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ABSTRACT 
Under current practice, the means to fight noise and vibration on ship structures are 

applied on already finalized designs of ships.  This is the more expensive solution to the 
problem.  The most efficient design with less cost can be achieved if from the beginning of the 
design process, the acoustic silencing requirements are implemented.  The author put forth for 
himself as the purpose of this book, a plan to systematize such an approach, gained through his 
research experience on the acoustic characteristics of vibration and radiation of ship structures, 
sources of the main contributors of vibrations and noise on ships, causes of their origins, and 
methods of mitigating those vibrations and noise. 

This book is intended for research scientists, engineering, and technical experts involved 
in the field concerned with the reduction of vibration and noise in ships and other means of 
transportation.  

 
PREFACE 

Equipment operating on ships causes vibration and noise.  Ambient noise and vibration in 
ship’s areas results in the deterioration of working conditions, crewmembers’ health, and brings 
discomfort to passengers.  The intensity and persistence of naval structures’ vibration often cause 
damage of equipment and a shortening of its service life.  All this prompts designers and ship-
builders to take measures to reduce naval structures’ vibrations and ambient noise levels. 

Note that vibration and ambient noise reduction means introduced after general design 
work has been completed do not fully eliminate the problem and are more expensive [28].  
Acoustic mitigation devices mounted on ships already built are 3.5 times the cost of those 
incorporated at the design stage [45]. 

A significant decrease in vibration and noise levels at lower costs is made possible by 
taking acoustic conditions into account and making provisions for meeting acoustic design 
requirements at the earliest stages of a general design. 

Acoustic design implies the selection of acoustically efficient naval architecture, acoustic 
design of equipment to minimize its vibration, acoustic design of naval structures, and design of 
vibration and noise suppressing devices and their on board placement. 

A single monograph volume does not allow for the precise handling of all acoustic design 
problems.  This reference book basically offers principles of acoustic design of naval structures, 
as well as selection of acoustically efficient naval architecture depending on a specific ship’s 
purpose.  It contains data on vibro-acoustic characteristics of basic naval equipment which, when 
used at early design stages, may help in the selection of the best type of equipment based on 
acoustic considerations. 

A considerable part of the book covers the vibro-acoustic characteristics of naval 
structures such as foundations, bulkheads, floors, and hull plating.  Means of maximum in-design 
improvement of these structures’ intrinsic vibro-acoustic characteristics (vibration excitability, 
vibration conductivity, sound insulation and sound projection) are described. 

The dependence of vibration and noise canceling devices’ acoustic effectiveness on the 
structural and geometric parameters of naval structures on which the devices are to be mounted 
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is analyzed.  The book contains recommendations on naval structure design aiming at an increase 
in efficiency of the above devices. 

Included are various vibro-acoustic characteristics of materials to be used for naval 
structure fabrication, equations to determine these characteristics, results of calculations and 
measurements obtained.  Most of the equations have been categorized and displayed in tables, 
each for the relevant section of the book.  Data and recommendations given here allow selection 
of optimal values of naval vibro-acoustic characteristics. 

The equations and definitions most frequently used in calculations are given specific 
examples and drawings.  To look for data and reference material required, use the index.  A 
listing of the conventional designations is placed at the beginning of the text. 

It is important to note that introduction of naval acoustic design on a broader scale is 
restrained by lack of full understanding of its basic principles.  This book is meant to fill in the 
gap. 

Conventional Designations 

B - flexural rigidity 

D - tensile strength 

E - Young’s modulus 

F - dynamic force 

G - modulus of shear 

I, Ip - axial and polar moments of inertia 

K - rigidity (stiffness) 

pL  - level of sound pressure relative to p0 = 2 • 10-5 Pa • m-2, dB 

ξ&&L  - level of vibration (vibrating acceleration) relative to dB ,m/s 103 24
0

−⋅=ξ&&  

M - weight (mass) of rod (plate, casing), moment 

N - frequency of rotation 

Nизл - sound power 

R - radius, sound insulation 

S - area 

Z - mechanical resistance 

Y - mechanical sensitivity (vibration excitability) 

c - wave’s phase speed 

ƒ − frequency 

h - plate (casing) thickness 

j - imaginary unit 

k - wave number 
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l - length 

m - mass per unit length (surface) 

