves may propagate over
rod structures to large distances with negligible attenuation.
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The wave number for rod k¢ , can be determined by the equation k; , =@/c; ,,
where c; , is calculated by Eq. (1.8) or with the help of Table 1.4 for the frequency

range f < cCring/6@ (a is the rod’s cross section dimension in the direction of displacement
€). Values of the moment of inertia | necessary for calculations using Eq. (1.8) for some
types of rod’s cross sections may be taken from Table 3.3.

In some rare cases, the rod’s wave number at higher frequency has to be
calculated. This can be done, among other things, with the help of [21] data.

The propagation of flexural waves in cylindrical shells (for example, pipelines)
can be described by Egs. (3.20) and (3.21). They incorporate wave number
k¢ o =w@lcCy o, Where cr is determined by the relevant equations of Table 1.4.

Calculation of the frequency dependent wavenumber ki for a cylindrical shell
can be obtained approximately as outlined in the following. In the range f < fiing/3, the
shell may be regarded as a hollow rod and c; determined by the equation for such a rod
from Table 1.4 at f << fing. At frequency f > 3fo, the shell responds like a plate. In this
case Cro is determined by the equation for a plate from Table 1.4 at f > fring. Then
plotting respective responses ko Or Cto on a chart with logarithmic scale of frequency for
frequency range f < fo/3 and f > 3fo, it is necessary to connect values of these
parameters at frequencies f = fo/3 and f = 3 f, with a straight line.

Frequency fo equals [19]
o 4hg,C) o
" i2md},

where dg, is the internal diameter of shell.

The propagation of flexural waves on uniform plates with point excitation is
described by Eq. (1.13). With the absorption of vibration energy in a plate, and when
cylindrical spreading ki r > 1 (r - distance from the plate’s excitation point) is taken into
account, this equation can be approximated as

g(r) ~ é:(o) /% e*j(kf,ol’—fr/4) e (322)’

where £ (0) - amplitude of the plate displacement at the excitation point. Note, that at the
frequency 50 Hz with hy = 0.01 m, condition ksor > 1 is met for r > 24 cm. The second
factor in Eq. (3.22) describes the decrease in amplitude of a flexural cylindrical wave in
the plate, as a result of cylindrical spreading of the wave front as it travels away from the
excitation point. A doubling of the distance r through the above factor reduces the wave
amplitude by 3dB.
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about their neutral axis .

Table 3-3. Moments of inertia for cross sections of various structures

Structure Drawing Equation for calculating
moment of inertia
Plate h?,
e Loy =——
< 12(1-v?)
i o
Rectangular section rod a Irog =ab3/12
7. I 1oq = abl?
4
Jt-l'a
i
7
<A
Round section rod lrog =7d* /64

Ring-type section rod

b

lrog =7(d* —df')/64

Square section rod

L, =1°/12

L, =1/12

Square section rod with
tapered angles

I, =14/12

lrod =14 1-a®)(1+3a) /12
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The decrease of wave amplitude through absorption of vibration energy in the
plate is the same as in the case of one-dimensional structures. Wave amplitude
attenuation through absorption is described by Eqg. (3.21).

3.2.3 Wave Properties of Ribbed Structures

Some ship structures such as bulkheads, floors, hull plates are plates reinforced
with stiffening ribs (stringers).

At low frequencies (f << fp, where fy - the first flexural resonance frequency of
the plating between the frames spacing), rib-reinforced plate structures can be viewed as
orthotropic plates (with identical stiffening ribs and the equal number of ribs in mutually
perpendicular directions, they are viewed as isotropic). With this assumption, the value
kq determined by Eqg. (3.23) is to be substituted in the Egs. (3.20)-(3.22).

For bending of a ribbed plate at the above-indicated frequencies, in a plane
parallel to the stiffening ribs of one of the framing directions, the plate’s wave properties
match those of a rod (beam) of width L (L assumed equal to frame spacing width) cut out
of a ribbed plate along the given stiffening ribs (Fig. 3.10). The cross section of such a
rod with ribs, incorporating a flange and a web, makes up an asymmetric I-beam section.

The wave number of flexural vibrations of such a rod and, therefore, a plate as a
whole is given by [20]

my, (L+ w1, )L+ ?
S L Lol J.) (3.23)
26 ,H’h,,

where my - plate mass (less stiffening ribs) per unit surface; pm = Mripi/Mpr L; Myip -
stiffening rib’s linear mass; us = S./Sy; S.,Si - cross section area of lower and upper
flanges of an I-beam section rod (in the case of a bulb stiffening ribs, S, - cross section
area of a bulb); H - stiffening rib height.

It was assumed when deriving Eq. (3.23) that the neutral plane, with the ribbed
plate being bent, is displaced with respect to the plane to distance x ~ H /(1 + \/,u—s). By

substituting ks in (3.20), we can obtain the distribution of amplitude of flexural waves in
the ribbed plate at low frequencies when the plate is driven by forces acting on framing
and a plate between stiffening ribs. With certain approximation, it is valid below
frequency fo, = 10 hp|/(4n2 L?) Hz, where hpi - plate thickness, m; L - plate length, m.
Frequency fo; value is determined from the condition k¢ L = 1.

With a force acting upon a plate between stiffening ribs at frequency f >fo1, a
ribbed plate’s properties are dictated by the plate, i.e. the wave number ki p.

For a ribbed plate, driven by a force acting upon the framing, expression (3.23)
for the wave number is also valid for frequency f >fo:. This holds until the width of the
stiffening rib-attached to the strap of plate L, = 4, ,, / 7, (4 , is the wave-length of a

shear wave in the plate) gets lower than L as the frequency rises. The frequency up to
which the wave properties of a ribbed plate, when driven at the framing, are roughly
described by Eq. (3.23) is:
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CioJl-0O
SR el (3.24)

02~ \/EﬂL .
This equation corresponds to the equation kL = 2.

At higher frequencies, the effective dimension of the attached strap and the
structure’s flexural rigidity decreases and the wave number for flexural vibrations starts

increasing faster than /f .

Figure 3.11 gives the frequency response of the flexural vibrations wave number
of a ribbed plate shown in Fig. 3.10 (a). This uses exact equations given in [52] for L =
0.6 m, hy = hwey = 0.012 m, H=0.2 m, | = 0.05 m, with excitation by a force, acting on
the framing, and by the approximate Eq. (3.23). Calculation results are in satisfactory
agreement up to the frequency fo, ~ 1.4 kHz.

At frequencies above fo,, the ribbed plate’s wave number is gradually
approaching the value krp. This wave number value can be assumed above frequency fo3
=4fo,. Inthe fo2 -fo3 frequency range, a ribbed plate’s wave number is approximately
obtained by connecting values of the wave number at frequencies fo, and fo3 with a
straight line on a logarithmic frequency scale chart as exemplified by Fig. 3.11.
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Figure 3-10. Drawing of a plate reinforced with stiffening ribs of I-beam ()
and bulb sections (b).
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Figure 3-11. Frequency response of the wave number for aribbed plate
flexural vibrations.
1 - calculation based on data from [52]
2 -- calculation by Eq. (3.23)

3 -- calculation by the Equation k; , =8,/m, B, .

The typical ship hull is made up of a combination of plates (floors, bulkheads,
etc.) connected in a specific fashion. In most cases these plates are reinforced by sets of
stiffening ribs or frames. Within the junctions between the above plates and adjacent
ones, the plates may be viewed as homogeneous structures.

If several types of vibration of approximately equal amplitude are driven in a
plate simultaneously, a diffuse process vibration field can be assumed to be generated, in
analogy to the acoustics of spaces, i.e. one that is homogeneous and isotropic.
Homogeneity implies here an approximate equality of vibration amplitudes over the
entire plate’s area while isotropy involves a uniform angular distribution of vibrational
energy at any point of the plate.

The assumption of the diffuse nature of the vibration field considerably simplifies
the solution of many engineering problems associated with assessment of acoustic and
vibration fields. This assumption was first employed for the solution of vibration
problems by W. Westphal [60] and applied to building structures; the possibility and
expediency of application of these methods to ship structures is shown in [19].

Measurements and calculations of engineering structures’ acoustic vibration
amplitudes are performed for a certain frequency band (for example, octave or third-
octave). Vibration field can be regarded as diffuse, if the frequency band includes at least
3-5 natural frequencies of the plate’s flexural vibration modes. The frequency to meet

this condition is [19]
¢ 6,/Bp
f=—

_:BSpI\/mipl
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where 3 = 0.232 for 1/3-octave frequency band; = 0.345 for 1/2-octave frequency band
and p = 0.707 for an octave frequency band. The plate’s natural frequency density
increases as frequency increases. Therefore, a diffuse field exists in the plate at
frequencies such that f > fo.

A diffuse vibration field is characterized by the density of vibrational energy wp,.
Values of wy, for all the plates making up a ship hull can be determined based on
equations of energy balance to be formulated for each of the plates. The equation of
energy balance for a separate plate can be worked out by equating the vibrational energy
coming from the plate-mounted sources plus adjacent connected plates and the
vibrational energy lost by the plate to absorption and transmission to other plates. In
accordance with the above for the n™ plate forming part of a p-plate structure, the
equation of energy balance is represented as [19]

p p
W, + Zain LG — Zani Ld; -0,5,q,=0 (3.25)
i-1 i-1

where g, - energy flow in the plate n, for flexural waves g, = 2 ¢t Wyi; Wy - vibration
energy input to the n-plate from the plate-mounted sources; ain - coefficient of energy
transmission from plate i to plate n [21], ain = (tin)»/ 7; (tin )y -- COefficient of energy
transmission from plate i to plate n determined by expression (3.32); &, - coefficient of
energy absorption in plate n [21], & = mal(2Ctp); Lin = Lni - length of plates i and n
connection line; 7, - loss factor for plate n.

The second member of equation (3.25) determines the quantity of energy entering
plate n from all the remaining plates, the third one determines the quantity of energy
released by plate n to all the remaining plates, the fourth one - quantity of energy
absorbed (or dissipated) in plate n.

For plates having no direct links to plate n, ain = ani = 0; moreover, o = 0.

On formulating p-number of equations analogous to (3.25) and solving the system
of equations obtained with reference to values g, to be found, we get values of the root-
mean-square amplitudes of acoustic vibration velocities in ship hull plates using the result

(€2) =an 2cq umy).

The equations of energy balance are widely used for calculation of ship
structures’ acoustic vibration amplitude and sound pressure of air noise in ship
compartments. The calculations are referred to in foreign technical literature as statistical
energy analysis (SEA) [47].

As an example of the use of equation (3.25), let us formulate it for two connected
plates (energy source is on the first plate only).

Wi+ 21 Loz - 012 L1 - 615101 =0
02 Lg1 - a1 Lg2 - 025202 = 0.

The solution with reference to g; and g is:

74



where A= ol S1+ apl & So + 516, 51 So.

For ribbed plates on which the vibration energy source is mounted, considerable
non-homogeneity of the field may occur at high frequencies that results from extension of
the wave front propagating from the source. Vibration field in such plates at the given
frequencies (far beyond fp; for plate segments between the neighboring stiffening ribs) is
described by a differential equation similar to one of thermal conductivity [19]

AWy =W, =0 (3.26)

where A -- Laplace operator; y -- vibration attenuation coefficient of a plate, y = [,
I(arcepl)]¥?; ar - coefficient of energy transmission through a stiffening rib for diffuse
flexural wave field (according to [19], o, = 0.25); | - average distance between
neighboring stiffening ribs; wy - density of flexural wave energy in a plate.

The solution of equation (3.26) for an isotropic ribbed plate (stiffening ribs are
placed equidistantly in mutually perpendicular directions), with point sources of vibration
power W, is represented as

Wy (1) =Ko ) (3.27)

where A -- coefficient of the plate’s vibration conductivity, 4 = arCipl; Ko - modified
Bessel function. Flow of energy in the plate

4 (1) = "Zv—i K, () . (3.28)
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Figure 3-12. Distribution of acoustic vibration levels over deck plating with
diesel-generator operating.
1 - calculation by Eq. (3.29)
2 - experiment at frequency 1kHz
3 —experiment at frequency 16kHz.

For an orthotropic ribbed plate (distance between stiffening ribs differs in the
mutually perpendicular direction I; = I, we have

W
Wy (X, y) = 222 K [ 2% + y2y2)H2] (3.29)
270
Wy, 7, K. [(#2 cos? @ + v2 sin? O)Y?r
Ap (% Y) = 7172 Kal(7 V2 )" °r] (3.29a)

272(y? cos? 0 + y2 sin? 9)*?

where n, 5 - coefficients of vibration damping in mutually perpendicular directions.
Equation (3. 29 a) utilizes polar coordinates r, 6 for simplification.

Figure 3.12 shows the results of calculation and measurement of vibration level
for deck plating that are in good agreement between one another. Equations (3.27) to
(3.29 a) can be used for calculating vibration level at frequencies above 1kHz. At lower
frequencies, the error using these equations increases. The equations are not to be used
below the first resonance frequency of flexural vibrations of plate segments between
adjacent stiffening ribs.

3.2.4 Wave Type Transformation in Inhomogeneous Structures

For structures made up of connected plates, i.e. for inhomogeneous structures,
wave type transformation (conversion) occurs when the structural waves pass through
plate joints. As a result, waves of several types exist on the structure instead of just one
that is the primarily-excited type. For instance, with a flexural wave passing through a
corner at which two plates are joined, bending moments at the plates’ connection point
are generated by two interacting forces, each directed along the opposite plate. These
forces give rise to reflected and transmitted longitudinal waves in the plates.

Figure 3.13 (a) shows the frequency response of the energy reflection and
transmission coefficients for a flexural plane wave passing through the corner-joint of
two semi-infinite 0.005-m-thick plates oriented perpendicular to each other with wave
type conversion considered. Transformation of a flexural wave into a dilatational one
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intensifies as frequency rises, since the values of the plates’ flexural and longitudinal
rigidity (stiffness) get closer. This same reasoning governs the increase in conversion
with the joined plates getting thicker.

For a longitudinal wave passing through the same joint, longitudinal forces
generated at the joint are transverse with respect to the opposite plate. This leads to the
appearance of flexural waves in the plates in addition to the longitudinal ones. Figure
3.13 (6) shows the frequency response of energy reflection and transmission coefficients
for a longitudinal plane wave passing through a corner joint of 0.005-m-thick plates with
normal incline and wave type transformation considered. In this case, too, transformation
intensifies as frequency increases and the reason is the same as the above.

The mutual conversion of waves of the two types in an inhomogeneous structure
causes the generation of a wave type other than that of the primarily-excited wave in the
structure. As the distance from a source gets larger, gradual accumulation of the
transformed-type wave energy continues in the structure until the energy flows for waves
of both types become equal. If the energy transmission velocity for waves of these types
differs considerably as is the case with flexural and longitudinal waves, their damping per
length unit is different for the same loss factor. A longitudinal wave attenuates in a much
larger length in the given conditions. So, at some distance from a source, the damping of
aggregate energy in the structure is governed by the damping of a longitudinal wave.

Figure 3.14 shows the spatial distribution of energy flows of flexural 1 and
dilatational 2 waves over a ship structure at a frequency of 1 kHz. This distribution
demonstrates more intensive damping of flexural waves at a distance within 5 m from a
source (6 dB/m). This is due to weak effect of transformed longitudinal waves and the
lesser damping at longer distances from a source (~0.6 dB/m) as the result of a greater
influence of wave type transformation upon the acoustic vibration propagation process.

3.2.5 Absorption of Acoustic Vibration

The acoustic vibration of ship structures occurs with absorption (loss) of vibration
energy. This results in the gradual decrease of the amplitude of elastic structural waves
that propagate over such structures. If free vibrations originate in structures, their
amplitude diminishes as time elapses after the external excitation stops.

Vibration energy absorption value in structures is normally loss factor
n =W, /(272W,y, ) , where Waps - energy absorbed in the structure during one oscillation
period; Wi - energy contained in the structure (potential energy).

The parameters characterizing vibration damping are related to loss factor as
follows: semi-width of resonance curve Af = nf; logarithmic decrement d = nn; Q-

factor Q = 1/n; flexural wave amplitude damping A& = 27.37/ Ay dB/m; dilatational
wave amplitude damping A¢ = 13.657/ 4 dB/m.

The absorption of vibrational energy in ship structures stems from the following:

1. Internal energy loss in the structure material. These losses result largely from
mechanical hysteresis phenomenon involving irreversible microchanges of material
forming the structure. With stress removed, the structure material retains residual
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deformation, which with the process repeated, causes deformation/stress phase lag and,
therefore, absorption of some vibrational energy through conversion into heat. Loss
factor dictated by mechanical hysteresis is not dependent on frequency. Internal loss
factors for some materials frequently used in ship-building are given in Table 1.1; values
of these factors are extremely small (about 10 - 102).

2. Structural loss of energy due to presence of welds, rivets, pipeline and cable
connections, etc. These loss factors are about 10 - 10,

3. Loss of energy through sound radiation into medium in contact with hull
plating. Since sound radiation of flexurally-vibrating plates into the air is relatively low,
this type of loss is tangible only for plates in contact with liquids (water, fuel, etc.). This
factor value is about 107,

4. Loss of energy due to coatings on hull structures like heat-insulating and
vibration-absorbing coatings. The former energy-absorbing effect seems small while the
latter’s loss factor is considerable (about 10™* and higher).

For hull structures directly excited by some vibration-active source, energy loss to
attached structure may provide a reason for considerable loss in vibration energy. Due to
lower energy saturation of the latter, energy from a driven structure passes on to other
structures in an amount exceeding that of energy coming back. For instance, for an |-
wide plate with a one-dimensional field of standing flexural waves originating crosswise,
loss factor equivalent to energy loss through plate edges is

ro Lo 2y (3.30)
T
where r - coefficient of energy reflection from the plate edge. If edges of this hp-thick
plate form a rigid joint with two other infinite h;-thick plates,

1+ 4

11 4P 14
as given by [19], where p, = hy/ h;.

At the first resonance frequency of flexural vibrations of the driven plate, knpl = ©
and therefore, with 4 =2, r = 0.85 and , ~0.089.

For a two-dimensional vibration field in the plate, loss factor value is a bit lower.
So, vibration energy loss factor in an excited ship structure can be very high even with no
vibration-absorbing coatings (about 0.1).
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Figure 3-13. Frequency response of energy reflection r and transmission d
coefficients for flexural (a) and dilatational (6) plane waves
through corner joint of plates (perpendicular).
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Figure 3-14. Distribution of energy flows of flexural and dilatational waves
over a ribbed structure (hp =0.006 m; lipsp= 0.6 m; 7y = 0.01,;
m = 0.001;f = 1kHz).

3.2.6 Dissipative Properties of Ship Structures

To evaluate the dissipative properties of ship structures with no vibration-
absorbing coatings, a knowledge of the equivalent loss factor is enough. Loss factor
values in structures with vibration-absorbing coatings applied are given in Chapter 6.
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Figure 3-15. Frequency response of loss factor in ship structures.
1 - river aluminum vessels
2 -river steel vessels
3 - steel 1,500-ton displacement ship
4 - steel 900-ton displacement ship
5 -aluminum vessel
6 - steel 61,000-ton displacement ship
7, 8 - electric motors.

Figure 3.15 shows the frequency dependence of loss factors in structures of
various vessels [11, 20, 21, 53]. The values of these loss factors vary from about 0.003-
0.03. At frequencies above 1kHz, the loss factors show little dependence on frequency
while at lower frequencies the factors tends to rise as frequency decreases. The loss
factor of aluminum-alloy ship structures is about three or four times that of steel ship
structures at frequencies below 1kHz, which is probably due to the presence of riveted
joints. Loss factors in different structures of the same ship differ very little from one
another. The loss factor increases somewhat as the structures plating thickens and,
therefore, the displacements decrease.

Data offered in Fig. 3.15 are one order of magnitude higher than the internal
(intrinsic) loss factors for the hull material. This prompts the conclusion that losses in
ship elements are mainly of structural origin.

Figure 3.15 gives frequency responses of loss factors for ship electric motors that
equal 0.01-0.1. The factors are one order of magnitude higher than loss factors in hull
structures and this may be due to the large presence of machines with vibration-absorbing
elements (insulation, windings, etc.).

3.2.7 Acoustic Vibration Insulation

When spreading over ship structures, structure-borne vibrations encounter
obstacles that possess isolation properties. These are represented by interconnections of
various hull elements (bulkheads, floors, hull plating) and the joints between piping and
hull structures.

Besides natural obstacles, there are additional ones (vibration-inhibiting masses,
reinforced coamings, etc.) that may be called artificial obstacles.

80



Insulating property of an obstacle is generally characterized by its vibration
isolation VI defined as [19]

W
VI =10 |og@
(wy)
where (wy), (W,) -- average density of vibration energy in structure prior to and
subsequent to its mounting, respectively.

For normal incidence of a plane monochromatic wave over a linear obstacle, its
vibration isolation is

VI =-10 Iog(|T|2 ﬂ) ~ ~10log
m,
where T - coefficient of wave transmission passing through the obstacle; m;, m; -
structure (plate) weight per area unit prior to and after the obstacle, respectively; 7 --
coefficient of vibrational energy passing through the obstacle with normal incidence.
With a wave passing through a rod-mounted obstacle, m; and m, are the rod’s linear
masses.

With waves to form a diffuse (two-dimensional) field passing through a linear
obstacle, the obstacle’s vibration insulation

VI = —lOIog<z—>(p (3.31)

where (1), -- average (with respect to incidence angle) value of vibration energy
transmission coefficient through an obstacle,

<T>¢, =y (my)7 (3.32)

where 1615 = hy/h; - for plates: p, = (BoCs / Bic,)?® - for ribbed structures (at low
frequencies);

w(ty,) =%[(1+ th2) E(%?\/ﬂ_lz)—(l—ﬂlz) F(%;\/ﬂ_lz)}forﬂlz <1

vz =§[(1+u12>E(%M)Hl—uu)ﬂg;w_n)}for i =1

E and F - full elliptic integrals, tables for which are given in [33]. If the thickness of
plates partitioned by an obstacle differs by no more than 30%, parameter y (u12) may be
approximately (with less than 20% error) assumed to equal 2/3 and therefore, Eq. (3.31)
gives

VI =-10logz+2dB . (3.33)

A hinged plate or rod support provides a basic type of obstacle for flexural waves.
With normal incidence of a plane wave on such an obstacle, the lateral deformations of a
flexurally-vibrating structure do not pass through it while the rotational deformations
pass through easily. Since energy is equally transmitted by these deformations, the
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obstacle vibration insulation in this case is 3 dB. With respect to a diffuse field of
flexural waves, vibration insulation of such an obstacle is 5 dB, according to Eqg. (3.33).

The coefficients of dilatational and flexural wave energy passing through various
joints of flat structures (linear, corner, T-, cross) under normal incidence of a plane wave
are given in Table 3.4. Structures through which flexural waves spread are assumed to be
rigid (c, >cy). Table 3.4 data are based on results from [35, 36].

Value of coefficient of vibration energy transmission through structural joints is
largely and inversely dependent upon their parameters ratio: the higher the ratio, the
smaller the coefficient. These parameters are: for rods wy =S 1S for plates

(14;)%'% =hy Iy i, and for ribbed structures (at low frequencies) s =B, kg /B; kg, .

Figure 3.16 shows the dependence of vibration insulation of various type plate
joints upon their thickness ratio. The elastic properties of the plates joined together at the
junctions are assumed identical. The cross-joint possesses the maximum vibration
insulation while the linear one - the minimum. Flexural waves pass through plate joints
with a greater difficulty than dilatational ones. The minimum vibration insulation is
typical when the plates forming a joint are of equal thickness. The T-joint provides an
exception with the minimum vibration insulation occurring for ho/h; = 1.32, which is
traced to axial asymmetry of the joint.
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Table 3-4. Transmission coefficients of elastic wave energy passing through
structural irregularities.

Structural irregularity

Irregularity drawing

Equations to calculate the
transmission coefficient

Dilatational waves

Linear joint Iy Ty = (" + 1ayy°)
=1
Flexural waves
Linear joint Sie . wa, e, sia
& = Ha Tl +Hp +
1
N Lo G )
= ]
—
Corner joint - h 7y =20tz + a3y ) (0 £ hy)
[~y 7, =112, (h, =h,)
T
T-joint 7 = 20+ 4133) @ )
1_13 — 2(1+ /u:?//ZZ)—l(a/—llz +a1/2)—2
R, a= /ufl/zz + :“15//32 (h, #h, #h,)
- e 5/4\ 2
el o
f L T = [\/Eﬂglm + fu ]
1 5.
T3 =(2+ 2:“152/2 +E/4251) '
(h, =h, =h,)
T, =73=2/9 (h,=h,=h,)
Cross joint T =2 4 p) @ )

s,

¥
Ey

512, si2\-1g U2, _1/2y-2
Ty =200+ pup " + 13 ) (@ +a )

-1/2 1/2)72

5/2 5/2)71(6! +a
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512, 512, 512
Q= Uy 3 Ty
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Figure 3-16. Dependence of vibration insulation of plate joints = 10Ig t %,
dB, upon their thickness ratio pi2 = ho/h;: a - linear; & — corner.
a-T-;a-cross.

1 - flexural waves;
2 - dilatational waves; hinged support vibration insulation.

The asymmetry of vibration insulation curves in the T- and cross plate joints with
a flexural wave passing in the plate extension VI, attracts ones attention. In fact, with a

decreasing transverse plate thickness, its resistance to bending moment tends to zero
unless there are transverse displacements at the joint as in a hinged support (VI = 3 dB).

If the flexural wave amplitude difference on the obstacle is to be determined, the
following equation may be used

m;Cq;(2-17y)

AL, = 20Iogi:10Iog
i m; Cq; 7j

where i and j - structure indices before and after the obstacle respectively.

A rigid joint between a rod (for example, a pipeline) and a plate also has some
vibration insulation properties. With a dilatational wave spreading along an infinite rod
rigidly connected to a lateral infinite plate, the vibration insulation of such an obstacle is

(2+a)?
g—
1+

VI =10lo

where a =8,/m B /(M4Cp roq) -

Since the factor « for a uniform plate does not depend on frequency, the vibration
insulation of rod - plate connection is also frequency-independent. For a ribbed plate, By,

(3.34)
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increases at low frequency. As a result, the vibration insulation of rod - ribbed plate
connection rises at the given frequencies.

Let us determine value of vibration insulation for a rigid connection between a
hollow steel rod with external diameter 3¢10 m and internal one 2610 m and a steel
plate 10%-m thick plate. For this case & = 0.59 and, therefore, VI= 0.3 dB. With the
plate reinforced by stiffening ribs to have the parameters shown in Fig. 3.11, vibration
insulation of the joint increases at low frequencies up to 0.6 dB. So, with respect to
dilatational waves rod -- plate connection has little vibration insulation.