p - sound pressure 

t - time 

η − loss factor 

ξ − amplitude of transverse vibrations of rod (plate, casing) sections 

ζ − amplitude of longitudinal vibrations of rod (plate, casing) sections 

θ − angle of rotation of rod (plate, casing) sections 

λ − wavelength 

µ − value ratio 

ρ − density 

σ − Poisson’s ratio 

ω − circular frequency 

〈 〉 ν - averaging of parameter ν 

vv ′′′, − coordinate derivatives 

νν &&& , − time derivatives 

∆ − difference in values 

E (Э)– effectiveness 

Re ν − substantial (real) part of complex value ν 

Im ν −imaginary part of complex value ν 

Indices: пл or pl - plate, ст or rod– rod, c– casing, р or r– stiffening rib, п or p - 
dilatational wave, и or fl - flexural wave, сд or s– shear wave, к or tor– torsional wave. 
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1   FUNDAMENTAL PHYSICS OF MARINE STRUCTURES VIBRATIONS AND 
SOUND RADIATION 

1.1 Dynamic System Research Methods 
Ship hull structures together with their mounted equipment vibrating within the 

surrounding water environment make for a complex dynamic system.  The study of such a 
dynamic system includes the determination of the frequency response of its elements, vibration 
amplitudes, and the resulting radiated airborne noise. 

Classic vibration and sound radiation theory is based on differential equations derived 
using the inertial and impedance (stiffness) properties of separate elements of the system while 
accounting for their interaction with the environment.  Also, solutions are combined using 
boundary conditions formulated on the basis of material continuity in areas where elements are 
joined with each other and the environment. 

Seeking such solutions takes much time and effort and is sometimes spent in vain through 
our inability to predict the solution pattern required for complex components of the dynamic 
system under study.  In addition, the classic theory well suited for basic dynamic systems does 
not ensure the precision required for complex engineering structures due to differences between 
realistic boundary conditions and their mathematical idealizations. 

Considering the above, practical application necessitates approximate methods for the 
study of vibrations and sound radiation of dynamic systems.  Basic among these are: 

1.  The statistical (energy) method of vibrations and sound radiation of dynamic systems 
based on principles of statistical physics.  This method defines average vibro-acoustic 
characteristics of the system elements provided the number of resonance frequencies of the 
elements mentioned in the frequency ranges under study is substantial.  This method was 
primarily developed by R. Lyon [47] and further developed in [19] specifically for naval 
structures.  The statistical theory is precise enough at medium and high audio frequencies. 

2.  Approximate mathematical methods for the solution of problems on vibrations and 
sound radiation of dynamic systems based on classic vibrations and sound radiation theory for 
realistic structures where only the basic parameters of these structures affecting the results are 
taken into consideration.  These methods are well illustrated in [19, 35]. 

3.  The method of modal analysis of dynamic structures based on approaches from the 
well-developed theory of electric circuits.  This method [27] is based on the assumption that 
specific modes of natural vibrations of systems with both distributed and localized parameters 
may be viewed as analogous to electrical filters.  This analogy allows for relatively simple and 
sufficiently exact description of very sophisticated dynamic systems’ behavior.  The practical 
value of the method of modal analysis is, above all, in its provision for the use of matrix methods 
for calculations. 

4.  Method of finite elements based on sub-dividing structures into areas whose dimensions 
are much smaller than the typical vibrational wavelengths in these structures.  The method 
allows for calculation of the vibration field for any structure but requires the use of powerful 
computers. 
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All of the above methods of study of vibrations and sound radiation for dynamic systems 
have been employed to some extent in working out the calculation equations given in the book. 

1.2 Typical Naval Structures and Their Components 
Vibration-conducting naval structures are schematically shown in Fig. 1.1.  These 

structures fall into three major groups: plates supported with stiffening ribs (ribbed plates); rib-
free plates (uniform plates); and one-dimensional structures (beams, rods, etc.). 

The first group is represented by bulkheads, decks, floors, the hull plating, i.e. most of the 
structures that form the ship hull.  These structures (Fig. 1.2) are flat or curved plates with a 
mutually perpendicular set of parallel stiffening ribs (frames).  Curvature of the above plates is 
generally found in the stern and bow sections of the hull plating and on its bilges as well.  The 
geometric features of ribbed plates are plate thickness, cross-section of stiffening ribs, and the 
distance between them.   

 

 

Figure 1-1.  Typical naval structure layout. 
1 - bulkhead; 2 - stiffening rib; 3 - cantilever foundation’s mounting plates; 4 - cantilever 
foundation support links; 5 - air duct; 6 - board plating; 7 - pipeline; 8 - inner-bottom plating;  
9 - stringer; 10 - bottom plating; 11 - floor; 12 - frames; 13 - support links (brackets) of support 
foundation; 14 - support foundation’s mounting plates; А, б, β - typical joints of naval structures. 

 

 

 

Figure 1-2.  Rib-stiffened ship structure layout. 
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The second group largely consists of plates that provide the foundations for mounting of 
ship’s equipment.  The most frequently used are those that support foundations and cantilever 
foundations (Fig. 1.3). 

 

Figure 1-3.  Equipment-mounting naval foundations drawing. 
α - support foundations; б - cantilever foundations; 
1 - vibration-active mechanism; 
2 - foundation’s mounting plate; 
3 - knees; 
4 -foundation’s support plates (brackets); 
5 - mounting hull structure. 

 

Both types of foundations consist of a set of uniform plates connected in a special way.  
These seatings feature mounting plates to which equipment is attached with or without shock 
absorbers (isolators), support links (brackets) to connect the foundation’s mounting plates with 
mounting structures accommodating the foundation.  To ensure the strength required for the 
foundation plates, reinforcing knees (angle brackets) are frequently used dividing the plates into 
several parts.  The second group foundations are characterized by one peculiarity: mounting 
plates and structures of the support foundations are mutually parallel, those of the cantilever 
foundations are perpendicular.  The basic geometrical parameters of the above foundations are 
given in Fig. 1.3. 

The third group of structures consists of air ducts, pipelines, and shafts.  Air ducts 
represent a box-type structure; pipelines and shafts are cylindrical casings (shells).  Geometrical 
parameters typical for the former are the thickness of plates forming the structures, and for the 
latter - external or internal radii and wall thickness. 

Standard elements of naval structures are rods (stiffening ribs, frames); plates (seats, 
bulkheads, floors, stringers, hull plating, air ducts); casings (pipelines, shafts).  Typical joints of 
naval structures are connections of the above-mentioned components (see Fig. 1.1).  These can 
be corner, T- and cross-shaped joints of plates as well as connections of rods with plates as 
exemplified by pipelines running through hull structures. 
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1.3   Elastic Waves in Ship Structures 

1.3.1 General 
There are two possible types of deformations in an infinite solid medium– compression 

and shear.  These deformations propagate in solids in the form of dilatational and shear waves at 
their respective speeds 

    
)21)(1(

)1(
σσρ

σ
−+

−
=

Ecl               (1.1) 

    ρ/2 Gc =   .                                                 (1.2)  

The two types of waves available in a solid arise from the fact that elastic forces originate 
in it with both volume (compression) and shape (shear) distortion. 

Equations (1.1) and (1.2) show that the speed c1 and c2 values for elastic solids are 
determined by three physical and mechanical parameters of these solids - the Young’s modulus 
E, shear modulus G and density ρ.  Values of these parameters as well as the velocity of elastic 
waves of some shipbuilding materials are given in Table 1.1. 

Unlike solids, elastic restoring forces in liquids and gases come solely from volume 
distortion only.  Therefore, there can only be dilatational or compressional (acoustic) waves in 
them.  The propagation speeds of these waves are: 

−  For liquids 

     ρ/Kcl =                                                   (1.3)  

−  For gases 

      ργ /0Pcl =                                                   (1.4)  

where K - liquid’s bulk modulus; Po - gas static pressure; γ − gas specific heat ratio with pressure 
and speed constant. 

Equations (1.3) and (1.4) reveal a specific feature of acoustic wave speed in liquids and 
gases - there is no speed value dependence on static pressure and temperature for liquids, but a 
clearly expressed relationship between these parameters exists for gases.  The presence of gas 
bubbles in a liquid media significantly lowers its bulk modulus K resulting in a significant 
decrease of the speed of acoustic waves propagating in such liquids.  For example, with 0.1% air 
content in water, the speed of sound drops from 1500 m/sec to 400 m/sec (at atmospheric 
pressure). 

The velocity values for acoustic waves in liquids and gases most common in naval 
practice are given in Table 1.2.  Mass density for these substances is also found there.  
Conversion of values for a speed of sound in gases at temperature T other than 20oC can be 
performed by Eq. [29] 

273/)2(1)20()( −+= TcTc ll  . 
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Table 1-1.  Physical and Mechanical Parameters of Some Ship-Building Materials. 
 