With a flexural wave spreading along a rod rigidly connected to a lateral infinite
plate, vibration insulation of such a connection

ja+21+])

VI = 20log
a—-2]

dB (3.35)

where o = Zy, y@® /(M ;44Caoq) 3 Zy is determined by Eg. (3) from Table 3.2,

According to Eq. (3.35), with «—0, VI = 3 dB. This corresponds to the case with a
hinged rod in the area of its passing through a plate. For the above rod - plate connection,
factor ¢ =0.03 - j 0.2 and VI = 3.1 dB that nearly matches vibration insulation value of a
rod’s hinged support.

Equations (3.34) and (3.35) are correct for kg, 4@ <<1, (a - radius or half of the

maximum dimension of a rod section). This condition is met for the audio frequency
range in the majority of cases.

3.2.8 Vibration Conductivity of Ship Structures

The vibration conductivity of structures implies their ability to transmit acoustic
vibration from its origin to various areas of the ship hull. This parameter is sometimes
called a transmission one.

ALg,A6/M
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Figure 3-17. Frequency dependence of vibration level decay dB/m along
hull.
1 - 900-ton displacement ship
2 - 13,000-ton displacement ship
3 - steel vessels [29].
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Figure 3-18. Dependence of vibration level upon distance | from a vibration

source.
1 - 0.5 kHz frequency
2 -- 2 kHz frequency
3 -- 8 kHz frequency

Figure 3.17 shows the damping per unit length of acoustic vibration level for 900-
and 13,000-ton displacement ships plus related data on this parameter from [29].
Damping values correspond to a remote area of the ship structures where vibrational
wave front spreading has very little effect. Therefore, the damping is caused by
absorption of vibrational energy in these ship structures.

Acoustic vibration level damping is less intense for larger displacement ships.
This can be traced to smaller values of loss factor for such ships. Damping increases
somewhat as frequency increases and this is related to a decreasing flexural wave-length
(increase in a wave number).

Data given in Fig. 3.17 pertain to vessels with no vibration-absorbing structures.
For this case damping is approximately 0.5-1.2 dB/m, depending on frequency.

Level of acoustic vibration in close proximity to the source decreases at a greater
rate due to the additional effect of wave front spreading according to [29] data, the rate
reduction in vibration level is on average 1 dB/m at a 5-10-m distance from the source.
Figure 3.18 shows the dependence of acoustic vibration level for a 900-ton displacement
vessel hull upon distance from a vibration source at various frequencies. Vibration rate
reduction is higher in the proximity of the source than in remote areas.

The value of vibration level reduction in vertical direction, for instance, in a ship
superstructure, is roughly 5-6 dB per deck at frequency 0.1-4 kHz [50].

Based on the above, the following conclusions can be drawn concerning vibration
conductivity of ship structures.

1. Vibration amplitudes decrease as distance from its source increases. This
takes place, firstly, due to absorption of some vibrational energy in structures and,
secondly, through spreading of a divergent wave front (in close proximity of just a few
meters to the acoustic vibration source).

2. The reduction of vibration amplitude in ship structures depends largely on loss
factor and wave number of acoustic vibration in these structures, as well as on distance
from a source. To lower the amplitude, loss factor should be increased (for instance, with
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the use of vibration-absorbing structures), wave number also should be higher (for
instance, by decreasing structural stiffness - decreasing plating thickness), as well as a
longer distance from a source is required.

3. The wave number of flexural vibrations of ship structures governing the
structures’ vibration conductivity is dependent on the structural rigidity. Stiffening ribs
usually lower the wave number (increased flexural wavelength) of the structure leading to
a decrease of vibration amplitude. The influence of stiffening ribs depends on driving
force application area. With these forces acting upon framing, the structure’s wave
number at low and medium frequencies is determined taking into account stiffening ribs
presence. For excitation of a plate, limited by neighboring stiffening ribs, at the
frequencies above first resonance frequency of this plate’s flexural vibrations, framing
influence gradually diminishes as frequency rises (at medium and high frequencies).

4. Natural obstacles for vibration spreading over ship structures are joints of
structural elements such as bulkheads, floors, hull plating, etc. The larger the difference
in mechanical impedance of the joint-forming structures, the stronger is the vibration
insulation of these obstacles. Vibration insulation of rods (pipelines) connection with
structures through which they pass is little (with respect to elastic waves spreading along
the rod). The amount of energy transmitted from the rod to the plate is small due to
significant difference in their mechanical impedances.

3.3 Sound Radiation of Ship Structures

Practical applications require the calculation of sound radiation for two types of
ship structures - enclosures (partitions) and pipelines that are vibrating transversely (i.e.
flexurally). A ship compartment partition is in most cases a rectangular plate of finite
dimensions reinforced with cross-stiffening rib framing assumed as hinged (i.e. simply-
supported).
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Figure 3-19. Dependence of critical frequency of a plate (radiating into the
air) upon thickness hp and the material of the plate.
1 - steel, aluminum alloys, glass
2 - fiber glass
3 — plywood
4 - glass textolite
5 - organic glass.

The sound radiation of such plates differs greatly for frequencies above and below

the critical frequency /. The latter is calculated by Eq. (1.25) or determined from Fig.
3.19, showing the dependence on material and thickness of the plate.

At frequencies such that f > /£, the entire plate surface radiates, and that is why
the plate-radiated sound power is determined by using Egs. (1.21), (1.22) or (1.23). The
value of the radiation resistance is determined by Eq. (1.26).

At frequency f < fer, but above the first resonance frequency of the flexural
vibrations of the plate /1, the plate edges or corners radiate. The radiation depends upon
the relationship of the rectangular coordinates projections of the flexural wavelength on
the plate edges to the acoustic wavelength in air 4. If the plate vibration distribution is
such that both projections of flexural wavelength A xand As,y are less than Ao, radiation of
all plate areas vibrating in opposite phase is mutually canceling, except for the quarter-
wavelength areas at the plate corners (Fig. 3.20, a). The respective plate vibration modes
are conventionally called piston modes. If either projected wavelength of a flexural wave
(for example, Axx) is longer than 4 and the other shorter, the radiation of quarter-
wavelength strips on the plate edges along the x-coordinate is left uncompensated (Fig.
3.20, b). These plate vibration modes are called strip modes.
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Figure 3-20. Patterns of flexural vibrations of a rectangular hinged plate

(cross-hatched are the plate’s radiating segments).
(a) - for piston modes with Anx < Ao, Ay < 4o

(6)— for strip modes with Anx > Ao, Ay < Ao.

The radiation resistance of a rectangular plate with hinged edges or frequencies f

< /i equals [6]

R _ pocg

rad —

cr cr

where L - plate perimeter; u,= flfcr;

41-2p;) f
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As seen from Eqg. (3.36), the sound radiation of a plate, all other factors being
equal, is dependent on the critical frequency /£, that, in turn, depends upon the thickness
and material of the plate. Figure 3.21 shows frequency response Ry, Of two plates of

identical dimensions but different /. At frequency f < fer, min, the plate with lower f¢
radiates more.

It was assumed in deriving Eqg. (3.36) that the plate under consideration was
uniform, i.e. with no stiffening ribs. But the presence of the reinforcing stiffening ribs
increases the flexural waves in the plate considerably. The dimensions of quarter-wave
radiating segments on the plate at frequency f < f¢ increases, leading to a higher sound
radiation of the plate. The presence of stiffening ribs triples the flexural wavelength on
average causing an approximately 5 dB increase in sound power radiated by the plate.

Figure 3.22 gives the frequency response for air-borne noise levels in a ship room
related to acoustic vibrations of floors reinforced with stiffening ribs. The level is
determined with and without the effect of stiffening ribs considered. In the first case,
agreement between calculation results and the experiment at frequency f < for (/for = 2
kHz) is more obvious. With the stiffening ribs’ effect on acoustic vibration level taken
into account, the critical frequency of the plate is decreased somewhat.
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Figure 3-21. Frequency response of resistance to radiation of steel
rectangular hinged 3.6x1.8 m? plates.
1-hp=2e10°m
2 - hy = 410° m; sy - kHz.
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Figure 3-22. Frequency response of air noise level in a ship room related to
acoustic vibration of floors reinforced with stiffening ribs.
1 - calculation with no stiffening ribs considered [6]
2 - calculation with ribs considered
3 - experiment [6]; b— dB; kl'y - kHz.

Therefore, to lower the sound radiation of ship area enclosures, their thickness
(Flexural rigidity for ribbed partitions) is to be decreased, and materials are to be selected
having lower speed of dilatational waves (with the partition area dimensions unchanged).

Sound-insulating boards [6] provide the primary means of lowering the acoustic
radiation of room partitions. Parameters of a ship structure on which such a board is
placed have no impact on its acoustic effectiveness. When selecting board attachment
places, the need for ensuring minimal levels of vibration of a board’s outward plates is to
be borne in mind. This could be achieved by attaching a board to the partitions
reinforcing framing, and not to the plating between the framing elements. This is dictated
by the fact that, at frequencies above the first resonance frequency of flexural vibrations
of plates between neighboring stiffening ribs, the amplitudes of the latter’s vibrations are
5-20 dB lower as compared to the amplitudes of plate vibrations [6].

If the evaluation of sound power radiated by a flexurally-vibrating pipeline is
required, Eq. (1.34) may be suitable. To lower the sound radiation of a pipeline,
decreasing its diameter and amplitude of flexural vibration is advisable.

3.4 Sound Insulation of Ship Structures

For acoustic waves (air-borne sound) incident on a room partition, part of these
waves’ energy passes through them (i.e. transmitted. The remaining energy of the waves
reaching the partition is reflected from and absorbed in it.

Reflection of acoustic energy from a partition is traced to differences in the
impedance between the partition and environment in contact with the partition. The
larger the impedance difference, the greater is the reflection.

The sound insulation of an enclosure is characterized by the ratio of the acoustic
energy reaching the enclosure and the energy passing through it. In line with the above,
sound insulation for a partition is [5]
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R=10log==10log————
g T 9 l1-r-o
where 7 -- coefficient of acoustic energy passing through the partition; r - coefficient of
acoustic energy reflection from the partition; ¢ -- coefficient of acoustic energy
absorption in the partition. The equation z=1-r - §is derived from the law of energy
conservation.

Sound insulation phenomenon can be explained as follows. The sound pressure
of air-borne noise originating in a room acts upon an enclosure driving it into vibration.
In turn, the structural vibrations of the enclosure cause radiation of some acoustic energy
into the adjacent room, resulting in the generation of air-borne noise in this room. This
explanation of partition sound insulation facilitates the understanding of the physical
phenomena occurring in the process.

Sound insulation of an enclosure, modeled as a rectangular plate with hinged
edges is divided in three regimes by the frequencies fp1 and fer (fpa - first resonance
frequency of the enclosure’s flexural vibrations, determined by Eq. (2) from Table 1.5,
fer- frequency of sound and flexural wavelength coincidence). At frequency f < fp1, the
plate impedance is stiffness-like, and, therefore, the amplitude of the plate vibrations,
generated by the incident sound pressure, and the radiated sound pressure increase as
frequency increases (range A, see Fig. 3.23).

At frequencies fp1 < f < fer, enclosure radiation is governed by radiation of Aq/4-
wide band segments on the plate edges. The magnitude of radiated acoustic energy is
proportional to the above band width and amplitude of acoustic vibration. Since A
diminishes as frequency rises, sound radiation of the enclosure gets lower and sound
insulation increases.

The sound radiation of flexurally vibrating structures within the given frequency
range depends upon boundary conditions, and, therefore, the sound insulation of these
structures also changes as conditions do. The radiation of a structure is relatively
independent of the internal loss of vibration energy in the partition since, as can be
demonstrated by calculation, this loss is negligible as compared to losses related to sound
radiation of the structure (range A).

At frequency f > f, the entire enclosure surface is radiating. Therefore, its
radiation increases and, therefore, its sound insulation diminishes. The sound radiation of
flexurally vibrating structures at frequency f > f. is virtually independent of the
boundary conditions since the entire structure surface radiates.

The resultant loss factor is governed by the enclosures sound radiation and is
inversely proportional to frequency (with f > f) and becomes smaller than the internal
loss factor for the enclosing structure. So, rise in this factor adds to sound insulation of
the enclosure as the quantity of vibration energy absorbed in the enclosure increases
(range A).
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Figure 3-23. Frequency response of sound insulation of a ship room
enclosure.
1 - calculation by Eq. (3.37)
2 - calculation by Eq. (3.38)
3 - calculation by Eq. (3.39); slope of 7.5 dB/octave.

At frequency fp1, mechanical impedance of the enclosure is a minimum.
Therefore, the amplitude of acoustic vibration resulting from the sound pressure acting
upon the enclosure is maximum at this frequency and sound insulation is minimum.

At frequency fcr, we have the maximum radiating ability of the structure. What
follows is sharp drop in sound insulation of the enclosure at this frequency.

Sound insulation of the enclosure both at frequency fp1 and fer is proportional to
internal loss factor of the enclosure. Typical frequency response for enclosure sound
insulation and the distinctive frequency ranges A, b and B are shown in Fig. 3.23.

Sound insulation of the enclosure represented by a plate without stiffening ribs
(without sound-absorbing coatings and sound-insulating boards) in A frequency range
equals [5]

a’sl Mo 2
R=10log[l+ (———)“]1dB (3.37)
20p,Cq

where my - enclosure mass per area unit. At frequency f = fp1 (@ = @)

a)plmpl Tin

R~20log(1+
20p,Cy

) dB

where 7i, - internal loss factor of the enclosure including loss as the result of vibration
energy leakage through the enclosure edges.

In the frequency range A, sound insulation of the enclosure is governed by the
mass law; with diffuse acoustic field in a room, this law is represented as [5]

R=145(+hyp, f-107)dB (3.38)

where hy - enclosure thickness (in m.); pyi - enclosure material density, kg/m?; f--
frequency, Hz. Equation (3.38) is the result of many measurements’ data processing.
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In frequency range A, with loss factor 7, known, sound insulation of the enclosure
can be determined by Eq. [29]

afm, f
R =20log +10log| 277, |— | . (3.39)
PoCo fcr

Ship room partitions in the form of homogeneous plates are seldom used. In most
cases, they are plates reinforced with stiffening ribs on which sound insulation treatments
are also placed. Such treatments include sound-absorbing materials, sound-insulating
boards, vibration-absorbing coatings, and combinations of the above.
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Figure 3-24. Frequency response of ship room enclosure sound insulation
facilitated with various means.
(a) - reinforcement of the enclosure with stiffening ribs
(6) - application of sound-absorbing material
(e) - application of vibration-absorbing coating
(2) - placement of sound-insulating boards.
1 - enclosure without stiffening ribs
2 - enclosure with stiffening ribs
3 - enclosure without sound-absorbing material
4 - enclosure with sound-absorbing material applied
5 - enclosure without vibration-absorbing coating
6 - enclosure with vibration-absorbing coating
7 - enclosure without board
8-- enclosure with board without sound-absorbing material
9 - enclosure with board and sound-absorbing material in-
between; frequency in Hz.

Reinforcement of plates with stiffening rib framing affects their sound insulation
considerably. An increase in the structure's flexural rigidity raises its resonance
frequencies of flexural vibrations, including first frequency /. As a result, the sound
insulation of the enclosure at frequencies below f,: is considerably enhanced (Fig. 3.24,
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a). In the remaining frequency range, sound insulation of the enclosure decreases a bit
with mounting of stiffening ribs on it. This occurs due to an increase in the flexural
rigidity of the structure and respective lengthening of flexural waves. This translates into
an enlargement of the area of radiating segments and sound radiation of the enclosure as
awhole. The vibration excitability of the enclosure by the incident air-borne sound
pressure remains virtually unchanged as it is governed by mechanical impedance of
segments of plates positioned between neighboring stiffening ribs.
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Figure 3-25. Frequency response of sound insulation of a 1.2x1.4 m?
aluminum panel.
1 - uni-directional stiffening rib
2 - bi-directional stiffening ribs; kl'y - kHz.

As proved by the experiment [13], sound insulation of an enclosure decreases 5-
10 dB at frequency f > f,1 due to reinforcement of the enclosure with stiffening ribs.
Sound insulation of such structures is practically identical with stiffening ribs available in
one and two directions alike (Fig. 3.25) [37]. Note that change in fp with reinforcement
of real-dimension enclosures is largely beyond standardized frequency range (fp1 <
63Hz).

To enhance sound insulation of an enclosure, a layer of a sound-absorbing
material is usually applied to its internal surface (as viewed from the noise source). Use
of this means lowers levels of sound pressure acting upon the structure by absorbing
some energy when sound penetrates the material. Besides that, positive effect is achieved
through some decrease in sound pressure levels in the room where the noise source is
situated that is made possible by drop in intensity of acoustic energy reflection from the
room enclosures.

Sound-absorbing material layer has a positive impact on an enclosure’s sound
insulation starting from frequencies at which its thickness becomes comparable to length
of an acoustic wave propagating over the layer. For real materials and structures of
sound-absorbing coatings utilized in ship-building, the above frequencies lie beyond
500Hz. Sound insulation intensifies, as frequency rises, and equals 25-30 dB at high
audio frequencies (see Fig. 3.24, 6).

By applying vibration-absorbing coatings to an enclosure, the internal loss of
energy in the enclosure increases. At frequencies above f,, at which sound radiation -
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induced loss is lower than internal one, rise in the latter’s value as the result of the above
coating application leads to proportional enhancement of sound insulation due to
decrease in the enclosure’s vibration amplitude. At frequency below f., at which, with
absence of vibration-absorbing coating, sound radiation - induced loss is prevailing,
sound insulation is little boosted. In real ship structures, application of a vibration-
absorbing coating enhances sound insulation of enclosures by 10-25 dB at frequency
above f, (see Fig. 3.24, 6).

Effective mean in boosting sound insulation is placing of sound-insulating boards
on an enclosure’s internal surface (with respect to a guarded room). A board is a light
plate made normally of aluminum alloys, plywood and similar sheet materials, placed at a
certain distance d from the enclosure surface. This results in appearance of two partitions
on the way of acoustic energy penetrating the enclosure that ensure jump in acoustic
resistance -- namely, the enclosure itself and the board. Magnitude of additional sound
insulation from the board is generally governed by the rules similar to those analyzed
above for enclosures.

However, the presence of an air gap between the enclosure and the board adds
some peculiarities to their aggregate sound insulation. These are related to resonance
phenomena originating in the structure. These phenomena are traced primarily to a
resonance of the mass of plates forming the structure and the air compressibility in the
gap between them (frequency fai). They are also traced to resonances of air layer when
an integral number of acoustic wavelengths fits into the air gap (frequencies i =1, 2, 3,

).
Frequency fao IS determined by the equation [5]

fa'0:85\/£( L + L ) kHz

pl,1 mpl,2

where d - distance between a board and an enclosure, m (meters); my.1 and my; 2 - surface
mass of the enclosure and the board, kg/m?®. Frequency /i = ico/(2d),i=1,2,3, .. At
the given frequency, sound insulation of the structure weakens until it totally disappears
(see Fig. 3.24, 2).

To eliminate the board’s negative effect on sound insulation in the gap, sound-
absorbing materials are placed between the board and the enclosure, and structures are
damped out with vibration-absorbing coatings. In this case, the sound insulation
increases due to the boards additionally by 20-30 dB at high frequencies. The effect
manifests itself from 100-200 Hz upward.

Use of a board with a layer of a sound-absorbing material between the board and
the enclosure plus damping of both with vibration-absorbing coatings provide the best
way of sound insulation of a ship room enclosure.

The effectiveness of a board is suppressed by a short-circuiting effect (shunt
effect) on it because of the attachment of the board to the enclosure. Attachment makes
so-called sound bridges through which a considerable portion of acoustic energy is
transmitted. To lower this transmission, attachment fittings incorporate inertia and elastic
elements.
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Introducing higher compliance of the enclosure edges helps add a bit to sound
insulation as this lowers their sound radiation. According to [5], sealing of enclosure
edges with elastic filler boosts the enclosure’s sound insulation at frequency below f. by
3-4 dB.

The procedure for engineering calculation of sound insulation of ship room
enclosures is described in [28]. Specific structures, materials used and their sound
insulation values are given in [5, 28].
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4 DESIGN MEASURES FOR LOWERING OF SOUND VIBRATION

4.1  Selection of Acoustically-Expedient Ship Architecture

Ship architecture directly affects the acoustic and vibration situation on board.
Selection of acoustically expedient ship architecture is the most important stage of a ship
acoustic design. Incorrect architecture with regard to the ship’s acoustics in the design
phase is extremely difficult to alter when no alteration seems feasible on board a built
vessel.

The selection of acoustically expedient ship architecture incorporates the
following: selection of a power plant, arrangement of the vibro-active equipment,
arrangement of accommodation spaces, selection of a propeller aft end design,
distribution of inlet and exhaust devices, ventilation and other ship systems. When
considering each of the above, it is necessary to choose equipment and devices producing
minimal noise and vibration, and to separate accommodation spaces and sources of noise
and vibration as far apart from each other as possible.

The selection of a ship power plant and systems is dictated by their service
properties and acoustic characteristics. Note that purchasing of the best in terms of
service properties but noise-producing and more vibroactive plants may prove
economically inexpedient as lowering of noise levels in rooms to meet sanitary
requirements will take costly noise-combating measures and equipment.

The power plant of propeller-driven ships is normally placed in the stern section
since moving it to the forward end is economically unreasonable through lengthening of a
propeller shaft and other reasons. When arranging the specific components of the power
plant, one must ensure optimal conditions for engine room operators. Diesel-generators
are to be placed in areas separate from the main engines so that staff maintaining these
engines can work with lower noise levels when the ship is dockside. It is expedient to
position the diesel-generators in separate rooms to ensure that repair and servicing of one
has no noise effect on the other [11]. Less noisy auxiliary machines (converters, pumps,
etc.) are also to be placed in separate areas insolated from the high noise and vibration
levels of the internal combustion engine (ICE).

The arrangement of accommodation spaces (cabins, posts, dining rooms, medical
and other rooms where extreme acoustic habitability requirements are to be met) is
especially important when selecting acoustically expedient ship architecture. The
acoustic situation on board is largely dependent on this arrangement. Data demonstrates
that the optimal arrangement of accommodation spaces with respect to engine rooms and
other sources of intense vibration and noise is enough to lower noise levels in these areas
by 25 dB and more [11].

Variants of arrangement of accommaodation spaces provide the basis for the
following ship categories: large length dimensioned cargo vessels (tankers, dry-cargo
ships, etc.), passenger ships, and small-displacement cargo vessels.

The optimal arrangement of accommodation spaces on large length dimensioned
ships is their concentration in a superstructure placed on the ship’s forward end far
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removed from engine and diesel generator rooms. With the distance between living areas
and engine rooms on the order of 30-40 m., lowering of sound vibration and related air
noise by 20-25 dB can be ensured through damping of vibrations along the hull length
alone. But this makes cables and other communications longer. Therefore, the selection
of accommaodation spaces arrangement on large length dimensioned ships should be
motivated both acoustically and economically.

If the above arrangement proves impossible or inexpedient, follow
recommendations given below for small-displacement cargo vessels with a stern
superstructure.

The arrangement of accommodation spaces on passenger ships has one
peculiarity: these areas occupy most of the hull and superstructures. This prompts the
following recommendations for the architectural selection for this type of ship.

There should be a buffer zone of non-living areas (storage rooms, cofferdams,
bathrooms and laundry, corridors, etc.) separating the noisy areas (engine and diesel-
generator rooms and their trunks, rooms close to propellers) and accommodation spaces.
Adjacent to a buffer zone rooms with less stringent acoustic habitability requirements
(galley, service and public rooms) are to be located. Elevators, fans, air conditioners, and
other sources of acoustic vibration are not to be installed on the enclosures (walls) of
accommaodation spaces. Doors leading to engine and diesel-generator rooms are not to be
positioned in close proximity to accommodation space entrances unless there are sound-
insulating lock chambers. Buffer zones should be used to separate noisy areas from
accommodation spaces both in the horizontal and vertical planes (Fig. 4.1).
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Figure 4-1. Buffer zone arrangement plan on board.
1 - buffer zone
2 - accommodation spaces
3 - engine room trunk
4 - engine room.

Selection of small-displacement vessel architecture provides the most difficult
challenge for low-noise ship designers since sufficient separation of accommodation
spaces from noisy ones is impossible because of the limited length of the hull. The best
solution of this problem might be to move accommodation areas out to the superstructure,
which is to be as far away from engine and diesel-generator areas as possible. However,
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there is no choice sometimes but to place the superstructure right above those areas. In
this case there could be three variants of the superstructure placement.

Traditionally, the engine room trunk extends through the superstructure. This
dictates providing for buffer zones between accommaodation spaces in the superstructure
and the engine room with its trunk (Fig. 4.2, a). But this does not serve full acoustic-
improvement purpose and a noise-suppressing means complex is still needed to meet
sanitary (habitability) requirements in the accommodation spaces.
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Figure 4-2. Drawings of superstructures with accommodation spaces at
the aft end.
a - superstructure incorporating engine room trunk
0 - superstructure with engine room trunk designed for outside
placement
6 - spring-mounted superstructure.
1 -engine room
2 - engine room trunk
3 —superstructure
4 - vibration-insulating shock absorbers.

Placing the engine room trunk outside of the superstructure produces the best
results. In this case, a buffer zone available between the engine room and the
superstructure is enough (Fig. 4.2, a ). Noise-suppressing measures are still necessary for
the accommodation spaces on the lower decks of the superstructure. «Floating» floors
are to be used there [28]. Besides, with the coincidence of the resonance frequencies of
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longitudinal vibrations of a superstructure (which is shortened), and frequencies of the
hull’s vibrations due to ship’s motion, adding to the superstructure’s shear rigidity may
be necessary. This could be achieved, for instance, by thickening of the side walls, their
combination with the ship sides, ensuring continuity of longitudinal vertical links of the
superstructure, etc.

Mounting of a superstructure on vibration-insulating shock absorbers provides the
most powerful way of lowering vibration and vibration-related noise in rooms (Fig. 4.2,
a). Attempts at mounting of up to 2,500-ton superstructures on vibration-insulating
shock absorbers have proved successful [51, 59]. Measuring noise levels on similar-type
vessels, one having the superstructure mounted in a traditional way and the other - on
shock absorbers, revealed noise reduction of approximately 10 dB on the superstructure’s
first deck. On other decks, spring-mounting effectiveness was higher.

To lower intensified longitudinal and lateral vibration of the superstructure,
vibration dampers are sometimes used. Calculation of a superstructure’s spring-
mounting parameters can be done in accordance with [11].

The selection of a propeller and aft end design is necessary to reduce
hydrodynamic forces acting on the ship hull from the propeller and causing acoustic
vibrations in it. Reductions may be achieved by: (1) widening the gap between the
propeller blade edges and the hull plating; (2) use of multi-blade propellers including
more distinctively crescent-shaped ones (skewing); (3) shaping the outline of the stern in
a way that brings minimal distortion to the inflow velocity field of the propeller disc; (4)
use techniques allowing for equalization of the flow velocity field into the propeller disc.
Reference [25] provides more detailed information on selection of a propeller and the aft
end type.