Material Young’s  
modulus, 

E • 1010, 
Pa 

Shear 
modulus  

G • 1010, 
Pa 

Poisson’s 
ratio σ 

Mass 
density  

ρ • 103, 
kg/m3 

Compressional 
wave speed  

c1 • 103, m/sec 

Shear 
wave 
speed  

c2/103, 
/sec 

Loss 
factor  

η • 10-3 

Steel 21 8.14 .29 7.8 5.94 3.22 0.1 

Aluminum 
alloys 

7.2 2.77 .3 2.8 5.78 3.14 0.5 

Fiber glass 2.1 .955 0.1 1.7 3.55 2.36 13 

Plywood .34 - - 0.8 - - 13 

Wood-fiber 
plates 

.3 - 0.17 1 - - 20 

Glass 6 - - 2.5 4.9 - 1 

Wood 0.1-0.5 - - 0.4-0.8 2-3 - 10 

Copper 12.5 4.5 0.35 8.9 3.7 - 2 

Brass 9.5 3.6 0.33 8.5 3.2 - 1 

Organic glass .56 - - 1.15 2 - 20 

Concrete 2.6-9.5 - - 1.3-2.3 1.8-3.5 - 4-10 

Cork - - - 0.24 0.48 - - 

Sand - - - 1.6-2.2 0.15 0.1 0.1 
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Table 1-2.  Physical and Mechanical Parameters of Some Liquids and Gases 
Common in Naval Practice. 

 

Medium Mass density 
ρ, kg/m3 

Speed of sound  
co • 103, m/sec 

Acoustic impedance 
ρ0c0, kg/m2 • sec 

Temperature, 
oC 

Sea water (3% salt) 310031 ⋅.  1.5 3105451 ⋅.   10 

Distilled water 310001 ⋅.  1.43 3104301 ⋅.    0 

Air (1013 hPa) 1.29 

1.24 

0.333 

0.344 

3104330 ⋅.  
3104160 ⋅.  

  0 

 20 

Water vapor 0.54 0.45 3102430 ⋅.  130 

Ethylene 310790 ⋅.  1.15 610910 ⋅.   20 

Gasoline 310750 ⋅..  1.19 610890 ⋅.   20 

Oil 310920 ⋅.  1.39 610281 ⋅.    •  

 

The presence of boundaries in real structures (rods, plates and casings) gives rise to the 
appearance of additional types of elastic waves described below. 

All types of elastic waves have the following parameters: 

♦ speed of propagation (transmission) gc of deformation or wave energy which is sometimes 
called group speed; there is also a phase speed c of elastic waves to oscillate in-phase which 
determines their length, i.e. distance between points in the medium; with no variation 
(dependence on frequency), phase speed and group speed coincide in value; 

♦ wave number 

ck /ω=                                                                (1.5) 

♦ wavelength is determined by the distance between the closest points in the medium which 
oscillate in-phase,  

kfc /2/ πλ ==  

♦ particle displacement amplitude x of the vibrating structure when an elastic wave passes 
through; for harmonic time variation of the form tje ω displacement is related to vibration 
speed x& and acceleration x&&  by the equations xjx ω=& and xxjx 2ωω −== &&&  (when oscillating 
harmonically); 

♦ w elastic wave energy density, i.e. quantity of energy contained in the vibrating structure’s 
characteristic volume, 

 2

2
1 xmw &=                 (1.6) 
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where m - mass of the characteristic volume; 

♦ flow of  elastic wave energy, Π, i.e. quantity of energy that passes through a characteristic 
area of a vibrating structure per unit time, 

gg cxmwc 2

2
1

&==Π                         (1.7) 

where gc − speed of an elastic wave’s energy transmission along the normal to the characteristic 
area. 

The units of measurement for the above-listed parameters related to elastic waves and 
their correlation are given in Table 1.3. 

Elastic waves originate in structures as a result of dynamic stress applied.  In practice this 
stress is normally manifested as forces and moments.  Depending on the structure’s geometry 
and dynamic stress applied, this or that type of elastic waves originates in the structure. 