Optimal distribution of intake and exhaust devices on the upper deck improves
acoustic environment on the conning bridge, promenade and service areas of the ship
deck and in accommodation spaces on it. The above devices should be positioned as far
away from these areas of the upper deck as possible and are to be spaced for safe
direction of their maximum sound radiation.

4.2  Separation of Ship Structures Vibration Resonance Frequencies from
Driving Force Frequencies

During excitation of ship structures at their resonance frequencies, their vibrations
intensify through diminishing of mechanical resistance (impedance). At the same time,
vibration spectra of many vibroactive sources contain discrete components at specific
frequencies. When these frequencies coincide with the resonance frequencies of ship
structures, the latter may acquire inadmissibly high vibration levels.

The amplitude of vibrational velocity for resonance flexural vibrations of a rod- or
finite dimension plate-type ship structures is, according to Egs. (3.13) and (3.15): for a

rod &, = 2F /(@M 47) and for a plate &, = 4F (oM 7).

The acoustic vibration level of a ship structure with resonance flexural vibrations
is proportional to the amplitude of the driving force F and inversely proportional to
frequency f, the structures mass M, and loss factor 7. With the force magnitude F
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constant, lowering the structure’s resonance vibration level requires the addition of
weight to the structure, and an increase in the loss factor. A considerable increase in a
ship’s structural weight is impossible in practice, but an increase in loss factor 7 may
produce better results.

Figure 4-3. Frequency response of vibration speed amplitude of a system
with one degree of freedom (see Fig. 3.1, a) in the vicinity of its
resonance frequency.

The mutual separation of dangerous resonance vibration and driving force
frequencies is the best way of eliminating such resonance vibrations. When separating
the above frequencies, the structural vibration amplitude diminishes at a rate dependent
on loss factor 7. This is seen from the expression for vibrational velocity with one
degree of freedom (see Fig. 3.1, a).

E=C = N (4.0),
Z  joM[-u"(1+ jn)]
where Z - input mechanical impedance of a system; M - mass; p; = f¢/fp - coefficient of
separation of the driving force frequency fr from the resonance frequency fp of the
system.

Equation (4.1) can be used for both rod- and plate-type structures resulting from
the fact that systems with distributed parameters such as these consist of innumerable
systems with one degree of freedom. Expression (4.1) is illustrated in Fig. 4.3. At the
resonance frequency (fr = fp), the amplitude of the system’s vibrational velocity is

maximum (&=¢, ).

For specified decrease of the system’s vibrational velocity a =&, /& to be

achieved, the separation g, required for this goal to be achieved is found from the
equation

2.2 2.2

A R/ \/a21+0”7 -1
y2r 4 n ( 4)

considering that, in practice, o7 << 4, then u: =1+~ a —1. For example, with o =
10, u? =1+ 3p, therefore, with 7= 10.05, x, ~+/1+0.15.
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So, to ensure the given effectiveness of separation of frequencies fr and fp, they
are to differ by 7% (with r =0.05).

The dependence of the necessary frequency separation z; on the value of the
required reduction of amplitude of the system’s vibrational velocity « for different loss
factors is shown in Fig. 4.4.

Equations for resonance frequencies of systems with distributed parameters (see
Table 1.5) show that an increase in these frequencies’ ordinal number shortens the
interval between them. That is why possibility of separation of f¢ and fp frequencies
with a specific lowering of the system’s vibration amplitude remains until a certain
ordinal number inax is reached at which distance between the neighboring resonance
frequencies Afmin ensures required lowering of amplitude o (Fig. 4.5, a).
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Figure 4-4. Dependence of the required separation py of driving force
frequencies and resonance vibrations of a system a) for a one

degree of freedom system with different loss factors n.
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Figure 4-5. Charting of value Afmin (a) and dependence of imax ON parameter
B (B).
1 -- dilatational and torsional vibrations of a finite rod
2 -- flexural vibrations of a finite rod
3 -- flexural vibrations of a rectangular plate.
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For dilatational and torsional vibrations of a finite dimension rod

imax = E|:L:| .
c-1

for flexural vibrations of a finite dimension rod
. _g3-et 2Je) |
max 2(8 —l ’
for flexural vibrations of a rectangular plate

{24

c-1

where operator E means whole part of expression put in brackets; = (1 + A)/(1 - p);
Brnl2Na® -1 (f << 1).

Values of imax depending on parameter S are shown in Fig. 4.5, a. The need to
separate the resonance frequencies of dilatational and torsional vibrations is limited as
compared to those of flexural vibrations due to the much lower density (sparsity) of the
latter’s resonance frequencies. With 7 = 0.05 and o = 10, for dilatational and torsional
vibrations of a rod imax = 6, for flexural vibrations of a rod iynax = 11, for flexural
vibrations of a plate ima = 12.
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Figure 4-6. Decrease of a structure’s vibration velocity dependent on the
order of its resonance frequency under constant driving force.
1 -- dilatational and torsional vibrations of a finite rod
2 -- flexural vibrations of a finite rod
3 -- flexural vibrations of a rectangular plate
4 - required decrease of a structure’s vibration velocity; in dB.

A structure’s highest vibration velocity assuming equal driving forces occurs at its
first resonance frequency. As the order number of the resonance frequency increases, the
vibration velocity at this frequency decreases inversely proportional to its value. That is
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why there is no need to separate all the resonance frequencies from the driving force
frequencies.

Figure 4.6 shows the dependence of a structure’s vibration velocity decrease on
the increase of the resonance frequency order number i for various types of vibrations. In
practice, value 10 dB of lowering of resonance vibration amplitude is enough. So, for
dilatational and torsional vibrations of rods, the first three resonance frequencies are to be
considered, for flexural vibrations of rods - the first two resonance frequencies; for
flexural vibrations of plates - the first resonance frequency.

Resonance frequencies of the above structural vibrations can be evaluated by
respective equations from Table 1.5. The following are examples for possible resonance
frequencies of ship structural vibrations.

Example 1. Calculate the first resonance frequency of flexural vibrations of a steel
mounting plate segment of a foundation limited by neighboring brackets (see Fig. 1.3,a).
Width of the mounting plate I, = 0.1 m, distance between brackets I; = 0.3 m, the

thickness of the mounting plate hy = 0.01 m, p =7.8-10° kg/m*, E =2-10" Pa/m*.

Three edges of the above segment of the mounting plate are assumed to be
hinged, the fourth one (external one) is free. Equation (5) from Table 1.5 corresponds to
these boundary conditions, and using it, we have

[ 12 [B
f, =05 1+4L2 P =
|2 mplll

2 11 4
~05 [1+403 210 (00D _ 4931z,
(0.1)?{12-7.8-10°-0.01-(0.3)

Example 2. Calculate the first resonance frequency of flexural vibrations of a ship
room’s steel enclosure reinforced with five stiffening ribs (i = 5) vertically (along
dimension I). Enclosure dimensions I, = I, = 2.15 m, plate thickness hy = 0.006 m.
Stiffening ribs from bulbous plate #10. Edges are assumed hinged. Equation (10) from
Table 1.5 corresponds to these boundary conditions. Enclosure weight M = 360 kg
(framing accounts for 32% of M); ribs’ linear (running) weight my, = 7.44 Kkg;

B, =3.28-10°Pa-m*; B, =7.8-10° Pa-m*.

According to the above equation, we have
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B |4 |2 1/2
1+——P2 (1+1)°
B, (i, +1)B,l l;

fo= -
" m, 4, M
(i, +Dm,,l,
1/2
. 328:10°(2.15)" (1+(2-15)2)2
z|7810° T (5+1)-210°(2.157° ° (2.15)° 1101
T2 7.44 1 300 R

_+_
(5+1)-7.44-2.15

The above examples of the calculation of ship structures’ resonance frequencies
show that these frequencies may coincide with frequencies of some machine’s discrete
components under certain circumstances. Specifically, the first resonance frequency of a
foundation’s mounting plate may coincide with the frequency of an electric mechanism’s
magnetic vibration. The first resonance frequency of an enclosure may coincide with one
of the harmonics of a machine’s rotational frequency.

Mutual separation of ship structural resonance frequencies and driving force
frequencies may be carried out in two ways. The first one is variation of driving force
frequency (rotational frequency of vibration source). This way is employed when, for
instance, selecting a propeller rotation frequency to ensure no coincidence of this
frequency and propeller blade frequency with calculated values of resonance frequencies
(normally, of the first three ones) of the hull’s vibration.

If a vibration source rotation frequency is not controllable that is typical for
auxiliary mechanisms, there still is another way of separating this frequency from first
resonance frequency of flexural vibrations of a ship structure on which the above source
is mounted. This way involves change of the resonance frequency.

The respective change in ship structure’s flexural rigidity provides the most
effective technique to ensure change of resonance frequencies of these structures’
flexural vibrations. A two-fold change in this rigidity translates into a proportional up to
40% change of the resonance frequency. Reinforcement of an enclosure (whose
resonance frequency of flexural vibrations was calculated above in Example 2) with the
use of six stiffening ribs of bulbous plate #8 that are perpendicular to the original framing
boosts the resonance frequency up to 122 Hz, i.e. by 11%, with a 20% increase in the
enclosure weight.

Reinforcement of the same enclosure by adding to the rigidity (stiffness) of uni-
directional ribs mounted on it takes a lesser weight increase with the same frequency
change. For example, use of bulbous plate #16a stiffening ribs in an enclosure provides
an increase of the first resonance frequency of the enclosure’s flexural vibrations by 28%
(f1 = 140.8 Hz), as compared to example 2, with the same increase in weight (by 20.4%).

An increase in the flexural vibrations’ resonance frequencies of a foundation’s
mounting plate elements may be achieved by strengthening its free edge with a strap. A
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comparison of Egs. (2) and (5) of Table 1.5 shows that this method nearly triples the first
resonance frequency of flexural vibrations of this foundation element.

To eliminate ship structures’ resonance vibrations, the following methods are
utilized:

e selection of machines with constant rotation rate whose discrete component
frequencies of vibrations differ from the above-listed resonance frequencies of
vibrations of ship structures on which those machines are mounted; magnitude
of this difference Af is selected considering resonance frequency calculation
error (normally within 10%) and necessary lowering of resonance vibration
amplitude (see Fig. 4.4); in practice, Af = 20 + 30% is regarded as sufficient;

e change in rotation frequency for variable rotation rate machines so that it
differs from resonance frequencies of ship structure vibrations at least by Af =
20 + 30%;

e change in ship structures’ resonance frequencies, for instance, through the
structure reinforcement as much as to ensure difference of these frequencies
from frequencies of discrete components of mechanism vibrations at least by
Af =20 + 30%;

e vibration-absorbing means.

4.3 Use of Anti-Resonance Phenomena’s Advantageous Effect in Ship
Structure Elements

At the anti-resonance frequencies, of various ship structures’ its mechanical
impedance increases considerably. Therefore, their vibration amplitude diminishes. If
the anti-resonance frequency of a mounting structure closely or exactly matches the
frequency of a discrete component of the mechanism, the vibration, level of acoustic
vibration of this structure at the given frequency is considerably decreased.

The resistance (impedance) of structures at the anti-resonance frequencies of
flexural vibrations is determined by equations:

for rods of length I, ,

~ Mg Ci,rog
F max 272_ f?]l

rod

for plates of Sy area
_32mycq

Fmax —

7> S,

Since ¢f o oc f,andcf , oc £7,Z, . forrods does not depend on the value of
the anti-resonance frequency; for a plate, it is inversely proportional to this value.

F max

The value of anti-resonance frequencies of flexural vibrations for rods (for
example, pipelines) and plates (bulkheads, floors) fixed along edges and excited in the
center can roughly be determined by the equation
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f ~ f 2+ 12

anti—res res,i res,i+11?

i=123,... (4.2).

Consider a foundation mounting plate whose mechanical compliance is shown in
Fig. 3.7, its first anti-resonance frequency is 1080 Hz, calculated using Eqg. (4.2) and this
agrees well with experiment.

The maximum effectiveness of adjusting the anti-resonance frequency of a ship
structures flexural vibrations to the driving force frequency is:

for a rod
CfI rod
Emax =
\/Eﬂ'fnlrod
for a plate
E _ 8C?I,pl
mx —  2¢2 o
B

Let us consider a few examples of potential effectiveness of adjusting the anti-
resonance frequency of ship structures to driving force frequencies.

Example 3. For a mounting plate element of a support foundation with parameters
corresponding with Example 1 from § 4.2, we have f,; .., #1080 Hz according to

Equation (4.2). With ¢, =1.08-10° m*/sec” and 7 =0.1,

~ 8.1.08:10°
™ 22(1.080)%-0.1-0.03

=24.7(27.8dB).

The value E__ for this case is in satisfactory agreement with the experimental

max

results from Fig. 3.7.

Example 4. For a ship room enclosure with parameters corresponding to Example
2 from § 4.2, we have f_, ..., =230 Hz, according to Eq. (4.2). With

Ch =5.5-10° m?/sec” and 7 = 0.1 (the enclosure has vibration-absorbing coating
applied),
5 __ 85510°
mx " 22(1,080)% -0.1-0.03

~18(25dB).

The value E ., obtained also agrees well with the experimental results from
Fig. 3.7.

Example 5. For a steel pipe with 48-mm internal diameter mounted on rigid
suspensions placed at I, =1m from each other, the pipe walls being 0.004-m-thick, we

have fres1 =18.8 Hz and fres; = 75.3 Hz, according to Eq. (1) of Table 1.5. Equation
(4.2) gives fantirest = 38.8 Hz. With ¢, =90 m/sec and 7 = 0.1 (pipe has vibration-

absorbing coating glued around it),
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J27-388-0.1-1
The above examples show that adjustment of the anti-resonance frequencies of

ship structures’ flexural vibrations to the driving force frequencies causes a significant
lowering of those structures’ vibration level.

=5.4(14.60dB).

max

The maximum effectiveness E . is achieved only when the driving force
frequency is in close proximity to the anti-resonance frequency. As these frequencies get
further away from each other, the effectiveness of the anti-resonance frequency
adjustment to the driving force frequency fr will decrease according to the expression

2 _1 2
max 1_1,_@1

n
u=>1

E=E

gy =111

anti—res !

With admissible lowering of E, ., by 3 dB, frequency band Af, in which

E..>E>E/N2isaf =5 f_, ... Thatiswhy utilizing the above ship structures’

acoustic vibration lowering technique is only possible when the deviation of the rotation
frequency of a structure-mounted machine is within 7/2-100% from the rated value.

The effective use of the adjustment of the ship structures’ anti-resonance
frequencies to the driving force frequency requires an accurate determination of the anti-
resonance frequency values, and these are difficult to calculate given the accuracy of
currently available methods (about 10%). Therefore, experimental determination of the
anti-resonance frequencies on ships or their scale models should be considered as more
reliable. Similar to resonance frequencies, adjusting the anti-resonance frequencies is
better performed through changes in these structures’ flexural rigidity (stiffness).

4.4 Increase in Static Rigidity (Stiffness) of Ship Structures

At frequencies below the first resonance frequency fs1 of the structures’ flexural
vibrations, an increase in their rigidity (stiffness) causes an increase in these structures’
mechanical impedance resulting in a lowering of their vibration excitability. By adding
to the thickness or reinforcing the plates’ free edge with a strap, this method allows a
decrease at specific frequencies of the vibration excitability of foundations” mounting
plates. According to Eqg. (3.4) and Egs. (2), (3) of Table 3.1, a doubling of the thickness
causes an eight-fold increase in the foundation impedance, and reinforcement of a free
edge - a five-fold increase.

With increasing flexural rigidity (stiffness) through a mounting plate thickening,
the foundation resistance (impedance) also increases at frequencies above fres:.
According to Eq. (2) of Table 3.2, a doubling of the plate thickness causes a four-fold
increase in the foundation’s mean resistance (impedance) at frequencies above fres:.
Reinforcement of a constant-thickness mounting plate’s free edge with a strap has no
impact on the foundation’s mean resistance (impedance) at frequencies above fres:.
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The frequency response curves of mechanical impedance of a foundation with
parameters corresponding to Fig. 3.6 are shown in Fig. 4.7. A doubling of its mounting
plate thickness and reinforcement of the plate’s free edge with a strap are considered.

When an acoustic vibration source is mounted directly on the hull structure (i.e.
no foundation), decreasing the vibration excitability requires an increase in the structure’s
flexural rigidity (stiffness). Minimizing the structure’s weight is accomplished by adding
to its rigidity by increasing the reinforcing framing. An increase in the mechanical
impedance of such a structure is proportional to the increase in its flexural rigidity

(stiffness) B at frequencies below fes and approximately /B at frequency over fres:.

In the case of a floor without ribs, its thickening translates, as it does with a
foundation’s mounting plate, into an increase in mechanical impedance proportional to

h?, at frequencies below fres; and h? at frequency above fres:.
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Figure 4-7. Frequency response of input mechanical impedance for a
foundation with parameters corresponding to Fig. 3.6 in a
mounting plate’s various structural patterns.
1, 2 - external edge of the mounting plate is free
3 - external edge of the mounting plate is strap-reinforced

Z|-Nesec/m, kl'y - kHz.
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Increasing the ship structures’ flexural rigidity, also leads to changes not only in
mechanical impedance but other vibro-acoustic properties of the ship structures, such as
vibration conductivity, sound radiation ability and sound insulation, as well.

Frequency dictates the way flexural rigidity influences a structure’s vibro-acoustic
properties. Let us single out the following frequencies to govern the vibro-acoustic
properties of ship structures:

first resonance frequency fres1 Of a structure’s flexural vibrations;

first resonance frequency fyi, res OF & Segment of the plate limited by adjacent
stiffening ribs;

critical frequency fer;

frequency, above which the reinforcing framing no longer influences the wave
properties of the structure fos.

For rib-less structures, only frequencies frs; and f- matter.
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The given frequencies limit typical frequency ranges for structures reinforced
with stiffening rib framing: f<fres1 - range A, fresa<f<foires1 - range 5, fpires1<f<foz -
range B, fo.<f<fe - range I, fo<f - range /], for ribless structures: f<fres1 - range 4,
fresi<f<fer - range B, fo<f - range B.

Dependence of ship structures’ vibro-acoustic characteristics on their flexural
rigidity for ribless plates with a change of thickness is shown in Table 4.1, and for ribbed
plates with variation of reinforcing framing rigidity - in Table 4.2. In the tables, sign «+»
means improvement of a structure’s vibro-acoustic characteristic, sign «-» means its
deterioration, sign «0» means no impact of rigidity variation on a characteristic value.
Specifically, for vibration excitability, vibration conductivity and sound radiation ability,
sign «+» means lowering of their values, but for sound insulation - increase in values.
The upper sign corresponds to an increase in rigidity, the lower one - to its decrease.

Table 4-1. Dependence of vibroacoustic characteristics of ribless
structures on their flexural rigidity (see Fig. 3.23).

Vibroacoustic characteristic Characteristic variation in frequency range
A b B
Vibration excitability (mechanical + + +
impedance)
Vibration conductivity F F F
Sound radiation ability 0 F 0
Sound insulation + + +

Table 4-2. Dependence of vibroacoustic characteristics of structures on
flexural rigidity of reinforcing framing.

Vibro-acoustic characteristic Characteristic variation in frequency range
A B B r g
Vibration excitability:
excitation into framing + + +
excitation into plate + + 0
Vibration conductivity:
excitation into framing F + +
excitation into plate F + 0
Sound radiation ability 0 F F 0 0
Sound insulation + + F 0 0
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Variation of a ship structure’s flexural rigidity (stiffness) has an ambiguous
impact on the vibro-acoustic characteristics. Adding to the rigidity (stiffness) of the
framing to reinforce ship room enclosures in fres1 -- fpirest frequency range (A) lowers
vibration excitability but all other vibro-acoustic characteristics deteriorate at the same
time, while in frequency range above f all characteristics of the given enclosure remain
unchanged. Therefore, when changing ship structure’s flexural rigidity (stiffness) to
improve one or several vibro-acoustic characteristics, make sure that the other
characteristics do not deteriorate. Bear in mind that variation of a structure’s flexural
rigidity causes subtle changes in its typical frequencies fres; and fer too.

45 Means of Lowering Vibration Conductivity of Ship Structures

To lower the vibration conductivity of ship structures, use the following methods
that are based upon alteration of the geometric parameters of these structures:

adding to the vibration insulation of ship structure links (bulkheads, floors, hull
plating), through which acoustic vibrations are transmitted:;

use of vibration inhibiting masses and other similar purpose means;

non-periodicity in the location of stiffening ribs (frames).
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Figure 4-8. Frequency responses of vibration insulation of a spaced
vertical structure link and a cross link; 6 - dB; kI'y - kHz.

Increasing the vibration insulation of ship structure links may be achieved by
mismatching the mechanical resistance (impedance) of the structures forming the link
resulting from a change in the flexural rigidity or thickness (in case of ribless structures).
However, in most cases this involves increasing a structures weight and this is not always
admissible in practice.

An increase in the vibration insulation of a cross joint may be achieved by spacing
vertical structures 1 of this joint at I-distance as shown in Fig. 4.8. This joint 3 is more
vibration-insulated as compared to cross link 4 through increase in mechanical
impedance with respect to turn of horizontal structure 2 at the point of its connection with
vertical structures. An impedance increase occurs at frequencies at which no bending
deformations originate in a segment of a horizontal structure bounded with vertical

structure joints. Such deformations are absent with k,, <1 or | <A,,/6. Frequency
f,q < Cqy /(47+/31%), meets this condition.

112



At a higher frequency, a spaced vertical structure link is like two T-joints placed
in series. Their aggregate vibration insulation exceeds that of a cross joint. Obviously,
with frequency lowered, vibration insulation of a spaced vertical structure joint equals

vibration insulation of a cross link. This occurs at frequency f,, <16hjc_, /(z*1%).

Vibration insulation (V1) of a spaced vertical structure link is determined by
equations:

in the frequency range f,, — fop

2
Vi :lOIog{ﬂ(l+%+%)}, 4.3)
where
_2mye,, Ky,
b= My, ( 5 )

at frequencies below f,

VI = 10Iog{;z[1+ (%)2'5]2} (4.4
1
at frequencies above f,,
VI = 20logl Z 2+ (2y25p2 L (4.5)
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Figure 4-9. Vibration-inhibiting mass (VIM) drawing.
a) - VIM in a plate’s linear joint
0) - VIM in plate’s T-joint
6) - VIM with a section’s increased radius of gyration;
2) - reinforced coaming
1 -- vibration-inhibiting mass (VIM)
2 - coaming.
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With h; = hy, use Egs. (4.3) and (4.5) to get VI =11 dB and VI = 17 dB
respectively. Therefore, the increase in vibration insulation of a spaced vertical structure
link as compared to cross links’ vibration insulation is 6 dB. Equations (4.3)-(4.5) are
used for non-ribbed plate structures. With ribbed plates, ratio 1,c,,/1,c,, replaces

(hothy)2°.

Example of frequency response for vibration insulation of a spaced vertical
structure link is offered in Fig. 4.8 for a joint of ribless plates h; = h, = 0.01 m thick with
I =0.05 m. This drawing also gives frequency response for vibration insulation of a cross
link of the same thickness plates.

To obtain greater vibration insulation of a spaced vertical structure link at low
frequencies, add to distance | between structures.

Vibration-inhibiting masses (VIM) are massive blocks of rectangular or square
sections placed on a plates’ butt joint along acoustic vibration path to insulate the
vibration transmission (Fig. 4.9, a, &, &). To produce maximum effect, make sure that the
largest dimension of the masses cross section is considerably (at least six times) shorter
than the shortest elastic wavelength, i.e. flexural wave propagating in the VIM section.
This condition is met with inequality [19]

211/1, < 10°/a (4.6)
where o ={[(4-10° f_1,)* + (2 f,1,)*T'* +1.67(2 f,l,)°}"'?; I, - half the smallest
dimension of the VIM cross section, cm; fg - the upper frequency of a given range, Hz.

The vibration insulation of a VIM placed in a linear (planar) connection of

identical thickness plates (see Fig. 4.9, a) is, with respect to a diffuse field of flexural
waves in a plate,

2
kafI,pI

VI =10log k@)
mpl kfIM +t7

(4.7)

k?l pl rl\i

where my - linear weight of the VIM, ks v - wave number of VIM flexural vibrations
along the I; dimension; kim - wave number of VIM torsional vibrations; y =k 1,51, —
the radius of gyration of the VIM cross section about its rotation center,

r, =(2+12)/3+1;; lo - distance between VIM section’s center of gravity and its

rotation center. For a VIM structure shown in Fig. 4.9, a, lp=I;and r,, = (417 +12)/3.

The propagation of plane flexural waves that form a diffuse vibration field in a
plate is largely dependent on their angle of incidence to a VIM. Figure 4.10,a shows the
angular dependence of the amplitude squared of a plane flexural wave amplitude passing
through a linear VIM. There are two maximum values, i.e. T = 1, at the angles ¢; and

@, . Flexural wave energy passes through mainly at angles close to ¢, and ¢, [19].
These angles are determined by the equations sing; ~k;,, /k;, and
sing, =kqy /K I.e. by coincidence between a flexural wave trace length in a plate

fl pl *
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and a flexural and torsional wavelength in the VIM. These phenomena are analogous to
the full transmission of a plane acoustic wave through an infinite plate at the so-called
plate and acoustic wave numbers coincidence frequency. Angle ¢, for the given VIM

does not depend on frequency (¢; = 26° in Fig. 4.10, a) but the angle ¢, increases with
frequency (¢@; = 4° in Fig. 4.10).

Increasing the VIM height and reducing its width 2I,, while satisfying condition
(4.6) as well yields an improvement of VIM vibration insulation (with its weight
unchanged).

Comparison between calculated results for a VIM’s vibration insulation by Eq.
(4.7) and those of an experiment is illustrated in Fig. 4.11 for a steel round VIM with
radius I, = 0.045 m welded to two steel plates with thickness hy = 0.006 m and 1x1.5 m?
in dimension. One of the plates was driven with a wide-band vibrator, and both were
partially submerged in sand to minimize reflection from edges. Good agreement between
calculation and experiment results is shown. Use of one VIM yields about 10-20 dB in
vibration insulation in the audio frequency range.

Increasing the number of VIMs placed in parallel does not improve vibration
insulation [40]. The reason is that, beyond the first VIM, flexural waves propagate
mainly at the angles ¢, and ¢; , and, therefore, pass through the next VIM virtually

unimpeded.
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Figure 4-10. Angular dependence of squared modulus transmission
coefficient (through VIM) for plane flexural wave amplitude in
linear (a) and T- (6) plate joints with my =45 kg/m, f = 1 kHz,
mpi = 48 kg/m?,
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Figure 4-11. Vibration insulation of a steel round VIM for a linear and T-
joint of plates.
1 - Calculation for a linear joint by Eq. (4.7); --e-- experiment
2 - Calculation for a T-joint by Eq. (4.9); - -- experiment.

Some improvement of aggregate vibration insulation can be achieved by placing
VIMs, varying in weight and cross sectional shape, i.e. VIMs with different ¢, and ¢

angles, one after another. This could be done through a 90°-turn of one of the two
identical (not square) VIMs. A VIM rotated this way possesses a different ¢, angle

value while the ¢; angle remains virtually unchanged. This may improve vibration
insulation by approximately 5 dB in a wide frequency range [40].

Improvement of aggregate vibration insulation of several VIMs may also be
achieved by disturbing their parallel alignment. Plane flexural waves, having passed
through the first VIM, reach the rest of them at angles inhibiting complete transmission
and are arrested.

When placing several evenly spaced VIMs on a plate, bear in mind that, at the
resonance frequencies of flexural vibrations of plate segments bounded by adjacent
VIMs, complete penetration of discrete components of acoustic vibration at these
resonance frequencies is possible. This is due to the penetrability (transparency)
properties of stepped-obstacle structures at certain frequencies with respect to waves
propagating through them [19].

When placing VIM in ship structures reinforced with stiffening ribs, VIM-
bypassing vibration energy transmission occurs along stiffening ribs crossing the VIM.
Best-attainable VIM vibration insulation in this case is determined by Eq. [19]

VI =1010g(2k ), (4.8)

where | - is the distance between stiffening ribs.

There is no doubt that better vibration insulation of VIM is ensured by placing
VIM-crossing stiffening ribs as far from each other as possible. Equation (4.8) is correct
at frequencies above the first resonance frequency of flexural vibrations of a plate limited
by neighboring stiffening ribs.
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Value of VIM vibration insulation depends on the way it is attached to the
structure to be protected. No bolts or rivets are allowed as this significantly reduces the
vibration insulation in the entire audio frequency range. Deterioration of VIM vibration
insulation at high frequencies occurs as a result of tack welding in VIM cross section
corners. Welding of a VIM onto the structure produces optimal results (see Fig. 4.9, a
and a).

The VIM location on a ship structure is to be chosen in a way that ensures making
of a closed (in a plane) VIM circle around an acoustic vibration source.

Vibration insulation of a VIM placed in a plate’s T-joint (see Fig. 4.9, &) with
respect to flexural waves’ diffuse field in a vertical plate (joint-forming plates thicknesses
are the same) is determined by the equation

k4 2
VI :10|og(MJ (4.9)

am Ky v
where

. (L+77) .
24U+ 1)+ B

p= kf,p,sM 14, S, =4ll,.

Dependence of v value on y; with variable £gis given in Fig. 4.12. It shows that,
with y; = 2 to 3, v parameter increases and VIM vibration insulation deteriorates. The

best results are obtained with y; < 1. Make sure lengthening of the horizontal dimension
of a VIM cross section does not violate condition (4.6).

Dependence of the square modulus of the plane flexural wave amplitude
transmission coefficient upon its incidence angle on a VIM in a T-joint of plates is shown
in Fig. 4.10, 6. The maximum value of the coefficient occurs with the angle ¢ = ¢, that

is determined from sing, ~ k., /kq , . Similar to the case of a VIM placed in a linear
joint of plates, the angle ¢, in this case is determined from the equality between a plane
flexural trace wavelength in a plate and a torsional trace wavelength in a VIM. With
Q=; |T (¢))|2 =2/9 that corresponds to a T-joint of identical thickness plates without
VIM.
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Figure 4-12. Dependence of v parameter on value y, =k, 1, for different g.

An improvement of the VIM vibration insulation is ensured by increasing the
radius of gyration for its cross section ry. This could be done by taking the VIM at a

distance d from horizontal plates as shown in Fig. 4.9, 6. The value r_ is determined by
the equation

The increase in d improves the VIM vibration insulation until a d-long and hy, -
thick plate segment becomes comparable to the length of a flexural wave in it. Therefore,
the condition kI <1 is to be met as d increases, where ky, , - is an hp-thick plate’s

wave number.

The vibration insulation frequency response of a round steel VIM with radius |; =
I, = 0.06 m placed at a 0.006-m-thick steel plate’s T-joint is determined experimentally
and shown in Fig. 4.11. A vertical plate was driven with a wide-band vibrator, while the
horizontal plates were partially sand-submerged to suppress flexural wave reflection from
the plate edges. The VIM vibration insulation Eq. (4.9) based calculation results are
given there, too. The plots reveal good agreement between the experimental and
calculated results. The VIM yields up to 10-20 dB vibration insulation.

To ensure such insulation on board, the VIMs should be placed along the entire
perimeter of the ship structure surrounding a vibration source. Follow recommendations
on the methods of VIM attachment to ship structures described above for a VIM placed at
a linear joint of plates.

For flexural waves transmitted via VIM over horizontal plates, an increase in a
cross section 2l; dimension may improve the vibration insulation. To maintain the high
vibration insulation of a VIM, satisfying condition (4.6) is necessary.

The above-type VIM is sometimes represented with a so-called reinforced
coaming which is a thicker insertion piece in a vertical plate (see Fig. 4.9, 2). Figure 4.13
shows the frequency response 1 of such a coaming’s vibration insulation with 21; = 0.2 m
and 21, =0.02 m. The coaming is placed along the bulkhead perimeter on a 100-ton
displacement steel ship [6]. The vibration insulation of a reinforced coaming manifests
itself at frequencies above 100 Hz and comes to about 10 dB. Smaller vibration
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insulation values at high frequency, as compared to a VIM, could be traced to a protruded
shape of a reinforced coaming’s cross section where, with frequency increasing , wave
phenomena lowering the obstacle’s vibration insulation becomes possible.

B af

a7 1
ﬁfrﬁidm

Figure 4-13. Vibration insulation frequency response of (1) a reinforced
coaming and (2) a «vibration-inhibiting saw».

An isolated stiffening rib (SR) provides much lower vibration insulation as
compared to VIM. A protruded shape of SR cross section makes flexural waves along its
height possible. As a result, SR mechanical impedance with respect to bending moment
acting around the SR-supported plate connection line is very low. At the same time, SR
resistance to bending moment acting around the axis perpendicular to the above-
mentioned line is relatively high. That is why SR is usually regarded as a hinged line
with respect to flexural waves in the supported plate. For this obstacle, angular
dependence of square modulus of a transmission coefficient for flexural wave amplitude
is represented as

L (go)|2 z%cos2 Q. (4.10)

This dependence is plotted in Fig. 4.14 (curve 1). The largest part of the flexural
wave energy penetrates the SR at angle + 45° from ¢ = 0°. With ¢ =0°, maximum
energy passing is possible for flexural waves with transmission coefficient 0.5.

Integration of angles of flexural waves’ diffuse field energy passing through a SR
gives value of its vibration insulation VI = 6 dB [19].

However, presence of several parallel SR on a supported plate does not allow
summation of their vibration insulation values. The reason for this is that flexural wave
energy that has penetrated the first SR becomes related to waves concentrated near
transmission angles ¢ = + 45° and reaching the next SR at angles of maximum
transmission.
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Figure 4-14. Angular dependence of the squared modulus of the
transmission coefficient of a plane flexural wave amplitude
passing through a stiffening rib.

Figure 4-15. «Vibration-inhibiting saw» drawing.

Vibration insulation of the next SR can be improved by turning the latter about
the first SR through an approximately 45° angle. In so doing, we allow flexural waves to
have passed through the first SR with minimal damping to reach the second one at an
angle that ensures the waves’ substantial insulation (curve 2 in Fig. 4.14).

«Vibration-inhibiting saw» (Fig. 4.15) is a structure incorporating the above [19].
Its calculated vibration insulation is about 6 dB at medium and high audio frequencies
[19]. Figure 4.13 gives frequency response 2 of such a pattern’s vibration insulation
measured on a mock-up. Satisfactory agreement between the experiment results and the
above evaluation is obvious.

The above data on SR vibration insulation are correct at frequencies over f; =
0.08C,h, /H? determined from condition karHr = 1, where kg is the wave number of

flexural vibrations in a hg-thick plate of which SR is made and Hg is the SR height. At
frequencies below f1, SR resembles VIM and its vibration insulation can be evaluated by
Eq. (4.7).

In a periodic structure, characteristic of most ship structures, which incorporates
plates reinforced with parallel equidistant stiffening ribs (frames), a full penetration of
plane flexural waves is possible in certain frequency bands [19]. These bands are

determined from condition [21] cos(ky , —7) < ‘Tﬂ ﬂ‘ , where | - distance between
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obstacles; y -- phase change for a flexural wave passing through an obstacle; T, —
coefficient of a flexural wave amplitude passing through an obstacle. According to Eq.
(4.10) for a stiffening rib with a plane flexural wave at normal incidence,
Ton=~2,ay ~7z/4,[21].
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Figure 4-16. Frequency response of flexural wave amplitude damping A in
a periodic structure of hull plating reinforced with frames;
showing stop bands.

In between the full pass bands (sometimes referred to as transparency bands) there
are areas of flexural wave amplitude damping. These frequency bands (stop bands) are

governed by the condition cos(k , —7) > ‘Tﬂ ﬂ‘ :

An example of calculation of stop and transparency frequency bands for real hull
structures is given in [56]. The calculated results for a 0.013-m-thick hull plating on
which 0.45-m-high frames are placed at a distance of 2.8 m from each other is shown in
Fig. 4.16. When calculating the results it was assumed that lines of frame and plating
connection are hinged supports (simple supports). The calculation shows that there are
45-100 Hz, 180-275 Hz, 400-540 Hz and 700-900 Hz transparency (pass) bands within 0-
1000 Hz range. In the above publication, frequencies of driving forces acting upon the
ship hull from main engines and the propeller are analyzed based on the calculation. It is
noted as an unfavorable condition that the third and fourth blade frequencies of the
propeller (62 and 82.7 Hz) are in a transparency band (pass-band).

Frequencies at about which there are transparency bands in a structure with
parallel equidistant stiffening ribs are determined from the condition

cos(kyyl—7) =0,

. : . (4.11)
ie. kg, =rld+7/2(21-1),1=123,...

Frequencies satisfying the condition (4.11) are the resonance frequencies of
flexural vibrations of a free-ended rod of length I. Therefore, full passing of flexural
waves in a structure to be considered occurs at about the resonance frequencies of
flexural vibrations.

With a plane flexural wave incident angle deviating from a normal one, a periodic
structure’s transparency bands drift towards higher frequencies. That is why, in flexural
wave’s diffuse field where the field’s components are evenly oriented in the plate plane,
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each of those components has its own transparency bands, with its frequency shifted a bit
about other components’ transparency bands. This results in no distinct transparency
bands in ship’s ribbed structures in the diffuse vibration field. Frequencies of driving
forces’ discrete components are only dangerous when coinciding with resonance
frequencies of ship structure segments bounded by neighboring stiffening ribs.

ol b |
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Figure 4-17. Frequency response of four steel VIMs’ vibration insulation
measured in 1/3-octave and octave frequency bands with my =
2.5 kg/m, hy = 810" m; 46 - dB; kl'y— kHz.

If the above coincidence occurs and there is no possibility of changing the driving
force frequencies, non-periodicity in the stiffening ribs (frames) placement may be
helpful by separating the resonance frequencies of neighboring spacings from one
another. Irregularities in a periodic pattern of ship structures prevent unimpeded
propagation of acoustic vibration over vast areas, if driving forces’ discrete components
frequencies coincide with resonance frequencies of flexural vibrations of these structures
spacings.

With a continuous spectrum of driving forces and sufficient bandwidth of
frequency analysis, resonance frequencies of flexural vibrations of periodic rib spacings
are not dangerous.

Figure 4.17 shows the frequency response of vibration insulation of four VIMs
spaced on a plate at a distance of | = 0.125 m from each other. Insulation is measured in
1/3-octave (1) and octave (2) frequency analysis bands with wide-band excitation of the
structure. When measuring in 1/3-octave frequency band, deterioration of VIM vibration
insulation is witnessed at frequencies close to the resonance frequencies of flexural
vibrations of the rib spacings. Calculation of these bands is done with the use of Eq.
(4.11). With frequency analysis band expanded to an octave, the above deterioration of
vibration insulation does not occur.
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5 REACTIVE DAMPING OF SHIP STRUCTURES’ ACOUSTIC VIBRATION

5.1 Physical Fundamentals of Reactive Damping

Vibration system damping is the traditional way of referring to those measures used for
the absorption of vibrational energy causing a decrease of those systems’ vibration amplitude.
Measures such as, for instance, the application of vibration-absorbing coatings to ship structures
(see Chapter 6) constitute what is referred to as active (resistive) damping.

There is another way of achieving vibration system damping, and this consists of loading
the vibrational system with mechanical impedance elements of the inertial or elastic type. The
added mechanical impedance value must far exceed that of the systems own mechanical
impedance. This approach is known as reactive damping.

Loading of a vibrational system with a considerable-size concentrated mass provides an
elementary way of reactive damping. Consider using it in the example of an infinite plate
excited with a transverse force F. The mechanical impedance of such a plate, according to Eq.

(2) of Table 3.2: Z, . =8,/m B, . The impedance of an added mass M isZ,, = joM . The

displacements of the added mass and the plate at their contact point are equal, so, their
impedances are arithmetically summed. The total impedance of the structure in this case is
therefore:

Zey=Zye+Zye=8/m,;B, +joM.

pl = pl

Therefore, the vibrational velocity amplitude of the mass-loaded plate at the excitation
point is determined by the equation

F 1
Zey 8JmyB, + joM

épl =

The frequency response of fpl is shown in Fig. 5.1. For low frequencies

(oM << 8,/m B ), the amplitude ép, does not depend on the added mass value and has the

same value as what it was before the mass was attached. At the high frequencies
(oM >>8,/m B ), the amplitude ép, is much lower when the loading mass is attached

compared to a plate without the mass. Reactive damping is obviously taking place at frequencies
above f,=4,/m,B, /7zM , determined from the condition ®M =8,/m;B, . Damping

2
g el 1 IM)T (5.1)
\zm\ 16m,,B,,

effectiveness is:
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Figure 5-1. Frequency response of vibration velocity amplitude in the point of
excitation of concentrated mass M-loaded infinite plate by transverse
force.

1 - plate without mass
2 - mass-loaded plate.

Example 1. To be determined is the value of the mass required to achieve the reactive
damping of a steel plate h = 102 m thick with 10 dB effectiveness at frequency f = 100 Hz.

Assuming E = 3 based on Eq. (5.1), we have M = 40 kg.

Therefore, to ensure an even insignificant addition to the reactive damping, a large
loading mass is required. That is why the above reactive damping method is very rarely used.

5.2 Mechanical Resistance of a Mass-Loaded Spring

A vibrational system incorporating a mass, a friction (dashpot) element and a
resilient element (spring) that is driven through the spring (Fig. 5.2) provides a more useful
means of reactive damping. Such a system with one degree of freedom is usually referred to as a
dynamic vibration (absorber) damper, or anti-vibrator. It has higher mechanical resistance
(impedance) above a certain frequency. Such a system is utilized for putting reactive damping in
practice.

Let us consider the basic properties of an anti-vibrator. Its mechanical resistance with
respect to a force applied is determined by Eq. [14]

Z,.=ReZ +]jIimZ,, (5.2)
where

a)FManfﬂf)F
77? + (ﬂf;F -1

ReZ, =

2

_ a)FMa(U$ _,UaZ)F +1)

ImZ,
] 77?"'(/15; _1)2
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Figure 5-2. Diagram and frequency responses of real (a) and imaginary (6)
components of mechanical resistance of the anti-vibrator.

M, - anti-vibrator mass; wr - anti-resonance frequency of the anti-vibrator in a forward
motion and 7. =0, @ =4/K;,/M, ; Ke - complex rigidity (stiffness) of the anti-vibrator,
Ke =Kgo(+ jn:); 1 — vibration energy loss factor in the anti-vibrator in a forward motion;
U =olo:; o frequency of force applied to the anti-vibrator.

The frequency responses of Re Z, and Im Z, are shown in Fig. 5.2 with 7= = 0.3 and 7 =

1. Analysis of these responses reveals governing dependencies (below) of Re Z,r and Im Z,r on
frequency variation.

With ¢ =1, ReZ,. =w-M,In. and ImZ_. = w-M_. Therefore, curves Im Ze vs.

frequency, at variable 7, pass through one point with g = 1. With gor = 10 = (1 + 7%, Im
Zar = 0 and there is no change in sign of the imaginary component of Z,¢, which is of an inertial

nature with s,z < uo and elastic nature with e > . With e = p = [(1+372)"? -11"2,
real component of Z,r is maximum that equals @-M, /7., and 1 is always a bit higher than
Hmax-

There are frequencies on both sides of «r at which ImZ_. acquires the extreme value
1+ 7

a

ImZ,,. =FoM

F
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with g4, , 17, . The difference between these frequencies increases as 7r increases.

Therefore, the frequency range, in which Z,¢ has higher values, increases. The increase of 7
and decrease of Zyr values occur simultaneously.

At about u.e = 1o, where Im Zae = 0, the real part of Zae is maximum. Therefore, the
amplitude of Zqr is high in the entire range from ., through 4., which corresponds to the

extreme values of Im Z,=. The maximum values of the amplitude of Z,r are determined at about
M = Umax , Where Re Z,e is maximum. The frequency band at which Z,r is maximum is
determined with 7°r << 1 as

Afi=4dnefar (5.3)
where f. = /27.

There is a range in the Af; frequency band where the mechanical resistance (impedance)
of an anti-vibrator is predominantly active (resistive). This range occurs at about fmax frequency
With 210 = timax. The segment width, with 0%k << 1, equals Afs ~ nefar. Within the Af,
frequency band, the anti-vibrator is a vibration absorber with loss factor

— ReZaF

n_—|ImZK| (5.4)

where Re Z,r is determined by Eq. (5.2); and Zy - mechanical resistance (impedance) of a
vibrating system at the anti-vibrator mounting (attachment) point.

Comparison of (5.3) and (5.4) shows that, with 0% << 1, Af1 >> Af5, i.e. the frequency
range in which the anti-vibrator acts like a vibration absorber is small as compared to the
frequency range in which it performs as a reactive damping device.

Analysis of curves given in Fig. 5.2 also shows that, with 7 = 1, the maximum resistance
(impedance) Z;s = ©f M,, i.e. it tends to the M, mass resistance (impedance) value. Therefore,
substantial increase in the mechanical resistance (impedance), when an anti-vibrator is used, is
only possible with nar << 1.

Anti-vibrators with one degree of freedom may be made as masses fixed to structures
with a rubber layer. Possible anti-vibrator designs are shown in Fig. 5.3.

The anti-resonance frequencies of the anti-vibrators for the flexural vibrations of a
structure to be damped are determined by the equations:

+ foradesigninFig.5.3,a, 6,6
1 |E,S

=— |2 55
" 27\ M,h 5)
+ foradesigninFig. 5.3, ¢
1 |G,S
=— |2 5.6
" 27\ M,h (.6)

+ foradesigninFig.5.3, 0
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1 |EL
== |== 5.7
" 27\M_h &1

With tangential displacements of a damped structure surface, the same equations are
represented as:

+ foradesigninFig.5.3,4a,6,2

1 |G,S
== |=a 5.8
F 27\ M,h ©8)
+ foradesigninFig.5.3, 6
1 |E.S
== |—a 5.9
F 27\ M,h 9
o for a design in Fig. 5.3, o (dilatational and torsional vibrations of a rod)
1 |G,L
e 5.10
F 27\ M,h .10)

where E, and G, are - Young’s modulus and rubber layer shear modulus respectively; h - rubber
layer thickness; L - mass length along a rod; S - area of mass/rubber layer contact, S = nD%4 - for
a design in Fig. 5.3, a; S = n/4(D? - D%) -- for a design in Fig. 5.3, 6; S = nDH -- for a design in
Fig. 5.3, 6; S = nDL -- for a design in Fig. 5.3, 2; S = n/2(D? - D?,) -- for a design in Fig. 5.3, 0.

Equation (5.6) - (5.10) are valid for h < A./6, where A. - length of a shear wave in the
rubber layer material.

The selection of the anti-vibrator type is dictated by the frequency at which damping is
required, the reliability and shape of the structure to be damped. The lowest damping frequency,
all other parameters identical, is provided by the type of structure shown in Fig. 5.3, 6.
Structures in Fig. 5.3, 6, 2 are the most reliable in service. Structure in Fig. 5.3, o is for rod
structures (like pipelines). The physical and mechanical parameters of some types of rubber are
given in Table 5.1.

These are the following ways of using anti-vibrators for vibration systems’ reactive
damping:

+ single anti-vibrator on a lumped-element system (Fig. 5.4, a);

+ separate anti-vibrator on distributed parameters (continuous) system (Fig. 5.4, 6);

+ multiple anti-vibrators on a lumped-element system like a plate or a rod that vibrates at a
resonance frequency (Fig. 5.4, 6);

+ multiple anti-vibrators on a distributed parameter system (Fig. 5.4, 2).

127



DU N N PO
I |

]

Figure 5-3. Anti-vibrator structure designs.
1 - metal mass
2 - rubber layer
3 - structure to be damped
4 - housing
5 - clamping washer
6 - attachment bolt
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Figure 5-4. Anti-vibrator designs for vibration systems’ reactive damping.
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Table 5-1. Basic physical and mechanical parameters of rubber.

Rubber grade Young’s dynamic Shear dynamic Loss factor 7
modulus Eq 107, Pa | modulus G, 107, Pa

WPII 1074 3 1 0.5

1002 3 1 0.6

1011 3.6 1.2 0.2

278.4 1.8 0.6 0.27

922 0.9 0.3 0.35

615 0.54 0.18 0.27

5.3 Dynamic Vibration Damper

A single anti-vibrator mounted on a machine that vibrates as a solid body provides an
elementary reactive damping device. This anti-vibrator, more commonly referred to as a
dynamic vibration damper (absorber-DVA), is used to lower the amplitude of resonance
vibrations of a machine placed on an elastic base. The use of a dynamic vibration damper
(absorber-DVA) is justified when the machine’s rotational frequency or the frequency of a
machine’s resonance vibrations cannot be changed to avoid dangerous proximity (coincidence)
of those frequencies.

E HIJJI. E M. ET
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e

Figure 5-5. Frequency response of mechanical resistance (impedance) of a spring-
mounted mechanism and a dynamic vibration damper, with n, = 0.

In 1909 Fram suggested using a dynamic vibration damper incorporating a spring-
mounted mass to lower the amplitude of resonance vibrations of equipment mounted on an
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elastic base [9]. All inherent properties of a dynamic vibration damper’s damping effect stem
from mechanical resistances (impedances) of the entire system and its elements.

Figure 5.5a shows the frequency response of a dynamic vibration damper resistance Zr =
Im Zs with 7, = 0; Fig. 5.5,6 shows that of a damped mechanism mounted on spring absorbers,
Zyr = joMp - jJKm/o (My - mechanism mass, Ky - rigidity (stiffness) of its absorbers), and that
of aggregate impedance Zsr obtained as Zsr = Zur + Zgr since vibratory velocity of both the
mechanism mass and dynamic vibration damper spring are equal at the F force application point.

Figure 5.5 shows that, at the frequencies where Zmr = - Zar, Zsr = Zwr + Zar = 0; there are
two frequencies of this kind. So, that a system with an added vibration damper has two
resonance frequencies war1 and war (war1 < @ar2) rather than one as in a system without a
dynamic vibration damper (owr Mm = Km/ owve, ome - resonance frequency of a spring-mounted
mechanism).

Frequency asr1 corresponds to mass M, and Mp, oscillating towards each other, while
frequency war2 corresponds to in-phase oscillations of these masses (with different amplitudes).
Frequencies war1 and wqrz happen to be on both sides of resonance frequency wwme.

At the frequency awwr, corresponding to the resonance frequency of a spring-mounted
mechanism without a dynamic vibration damper, the resistance (impedance) of a system
incorporating the latter increases sharply. Therefore, with F force acting at frequency o= owr,
mounting of a dynamic vibration damper with resonance frequency s = @wr On @ mechanism
translates into a significant lowering of the mechanism’s vibration amplitude.

Effectiveness of a dynamic vibration damper

= |z

- (5.11)
& |l

where Zyr is the mechanical resistance of a damped structure, &, &, - are the amplitudes of the

damped structure’s vibration velocity prior to placing a dynamic vibration damper and after,
respectively.

The frequency response of the E value when Zxg = Zur and 77, = 0 is shown in Fig. 5.5, 2.
Values above one that occur in the range of frequencies @y to @, indicate positive effect (see Fig.
5.5, 6). With E < 1, amplitude of mechanism’ vibrations (with a dynamic vibration damper
mounted) rises.

A dynamic vibration damper effectiveness when placed on a spring-mounted mechanism

is determined by Eq. (5.11) with substitution of Z,+ determined by Eq. (5.2),
Ky -
Zye =" [§(#t,, =Dy 1,
a

where 11,0 = ol ow; ow = (Kml Min)Y%; 7w - loss factor in a mechanism’s spring-mounting. As
the result,
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w w
[, = 1) + K« ReZq 1+ + K ReZ I
E= R (5.12)
(lua)Z _1) + 77M

At about frequency @ = amr = @ar, EQ. (5.12) is represented as

Exl4+-fm (5.13)
77a77M

where zm = My/My. Equation (5.13) is correct if 7%, << 1 which is typical in practice.

Equation (5.13) determines the maximum effectiveness for a dynamic vibration damper
placed on a spring-mounted mechanism vibrating at its resonance frequency. To ensure
significant effectiveness in practice, the condition g4, >> 7,7 IS to be met.

The performance of a mechanism with a dynamic vibration damper placed on it is
normally governed by a frequency-dependent value &, /&, ... Where &, —amplitude of the

mechanism mass vibrations; &, ... — static deformation of the mechanism’s spring-mounting,
Ev saic = F /Ky, F - amplitude of dynamic force causing vibrations of the mechanism. The
value of &, /&, e 1S determined by the equation

Sl S,y Rz el ¢ R

Svsaic  O(Zye +Zye) M M
Ratio 1.r = wl war being part of expression for Re Zy and Im Zg¢ that are determined by
Eq. (5.2) is related to ratio p,»= @l ovr in the following manner: t.r = piaol pten Where g =
@arl OV

Figure 5.6 shows frequency response of value |§M |/ Ev s TOr various values of 77, with

v = 0.02 and v = 0. If no loss occurs in a dynamic vibration damper, there are two
frequencies at which mechanism vibration amplitudes are infinite.

With infinitely big losses in a dynamic vibration damper that takes place when it is
rigidly connected to the mechanism mass, there is just one frequency at which vibration
amplitude &, — o as typical for a system with one degree of freedom. This frequency is
somewhat shifted to the left close to the resonance frequency of a spring-mounted mechanism

ovr (1w = 1), with displacement magnitude ,/1— x, which is due to an increase in My mass by
the value M,.

All of the curves |§M |/§M,stauc pass through two points for any 7, [9]. Generally, the

ordinates of points P and Q may be different. Equal ordinates are optimal as they correspond to
the lowest values of maximum &, (note that, with one point elevated, the other one decreases

along the curve when 7, = 0).