 

Table 1-3.  Basic parameters related to elastic waves. 
Parameters Designation Unit of measurement 

SI                CGS   

Equation of 
relationship with 
other parameters 

Displacement x  m                 cm   2// ωω xjxx &&& −==  

Vibration speed x&  m/sec           cm/sec  ωω /xjxjx &&& −==  

Vibration 
acceleration 

x&&  m/sec2          cm/sec2 xjxx &&& ωω =−= 2  

Wave speed c  m/sec           cm/sec fc λ=  

Wavelength λ  m                 cm fc /=λ  

Energy density w  W•sec/m2     erg/cm2  2

2
1 xmw &=  

Energy flow Π  W/m2            
erg/(sec•cm2) 

wc=Π  

Frequency f  Hz                 Hz  

Vibration level (of 
vibration 
acceleration) 

xL &&  --                   -- 

smx

x
xLx

/105

)log(20

8
0

0
−⋅=

⋅=

&&

&&&&
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1.3.2 Elastic Waves in Rods 
There are three possible types of elastic waves in rods or beams: dilatational (longitudinal), 

flexural (bending), and torsional waves (Fig. 1.4). 

 

 

Figure 1-4  Rods with deformations in longitudinal (a) torsional (б) and flexural (в) 
vibrations. 

 

When applying a force in the direction of a rod’s axis, a dilatational (longitudinal) wave with 
displacement amplitude x = ζ0 is generated in it.  This wave causes displacement of the rod’s cross 
section along its axis.  The equation to determine speed cbar of dilatational (longitudinal) wave 
propagation in rods is given in Table 1.4. 

Energy density in a rod segment of unit length in dilatational (longitudinal) vibrations is 
determined by Eq. (1.6) with substitution of m=mb (m - rod’s mass/unit length) and x = ζ0.  
Energy flow in the rod, i.e. quantity of energy passing through the rod’s cross section per unit 
time, in dilatational vibrations is calculated by Eq. (1.7) with values of m=mb, , x = ζ0, cg=cb 
inserted. 
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Table 1-4.  Phase speeds of elastic waves in rods, plates, and casings with 
various types of elastic waves. 

Structural 
Component 

Longitudinal waves Flexural waves Torsional 
waves 

Shear wave 

Rod: 

Rectangular 
section 

Round 
section 

Ring-type 
section 

 

Plate 

 

Cylindrical 
shell 

      rff <<  

        

      rff <<   

 

ρ/, Ec barl =  

ρ/, Ec barl =  

ρ/, Ec barl =  

 

 
)]1(/[ 2

, σρ −= Ec shl

 

 

 
         ---- 

 

)]1(/[ 2
, σρ −= Ec shl

 

 

acc bbarfl ω535.0, =

Rcc bbarfl ω707.0, =

abbarfl Rcc ω707.0, =  

 

 

pbpfl hcc ω707.0, =  

 

n
Rc

c b
shf

2
0

,

1707.0 σω −
≈

 

shbpf hcc ω535.0, =  

 

ρ/Gct =

ρ/Gct =

ρ/Gct =
 

  

 

         --- 

 

 

         --- 

 

         --- 

         

 

     --- 

     --- 

     ---  

       

 

 
ρ/, Gc pls =  

 

 

     --- 

 

ρ/, Gc tors =  

Note: a - dimension of a rod’s rectangular section in the direction of displacement ξ;          
R - external radius of a round or ring-type rod; R1 - internal radius of a ring-type rod; 

2
1

2 RRRa += , R0– mean radius of casing; h - casing (shell) thickness; n - number of waves 
around circumference of casing (shell); )2/(, Rcf shlr π=  

 

When a moment acts upon a rod about its longitudinal axis, torsional waves are generated 
in the rod characterized by a twisting of the rod’s cross section through the angle ψ.  Equations 
to determine the speed ct of propagation of a torsional wave along the rod with various cross 
sections are given in Table 1.4.  The parameter α when related to the speed of torsional waves in 
a rectangular-section rod with a×b  dimensions has the following value. 

 

a/b 1 1.5 2 3 6 >6 

α 0.92 0.85 0.74 0.56 0.32 ∼ 2b/a 
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The expressions for a torsional wave speed in a rectangular-section rod are correct under 
condition that 1<ak f , where  fk --is the wave number of flexural vibrations in a plate of the 
same material with thickness b (a≥b) which is determined with the use of Eq. (1.5) and Table 
1.4. 

Density and flow of torsional wave energy in a rod are determined by the equations: 
2
0)2/1( ψρ &pS Iw =  and, SSs cw=Π where Ip -- polar moment of inertia for the rod’s cross 

section, ψ0 -- amplitude of the angle of rotation for the rod’s cross section. 

Flexural vibrations originate in the rod under the action of forces applied perpendicular 
(transverse) to the rod axis.  These vibrations are characterized by a transverse displacement, ξ, 
of the rod cross-section and angle of its rotation ϕ (see Fig. 1.4).  Displacement and angle of 
rotation of the rod’s cross-section in flexural vibrations are related via ratio ϕ0 = kfξ0, where 

ff ck /ω=  (cf  from Table 1.4). 

Speed of flexural waves in a rod is dependent on frequency, i.e. the phenomenon of wave 
dispersion takes place.  In this connection it should be noted that the speed of propagation of 
flexural wave energy is double the phase speed.  Table 1.4 gives equations for flexural waves’ 
phase speed in rods of various cross section shapes.  Generally phase speed is: 

4
2

b
f m

Bc ω
=  .                          (1.8)  

Equations of Table 1.4 are correct for a rectangular section, if condition cb/ƒ>6a (a - size 
of the rod’s cross section in the direction of displacement ξ), for round and ring-type sections 
cb/ƒ>6R, is met. 

Density of flexural waves’ energy in a rod is determined by Eq. (1.6) with m=mb, x =ξ 
inserted;  and energy flow - by Eq. (1.7) with cg=2cf. 

1.3.3 Elastic Waves in Plates 
There are three possible types of elastic waves in plates: dilatational, flexural (bending) and 

shear (Fig. 1.5). 
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Figure 1-5.  Elastic waves and deformations in plates (а) longitudinal (б) shear (в) 
flexural. 

With forces evenly distributed along the straight line and acting in the plane of the plate 
in the direction perpendicular to the line, a dilatational (longitudinal) wave is generated in the 
plate and characterized by displacement of the plate’s cross section in the direction of the wave 
propagation.  The velocity of this wave is determined by equation given in Table 1.4.  The speed 
velocity exceeds that of a dilatational wave in a rod. 

Density of dilatational vibrations energy in a plate, i.e. quantity of energy to be contained 
in the plate section of unit surface area, mpl, is determined by Eq. (1.6) with m=mpl and 0x ζ=&  
inserted.  The dilatational wave energy flow in the plate, i.e. quantity of energy to pass per unit 
time through the plate’s cross section segment in a unit length which is perpendicular to the wave 
propagation direction, is determined by Eq. (1.7) with m=mpl, 0x ζ= && , and cg=cb,pl inserted. 

With forces acting upon the plate plane along the straight line, a shear wave is generated 
and propagates perpendicular to the above line and is characterized by displacement χ of the 
plate’s cross section.  Speed of a shear wave in a plate is determined by equation given in Table 
1.4.  Density and flow of the shear wave energy are determined by equations similar to those for 
dilatational waves with substitution of cb,pl=cs. 

With forces acting transverse to the plane of the plate, flexural waves are generated and  
characterized by displacement, ξ, of cross section and its turn through ϕ angle.  The latter values 
correlate via ratio ϕ0 = jkf,plξ0, where kf,pl = ω/cf,pl, and cf,pl - phase speed of flexural waves in a 
plate - is determined by the equation given in Table 1.4.  Phase speed of a flexural wave for 
metal plates can roughly be determined by the equation 

fhc plplf ⋅≈ 2
, 10                                              (1.9) 

where hpl - plate thickness in meters; ƒ -- frequency in Hz.  Expressions for cf,pl are correct 
provided cf,pl/ƒ<6hpl.  For example, with a steel plate 6⋅10-3m thick, frequency limit of Eq. (1.9) 
applicability is 40 kHz with maximum 10% error (0.85 dB).  Density and flow of energy for a 
flexural wave in a plate are determined by the Eqs. (1.6) and (1.7) respectively with m=mpl, 

0x ζ= && , and cg=2cf,pl inserted. 
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1.3.4 Elastic Waves in Cylindrical Shells 
The nature of cylindrical shell vibrations is largely dependent on the value of frequency 

     pllcR ,/ωυ =                                (1.10) 

where R - is the mean radius of shell (Fig. 1.6), cl,pl - speed of a dilatational wave in a plate with 
thickness equal to h , the thickness of the shell.  Frequency at which ν=1 is called the ring 
frequency ƒ=cl,pl/(2πR).  The length of a longitudinal wave in the shell fits along the shell 
perimeter at this frequency. 

Generally, the shell surface deforms transversely (radially), lengthwise (axially) and 
tangentially with amplitudes ξ, ζ and χ respectively (see Fig. 1.6). 

Curvature has negligibly little effect on the shell behavior at frequencies where ν>1.  
Depending on the nature of the excitation, flexural, dilatational and shear waves can be generated 
in the shell, with all parameters of such waves matching those of similar waves in a plate of 
thickness h (see Table 1.4). 