A dynamic vibration damper featuring equal ordinates of points P and Q is referred to as
optimal.
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Mo opr =11+ 14,) (5.14)

The loss factor in a dynamic vibration damper is considered optimal, if tangents to the
curves | Em |/<‘,M,CT in the points P and Q are horizontal. The condition is met through loss factor
Na vValue that equals:

(5.15)

Ma,opt =

S/ Ener
i

i

Figure 5-6. Frequency responses of amplitude of a spring-mounted mechanism
vibrations with a dynamic vibration damper placed on it.
1--7a=0;2-- 12— 3 7a= 1a onm = 0.175.

The approximate equality (5.15) is met provided that x4, << 1 which is typical in
practice. Vibration dampers weighing at most 5% of a mechanism weight are normally used (zm
<0.05). High values of m, are unsuitable in practice. With lower-than-optimal values of m,,
vibration amplitude increases as n» diminishes and may exceed values admissible for the given
strength.

Amplitude of maximum displacement of a vibration damper mass about a mechanism
mass is determined by Eq. [13]

$Su _ 1+uy N 1.15 (5.16)
gM,static Hn Hm
Approximate equality (5.16) is correct with u, << 1. Equations (5.14)-(5.16) are correct
with losses in a mechanism’s spring-mounting as well when 7y <0.4.

The Aw, frequency band width in which vibrations of a mechanism mass with a dynamic
vibration damper have roughly identical amplitude is dictated by location of the points P and Q
on the chart, Fig. 5.6. For an optimal vibration damper,
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) 1 1+ u
= 1+ m
Ho20p 1+ﬂm[ 2+ﬂm]

With zim<<'1, ptwp o = 1.31(1 - pi/2) and pen p~ 0.54(1 - 1in/2), S0, Awa = 0.77(1 - il 2) com.

The width Awn, of the resonance curve for vibration amplitude of a spring-mounted
mechanism at the amplitude level equal to 0.71 of the maximum is: Aon = nuowm, that is
narrower than frequency band Aw, given real values of nv (nm < 0.5). So, the maximum
effectiveness of a dynamic vibration damper usage determined by Eq. (5.13) is ensured in the
frequency band Aan,.

At frequencies above the resonance frequency of a spring-mounted mechanism vibrations
aom (w2 >> 1, tten >> 1, uor = 1), the dynamic vibration damper effectiveness

2
E=[1+2u, +’u—g‘]”2 .
a
As compared to the dynamic vibration damper effectiveness at the frequency ww,

described by Eq. (5.13), the same damper effectiveness at the frequencies above ay is much
lower.

At the low frequencies (u.» << 1), the dynamic vibration damper effectiveness tends to
one. Figure 5.7 gives dependence of effectiveness on ratio pm/ma with various loss factors 7y in
a mechanism that is spring-mounted. With 7y ~ 0.3 typical for rubber-metal shock absorbers,
substantial effect of a dynamic vibration damper usage can be ensured only through a relatively
high ratio of zm/7a.

A a6

s /P B

*’*‘/ B
Jﬂj— 0.3

]

ar ar

&

-

Fm.""]u-

Figure 5-7. Dependence of the dynamic vibration damper efficiency on ratio
Uml/na with various loss factors nv; ab = dB.

If a dynamic vibration damper is utilized at a high frequency with ., >> 1, it can be
placed both on a mechanism and its foundation. Better effectiveness, as seen from Eq. (5.11), is
achieved when the vibration damper is placed on a structure with a lower mechanical resistance
(impedance). Foundation (|Z¢F\ < | Zwe |) normally possesses lower resistance at the given
frequencies.
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Besides the lowering of resonance vibration amplitude for spring-mounted mechanisms,
dynamic vibration dampers may also be used to suppress the flexural vibrations of ship’s
partitions at resonance. At the resonance frequencies, those structures resemble an oscillating
lumped-element system. So, dynamic vibration damper usage effectiveness on partitions, which
are subjected to resonance flexural vibrations, can be determined by Eqg. (5.11) assuming a
partition’s mechanical resistance is, according to Eq. (1.17),

— a)m?]le pl (517)
4lin

z

plF

where M, . partition mass; 7, - vibration energy loss factor in a floor; @i - resonance
frequencies of a partition’s flexural vibrations determined by Eqgs. (2)-(10) of Table 1.5; i, -
excitation coefficient (i,n)™ mode of the partition’s flexural vibrations. With hinged (simply-
supported) edges of a rectangular plate with dimensions I;xI, [27], the coefficient is:

Xin = sinﬂsinw, i,n=123,...
1 |2
where X, y - are the coordinates of the vibration damper location point. Specifically, for first
resonance frequency with the damper placed in the partition center, y1; = 1.

A dynamic vibration damper better serves its purpose when placed at anti-node of the
damped partition’s flexural vibrations. The dynamic vibration damper effectiveness with respect
to resonance flexural vibrations of a rectangular partition is determined by the equation

M
E=—Zn_ (@80 4 Re7 )7 1 (ImzZ, ]2, (5.18)
a)znnpl M pl in
With adjusting anti-resonance frequency m,r of a vibration damper to the resonance
frequency i, of a partition and the latter coinciding with the driving force frequency (o = wip,

uer = 1), Eq. (5.18) is represented as

2 22
E = [(1+ 4/um;(in )2 +16ﬂmZin ]1/2 )

URUA 77;|
If 72 << 775 Which is typical in practice, this equation becomes even simpler:
=1y Hnin
77p|’7a

A number of dynamic vibration damper designs are shown in [2]. Figure 5.8 illustrates a
classic design. A horizontal steel rod represents the elastic (stiffness) element with concentrated
masses loaded on its ends. When the rod is attached in the center, its mechanical resistance at
anti-resonance frequencies gets high and that lowers the amplitude of the damped structure’s
vibrations. The first anti-resonance frequency is normally used:

fami—res = i 3 3Brod (519)
27\ I*(M,, +0.115M,)
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where B, - rod’s flexural rigidity; M4 - rod mass; My - mass loaded on the rod end; | - half-

length of the rod. Mass My can move along the rod with the help of a thread that allows one to
adjust the anti-resonance frequency of the dynamic vibration damper at the point of its mounting.

Vibration energy losses in such a vibration damper are negligible; this ensures a
relatively high effectiveness as seen from Eq. (5.13). A dynamic vibration damper of the above
design helped lower the vibration levels of an oil pump and a stopover diesel-generator on board
by 10-12 dB [13]. But keep in mind, that with a low loss factor in dynamic vibration dampers,
their high effectiveness manifests itself in a relatively narrow frequency band, which means that
their use is possible for mechanisms with a more or less stable revolution (rotation) rate.

T

i
11

Figure 5-8. Drawing of dynamic vibration damper.
1-load on rod end
2 - horizontal rod
3 - vertical rod
4 - damped structure.

) B Bl

J i
M M

Figure 5-9. Dependence of the ratio between rod vibration damper length I; with
free ends and vibration damper rod length | with masses upon the
ratio between vibration damper weight My and its rod weight M.

Similar effect can be ensured using a rod without end masses as it also has anti-resonance
frequencies at which its mechanical resistance is high. The first of these frequencies can also be
calculated by Eqg. (5.19) assuming My, = 0.

The loading of the rod ends produces the required results at a given frequency with a
shorter rod that is part of a dynamic vibration damper. Loading lowers the resonance and anti-
resonance frequencies of the rod.
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Figure 5.9 shows the dependence of I,/ | value upon ratio My/Myoq. With My/Miog = 2,
the vibration damper dimensions are halved, as compared to the case where My = 0, and its
weight is up about 1.5 times.

The anti-vibrator designs shown in Fig. 5.3 are also employed for dynamic vibration
damping. Loss factor values for rubber used as the elastic gaskets of an anti-vibrator are given in
Table 5.1. Rubber-metal shock absorbers of AKCC-U type [13] may be used as the elastic
element of a dynamic vibration damper.

On push boats (tugs), anti-vibrators like those depicted in Fig. 5.3, 6 were used to lower
the intense resonance vibrations of the hull structures. Anti-vibrators were glued to the middle
sections of rib spacings. Each anti-vibrator weight was 3.3 kg. There were 30 anti-vibrators
placed and that helped to lower the structures vibration amplitude by 20 dB [1].

On an Italian 5000-ton-displacement vessel, use of a dynamic vibration damper in the
form of a heavy plate mounted on elastic elements helped lower the amplitude of resonance
vibrations of a passenger area floor above the engine room by 10 dB at the frequency 16 Hz [13].

Dynamic vibration damper use is not confined to shipbuilding. Reference [29] describes
the use of such devices for lowering the amplitude of resonance vibrations of a high-power
industrial transformer’s casing walls.

Example 2. Calculate the parameters of a dynamic vibration damper designed to lower the
amplitude of flexural vibrations of the floor given in Example 2 of § 4.2 at its first resonance
frequency f,,. The rated frequency f,, value is 110 Hz, the floor mass M, =300 kg. Choose

a vibration damper structure from Fig. 5.3, 6 for calculation. The value um = Ma/ M is assumed
to be uyn = 0.02. The floor is treated with a vibration-absorbing coating that provides a loss
factor 7, = 0.08. Choose material of 922 type with 70 = 0.35 and shear modulus Go = 0.3¢10’
N/m? from Table 5.1 for a rubber layer.

Optimal value of ratio u.1 = fa/fp1, according to Eq. (5.14), is

1 1
1+ 4, 1+0.02

Moy = =0.98

or f, =, f,, =098e110 = 107.8 Hz.

Vibration damper mass isM, =M x4, =300-0.02 = 6kg . A steel cylinder with diameter

D =0.12 m and height H = 0.068 m weighs that much. The anti-resonance frequency of such a
damper is calculated by Eq. (5.6), with rubber layer thickness h = 0.0025 m,

=112 Hz ;

_ 1 [GS _i\/0.3-107-0.256
T 2z\M,h 27\ 6-0.0025

a

where S is the contact area of the rubber layer and vibration damper mass, S = =DH =
7-0.2-0.068 =0.256 m’.

The derived value f4 differs from the optimal by 4% which is admissible. The dynamic
vibration damper effectiveness is determined by Eq. (5.11). The value of the floor’s mechanical
resistance (impedance) Z ¢ as part of (5.11) is calculated using Eq. (5.17)
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M .110-300-
Z,. - @M 7y _ 27-110-300-0.08 _41448kg /s,
4y, 4.1
in which the position of the vibration damper in the floor center is taken into consideration, i.e.
A 11 = 1.

Finally,

My . 002

E=1+ =1+
n.M, 0.08-0.35

=1.71(4.6dB).

5.4  Audio Frequency Anti-Vibrators

The anti-vibrators described in § 5.2 and placed in way of flexural waves propagating
along a structure impede these passing waves at specific frequencies (see Fig. 5.5, 6). Such
vibration-insulating devices are referred to as audio frequency anti-vibrators [14].

In a rod structure, anti-vibrator vibration insulation VI = 20 log(1/| T|) dB, where T -
coefficient of transmission of flexural wave amplitudes reaching the anti-vibrator,

_ 4(4—a+ ) .
4—o(L+ 4+ AL- )]
[4—o(1+ )4+ B( 2J)] (5.20)
. Z .ZaMkiSt
o= J—aF; p=]——"—;
m.cC mstci,st

st™i, st

where Z,r, Zau are the mechanical resistances (impedances) with respect to force and moment,
respectively, Z,r is determined by Eq. (5.2), while Zayy = Re Zgw + j Im Zaw;

R
ReZaM = 2M ;V| |;|/|-2’
77M +(/ua)M_)

Imz,, = Oy Vo s (T = o +1);

771\24 +(,Uaz)|v| _1)2

where I, is the moment of inertia of the anti-vibrator mass; ay is the anti-resonance frequency of
the anti-vibrator, aw = (Kw o/1a)*; Ku o is the rigidity (stiffness) of the anti-vibrator’s elastic
element with respect to moment, Ky = Ky o(1 + jnm); 7w is the loss factor of the anti-vibrator in a
rotational motion; t.m = @ ow.

Vibration insulation of the anti-vibrator is high at the frequencies where | T| - 0that
occurs in the vicinity of frequencies at which ImZ . — 4m_c, ., With =4, and
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ImZ,, —4m,c,, ., k},,, with B=4. These occur at two frequencies to the right of @y (@
and @) and two to the left of @y (@ and wyy2).

The presence of pairs of frequencies in the vicinity of which better vibration insulation of
the anti-vibrators is observed is due to the fact that the frequency response curves for
Z ot vod = MyodC 1 roq A 2y 00 = mmdcﬂ,mdk;fod cross curves for Im Z,» and Im Z,), respectively

twice (Fig. 5.10). The conditions to be met are:

8ZOFrod77F(1+77F) < 1’ and SZOMrudUM(1+77M) <
a)FMa a)MIa

1.

Values of the frequencies in the vicinity of which better vibration insulation of anti-
vibrators is observed can be calculated using the following equations which are precise enough
to be used in practice:

W~ COF/VF; wr] ~ COF/ (2 VF) ) (521)
Oy = Wy Vg, O = 2 Dy VM, (522)

where Vi =4 Zor roa | (0F My); Vir= 4 Zor roa | (] 000 1).

Figure 5-10. lllustration of the determination of the frequencies ®of1, ®r, ®w and
o relative to the anti-resonance frequencies or and oy of anti-
vibrator.

Equations (5.21) and (5.22) are correct, if the conditions @}, >> @; and @},, << @},
respectively, are met.

The frequency range in which the anti-vibrator’s vibration insulation occurs is bounded
by the frequencies @y, and wr,. For realistic structures of anti-vibrators, > >> Wy 5. For
real structures of anti-vibrators, the maximum vibration insulation is observed in the frequency

range wr; t0 wr.

Values of the frequencies fr= oy / 27 for anti-vibrators depicted in Fig. 5.3 are
determined by the Egs. (5.5)-(5.10). The frequencies f); = wy,/ 2m for the same anti-vibrators
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are determined by the equation fyv = fel / (2r,), where | is the length of the contact line between
the anti-vibrator mass and the rubber layer; r; is the radius of gyration of the anti-vibrator mass
about its rotation center.

For drawing in Fig. 5.3, @, 6, | = D,

H 12(H/2+h)* .,
r = 1+ :
a \/E[ H2 ]

for drawing in Fig. 5.3, 6, =Hand r, = h/\/ﬁ ; for drawing in Fig. 5.3, 2, 1 = D and
r,=h/~12. With 12, =1+7%, VI__ =3 dB that is typical for a hinged rod. The reason is

that, with 2. =1+nZ, | Zse | — . Therefore, the displacement at the anti-vibrator mounting
point is zero and the anti-vibrator rotational resistance (impedance) is negligible.

Vibration insulation of audio frequency anti-vibrators can also be ensured in plates. To
do that, encircle the vibroactive source with a ring of anti-vibrators. Distance between anti-
vibrators shall be within 2;4/2 at the highest frequency of the frequency range in which vibration
insulation is to be ensured through the use of these devices.

Frequencies fr1, fr2, fm1, fmz for a plate can be determined by the Egs. (5.21) and (5.22)
after replacing cs rod With s p and myeg With mpL (L is the distance between centers of the
neighboring anti-vibrators).

The vibration insulation of anti-vibrators can be improved by an increase in the number
of rings to two or three. Bigger number of concentric rings around the acoustic vibration source
fails to proportionally improve the aggregate vibration insulation [13].

The vibration insulation of anti-vibrators improves as thickness of plates on which they
are mounted diminishes. So, the most effective are audio frequency anti-vibrators mounted on
thin-wall ship structures like sound-insulating shells, thin-wall room enclosures, air duct walls,
etc.

Frequency response of effectiveness of 0.075-kg-mass anti-vibrators with the anti-
resonance frequency fr = 1400 Hz placed in two rows on an aluminum alloy 0.002-m-thick plate
is shown in Fig. 5.11. Maximum vibration insulation of anti-vibrators is 24 dB at the frequency
2.2 kHz exceeding the frequency fr = 1.4 kHz. Major effect is observed at about fr; and fr,
frequencies which, in accordance with (5.21), are 2.1 and 4.2 kHz, respectively. When
calculating the frequencies, it was considered that distance between anti-vibrators L ~ 0.06 m.
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Figure 5-11. Frequency response of vibration insulation of two rows of anti-
vibrators placed on aluminum alloy plate [13].

The above results suggests the way to design a ship structure with improved vibration
insulation while using audio frequency anti-vibrators. If anti-vibrators are to be mounted on a
rib-less plate, the best result can be achieved by making the plate thinner or using lower-density
materials for the plate. For a stiffening rib-reinforced structure, bearing in mind its minimal
weight is to be ensured, lower rigidity of the structure is advisable. This improves vibration
insulation of anti-vibrators at frequencies below first resonance frequency of flexural vibrations
of the plate segments between neighboring stiffening ribs.

5.5 Waveguide Vibration Insulation

The oscillation process in a rod (a plate) through which elastic (for instance, flexural)
waves propagate occurs due to the fact that elastic forces originated in a rod during deformation
are resisted by equal value of the inertial resistance (impedance) of its mass. If the inertial
resistance (impedance) of a rod is joined by elastic resistance evenly distributed along its length
and exceeding inertia one in absolute value, aggregate wave resistance of the rod becomes purely
elastic and flexural waves no longer propagate through it. This phenomenon was first described
in [45] and referred to as reactive damping. Analysis of the phenomenon laid the foundation for
a method of insulating elastic waves in a rod (a plate) with the use of anti-vibrators placed along
its length (see Fig. 5.4, 2) and is referred to as the waveguide vibration insulation method [12].

Differential equation describing flexural vibrations of a rod for a time-harmonic process
is represented as

Bo&" +(jm, +Z¢)jo =0, (5.23)

where myqq IS the inertial wave resistance (impedance) of a rod; Zg is the resistance (impedance)
of an external load per unit length of the rod, Zr = Re Z¢ + j Im Zg. Equation (5.23) can be
written as

gV (x)-a'(1-ingx=0, (5.24)
where a is the propagation constant for flexural waves on a rod (beam),
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rod
ReZ.
nm= -
om, +ImZ.

In general, equation (5.24) yields &(x) = & e'“® "% In particular with Re Zg = 0, the
expression is becomes £(x) = & ™.

The value of a* may in general be both positive and negative, depending on the sign and
value of Im Zg as compared to mmyog. Specifically with Re Zg = Im Zg = 0, a0 = Kf rog Where Ky rog

is the wave number of a flexurally-vibrating rod. Eight values of the propagation constant o. are
possible.

Positive values of o* correspond to two flexural waves traveling in mutually-opposite
directions (a1,2 = i‘a ‘) and two nonhomogeneous flexural waves attenuating in mutually-
opposite directions (o, =+ j|a|). Negative values of o* correspond to four traveling attenuating
flexural waves with the following propagation constants:

o =+(L+ )W2; ag = —(1- )V2;
a; =1+ N2; a5 = =(1- j)V2.
These waves can only propagate in pairs creating, as the result of superposition, standing

flexural waves with their amplitude dropping towards positive (as¢) and negative (a7 g) values of
x-coordinates respectively:

E(x) =&, cos(v2|x) exp(—v/2|x));
&(x) =&, cos(v/2|x]) exp(++/2[x]).

Therefore, it is observed that there is no transfer of vibration energy with o.* negative.

To investigate possible design methods for the application of wave guide vibration
insulation, consider one-dimensional flexural vibrations in a system consisting of a plate loaded
with another plate attached through a layer of an elastic material as described in [15]. The first
plate is referred to as the main plate with the index 1 as its designation. The elastic material is
designated with index 2. We assume its loss factor equals zero (7. = 0). The second plate is
referred to as the auxiliary one with index 3 as its designation.

We suppose that the elastic layer vibrations are caused by dilatational (thickness-stretch)
waves in the direction of its depth, having speed ¢, < cq 1. The vibrations of the main system are
regarded as based on normal planes remain plane hypothesis for flexurally-vibrating plates with
kﬂ,j_ h; << 1and kf|’3 h; << 1.

The value o for the above system is determined from the dispersion equation
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k, ,C
a°B,B, +a4[t;r21—v2(81 +B,) - ®*(mB, +m,B,)] +
i (5.25)
_ kl,zcz

2,2
o [o'mm, — p,C, tany
2

(ml + ma)] =0,

where v, = kq 2 hp; and C; is the compressional modulus of the elastic layer.
Let us work out the solution of the equation (5.25) for various versions of the system.

1. Assume auxiliary plate is absent (B3 = 0, mz = 0). This condition is used for the case of a
vibration absorbing coating consisting of a visco-elastic material layer applied to the
main plate (Fig. 5.12, a). In this case

ot =Ky (L4 YoMy (5.26)
’ v,M;

At low frequencies, at which tanv, ~ v,, a* = kj ;(1+m,/m,). At the low frequencies,

the elastic layer increases the surface mass of the system (m= m; + my) giving rise to an increase
of the propagation constant a.

The propagation constant o versus frequency-dependent variable v is shown in Fig. 5.12,
a. The areas of negative values o.* are cross hatched. There are relatively narrow frequency
bands where o* < 0, therefore, there is no propagation of vibration energy in the main plate.
These bands of waveguide vibration insulation are located in the vicinity of the anti-resonance
frequencies of in-depth (thickness-stretch) vibrations of the elastic layer (vo = w [2n - 1]/2,n =1,
2, 3, ...) at which the resistance (impedance) of the layer with respect to transverse vibrations of
the plate surface is high.

Boundary frequencies are determined from the equations

Upy =5 (2n-1); tanu, =—u§'n%: n=1,23, ..,

2

where v} and v} correspond to lower and upper boundary frequencies of the n"-band of wave

guide vibration insulation. The values of v,, can be determined from a chart in Fig. 5.13. As

frequency increases the bands of wave guide vibration insulation get narrower. To widen them,
the ratio m, / m; must be increased.

2. The case where the auxiliary plate possesses high flexural rigidity (Fig. 5.12, 6)
compared to the rigidity (stiffness) of the main plate (Bs — o). In this case
dokda-—T2 5.27
a ﬂ,pll( M., tano, ) ( )

The dependence of o.* described by (5.27) on the parameter 1» is shown in Fig. 5.12, 6. There is
a low-frequency area of waveguide vibration insulation in the main plate at frequencies below
the frequency determined the equation v, tanv, =m, /m,. With m, << my, this frequency is:
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Besides the low-frequency regime of waveguide vibration insulation, Fig. 5.12, 6 shows the
narrow frequency bands in the vicinity of the anti-resonance frequencies of the elastic layer

vibrations (in the thickness direction). Boundary frequencies of these bands f'and f" are
determined from the equations

vy, =Nz ; vy tanvy =m,/m, n=123...

The values of v,, can be determined from the chart in Fig. 5.13. To widen the areas of
waveguide vibration insulation in this case, the ratio of m, / m; should be decreased. The
widening of the analogous low-frequency area occurs provided that the rigidity of the elastic
layer is higher and the layer itself is thinner.

Figure 5-12. Drawings of system versions with two (main and auxiliary) plates
connected with the elastic layer, and frequency response of
propagation constant o for these versions.

1 - main plate

2 - elastic layer

3 —springs

4 - concentrated masses

A - wave number of main platekj ;.
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Figure 5-13. Dependence of functions tanw./w and v, tanw, upon m; and m; mass
ratio.

3. The auxiliary plate possesses high flexural rigidity (stiffness) compared to the rigidity of
the main plate (B; — o) and the elastic layer is represented as multiple springs (Fig. 5.12,
6). This is implemented in the case of a plate mounted on an elastic base (sometimes

called a “Winkler” foundation). In this case

C
o =Kj =), (5.29)
2071

At low frequency o — m’C,/B,h, and is negative below the frequency

f, = (1/27){K,/m, where K; - rigidity (stiffness) of the spring per unit surface area of the main
plate. The propagation of flexural waves in the main plate is zero at frequencies below fo, i.e.
starting from the lowest frequencies. To widen the area of wave guide vibration insulation
towards higher frequencies, more rigid (stiffer) springs are to be used.

4. Consider the case when the auxiliary plate is of lower flexural rigidity compared to that
of the main plate (B; — o), which occurs for an inertial loading over the surface of the
elastic layer (Fig. 5.12, 2). The propagation constant in this case is:

1- L,M,

my___tanvm, | (5.30)

m U 3% my
tanv, - m,

With m3 = 0, the equation (5.30) translates into the equation (5.26) for the case of only the
elastic layer being present on the main plate. Dependence of o.* on parameter v; is given in Fig.
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5.12, 2. There are bands of wave guide vibration insulation in the vicinity of the anti-resonance
frequencies of the elastic layer (thickness) vibrations. These frequencies are somewhat displaced
towards lower frequencies, compared to similar frequencies with the elastic layer’s free surface,
due to loading of this layer with mass ms.

Values of the boundary frequencies for area of waveguide vibration insulation in this case
are determined from the equations:

m

vy tanvy, =—2, n=123..;

m3

m2 vy M +m
[1+

u
mm, tano,, m,

*]

u
UZn_

5. Auxiliary plate has no flexural rigidity (Bs = 0), multiple springs provide the elastic layer
(Fig. 5.12, 0). This occurs when waveguide vibration insulation is ensured through many
anti-vibrators as described in [12]. The propagation constant is

a4 =k 1+ %
fl,pll[ ml(l—a)z/a)é)]

where ok = (Kzlmxo,)l’2 is the anti-resonance frequency of anti-vibrator with mass ms per unit

surface of the main plate; K; is the rigidity of springs per unit surface of the main plate. Area of
wave guide vibration insulation is at the frequencies between e and @e[1 + (M, + mg) x m; ]2
The frequency response of o* is given in Fig. 5.12, 0. To widen the band of wave guide

vibration insulation, increase mass ms.

The above results for various versions of the system incorporating two plates are obtained
in the elastic layer with 77, = 0. In real materials used for the layer (like rubber gaskets), 7, > 0.
This decreases deviations of the propagation constant o in areas of wave guide vibration
insulation from the wave number of flexural vibrations of the main plate k;, ;. In the case of
extremely high 7., & may never have negative values. Specifically, in case 4 (see Fig. 5.12, 2)
the condition for wave guide vibration insulation development is as follows:
Ne < i, 1(24/1+ ), where um =ma/ my (ms - anti-vibrator mass per unit area of the main
plate).

Frequency limits of the waveguide vibration insulation area are determined by the
expression:

1/2
2
fio= f{“%ﬂ/%-ﬂé(“ﬂm)} :

The creation of frequency ranges of wave guide vibration insulation, using a vibration-absorbing
coating over a flexural-vibrating plate with mz = 0 (see Fig. 5.12,a), is of no practical use. The
elastic layer using materials with a low loss factor 7, required for the case, gives rise to a
decrease in vibration-absorbing effect of the coating beyond the above-mentioned areas.
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Figure 5-14. Design of waveguide vibration insulation for pipelines
effective at low frequencies.
1 - stiffening ribs of the supplementary structure
2 - bolt attachment
3 - supplementary structure housing
4 - elastic layer
5 - pipeline.