 

Figure 1-6.  (а) Dimensions of a cylindrical (shell) casing and (б) its deformations 
patterns in flexural vibrations. 

 

At frequencies where ν<1 the curvature of shell does have a significant effect on nature 
of waves excited in it.  Analysis of the vibrational behavior of a cylindrical shell performed in 
[19] shows that, with ν<1, only waves having transversely displacement of shell’s walls can 
propagate there.  These waves are similar to flexural waves in plates.  Shapes of shell 
deformation with n=2 and n=3 are shown in Fig. 1.6.  Wave numbers for shell vibrations with 
displacements ζ and χ (in-plane motions) with ν<1 are complex and, therefore, the respective 
waves attenuate. 

Phase speed of a flexural wave in a shell with ν<1 is given in Table 1.4 with the 
following conditions: n ≥ 2, β2 >>h2/(12R2), 2β n2 ≤ ν ≤ 0.5, where Rh 12/=β and n=i/2 (i - 
number of nodal points on the deformed circumference of a shell). 

Phase speed of a flexural wave in a shell with ν<1, as shown in Table 1.4, is largely 
dependent on n, diminishing as this number rises.  Its physical explanation is in the fact that 
flexural waves in a shell propagate in a spiral.  The bigger n, the more frequently waves round 
the shell at its fixed segment. 
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With n=1 vibrations of a shell with ν<1 are similar to those of a ring-type section rod.  As 
in the case of a plate, the speed of flexural wave energy propagation in the shell is double the 
phase speed.  That is why the energy density and flow of energy in the shell for this wave may be 
calculated by the Eqs. (1.6) and (1.7) respectively with substitution of m=msh, x=ξ and cg=2cf,pl. 

It is necessary to consider entrained liquid mass when calculating elastic wave speed, 
wave number and other weight-dependent parameters of ship structures in contact with liquid 
(ship’s hull plating, liquid-containing pipelines) 

1.3.5 Elastic Waves in Infinite Structures 
Elastic waves generated in infinite structures propagate obstacle-free.  Such waves are 

called traveling waves.  For example, in infinite rods there can be two traveling waves that  
propagate along the y direction with a point force acting upon the rod: 

     jky
r exyx ±= 0)(                                        (1.11) 

where 0x – wave amplitude at the drive point (y=0); a plus in the exponential index corresponds 
to a wave propagating in the direction of negative values of  the y coordinate; minus corresponds 
to a wave propagating in the direction of positive values of the y coordinate. 

Flexural waves in infinite rods feature evanescent waves originating in close proximity to the 
external stress application point, with amplitude      

     yfk
f ey ±= 0)( ξξ      (1.12) 

where 0ξ  -- is the amplitude of the evanescent wave at the external stress application point;  plus 
in the exponential index corresponds to the inhomogeneous wave to the left of the drive point, 
minus - to the right of the point. 

Amplitude of an inhomogeneous wave attenuates exponentially as it moves farther away 
from the external stress application point.  Therefore, it does not carry energy. 

With in-phase forces acting upon a plate along the straight line (line-drive), plane 
traveling waves are generated in the plate and described by the expression (1.11), while flexural 
waves in a plate feature inhomogeneous waves described by Eq. (1.12) with kf= kf,pl. 

With point stress acting upon a plate, cylindrical waves originate in it with amplitude 
decreasing as it moves farther away from the excitation point through an expansion of the wave 
front.  For example, with transverse point stress acting upon a plate, a divergent wave originates 
with the amplitude  

    )]()(
2

[)( 0
)2(

00 rkjKrkHr ff −=
πξξ ,    (1.13) 

where ξ0 - wave amplitude at the excitation point; H0
(2) - Hankel function of the second kind that 

describes a traveling cylindrical wave; K - McDonald’s function describing an inhomogeneous 
cylindrical wave. 

If a torsional force acts upon a plate, the latter generates a divergent cylindrical shear 
wave with amplitude 
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   )()( )2(
00 rkHr sχχ = .                 (1.14)  

As could be seen from (1.14) inhomogeneous waves are not generated in the case of 
cylindrical shear deformations in a plate, nor do they in the case of cylindrical dilatational 
(longitudinal) waves. 

With consumption of elastic waves energy taking place in an infinite structure, the 
amplitude of such waves attenuates exponentially: )4/exp( yk f η−  for flexural (bending) waves 
and exp(-kηy/2) for waves of other types (η -- loss factor in a structure). 