Version 2 (see Fig. 5.12, 6) is most useful in practice because it allows the effective
damping of acoustic vibrations at low frequencies. Wave guide vibration insulation in this case
may be ensured through a light but rigid (stiff) structure of the same configuration as the damped
structure placed on the latter with the use of a thin layer of solid rubber. Mechanical contact
between the structures shall be ensured over the entire surface using a suitable glue (with
minimal unglued surface).

In the case of a flat damped structure, the auxiliary plate is to be a ribbed one with
flexural rigidity (stiffness) at least 3-4 times that of the main plate. The minimal length of the
auxiliary plate in the direction of the damped flexural wave propagation is to be

Loy =1.649E /| (5.31)

where E - is the damping effectiveness to be achieved, dB; |a| is determined by Eqg. (5.27). This

structure can ensure effective reactive damping of flexural vibrations at frequencies below the
frequency fo, the latter determined by Eq. (5.28). Keep in mind that at the resonance frequencies
of flexural vibrations of the auxiliary structure, damping effectiveness can decrease significantly.

Circular section rod-type structures such as pipelines provide the easiest way of meeting
the conditions for wave guide vibration insulation at low frequencies. The auxiliary structure
may be in the form of a hollow metal cylinder with stiffening ribs placed along the cylinder on
four sides as shown in Fig. 5.14. The minimal length of the structure with the given flexural
vibration damping effect for a pipeline or similar structures is determined by Eq. (5.31).

If the vibrations of ship structures is to be damped in a limited frequency range, versions
4 and 5 or similar are most expedient for ensuring wave guide vibration insulation (see Fig. 5.12,
2,0). To create a waveguide vibration insulation band up to an octave wide or wider, condition
m; < mjy + ms is to be met.
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To damp flexural vibrations of flat ship structures, use anti-vibrators like those depicted
in Fig. 5.3, 6, 2. With a cylindrical rod-type structure like a pipeline, use anti-vibrators like those
depicted in Fig. 5.3, 0. Length of the damped structure to place anti-vibrators on is to be
determined by Eq. (5.31) to make sure the desired effect is achieved. The distance between
separate anti-vibrators shall be within a half-length of a flexural wave in the damped structure at
a given frequency.

Example 3. Calculate the structural parameters of a wave guide vibration insulation for
damping flexural waves to propagate over a steel pipeline 100 mm in diameter (walls are 0.003-
m-thick). The required effectiveness at the frequency 100 Hz is 10 dB. Calculate the moment of
inertia for the pipeline’s cross section by the equation for a ring section rod from Table 3.3:

_#z(D*-Dy) #((0.2)" - (0.078)")
ot 64 64

Make the auxiliary structure of the wave guide vibration insulation the way it is given in
Fig. 5.14. The moment of inertia of its cross section shall be at least 3 times that of l,,. The
cylindrical part of the auxiliary structure provides approximately 1/3 of the moment of inertia
required. Therefore, one reinforcing rib shall have the moment of inertia I, = I,,; with respect to
the structure section diameter. The rib’s moment of inertia

I =1.1-10"m*.

2
| =S r2(1+|r‘—2) |

r'r0
ro

where S; - cross section area of rib, S, =1.h, ; ryo - the radius of gyration of the rib section about
its neutral axis; L - distance between this axis and the structure diameter, L = 0.5(D + L).

Considering that r., = h 12 I'o and assuming h, = 0.006 m, we have

1°h, . 121 |3-o.005{ 3(0.1+1,)?
1+ 5

| =T+ = =1.1-10"°.
' 12( |12 ) 12 }

r

The chart-plotting way of solving the equation gives I, = 0.05 m. Choose the most rigid
rubber UPI1-1074 from those in Table 5.1 (F, = C, = 3-10 Pa) for the elastic layer; assume the
layer thickness to be the least possible: h, = 0.002 m.

Use the equation for a ring section rod from Table 1.4 to calculate the phase speed of a
flexural wave in the pipeline at frequency 100 Hz:

Ciror = 0.707(270C 1o \/WROZ)

=0.707[27 -100- 5.10°v/0.05% +0.047% =3.3m/s.

The corresponding wave number:

274 27100

= 33100 1.9m™.

k

fl, pipe =
c fl, pipe

Use Eq. (5.29) to determine the propagation constant:
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CZ )1/4 :1.9(1 3107 )1/4

Py Ry, =5m™.
47* £ *h,m, 47*-10*-0.002-0.74

a= kfl,pipe(l

Calculate minimal length of the auxiliary structure by Eq. (5.31):
Loin =1.649/|0|=1.64-10/5=3.28m .

Determine the damping of flexural wave amplitude in the same pipeline after an effective
vibration-absorbing coating ensuring loss factor i, = 0.1 has been applied to a 3.28 m length
segment of the pipeline. According to Eq. (3.57), we have

E =2.15k =2.15-1.9-3.28-0.1=1.3dB.

fl, pipenpipe

Therefore, even the most effective vibration-absorbing coating fails to provide the kind of
flexural vibration damping that is made possible through wave guide vibration insulation devices
at frequencies where insulation manifests itself in the specific structure conditions.

5.6 Reactive Damping of Flexural Vibrations of Ribbed Structures

With excitation of ship structures reinforced with the interlaced framing, flexural
vibrations of these structures at low frequencies are governed by the stiffening rib grid. Plate
segments within neighboring stiffening rib area are driven in the process by transverse forces
distributed along the plate perimeter in an even and in-phase manner. At certain (anti-resonance)
frequencies, mechanical resistance of the plates rises and can exceed resistance of grid formed by
stiffening ribs. Amplitude of the structure’s flexural vibrations generally decreases as the result
of the reactive damping, like many anti-vibrators placed on a concentrated parameters system
(see Fig. 5.4, s).

The highest amplitudes of the structural vibrations are most commonly observed at the
first resonance frequency f, .. By adjusting the anti-resonance frequencies f,; .. , of the

plates to this frequency, the amplitudes of the structure’s resonance vibrations are lowered.

Anti-resonance frequencies of plates excited by transverse forces along the perimeter
correspond to resonance frequencies of the same plates but driven by transverse force inside the
perimeter. The first resonance frequency of flexural vibrations of plates bounded with
neighboring stiffening ribs (the plates’ edges correspond to fixed edges with in-phase motion of
the stiffening rib grid) is normally much higher than the first resonance frequency of flexural
vibrations of the structure as a whole.

The frequency fr can be lowered by loading the plate with concentrated mass M [16].
The value M. required is determined by the equation

:%(ff_%m_l). (5.32)

MC
4 1

Reactive damping occurs in the following frequency band [57]:
Afor =0.86y (1 - 2/n) frpi1,
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where n is the number of the structure’s plates, separated by the stiffening ribs; y ~ 0.15 (for
stiffening ribs’ of open section). The frequency band Afp can be considerable in a wide
frequency range (about 10-15% of f i 1).

The feasibility of reactive damping of ribbed structures’ flexural vibrations by adjusting
the resonance frequencies of the structure forming the plates is demonstrated experimentally in
[16]. Concentrated masses, eight kilograms each, were placed on structures with bulb plate #12
stiffening ribs that reinforced a steel 0.006-m-thick plate and divided the plate into 0.4x0.4 m?
segments. This allowed a shift of the plates’ resonance frequencies to the 120-160 Hz band, with
the first resonance frequency of the structure’s flexural vibrations at 122 Hz. Reactive damping
manifested itself at the frequencies 110-150 Hz reaching about 40 dB at frequency fy x1 = 122
Hz.

Therefore, there exists the possibility the acoustic adjustment of ship ribbed structures
that lowers their vibration excitability at least at the first resonance frequency of flexural
vibrations by loading of plates, limited by neighboring stiffening ribs, with concentrated masses
of certain dimensions.

Example 4. Perform the acoustic adjustment of a ship structure described in Example 2 of
8§ 4.2 to lower its vibration excitability at the first resonance frequency of flexural vibrations

f, k1 =110 Hz by decreasing the resonance frequencies of plate segments bounded with the
structure’s stiffening ribs. These plates’ dimension I, = |, = 0.4 m, thickness hy = 0.006 m.

Use Eqg. (3) of Table 1.5 for a rectangular plate with fixed edges to determine its first

resonance frequency
B 2 4
o= 3.56\/ b \/1+ 0.06.L. +:A4

2
mpyly Iz 2

11. 2 .
:3.56\/ 2-10° - (0.006) V1+0.6+1=310Hz

12-7.8-10°-0.006 - (0.4)2

Use Eq. (5.32) to calculate the weight of the concentrated mass to be placed at the centers

of the plates, bounded with stiffening ribs, in order to lower their resonance frequency from 310
to 110 Hz.

M. = Ma oo gy 748 (8107

ET S 4 " (110)

~1) =10.6Kg.

If concentrated masses are placed on all plates of the structure mentioned in Example 2 of
§ 4.2, their total weight would amount to M - 36 = 380 kg that is comparable to the damped
structure weight (M, = 360 kg). A concentrated mass, which is that big, is inadmissible in
practice. To decrease its weight, it should be enough to place the concentrated masses on central
plates only. The technique was utilized in [16] with 16 masses whose aggregate weight was 170
kg that accounted for 47% of the damped structure weight.
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6 SUPPRESSION OF SHIP STRUCTURES USING ACOUSTIC
VIBRATION MEANS

6.1 General

Vibration absorption techniques are utilized on board to combat the following negative
phenomena:

¢ propagation of the acoustic vibrational energy over ship structures which are generated by the
operation of the ship machinery systems on their foundations and propellers;

«+ the resonance vibrations of ship structural elements;

+ self-excited vibration phenomena generated, for example, by a moving liquid flow in
hydraulic systems;

+ jarring of loosely attached elements of ship structures caused by the moving hull-related
vibrations or movements of crewmembers;

+ collisions between ship structural elements and solid bodies (loading of on-board bunkers
with bulk materials and coal, hoisting and paying-out of the anchor, movement of the ship
through ice, etc.);

o fatigue strain in the ship structures’ material.

Vibration absorption (suppression) means effectively combat the above phenomena by
lowering the amplitude of ship structures’ respective vibration types.

Basic vibration absorption methods include vibration-absorbing coatings applied to ship
structures, structural vibration-absorbing materials, and bulk vibration-absorbing materials.

6.2 Physical Fundamentals of Vibration Absorption

Absorption (loss) of vibration energy in vibrating systems results from the irreversible
transformation of some of this energy into that of the thermal type (heat). Two types of
absorption are distinguished: (1) natural absorption of vibration energy in oscillating structures
stemming from intrinsic dissipative properties, and (2) the artificial (man-induced) type caused
by various vibration absorption techniques.

The major governing laws of vibration absorption are revealed by considering a basic
oscillating system with one degree of freedom incorporating a mass M, a rigid (stiffness)
element K, and a loss resistance R.

With the system’s free oscillations, its mass oscillations are described with Eq. [21]

X(t) = %, expl(je” -],

where X, is the amplitude of the mass vibration velocity; @, = /@, —5° is the system’s natural

oscillation frequency with R = 0 and 5 < an; @, =+ K /M is the system’s natural oscillation
frequency with no loss in the system (R = 0); 6 = R/(2 M) is the system’s attenuation constant.

The system’s natural oscillations with losses (R # 0) attenuate as time evolves, and the
higher the attenuation constant o value, the faster is the attenuation (Fig. 6.1). The ratio of two
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consecutive maxima of amplitudes X,; and X,;,, is constant for the given value ¢, i.e.
X /%o, =€, where d is denoted as the logarithmic decrement of vibrations, and
d =275/ w, = 6T ; T is the mass system’s oscillation period.

i)
! it

NS~ Ji s/ Eﬁ’

i ey

ift) =iy el

Figure 6-1. Time dependence of natural attenuating oscillations of a one degree
of freedom system.

Ratio between the energy absorbed in a system during the oscillation period T and the
potential energy contained in the system is referred to as the absorption coefficient. With

negligible losses (d ?<< 6 that is typical in practice), the coefficient is y ~ 2d = 476 | wy .

To describe vibration absorption, a factor of the vibration energy losses in an oscillating
system that equals 7 ~d /7 ~ w /27 with d 2<< 6, is preferred in acoustics. The loss factor
numerically determines the magnitude of the energy absorbed in the oscillating system roughly
within one-sixth of an oscillation period. The ratio between the listed parameters characterizing
the oscillation process in a system with losses is given in § 3.2.

The parameters w, and & are represented through the loss factor as follows:

oy = wp\1-7% 14 and 5= nanl2.

With an increase in the vibration energy losses in an oscillating system, the latter’s
frequency of natural oscillations (the resonance frequency) decreases. With 6> ax, oscillations
of the system become aperiodic. The value of the loss factor satisfying the equality 6= ax is
referred to as the critical loss factor 7, =2. The western technical publication literature

sometimes presents the loss factor value as a percentage of 7, .

The above ratios connecting the loss factor and the absorption coefficient correspond to a
frequency independent parameter R. In practice R could depend on frequency. For instance, for
the internal friction of solids under deformation, R is inversely proportional to a frequency.
However, with 77 < 1 typical in practice, these ratios are correct no matter what the dependence
of R on frequency is.

With forced oscillations of a system with one degree of freedom, energy consumed to
keep it in motion is partially absorbed through losses. The ratio between the energy absorbed in
a system within the forced oscillation period and the potential energy accumulated in the system
iIsW,. /W, . =w =27zn, i.e.is governed by the vibration energy loss factor value = @R /K¢
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in the system. With a system’s forced oscillations, the amplitude of its oscillations is dictated by
the complex rigidity (stiffness) K = Ko (1 + jn), i.e.

-1
. K
X = F( Jom +_—] .
jo
With a change in o, the system’s excitation frequency, with respect to the frequency of
its natural oscillations @y, the forced oscillation amplitude decreases (see Fig. 4.3). A decrease

of the oscillation amplitude down to X, /+/2 occurs within the frequency range Ao = nwo.

Similarly to electric filter theory, the inverse value of 7 is referred to as the oscillating
system’s Q-factor (Quality factor) given by:

1 o, oM

0 e R

The phase shift between the driving force F and the vibration velocity x of a mass with
forced oscillations of a one degree of freedom system with losses equals

Q= arccos(R/|ZF |), where Z. =R+ joM + K, / jo is th system’s mechanical resistance

(impedance) with respect to the force F. With no losses (R = 0), ¢ = /2, and no energy is
absorbed in the system.

The amplitude of forced oscillations of a system with one degree of freedom at the
frequency of the driving force F that is @ = w, is given by the equation X, = F /(w,M7). The

higher the loss factor 7, i.e. the greater is the amount of energy that is absorbed in the system
being excited, and the lower the vibration velocity amplitude.

Whatever is mentioned above concerning the behavior of a system with one degree of
freedom is fully applicable to vibrations of finite dimensioned structures as each of the vibration
modes of such structures manifests itself in a similar manner.

The process of elastic wave propagation in long structures in which the vibration energy
losses are inevitable shows a gradual damping of the amplitude as the waves move farther away
from their source. Such damping is described using the expression (3.21). The higher the loss
factor in a structure, the greater is the rate of amplitude reduction of the propagating elastic
waves .

6.3 Vibration-Absorbing Methods

6.3.1  Vibration Absorption Coatings

Vibration-absorbing coatings that are applied to ship structures are either one or multi-
layered structures incorporating viscoelastic materials with large internal losses. Vibration-
absorbing coating designs vary in the nature of deformations occurring during vibrations of the
damped structures.

Three basic types of the vibration-absorbing coatings are distinguished: rigid (stiff)
vibration absorbing coatings, reinforced vibration-absorbing coatings and soft vibration-
absorbing coatings.
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Figure 6-2. Designs of the vibration absorbing coatings and types of their
deformations.
1 - the damped plate
2 - viscoelastic layer.
3 - light and rigid material gasket
4 - the reinforcing layer
A - deformation of the viscoelastic material.

Rigid (stiff) vibration-absorbing coatings are layers of a rigid (stiff) plastic applied to a
damped structure. Such a coating’s structure and the type of deformation occurring with
bending of the damped plate are shown in Fig. 6.2, a. Deformation of a viscoelastic material
(plastic) causes its compression (or tension) in the direction of the damped structure plane. The
loss factor of a flexurally vibrating plate faced with a rigid (stiff) vibration-absorbing coating is
determined by Eq. [21]

>

n =~ —, (6.1)
1+[a,p,(a; +12a3)]"

where 7, is the coating material’s loss factor; ., =h, /h,, g, =E,/E,;

a, =h, Ih =@0+ea,)/2; hsand h; are the thicknesses of the damped plate and the viscoelastic

layer respectively; E;, E; is Young’s modulus for the damped plate and the coating material; hy;
is the distance between the neutral planes of the damped plate and the viscoelastic layer (see Fig.

6.2, a). Eq. (6.1) is correct provided B, <107, which is usually the case in practice.
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Figure 6-3. Dependence of the loss factors ratio n/nz in a plate faced with arigid
vibration-absorbing coating upon the coating/plate thickness ratio a,
= hy/ hy with various ratios B, = E» / E;.

Dependence of 77 on «, with various values of f,is shown in Fig. 6.3. As «, increases,
the loss factor in a damped plate increases, asymptotically approaching the 7, value. This

demonstrates that indefinitely increasing the rigid (stiff) coating thickness as a way of boosting
its effectiveness is unreasonable. In practice, the optimal value isa,,,, =1.5t0 2. Higher values

of the loss factor in a damped plate can be ensured through applying a vibration-absorbing
material on one side of the plate.

Introducing a standoff between the plate surface and the rigid vibration-absorbing
coating filled with a gasket made of a rigid but light material such as foam plastic increases the
loss factor in a plate. This increase occurs through an increase in the viscoelastic layer’s tensile
strain as the layer is moved further away from the damped plate (Fig. 6.2,6).

An increase in effectiveness of a rigid vibration-absorbing coating when a gasket is used
is observed at frequencies below the frequency fo which is: f, = G,c,, /(218E;h,) . Specifically,

for a rigid «Arar» material coating (Table 6.1) with thickness hs = 0.004 m applied to a steel
plate with the use of a TIBX-1 foam plastic gasket with G, =4-10" N/m?, fo~ 120 Hz. Ata

higher frequency, the loss factor in a plate having a rigid (stiff) vibration absorbing coating
applied with the use of a gasket drops significantly.

The larger the product 7,3, or n,E, sometimes referred to as the loss modulus, the
larger is the loss factor of a damped plate.

The known materials for rigid vibration-absorbing coatings feature a loss modulus at its
maximum (77E) max at a certain temperature T max. The more significant a deviation from this
temperature, the lower is the material’s loss modulus.

A material is assumed effective in an operational temperature range AT within which the
loss modulus is halved. For the known materials, this operational temperature range is normally
about 40°C. The operational temperature range is limited due to the fact that viscoelastic
materials possess a high value of nE only at the vitrification (glass transition) stage - transition
from the glassy to the rubbery condition of a material. To shift the operational temperature
range in either direction, so-called plasticizers are usually added to the viscoelastic material
content. The temperature dependence of loss factors of some rigid vibration-absorbing coatings
is given in Fig. 6.4.
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Figure 6-4. Temperature dependence of a loss factor of some rigid vibration-
absorbing coatings made of viscoelastic materials.
1 - material «<Bmn-25»
2 - material <Agem-ULL»

To increase the loss factor of viscoelastic materials, fillers such as mica, vermiculite,
graphite, etc. are added to the materials. Polyvinyl chloride, polyvinyl acetate, epoxy resin, etc.
usually provide the base for such materials. A rigid vibration-absorbing coating application
procedure depends on the coating type. Sheet materials are applied with the use of glues
(normally of ITH-D or DIIK-519 types). Paste materials are applied in 2-4 mm thick layers until
a required thickness is obtained via spraying, extrusion or with the help of a spatula. Coatings
are applied to degreased and primed surfaces.

The physical and mechanical properties of some viscoelastic materials forming the rigid
(stiff) vibration-absorbing coatings are given in Table 6.1. The best Russian materials are as
good in properties as similar-purpose materials made overseas. Materials designed specifically
for vibration-absorbing coatings are much more effective than those utilized in the ship structure
finishing (for instance, polyvinyl chloride linoleum). Rigid (stiff) vibration-absorbing coatings
are barely effective when used against dilatational waves in structures.

Example 1. Calculate the loss factor value for a steel plate with thickness h; = 0.006 m
faced with a vibration-absorbing coating of “BMJI-25” material with thickness h, = 0.012 m.

From Table 6.1: E, =5-10° Pa, 7, = 0.4. For the above coating’s parameters,
a, =2, a, =15; B, =25-10". According to Eq. (6.1), we have:

1
T 1+4[2-25-1072(22 +12-1.59)]

n

The coating’s relative weight (mass) in this case accounts to 40% of m;.

Reinforced vibration-absorbing coatings are layers of a viscoelastic material covered
on top with a thin metal layer reinforcing the viscoelastic material. The coating design and the
type of its deformation with a damped plate bent are shown in Fig. 6.2, 6. With a structure bent
in a viscoelastic layer, a shear strain occurs that prompts absorption of the vibration energy in a
specific coating.
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The loss factor for a flexurally vibrating damped plate with a reinforced vibration-
absorbing coating applied can be calculated by Eqg. [21]:

7727'g2 (62)

77z
1+0; W+ 7) + 79,01+ 9, L+ 75)]

where
g, =G, /(Eshakf2| plhz); Y lea;agﬁs; a, =h,Ih;a; =h/h;a, =hy,/h;

Ay = hSl/hl; ﬂz = E2/E1; ﬁa = E3/E1; h21 =1/2(hl + hz); h31 =1/2(h1 + ha) + hz.

Eq. (6.2) is correct provided that 8, << f3,, a; B, <<1, & 3, << 1, all of which are
usually true in practice.

Dependence of the loss factor for a damped plate with a reinforced coating upon the
coating layer thickness is governed by the geometrical parameter y, and the frequency response
is dictated by the shear parameter g, , which is inversely proportional to the frequency.

Figure 6.5 shows dependence of the loss factor for a plate with a reinforced coating upon

the shear parameter g, = /* with 77, = 1. The maximum 7 = 7max OCcUrs at the frequency fopt -

When further removed from this frequency, the 7 value decreases monotonically. The value of

the frequency f,, is determined by the equation

E,h’(L+ )L+ 7}
o = G, @+ y)A+7,) (6.3)
27E,h;h, 12m,
where my is a damped plate mass per unit surface area.
The loss factor value reaches its maximum at the frequency f_, and is then determined

by the equation

opt

nY
Mnax = ! (6.4)
y+2(1+ gZopt)

-1/2

where g, =[(L+7)@+n;)]".

The loss factor 7 increases as the geometrical parameter yincreases. Figure 6.6
demonstrates such dependence with the variable 7, . Increase in 7 virtually stops with y= 10.

The use of viscoelastic materials for a reinforced coating with 7, > 1 is unjustified. The
factor 77 cannot exceed the 7, value that is evident from Eq. (6.4) with ytending to infinity.

A reinforced coating design shall be selected to make sure that f,, is in close proximity

to a frequency at which the maximum lowering of the damped plate’s vibration level is required.
The frequency band in which the reinforced vibration-absorbing coating is most effective lies
roughly within the limits of a decade (3.5 octaves) where the damped plate’s loss factor gets
down to 0.7 of 1max.
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Figure 6-5. Dependence of the loss factor for a plate faced with the reinforced
vibration-absorbing coating upon the shear parameter g..
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Figure 6-6. Dependence of the loss factor’'s maximum value for a plate faced
with the reinforced vibration-absorbing coating upon the geometrical
parameter y.

Rubber meeting the oil-resistance and other necessary service property requirements is
used as a viscoelastic material for reinforced coatings (physical and mechanical properties of
some rubber grades are given in Table 5.1). A sticky viscoelastic material is sometimes used
that serves as a bonding element at the same time. Such materials are produced in rolls and that
allows one to «bandage» the damped cylindrical structures (like pipelines).

To increase the loss factor in a damped plate, the reinforced vibration-absorbing coatings
are sometimes applied in several layers to provide a multilayered coating (Fig. 6.2, 2).

Domestic shipbuilders widely use «ITomuaxpuia-B» (Polyacril B) multilayered reinforced
vibration-absorbing coating, with an acrylic polymer [21] as the viscoelastic layer. Its physical
and mechanical properties are: G, = (2t010)-10° Pa, 1, =0.3t00.5. The reinforcing layers

are made of aluminum foil  6-107°m thick, thickness of the viscoelastic layers is 1.2-10*m.
The number N of layers depends upon the thickness h; of the damped plate and is calculated by
the equation N = 1 + hy, with hy in mm. The coating’s relative weight accounts for 40 to 50% of
the damped plate weight.

The frequency response of the loss factor for a plate faced with «ITonnakpui-B»
(Polyacril B) coating is shown in Fig. 6.7. The loss factor value is considerable (about 0.1) over
the entire audio frequency range.
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Figure 6-7. The frequency response of the loss factor for a plate faced with
«Monuakpun-B» (Polyacril-B) reinforced vibration-absorbing coating
with T=20to 23°C; f - kHz.

The «ITomuakpuia-B» (Polyacril-B) coating is applied to a damped structure using a
viscoelastic layer. Holding the coating pressed against the damped structure for 48 hours
provides a durable connection. As far as the dilatational (longitudinal in-plane) vibrations of the
damped structure are concerned, the reinforced vibration-absorbing coatings, as well as the rigid
ones, are barely effective.

Example 2. Calculate the design of a reinforced vibration-absorbing coating to ensure
the loss factor 77max = 0.1 in a damped steel plate at the frequency f,, =100 Hz. The reinforcing
sheet is also made of steel with 8, =1. Select 1002-type rubber with G, = 10" N/m® and 1, = 0.6
for the viscoelastic layer.

Determine the geometrical parameter y = 1 for nmax = 0.1 with n, = 0.6 from the diagram
in Fig. 6.6. The expression for y given in Eq. (6.2) states that, with a3, ~ 0.5, h, << h; and hs <<
hy, o = 1/3 which means the reinforcing layer shall have thickness h, =2-10~°m. We determine
hs hy ~ 10° m? from Eq. (6.3). Therefore, h, =5-10"* m (h, = 0.5 mm). The coating’s relative
weight accounts for about 35% of the damped plate weight.

The soft vibration-absorbing coatings consist of viscoelastic material layers in which a
transverse displacement of the flexurally vibrating plate surface causes elastic waves to

propagate in the thickness direction. A design and the deformation type for such a coating are
shown in Fig. 6.2, &.

The loss factor for a flex-vibrating plate with a soft vibration-absorbing coating applied
is determined by Eq. [21]

_ 1,[2sinh(v,17,) — 17, Sin(2v, )] (6.5)
211 1m,v,[€08(2v,) + cosh(v,7,)]+ 717, 8In(2v,) + 2sinh(v,7,) '

n

where v, =k,h,; ¢, =m, /m,; k, is the modulus of the wave number for the viscoelastic layer
oscillations in the direction of its depth (thickness); m;, m; stand for the damped plate and the
viscoelastic layer mass, respectively, per unit surface area.

Eq. (6.5) is correct with 77 <<1 and no load on the coating’s external surface. The

frequency response of the loss factor calculated by Eq. (6.5) is given in Fig. 6.8. At the low
frequencies where v,<<1,
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At the frequencies where the condition h, = A,/ [4(2n - 1)], n =1, 2, 3,..., is met, the
coating’s spatial resonance occurs that involves larger deformation of the coating

7,

= ~ 6.7
77 nres " Vres n772 ( )
1+ 1,17,V e taNN( )
where v, =(n—-1/2)x . This occurs at the frequency
VyesnC _
fo, = el @G oy g (6.8)
2 4h,

where c; is the velocity of the elastic waves propagating in the direction of the
viscoelastic layer depth.

At the frequency where the condition h, = A,/ (2n), n =1, 2, 3,..., is met, the spatial anti-
resonance occurs, the coating deformation diminishes and that entails lowering of the loss factor

n.

7= Manicresn = * "
1+ 1,17,V artires n COtN(— 25
(6.9)
The coating’s spatial anti-resonance takes place at the frequency
fonioresn = NC, /(20,), Nn=123,....
The highest value of =7, , IS observed at the first resonance frequency
fres1 =C, 1(4h,)
nmlinigiazg. (6.10)
e The values 7, ..,and 7, tend to the same value as frequency increases
To Pl (6.11)

n~
I+ ppmyv, oM

At the high frequencies, the loss factor for a plate with the soft vibration-absorbing
coating does not depend upon the coating material’s loss factor as the flexurally-vibrating plate
is charged with a semi-infinite medium with the acoustic resistance p,c, in which the energy
radiated by the plate into the medium is fully absorbed.
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Figure 6-8. The frequency response of the loss factor for a plate with the soft
vibration-absorbing coating.

1 - calculation by Eq. (6.5)

2 -- calculation by Eq. (6.6)
3 -- calculation by Eq. (6.7)
4 -- calculation by Eq. (6.9)
5 -- calculation by Eq. (6.11.)
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To widen the frequency range in the direction of lower frequencies for greater
effectiveness of the soft vibration-absorbing coating, its first resonance frequency can be
lowered by adding to the coating thickness. But the coating thickness cannot be increased
indefinitely. Reducing the elastic wave propagation velocity ¢, provides an alternative method
of lowering the coating’s first resonance frequency. It is achieved in practice by incorporating
air cavities in the coating material that enhances its compressibility and, therefore, reduces the
elastic wave velocity c,. This, however, lessens the loss factor for a plate at the higher
frequencies as stated by Eq. (6.11).

To increase the effectiveness of the soft vibration-absorbing coating, an increase in the
loss factor of the viscoelastic material used is required. But raising the factor above the
valuer, =0.9,/m, /m, serves no useful purpose.

Eq. (6.10) helps determine the coating’s relative weight zm = m, / m; required for
ensuring a targeted value 7., with a given loss factor 7, of the material. Figure 6.9 shows

such dependencies for two values 7., that equal 0.1 and 0.2. For example, with 7, = 0.9 and
Mes1 = 0.1, um = 7 is required, i.e. ~ 15% of the damped plate weight is enough for the coating
weight.

An important feature of the soft vibration-absorbing coating is that the loss factor for a
structure with this coating is dependent upon the structure weight whereas the factor for the rigid
(stiff) and reinforced vibration-absorbing coatings is governed by the structure’s flexural
rigidity.

An estimate for the loss factor in a flexurally vibrating plate with the soft vibration-
absorbing coating can be calculated by the Egs. (6.6) and (6.11) above and below the frequency
fo which is identified in a drawing in the point of intersection for the curves representing the
above equations (see Fig. 6.8).

Lowering of the first resonance frequency for the soft coating is also possible by loading
the coating’s free surface with an inertial mechanical resistance (impedance) in the form of metal
straps whose maximum dimension | shall be far less than the flexural wavelength in the damped
plate at the upper frequency of the range under consideration (k , <<1). The loss factor for a

plate with such a coating at a frequency below f;, can be calculated by the equation

1
sz (G + Mo + /Urio)
=1, 3 -
1+ u,
where zmo= M3/ my; ms is the mass of straps per damped plate’s unit surface area. Ata
frequency above fy, the loss factor for the strap-covered plate is determined by Eq. (6.11).

Decrease in the wave thickness v» of the soft coating at the frequency f,., with the use

of straps depending upon the strap and coating weight wmo ratio is shown in Fig. 6.10. Straps
weighing below 10% of the coating weight hardly cause any variation in the frequency f,,.

With the strap and coating weight values equal, the frequency f. ., is roughly halved. The value

resl
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of the frequency f,, related to the value v, of the coating’s wave thickness is determined
with the use of the drawing, Fig. 6.10, and can be calculated by Eq. (6.8).

The frequency responses of the loss factors for a flexurally vibrating 0.006-m-thick steel
plate faced with a soft vibration-absorbing coating made of MPII1-1074 rubber having 0.004-m-
thick air cavities, steel square straps (5x5x0.4)e10 m® in dimensions (pmo = 2.65) or no straps
are given in Fig. 6.11. Straps diminish the frequency f,, 6.2 times and this agrees well with
the calculated value of this decrease which is 5.5 according to the drawing, Fig. 6.11. The

calculation shows that velocity of the elastic wave propagation in the coating ¢, ~ 300 m/sec,
according to Eq. (6.11).
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Figure 6-11. The frequency responses of the loss factor for a flexural vibrating
steel plate faced with a soft vibration-absorbing coating.
1 - with the steel straps
2 - without the steel straps.

Some grades of the sheet rubber listed in Table 5.1 may be used for making soft
vibration-absorbing coatings. The air cavities in the rubber can be made either with the use of
suitable dies or by gluing narrow rubber stripes with a certain spacing. The air inclusions
coefficient in the rubber ensuring the ductility required is to be about 0.1 to 0.2. The soft
vibration-absorbing sheet-rubber coatings are applied with the use of a suitable glue to a cleaned
and primed surface of the damped structure.

With longitudinal oscillations of the damped plate, the soft vibration-absorbing coating is
as effective as with the plate’s flexural oscillations, unlike the rigid and reinforced coatings. In
this process, the shear waves propagate in the coating layer in the direction of its depth
(thickness) with the velocity ¢, = /G, / p, . For a rubber grade with G, = 10’ N/m? and p; =
10° kg/m?®, ¢, = 100 m/sec, i.e. approximately 3 times slower than the compressional waves that
propagate in a coating layer in response to transverse displacements of a damped plate’s surface.
Therefore, in the case of longitudinal oscillations, the frequency response curve for the plate’s
loss factor differs from that for the flexural oscillations as it drifts roughly one and a half octave
towards the lower frequencies with the value 7., unchanged. At the lower frequencies, this

causes a decrease in the loss factor, at the higher ones - an increase.
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6.3.2 Structural Vibration-Absorbing Materials

Some materials used for in fabricating ship structures feature substantial internal losses,
so that, damping of their oscillations requires no vibration-absorbing coatings to be applied.
Application of these coatings to materials with the loss factor over 0.03 is assumed to have little
additional acoustic effect.

Layered vibration absorbing materials, vibration-absorbing alloys and nonmetallic
vibration absorbing materials represent structural vibration absorbing materials.

Layered vibration-absorbing materials made up of two metal plates, normally of the
same thickness, bonded with a viscoelastic sticky layer, which is thinner than the plates. In
foreign technical publications they are oftentimes referred to as «sandwiches».
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Figure 6-12. Design of a layered vibration absorbing material (a) and the nature
of its deformation (6).
1 - the metal plates
2 - the viscoelastic layer
A -- deformation of the viscoelastic layer.

Layered vibration-absorbing materials can be used for making soundproof casings for
noisy equipment, light partitions for rooms, bilge boards, the bulk cargo bunker walls and other
elements of the ship structures having moderate static load.

Design and the type of a viscoelastic layer deformation with the layered vibration-
absorbing material subjected to the flexural vibrations are shown in Fig. 6.12. Similarly to the
reinforced vibration-absorbing coatings, the viscoelastic layer is exposed to shear strain.

The frequency response of the loss factor for the foliated vibration-absorbing material is
maximum at the frequency f,, which, for a symmetrical structure with h; = hs, equals [21]

NS
* i, V12E, o,
where y = 3(a, +1)? is the geometrical parameter; a, = h, /h, .

At the frequency f,., the material’s loss factor

nmax_2+y+21/1+;/'
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An increase in the parameter y causes an increase in 7max, asymptotically tending to the
value 7. Typically, f,, =1 kHz is ensured.

«Bumonut» layered vibration-absorbing material made of aluminum alloys or steel
sheets may be used in shipbuilding [21]. The material’s maximum loss factor is 0.5 at the

frequency f,, =1 kHz at the temperature 20°C. The viscoelastic layer in the «Bunonur»

material is manufactured with polyvinyl acetate as the base. It can be subjected to welding,
cutting, riveting, and bending. The use of «BumonuT» material rather than conventional metal
sheets lowers a structure’s acoustic vibration level by 10-20 dB.

Vibration-absorbing alloys are typically represented by two-phase combinations of
manganese with copper, nickel with titanium, etc. Absorption of energy during deformations in
such alloys occurs largely at the boundary between the phases. In the process, the dissipative
properties of such alloys increase as their deformation amplitude rises. Some known alloys have
the internal loss factor up to 0.05-0.07. But the vibration-absorbing alloys are harder to machine
as compared to the traditional shipbuilding metals. There is «ABpopa» vibration-absorbing alloy

with the loss factor about 7 = (1t05)-10” [21]. The use of the alloy in making a ship pump

case reduced its vibro-activity by 5 dB on average. Vibration absorbing alloys are good for use
in making single units of the vibroactive equipment that disallow application of vibration
absorbing coatings due to small dimensions or other reasons.

Nonmetal materials utilized in shipbuilding possess certain vibration-absorbing
abilities. The use of these materials rather than the metal sheets can be effective, especially
when the metal sheets cause jarring of structures (for instance, when the sound-insulating boards
are used) as the result of the resonance oscillations. Physical and mechanical properties of some
materials utilized in shipbuilding are given in Table 6.2.

In addition to making the hull structure components, nonmetal vibration-absorbing
materials can be used for manufacturing single units of the vibroactive equipment. For example,
the use of fiber-glass in making a cover for the ICE helped lower its air noise levels by 5 to 6 dB
at the higher frequencies. An even greater effect is ensured when using the above materials in
fabricating the machine components, in which the vibration energy originates. For example, the
use of a caprolan master propeller to replace a steel one in the oil pump reduced its vibration
levels at the high frequencies by 8 to 16 dB.
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Table 6-2. Physical and mechanical properties of nonmetal materials utilized in

shipbuilding.

Material Loss factor Young’s modulus Density
1ne10° Ee10™ Pa pe107 kg/m®

Fiber glass 1-2 10-20 1.72
Plywood 1.3 3.4 0.8
Pine planks 1 10 0.5-0.8
Organic glass 5 3.1 1.2
Wood-fiber plates 2 3 1
Mineral-fiber plates | 1 3 0.8
Fiber glass laminate | 1.7 5 1.3
Foam plastic plates 2.1 3.4-102 0.1

6.3.3 Bulk Vibration-Absorbing Materials

Some bulk materials like sand possess substantial vibration-absorbing properties. Since
no material of this kind can be permanently shaped, they should be used for damping hollow
structures (pipes, pillars, frames, etc.).

Elastic waves can propagate in bulk materials. In dry sand, for example,
Ciong 150 Mm/sec, Cg., ~ 100 m/sec. Friction between the material particles occurs in the

process causing partial absorption of the wave energy. The loss factor used to describe the
absorption is 7~ 0.1 [21].

shear

The bulk material spread in an even layer over the surface of a flexurally vibrating
structure is similar to the soft vibration-absorbing coating. That is why such a layer begins to
actively absorb the vibrational energy starting from the frequency f, ., determined by Eq. (6.8)

the loss factor for a plate with a bulk material layer is

resl

with n = 1. At the frequencies above f

resl?

determined by Eq. (6.11). The velocity c,,,, of the elastic wave propagation in the sand
incorporated in these equations is assumed to be 150 m/sec, density p, ~ 2.2.

Figure 6.13 gives the frequency response of the loss factor for a steel pipe 6’ in diameter
filled with sand. The 0.05-0.1 value factor is ensured at the frequencies 0.3-10 kHz that is
enough for the effective damping of the given structure’s flexural vibrations. Bear in mind that
filling hollow structures with the bulk material lowers their resonance frequencies through
adding to their weight. For instance, for a rod structure this lowering is determined by the

equation f. = f_~m/m’where the filled structure parameters are designated with the stroke
symbol.

166



Besides sand, fine cast iron pellets (within 0.5 mm in diameter), milled asbestos cement,
etc., may be used as bulk vibration-absorbing materials. The abrasive properties of some bulk
materials shall be taken into consideration as they might produce a negative effect when hitting
rubbing parts of the ship equipment.
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Figure 6-13. The frequency response of the loss factor for a steel pipe 6" in
diameter filled with sand; f —kHz.

6.4 The Use of Vibration-Absorbing Means to Lower the Acoustic Vibration of
Ship Hull Structures

Vibration-absorbing techniques on the ship hull structures should be primarily used in
two cases:

+ to lower the level of the acoustic vibration transmitting over the hull structures that connect
the vibration source and the radiating partitions when the vibration-absorbing coatings are
applied to these structures;

+ to lower the sound radiation of partitions by applying the vibration-absorbing coatings or
making such from the layered vibration-absorbing materials.

In the first case, the higher the loss factor for the coating treated structures, the shorter is
the distance over which the flexural waves propagate in these structures, and the longer the
structures over which the flexural waves propagate - the higher the vibration-absorbing coatings
effectiveness.

Application of the vibration-absorbing coating adds to the damped structures weight and
its flexural rigidity. Therefore, the coating effectiveness in terms of damping the flexural wave
to propagate over the structure is determined by the following equation with these parameter
variations considered:

, ,,m'B
D=L, -L. = 2.15kf,|(77 (mB,)““ —nj dB (6.12)

where m’ =m + m; m is the coating weight; k, = 27/ 4, ; | is the distance from the acoustic

vibration source; the stroke symbol marks the structural parameters with the applied coating
taken into account.

For homogeneous (rib-less) plates, Eq. (6.12) applies easily. With stiffening ribs added,
the structure’s dynamic behavior gets more complex due to the frequency response of its
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vibratory properties. In this connection the loss factor value 7 and the flexural wave-length
Aq41n the structure differ significantly in the frequency subranges divided by the first resonance

frequency f of the plate segment bounded with the neighboring stiffening ribs, and by the

pl resl
frequency f,, determined by Eq. (3.60) at which the structure’s elastic properties are no longer

governed by the stiffening ribs. Similarly to the designations in Fig. 3.23, mark these subranges
asA', 5" and B'.

In the subrange A’, the loss factor for a ribbed structure with the rigid and reinforced
coatings is low due to the structure’s high rigidity. In the subranges A’ and A’, the loss factor for
a structure with the above coatings rises significantly as the flexural rigidity of the plate proper
becomes the dominant factor. Figure 6.14 gives the frequency responses of the loss factors for
the steel rib-less 1 and ribbed 2 plates with the rigid vibration-absorbing coating. The ribbed
plate has its loss factor dropping sharply at the frequencies below f ., (the subrange A"). At

the higher frequencies (the sub-ranges 5" and B'), the loss factors in both cases are identical.
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Figure 6-14. The frequency responses of the loss factor for the ribless and
ribbed plates with the rigid vibration-absorbing coating of «Apam-
M type; f -- kHz.

Measurements whose results are shown in Fig. 6.14 were made on plates 1.4x1x0.006 m
in dimensions, one having a cross stiffening rib framing 0.05 m high and 0.006 m thick; the
stiffening ribs divided a plate in 16 identical parts. « Axem-HIII » paste 0.012 m thick was used
as a coating. It was applied in a continuous layer to the ribless plate and segment by segment
between the stiffening ribs to the ribbed one.

The drop in the ribbed plate’s loss factor observed in the subranges 5" and B' is,
probably, due to the end effect of a decrease in the rigid coating strain with lengthening of the
coating’s free edges [21]. In the sub-range A’ the loss factor is approximately 10 times lower as
compared to its value in the sub-ranges 5" and B'.

Calculation of the frequencies f ., and fo. produces 0.32 and 3.6 kHz respectively that

is in good agreement with the experiment. If the soft vibration-absorbing coating is utilized, the
loss factor for the rib-less and ribbed plates is the same in the entire frequency range as it
depends upon the structure weight only.
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The flexural wavelength in the ribbed plate at the frequencies above fo; (the sub-range
A") is governed by rigidity of the plate proper. At the lower frequencies (the sub-ranges 5" and
B"), the flexural wavelength is dictated by the rigidity of the stiffening ribs.

The effectiveness of a vibration-absorbing coating when applied to a radiating partition is
determined by Eq. [21]

3:10Iog<§—2>,=10Iogi LB, dB . (6.13)
@

The following requirements to be met in the vibroacoustic characteristics of the ship hull
structures to ensure higher effectiveness of the vibration-absorbing coatings applied can be
formulated based on the above:

+ the ribbed structures’ flexural rigidity shall be minimal provided the strength and other
general shipbuilding requirements are met. This raises the wave number of the structure’s
flexural oscillations in the sub-ranges 5" and B’;

+ the first resonance frequency of the flexural oscillations of the structure segments bounded
with the neighboring stiffening ribs shall be as low as possible, therefore, the distance Iy
between the stiffening ribs shall be as long as possible; this allows a widening of the sub-
range 5', in which the structure’s loss factor is relatively high, in the direction of the lower
frequencies;

+ aribbed plate shall be as thin as possible, this increases the loss factor for the coating in the
sub-ranges 5" and B’ as well as the wave number of the structure’s flexural oscillations in the
sub-range £'; for a rib-less plate, a decrease in thickness increases the loss factor and the
wave number at all frequencies;

+ when applying the soft vibration-absorbing coating to a structure, ensuring the structure’s
minimal weight is expedient.

The Egs. (6.12) and (6.13) are only correct when the acoustic vibration source and the
sound radiating partition are connected by just one structure. In practice, such structures are
typically more than one and the vibration energy is transmitted to the partition in several ways.
Therefore, a more sophisticated procedure is required to provide a more accurate assessment of
the effectiveness of the vibration-absorbing coating application technique employed (see § 7.1).

When working out a vibration-absorbing coating application technique for the ship hull
structures, one should be guided by the two basic principles.

First, a coating should be preferably applied to structures or those segments with the
maximum levels of the acoustic vibration. In this connection, the closer the coatings identical in
area covered are applied to the vibration source, the more effective the coatings.

Secondly, the coating shall be applied to all structures serving as the vibration energy
conductors from the source to an observation point. In so doing, bear in mind difference in the
acoustic vibration attenuation for the various transmission paths. Application of a coating serves
no purpose whenever the attenuation difference surpasses the effectiveness of the coating placed
along the major route of transmission.

Experience of the use of the vibration-absorbing coatings on board prompts expediency
of their application in accordance with the following standard patterns:
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+ coatings are applied to the structures adjacent to the vibroactive source and the room
accommodating the source; this pattern is preferable whenever the acoustic vibration level
and the air noise are to be lowered in many rooms surrounding the one with the vibration
source;

+ the coating is applied to partitions of the room that requires lowering of the air noise levels;
the pattern is suitable for a small number of rooms that require lowering of the air noise level;

+ the coating is applied to the structural elements that oscillate intensely at the resonance
frequencies and radiate more air noise as exemplified by the damping of the structure
elements that produce jarring when acted upon by the hull moving vibration or other vibration
sources (specifically, jarring of bilge boards caused by attendants walking on them).

The vibration-absorbing coatings applied to ship hull structures can reduce the air noise
level in the rooms by 10 to 15 dB. For more detailed information on the use of vibration-
absorbing coatings on board, refer, in particular, to [21].

Example 3. Calculate the flexural wave damping at the distance | =5 m from the source
in structures with the rigid (stiff) vibration-absorbing coating (their loss factor measurement
results are given in Fig. 6.14). Calculation is carried out by Eq. (6.12). The flexural rigidity of a
plate with stiffening ribs is increased approximately 10 times as compared to a rib-less plate.

Values of the frequency f ., =320 Hz, fo, =3600 Hz.

The damping calculation results for the rib-less 1 and ribbed 2, 3, 4 plates are given in
Fig. 6.15. The stiffening ribs hinder damping of the flexural wave amplitude significantly, with
the damping value at the frequencies below f ., (the range A’) being really small. At
frequencies above fo,, the calculated damping proves to be very substantial. However,
achieving such a high damping value in practice is impossible due to transformation of flexural
waves into dilatational (longitudinal) waves whose damping by the rigid vibration-absorbing
coating is moderate.
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Figure 6-15. The frequency responses of the flexural wave amplitude damping
for the ribless and ribbed plates with the rigid vibration-absorbing
coating (the structure and the coating are the same as in Fig. 6.14);
9-dB; f-kHz.
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6.5 Damping of Rod Structure Oscillations by Vibration-Absorbing Coatings

Rod-type elements of ship structures are pipelines, pillars (tube components) as well as
frames, boxes (beam elements). In general, damping of all types of such structures’ vibrations
(flexural, longitudinal and torsional) is required. To achieve this, the above considered types of
vibration-absorbing coatings may be used including: rigid (stiff), reinforced and soft types.

The equations to calculate the loss factors for the tube and beam structures with rigid and
soft vibration-absorbing coatings are given in Tables 6.3 and 6.4. Table 6.5 offers the loss
factors of the structures with reinforced vibration-absorbing coatings. The tables provide the
equations correct in the range of the frequencies at which the rod structures oscillate as described
assuming the «plane section» hypothesis, i.e. no distortion of the structure’s cross sectional
shape. For longitudinal vibrations, this is correct in the entire audio frequency range, for other
types of vibrations there is the limiting frequency fo in the tables indicating the given equations
range of applicability.
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Table 6-3. The loss factors of the tube structures with rigid and soft vibration-
absorbing coatings.

Structure Coating type Oscillation Loss factory | Applicability
drawing type limit with f<fo
Rigid (stiff) Flexural n,E,hY - 4hcg,
E,h? * 127d?
Longitudinal m,E5h, No limits
E.h
Torsional 17,G,h, No limits
G,h,
Soft Flexural By equation No limits
(6.11) with:
m, =M, /(2d,)
Longitudinal m, = M, /(7d,) | No limits
Kk, =K,
Torsional 8,1, No limits
2 ap,h,d?

Note: My is the tube’s linear weight, I, is the polar moment of inertia for the tube section.
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Table 6-5. The loss factors of the tube and beam structures with the reinforced
vibration-absorbing coating.

Structure Vibration type | Frequency fgp, Applicability Equations to
drawing limit with f<f, | calculatey
Flexural G,Cpul; [1+7y) I, . 4hc,, 4E;h,
27E;h,h, ’ \/Eﬂdlz E.hy
Longitudinal Co [G,(L+ ) 2 No limits E;h,
4z E,h,h, E.h
Torsional c, [G,@+y)"? A G;h,
Ar G;h h, G,h
Flexural G,C ol (L+ )" ¢ .36:10°h, | EghH
27E;h,h, ° |2 E i
Longitudinal Cor [G,(L+ )" No limits 2E;h,l
2 E;h,h, E,S;
i 2
Torsional ¢y [G, @+ (< 106? 7G,H 2Ih,
27[ Gsh2h3 4H 861' poll
Flexural G,Cphy (L+)"? No limits E;h,HI
27E;h,h, Elix
Longitudinal Co [G,(L+7)"? R 2E,h,(1+H)
2 E,h,h, E;S,
Torsional Cy [G,(1+7)" o~ 10621 7G;HIh; (H +1)
27[ E3h2 h3 4H 8G1I poll

Notes: 1. liy, Si, Ip1 - See designations in Table 6.4; 2. The loss factor
Noax =7 1(2+ 7 +241+ 7). In the equations to determine fo, the values I, h,
H are given in centimeters.
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At a higher frequency, each element of the structure’s cross section can be subjected to
flexural oscillations, with a cylindrical structure oscillating as a shell. That is why at a frequency
above fo, with the flexural and torsional oscillations of the rod structures, their loss factors can
be calculated by the equations for plates with their respective vibration-absorbing coatings. The
plate’s thickness is assumed equal to that of the rod structure section.

The effectiveness of the rod structure oscillation damping with the use of the vibration-
absorbing coatings is determined for flexural oscillations by Eqg. (6.12), for the longitudinal and

torsional ones by the equation 9= 4.3k, 1 (7'vm’'m —7) . The higher the structure’s loss
factor, its wave number (the wave is shorter) and the length, the higher is the effectiveness.

The soft vibration-absorbing coating (at the first resonance frequency along its thickness)
features the maximum loss factor when applied to the rod structures. The reinforced coating can
provide a satisfactory value of the loss factor. The rigid vibration-absorbing coating has
virtually no effect (at the frequencies below fo).

The advantage that the soft coating possesses is because of the fact that its loss factor is
inversely proportional to the damped structure weight, which is relatively light for the thin-
walled rod structures. At the same time, the loss factor of the reinforced and rigid vibration-
absorbing coatings is inversely proportional to the rod structures’ rigidity (stiffness) which is
considerable at the frequency below f,. The wave number for the rod structures at the frequency
below f, can be determined by the equations from Table 1.4.
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7 RECOMMENDATIONS ON THE ACOUSTIC DESIGN OF SHIP
STRUCTURES

7.1 Basic Principles of the on Board Acoustic Design

Taking acoustic requirements into consideration at the earliest stages of designing a ship
provides the fundamental principle of the ship’s acoustic design. Unfortunately, experience
accumulated thus far is not sufficient, but it demonstrates the possibility of meeting on board
habitability requirements through considering the acoustic aspects, which is cost-effective, too.
A good example [10] could be seen with the foreign experience of designing and building the
«Rudolf Schmidt» and «Johanes Hers» suction dredgers: the acoustic requirements were met at
the early stages of design and this allowed for meeting the habitability norms in terms of the air
noise level in the rooms with the cost of work involved accounting to a negligible 2.5% of the
total cost of this type ship. Noteworthy is the fact that reducing the air-borne noise level to
normal on board an already built vessel of the above class would take up to 9% of the total cost
[45].

The ship acoustic design involves:
«+ selection of the ship’s optimal acoustic architecture;

+ selection of low-noise sources of acoustic vibration and the air-borne noise and their
distribution over the ship;

+ the acoustic design of ship structures;

«+ the design and arrangement of acoustic vibration and air noise suppression techniques
on board (designing of a noise mitigation complex).

Selection of the ship’s optimal acoustic architecture at the early stages of design largely
determines success in meeting the sanitary (habitability) requirements. In some particular cases
sticking to the sanitary (habitability) norms in terms of the air noise level on board can only and
exclusively be ensured through selection of an acoustically favorable architecture. Basic
recommendations on selection of the acoustically optimal architecture are given in Section 4.1.

Selection of low-noise sources of acoustic vibration and air noise, which include
machinery, the system fittings and various devices should also be done at the early stages of the
ship design.

Selection of the type of machinery is oftentimes carried out with their mass and
dimensions considered for further attempting to lessen these parameters. In this connection it
should be noted that lessening of the machinery mass and dimensions normally contributes to an
increase in the acoustic vibration and air noise level that necessitates using more effective but at
the same time costlier and heavier noise-suppressing complexes. According to the data collected
[11], the mass-to-mass ratio between the complex and the corresponding engine comes to 2-5.
So, selection of a lighter and smaller but noisier machine may prove unjustifiable through the big
losses in mass and dimensions over the ship as a whole.

Comparative data [39] on the air borne noise levels of shipboard machinery are given
below (for more information, refer to Section 2.1 and [28]):
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Type of machine Air-borne noise level,

dB (A)
Main internal combustion engines 100-110
Diesel-generators 105-110
Main turbogear assembly 95
Turbogenerators 100
Fans 105
Oil pumps 115
Water pumps 105
Main electric motors 95

An acoustically correct selection of the noise and vibration sources arrangement at the
earliest stages of the ship design is vital as any alteration in the arrangement upon completion of
the general design stage, not to mention the as-built one, is virtually impossible (see § 4.1).

The acoustic design of ship structures aims at ensuring the optimal vibro-acoustic
properties of the structures as well as achieving the maximum effectiveness of the noise-
mitigation methods placed on the structures. The design of a noise-mitigation complex [11, 28]
should be worked on concurrently with the ship’s general design guaranteeing a lower cost and
higher effectiveness of the complex.

Bear in mind that the acoustic design of the ship structures should not come in conflict
with the general shipbuilding requirements. Besides the acoustic effectiveness of measures
planned, it is necessary to consider the noise-suppressing complex’s additional mass,
«squeezing» of the rooms interior due to the use of the complex, the cost of the air noise level
lowering measures at the stage of building and running a ship, etc. Unfortunately, a method of a
complex evaluation of the social and economic efficiency of the air noise level lowering
measures on board with the above and other related factors considered has not yet been worked
out. Some information pertaining to the issue can be found, among other sources, in [7].

It is common knowledge that the faulty equipment produces much more vibration and
noise than the serviceable one. According to data [17], suitable repair work in many cases helps
lower the air noise level of the faulty equipment by 10-20 dB. Therefore, when designing a ship,
it is expedient to specify intervals between the vibroactive equipment maintenance based not
only on the equipment functional requirements but on the objective of keeping the noise and
vibration activity minimal as well.

A psychological factor to be considered when taking noise-countering measures on board
is also important. It has been observed that a noise source invisible to attendants and passengers
is less discomforting for them than a source that is open for viewing [17]. With this considered,
the screens to shield a noise source from people may be useful; such gadgets may also screen off
the noise to a certain extent.
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7.2  Acoustic Design of the Ship Machinery Foundations

The acoustic design of foundations is primarily intended for raising the machines’ input
mechanical impedance to lower the oscillation amplitude of the foundation’s mounting plates
and structures on which it is placed.

Listed below are the following recommendations on the acoustic design of the ship
machinery foundations:

+ the foundation’s mounting plate should be as thick as possible; it is good to reinforce a
free edge of the foundation’s mounting plate with a strap;

+ distance between knees that divide the mounting plate in parts should be as short as
possible; shock absorbers and the mechanism lugs should be attached next to the knees;

+ the static flexural rigidity of a partition in a support foundation mounting area should
be at least three times the static flexural rigidity of a mounting plate in the shock absorbers or the
mechanism lugs attachment area; if it is impracticable, increase in the foundation’s inertial
resistance is expedient through, for instance, filling of hollows formed by the foundation
components with concrete;

o it is better to position the foundation close to the mounting partition edge to suppress
transmission of the acoustic vibration onto the partition at the frequencies below its first
resonance frequency of flexural oscillations;

+ the cantilever foundation should be placed directly on the vertical stiffening ribs that
reinforce the mounting partition; the aggregate flexural rigidity of these ribs should be such that
ensures the resistance Zgr determined by Eqg. (3.18) being at least three times the input
impedance of the foundation’s mounting plate calculated by Eq. (3.4).

When selecting dimensions of the foundation’s mounting plates, make sure their first
resonance frequency of flexural vibrations is kept away from the frequencies of the main high-
frequency discrete components of the machines’ acoustic vibration. A sufficient frequency
separation value is 20-30%. This allows prevention of a rise in the mechanism’s acoustic
vibration transmitted onto the mounting partition when the above frequencies coincide. The first
resonance frequency of the mounting plate’s flexural oscillations can be calculated as described
in Example 1 of § 4.2.

When working on the acoustic design of a ship mechanism foundation, measures may
also be taken to increase absorption of the vibration energy in the foundation’s flexurally-
vibrating components, for example, in the foundation’s support links, with the use of vibration-
absorbing coatings.

7.3 Acoustic Design of the Ship Hull Structures

The main purpose of the acoustic design of the ship hull structures is the maximum
improvement in their vibro-acoustic characteristics (vibration excitability, vibration conductivity,
sound radiation and sound insulation). In practice, these characteristics can be best changed by
variation in the relevant structures’ flexural rigidity.
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Nevertheless, alteration in the ship hull structures’ flexural rigidity has a number of
effects upon the vibro-acoustic characteristics. For the structures to accommodate the vibration
source, vibration excitability matters most; for the structures serving as the vibration energy
conductors from the source to the protected area partitions, it is vibration conductivity that
primarily matters; and for the compartment partitions, the sound radiation ability is predominant.
If a room containing an acoustic vibration source is located next to the protected area, sound
insulation of the partition between them is most important.

When isolating the vibration conducting (transmitting) structures, detect those that are
transmitting the most vibration; this could be done using the evaluation techniques from § 7.5, or
relying on experience (using a prototype). Data on the qualitative impact of a variation in a ship
hull structure’s flexural rigidity on the structure’s vibro-acoustic characteristics are given above
in Table 4.1 for rib-less structures and in Table 4.2 for ribbed structures. Quantitative
dependencies of rib-less and ribbed structures’ vibro-acoustic characteristics upon variations in
their flexural rigidity are given in Tables 7.1 and 7.2.

The value of a vibro-acoustic characteristic after the flexural rigidity (stiffness) has been
altered can roughly be calculated through multiplying or dividing it by AB given in Tables 7.1
and 7.2. With the rigidity variation influencing the characteristic in a positive way,
multiplication is performed with AB > 1 and division with AB < 1. With the rigidity variation
influencing the vibroacoustic characteristic in a negative way, do the opposite.

Table 7-1. Dependence of the ribless structures’ vibroacoustic characteristics
upon variations in their flexural rigidity AB.

Vibroacoustic characteristic Variation in the characteristic in a
frequency range
A b
Vibration excitability (mechanical + AB + AB + AB
resistance)
Vibration conductivity (attenuation of T 4/AB F4AB F4/AB
the flexural wave amplitude per unit
length)
Sound radiation ability (radiation 0 T4/AB 0
resistance R,q)
Sound insulation (lowering of the sound + AB F4/AB F4/AB
pressure level)

Note: AB = B/By, where By, B stand for the structure rigidity prior to and after its variation
respectively.

179



Table 7-2 Dependence of the ribbed structure’s vibroacoustic characteristics
upon variations in flexural rigidity AB of the reinforcing framing.

Vibroacoustic characteristic Variation of the characteristic in a frequency range

A B B r |

Vibration excitability
(mechanical resistance) with

excitation:
to the framing + AB +4/AB ++/AB 0 0
to a plate + AB +vAB 0 0 0

Vibration conductivity
(attenuation of the flexural wave
amplitude per unit length) with

excitation:

to the framing T4/AB T4/AB FYAB 0 0
to a plate +4/AB T4AB 0 0 0
Sound radiation ability (radiation 0 F4/AB +4/AB 0 0

resistance R, )

Sound insulation (lowering of +AB +4/AB F4AB 0 0
the sound pressure level)

Note: AB = B/B,, where By, B stand for the structure rigidity prior to and after reinforcing the
framing.

Similar to Tables 4.1 and 4.2, the dependencies of a structural characteristic upon the
rigidity alteration are given in Tables 7.1 and 7.2 in frequency ranges A, b, B, I, and /I, bounded
with the frequencies friv,1, o1, fo and f, . Note that with an increase in a structure’s flexural

or—res

rigidity, the frequency f is proportional to +AB and the frequency f,, .. is inversely

proportional to /AB . The rest of the above frequencies do not depend upon a structures rigidity
(stiffness) variation. Similarly to Tables 4.1 and 4.2, the sign «+» means improvement, the sign
«-» means deterioration, the sign «0» indicates no change in a characteristic; the upper sign
corresponds to an increase in rigidity, the lower one corresponds to its decrease.
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Analysis of Tables 7.1 and 7.2 proves the substantial dependence of the vibroacoustic
characteristics of the ship hull structures upon alterations of their flexural rigidity. Specifically, a
doubling increase or decrease in the parameter causes up to a 3 to 6 dB alteration of some
characteristics. Even with the small dependence of a structure’s vibration conductivity upon

rigidity proportional to 4/AB, the change in the acoustic vibration level damping can be
significant. Eq. (3.21) proves that if the initial damping was 20 dB, the additional damping
comes to 4 dB with a two-fold decrease in AB.

Prevention of coincidence in the frequency of the main discrete components (rotational
ones, for pumps blade ones as well) of the source’s acoustic vibration with the first resonance
frequencies of the excited structures’ flexural oscillations provides yet another task for the
acoustic design of the ship hull structures (for structures bearing the acoustic vibration source, no
less important one). Calculation of the structures’ resonance frequencies can be carried out with
the EQgs. (2)-(10) of Table 1.5 in accordance with Example 2 from § 4.2. The above-mentioned
frequencies shall differ by at least 20-30%, ensuring a sufficient decrease of the resonance
oscillation amplitude in the driven structures.

When placing the vibro-active equipment like system fittings and pipelines, etc. on the
hull structures, bear in mind that the maximum input resistance (impedance) of these structures is
observed in the reinforcing framing elements. In this connection, note that it is better if the
equipment is attached to the stiffening ribs (frames) that reinforce the structure. This causes a
decrease in the input vibration energy. This is standard practice when selecting spots on the hull
structures to attach elements that require the minimal vibration energy possible coming from the
mounting structures. This pertains, for example, to the sound-insulating boards. Their
attachment to the reinforcing framing is also advisable.

When designing ship hull structures, also allow for the necessity of ensuring a reliable
attachment of elements such as bilge boards, sound-insulating boards, etc. that can cause jarring
of the structures with drawbacks in assembly manifesting themselves or attachment units getting
loose as the vessel is run. This type of air borne noise, having a pulsatile nature, as a rule may
stay within the habitability norms, but creates a discomforting acoustic environment for
attendants and passengers.

Based on all the above, the following ship design procedure may be recommended to ensure
the acoustically-oriented design of the ship hull structures:

+ select a ship architecture type to maximally meet the acoustic requirements, with
observing the general shipbuilding parameters desired;

+ assess the major acoustic vibration and air noise sources on board and their arrangement
by experience (with the use of a prototype);

+ locate rooms where the sanitary requirements with respect to the air noise level are to be
met and determine whether the level shall be lowered (the latter may be achieved, for instance, as
recommended in [11] and Table 7.3);

+ detect structures serving as primary conductors of the vibration energy from noise and
vibration sources to the rooms where the habitability requirements are to be met; consider a
suitable change in these structures’ flexural rigidity within the set strength and other general
shipbuilding limits;
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+ calculate the first resonance frequencies of the structures on which the major acoustic
vibration sources are mounted; if necessary, separate these frequencies from ones of those
sources’ main discrete components by a respective variation in the flexural rigidity or change in
the driven structure weight;

+ within the dangerous range (Af < 0.2 to 0.3 fres1) Of the first resonance frequency fres; Of
a driven ribbed structure’s flexural oscillations to the discrete component frequency of the
source’s acoustic vibration, and no way of the frequency frs Separation, the acoustic adjustment
of the structure elements may be used (see § 5.6);

«+ calculate the airborne noise level in rooms that require the habitability norm observance;

+ if necessary, the vibration-absorbing, vibration-damping and vibration-insulating means
are utilized (see § 7.4) and suitable noise-suppressing complexes are developed (for instance,

[28]).

Table 7-3. The air borne noise levels in rooms of various-type vessels (mean

data).
Vessel type Length, The air noise levels, dB (A)
m

engine control main pilot radar | conning

room station deck house room bridge
Bulk oil-carrying | . 100-110 70-75 65 60 60 75
ship
Freighter . 105-110 80 75 70 70 85
Passenger ship : 100-110 70-80 55 50 60-70
Container carrier, | 100 100-110 70-75 65-70 60 55 70
refrigerator
Roll on-roll off 100 105-110 75-80 60 55 55 65
Tug, service ship | 100 105-110 75-85 60 65-70 65 80
Ore-carrier:
diesel-driven 200 100-105 | 65-75 65 55 55 70
turbine-driven 200 95-100 65-75 65 55 50 65

Note: A bulk oil carrier displacement is 10,000 - 50,000 tons, a freighter displacement is
1,000 tons.
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7.4 Recommendations on the Use of Vibration Insulation, Absorption and
Damping Approaches

The vibro-acoustic characteristics of the ship structures have a certain impact on the
acoustic effectiveness of the vibration-insulating, vibration-absorbing and vibration-damping
means placed on the structures. The correct choice of the above characteristics allows for
increased effectiveness of the means to a certain extent.

The vibration insulation of the hull structure links (bulkheads, partitions, hull plating) can
be improved a bit by adding to the difference in the flexural rigidity (for rib-less structures, in
thickness of the link-forming elements). Evaluate the vibration insulation improvement
procedure with the respective equations from Table 3.4.

The vibration-inhibiting masses are most suitable for vibration insulation of an acoustic
vibration source-carrying partition when placed along the partition perimeter. Note, however,
that the stiffening ribs crossing the vibration-inhibiting mass limit its vibration insulation
properties via bypassing transmission of some vibration energy. This limitation can be
determined by Eq. (4.8). The vibration insulation of a vibration-inhibiting mass is calculated by
Egs. (4.4) and (4.9) depending on its location (within the bounds of the partition or in an area
where it is connected to adjacent structures, respectively).

«The vibration-inhibiting coaming» (see Fig. 4.15) is less effective (~ 6 dB at the high
frequencies) but it is lighter. «The vibration-inhibiting saw» is only suitable with the hull
structure having the stiffening ribs perpendicular to the acoustic vibration propagation direction.

The reinforced coaming is fit for protection against the acoustic vibration for partitions of
one or more rooms. The maximum effect (up to 10 dB) can be achieved when positioning the
coaming along the partition perimeter on the side of the acoustic vibration source (Fig. 7.1).

Placement of the reinforced coaming in the partition joints spaced in the vibration source
direction is dictated by the necessity of barring way for the acoustic vibration that propagates
along a bypass route. Placing of the same coaming in the partition links on the partition side
opposite to the source is not expedient as only a little part of the vibration energy is transmitted
through these links due to the long distance from the source.
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Figure 7-1. The reinforced coaming layout for protection of partitions against the
acoustic vibration.
1 - vibration’s mainstream route
2 - vibration’s short circuit route
3 - orientation towards the acoustic vibration source
4 - areinforced coaming
5-aroom to be protected.
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To improve the vibration insulation of the hull structures’ cross-shaped links at the low
frequencies, add to the distance between the links’ vertical elements (see § 4.5).

The vibration-absorbing coatings when applied to the ship hull structures can be effective
only provided these structures’ flexural rigidity is suitable. Recommendations on variations in a
hull structure’s flexural rigidity in order to boost effectiveness of the vibration-absorbing coating
applied are identical to those listed in Section 7.3 for the structure vibration conductivity.

The values of the flexural vibrations’ first resonance frequency for the plate segments
bounded with the neighboring stiffening ribs are governed by a frequency range in which the
coating’s loss factor can be significant. So, the first resonance frequency should be lowered, if
necessary, by adding to the distance between the adjacent stiffening ribs that reinforce the hull
structure’s plate. The plate is to be as thin as possible to raise the loss factor for a coating
applied to the plate. When applying a soft vibration-absorbing coating to a structure, it is
advisable to make the structure lighter to ensure an increase in this coating’s loss factor.

Note that applying a vibration-absorbing coating to the plates of the foundations” main
links (brackets and knees) may cause a certain drop (up to 6 dB) in the acoustic vibration,
transmitted to a mounting partition, only at the frequencies above the first resonance frequency
of these links’ flexural oscillations.

When applying vibration-absorbing coatings to cylindrical structures (such as pipelines),
take into account that the maximum effectiveness of these coatings is achieved at the frequency
above fy (see Tables 6.3-6.5) when these structures walls oscillate as a plate. At a lower
frequency (f < fo), the effectiveness of reinforced and, particularly, rigid (stiff) vibration
absorbing coatings is low. A soft vibration-absorbing coating whose loss factor is governed by
the damped structure weight, not its flexural rigidity, is more suitable here. This coating is
preferable when damping cylindrical structures, if its thickness can be increased.
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Figure 7-2. The frequency response of the loss factor for a flex-vibrating steel H-
beam with « AraTt » plastic rigid vibration-absorbing coating applied
to a structure’s flanges; sy - kHz.

When applying vibration-absorbing coatings to rod structures with a more complex cross-
section as compared to a cylindrical one (for example, a double-T section), bear in mind that
such coatings are only effective at a frequencies above which the flexural oscillations occur in
the section elements (Fig. 7.2). At lower frequencies (f < friexo), reinforced and soft vibration-
absorbing coatings are highly effective.

A dynamic vibration damper used to lower the resonance vibration amplitude of a hull
structure shall be positioned in close proximity to the structure areas where the vibration
antinode (maximum) occurs. For the first and most dangerous resonance frequency of the
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partition (bulkhead)’s flexural oscillations, such areas are located at the structure center. The
admissible displacement of a dynamic vibration damper’s mounting point from the partition
center shall in this case be within 1/6 of the damper dimension. The vibration damper is to be
attached to the reinforcing framing, at its cross lines (intersection) for best results.

To ensure the maximum effect of a dynamic vibration damper use, the structure
accommodating the damper shall be as light as possible. For such dampers’ designs, the
equations to calculate their parameters and effectiveness are given in § 5.3.

The audio frequency anti-vibrators (see Section 5.4) are placed on the ship hull
structures. To increase effectiveness of the anti-vibrators, decrease these structures’ flexural
rigidity. For ribless structures, the structure plate is to be made thinner as well.

The waveguide vibration insulation (see Section 5.5) is placed on the hull and rod
structures whose weight should be minimal ensuring a broader frequency range for these
devices’ effectiveness.

7.5 Calculation of the Acoustic Vibration and Airborne Noise Levels on Board

The use of the recommended techniques of the ship structures’ acoustic design (see
Section 7.3) is only made possible through calculation of these structures’ acoustic vibration and
related air noise level in the rooms.

The air noise level calculation methods have recently been developed including
calculation of the acoustic vibration level in the ship room partitions [28]. The acoustic vibration
level calculation is based on an approximation of the vibration process in the partitions as a
diffuse vibration field. These methods have been programmed for running on the IBM type EC-
1035 computer [25]. The program allows for calculation of the acoustic vibration levels in ship
partitions, the external hull plating, and the vessel bottom adjacent to the propellers. The
programming language is FORTRAN OC EC, and the main memory required is 256K. These
methods ensure the calculation accuracy acceptable in practice (Fig. 7.3).

Similar methods employed in shipbuilding design abroad are also based on the energy
method of the vibration processes in ship structures (SEA method in [42]). There also are
simplified methods of the air noise level calculation for ship rooms based on the statistically-
processed measurement results for prototype ships [11, 55].

For an approximate calculation of the acoustic vibration and air noise levels in ship
structures and rooms, the following expressions are offered [20]:

+ the sound pressure p of the air noise caused by a noise source placed in the room (Fig.
7.4,a),

P z{ 21,p,Co(1+ 5,) } : (7.1)
nVo(L+ B, + ;)

« the amplitude of the oscillation (vibration) acceleration for the partition & caused by an
acoustic vibration source placed on it (Fig. 7.4, 6),
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+ the amplitude of the oscillation acceleration for the partition & caused by the sound
pressure of the air noise in the room (Fig. 7.4, 6),

MaSymy 1+ B, + B,

«+ the sound pressure p of the air noise caused by the partition’s acoustic vibration in the
room (Fig. 7.4, 2),

~ 2114Cy 1/2. 74
P Lovo(lﬂ“ﬂﬁ'ﬂz)} ’ (74)

«+ differential sound pressure amplitudes in the similar-volume rooms divided with a
partition (Fig. 7.4, 0),

./ P, z1+;//_0 (7.9)
00

«+ differential oscillation acceleration amplitudes in the similar-area partitions divided with
an obstacle for the flexural waves (see Fig. 7.4, 0),

é;l/é;zzl"'?/n/?/nn' (7.6)
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Figure 7-3. The frequency response of the air noise level in a ship room induced
by the partitions’ acoustic vibration.1 - calculation [28]; 2 - experiment
[6]; p—dB; f - kHz.
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Figure 7-4. The acoustic vibration intensity /,, and the air-borne noise intensity /o
layout plus arrangement of these parameters levels calculation points
Eand p.

The following designations are conventional for the Eqs. (7.1)-(7.6): B, =yy/7,>
By =va!YonsYn =0ullas Vi =Nl Yo = Nollos Yon =R, (@mySy) 5 Sy is the partition
area; my, 1s the partition mass per unit area; ¥ is the room volume; 7, is the resonance
frequency density for the partition’s flexural vibrations, n, = @Sy /(4r cfm) ; €418 the phase
velocity of the flexural waves in the partition (see Table 1.4); n is the room’s resonance
frequency density, n, = @'V, /(27 c}) ; i, is the partition’s loss factor; R, is the partition’s
radiation resistance; 77y is the room’s loss factor,

coS,a

= v, (1—a)

Sy is the total area of the room partitions; « is the diffuse sound absorption coefficient for the
room partition surface (see [28]),
¢S .
7/00 S —
40V, (TL),,
ﬂ_nZ f2
(TL)., stands for the infinite plate’s sound transmission loss, (7L), = —5—;
PoCo
Ny Chn <tn,n >¢ .
7,/ S, ’

(tzn) o 1s the coefficient of the flexural wave energy transmission through obstacles with the
diffuse vibration field acting; I, stands for the sound power radiated by the air noise source,

I,~piSy/A(2p,); pyis the sound power measured at the 1-m distance from the source

Yoo = %qllnn =

according to a standard method; S, is the surface area surrounding the source at the 1-m
distance; /;; stands for the vibration power transmitted from a partition-mounted acoustic
vibration source onto the partition itself,

)
N §¢ My CrpLy .

2 b
@

Iy
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§¢ is the oscillation (vibration) acceleration amplitude for the source foundation’s
support plate; L, stands for the perimeter of the foundation envelope (footprint) (on the
mounting partition as per layout).

7.6  The Use of the Finite-Element Method in the Acoustic Design of Ship
Structures

The finite-element method (FEM) is being increasingly utilized for calculation of the
vibro-acoustic characteristics of engineering structures. The FEM formalism suggests splitting a
structure into the separate (finite) elements whose dimensions are smaller than the shortest
elastic wave at the given frequency, and representing these elements deformation with the use of
polynomials and joining the elements based on equality of deformations or strains along the
joined elements’ boundaries.

The FEM is centered around matrix equations of the linear analysis

([K] +jo [R] - o° [M]) {€} = {F},
where [K] is the matrix for the structure’s desired rigidity; [R] is the matrix for the structure’s
desired absorption of the vibration energy; [M] is the matrix for the structure’s desired weight;

{F} is the vector of the given forces acting on the structure; and {&} is the vector of the structure
displacements to be determined.

Based on the FEM, the MSC/NASTRAN universal programming software has been
worked out abroad and this yields calculations of the engineering structures’ dynamic
characteristics. For example, [53] offers the results of calculation for the resonance frequency of
the ship superstructure’s longitudinal oscillations using the above programming approach.
According to the FEM-based calculations, this frequency equals 7.4 Hz, which corresponds to a
full-scale experiment - 7.7 Hz. There also is domestic experience in calculation of the resonance
frequencies of ship structure oscillations (see, for instance, [4]). The calculation error for the
resonance (natural) frequencies of ship structure oscillations does not exceed 6%.

Table 7.4 gives values of the flexural oscillations’ resonance frequencies for a rectangular
0.006-m-thick steel plate 1.4x1 m? in dimensions with a gridwork (grillage) framing of 0.05-m-
high and 0.006-m-thick equidistant stiffening ribs (five in each direction). The resonance
frequencies were determined based on the FEM calculation and experimentally. Calculation
error does not exceed 3.8%.

The use of the FEM for calculation of the ship structure oscillations’ resonance
frequencies is possible no matter how complex the structural configuration may be.

Calculation of the structures’ resonance frequencies through the FEM is widely used in
ship design abroad. Such calculations are very costly. Depending on the structures complexity,
for example, Reference [34] shows that a ship structure’s resonance frequency calculation is
worth $1,500 through $4,500. It is noted, however, that expenses incurred at the design phase
are insignificant as compared to the cost of eliminating the structures’ resonance oscillations at
the as-built stage.
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The FEM can also be utilized for calculation of the airborne noise level radiated by a
machines body and stemming from the ship compartment’s acoustic vibration. Reference [58]
shows the feasibility of the FEM-based calculation of the sound pressure radiated by the
principle modes of the machinery’s simulated vibrations.

Reference [49] gives the sound pressure calculation results for a car interior driven in the
engine location area. Calculation was carried out with the use of the MSC/NASTRAN program.
The FEM was employed for calculating the structure’s vibration and the airborne noise inside the
body. The experiment was performed in the 20-100 Hz frequency range. A satisfactory
agreement between the FEM-based calculation results and those of the experiment was observed
up to 80 Hz. An obvious analogy is traced between this calculation and a possible one for the
airborne noise sound pressure in a ship compartment that stems from the acoustic vibration of the
compartment partitions.

All the above prompts a conclusion on possibility of simulating the ship structures’
acoustic vibration and resultant air noise in the ship rooms via the FEM. Such a simulation has a
great advantage over the scale modeling as it permits supervision and control virtually over an
infinite number of source, room and noise-suppressing complex arrangement variants when
designing a vessel acoustically. This helps select truly optimal ways of the low-noise vessel
design.
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Table 7-4. The resonance frequencies of the first four patterns of the flexural
oscillations for a rectangular ribbed plate.

Oscillation pattern Resonance frequency, Hz Error, %
FEM Experiment
100 96.3 3.8

Y =S

152 153 0.7
177 174.3 1.5
236.5 242 2.3
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