1.3.6 Elastic Waves in Bounded Structures 
Elastic waves in infinite structures can exist at any frequency.  Free elastic waves 

(without external excitation) in bounded structures (rods, plates, and shells) can only be 
generated at frequencies where boundary conditions are met.  These frequencies are called 
natural (or resonance) frequencies for the bounded structure’s free vibrations.  A flexurally 
vibrating rod provides an elementary bounded structure.  Its behavior is similar to that of a plate 
or shell.  Basic boundary conditions for such a rod are: free end (no transverse forces and 
bending moments at the boundary); hinged end (no transverse displacement and bending 
moments at the boundary); and clamped end (no transverse displacement and no rotation of the 
rod’s end section). 

Hinged ends of a rod are most suitable for analysis as no inhomogeneous flexural waves 
are generated, making it easier to solve vibration problems for this rod. 

Each natural frequency matches its bounded structure’s vibration type.  For hinged l-long 
rod this type is represented as 

    )sin()( ,,0 yky ifii ξξ =                            (1.15) 

where i,0ξ  - amplitude of the rod’s free vibrations at frequency ωi.  Combination of natural 
frequency and a matching type of bounded structure’s vibrations is called a mode.  Function 
describing a natural vibration type is called characteristic and normally designated ψi(y).  In the 
case of a rod with hinged ends 

            )/sin()( lyky ii =ψ                                                 (1.16)  

Figure 1.7 shows shapes of the first four modes of an l-long rod’s flexural vibrations 
drawn in accordance with Eq. (1.16).  Modes of even order have vibration nodes in the middle of 
the rod; modes with odd ordinal numbers have nodes that are characteristic of standing waves.  
Expression (1.16) can be represented as 

)(
2

)( ,0 l
y

ijk
l
y

ijki
i ee

j
y

−
−=

ξ
ξ  . 

This equation shows that the standing wave ξ0,i sin(k,iy) is result of summation of two 
waves traveling towards each other with the same amplitude. 

 



 18

 

Figure 1-7.  Patterns of the first four modes of flexural vibrations for a rod with 
hinged ends. 

The characteristic functions allow for the description of any bounded structure vibration 
type caused by time-harmonic forces to be in the form of an infinite series.  For a bounded rod, it 

is represented as )()(
1

, yy i
i

io ψξξ ∑
∞

=
=  and stems from external stress acting upon a bounded 

structure and generally trigger all vibration modes. 

Amplitude spectrum for bounded structure modes depends on boundary conditions, 
nature, and area of application of excitation forces.  Specifically, for a flexurally-vibrating 
hinged l-long rod driven in the middle by a transverse point force F0, i-component of the 
spectrum is represented as [27] 

    
])1([

2
22

0
,0 ωηω

ξ
−+

=
jml

F

i
i  

where m - the rod’s mass per unit length; η-- loss factor of the rod’s vibrating energy.  Thus 
uneven modes are driven only.  Dependence of ξ0i on i with two values of the loss factor (η1< 
η2) is shown in Fig. 1.8.  Amplitudes of modes in which ωi<<ω are not dependent on their mode 
number and loss factor ξ0i ≈ -2F0/(m l ω2).  These modes are conventionally called low-frequency 
modes (mass controlled) as they oscillate at frequency ω that far exceeds their natural 
frequencies ωi. 

Modes whose natural frequencies are close to driving frequency (ξ0i ≈ 2F0/(j m l ω2 η)) 
have the maximum amplitude.  Amplitude of these modes (called resonance modes) is inversely 
proportional to loss factor η. 

Modes whose natural frequencies are well beyond frequency ω are called high-frequency 
(stiffness controlled) modes.  Their amplitude diminishes as i increases and its dependence on η 
is negligible 

     
)1(

2
2

0
,0 ηω

ξ
jml

F

i
i +

=  (normally η<<1).  
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Figure 1-8.  Dependence of mode amplitudes on mode number of a flexurally-

vibrating rod for harmonic excitation at frequency ω. 
1 - low-frequency modes 
2 - resonance modes 
3 - high-frequency modes. 

 

The vibration mode pattern for finite plates is of a two-dimensional nature.  For example, 
for a flexurally-vibrating rectangular plate with hinged edges, the fundamental functions are 
represented as 

 

)sin()sin( ,,, ykxk nyixni =ψ  

where kx i, ky n - projections of wave number vector of plate k on the coordinate axes x and 
y at frequency of its natural vibrations ω i n, kx, i = πi/l1; k n,y = πn/l2;  l1, l2 - plate side dimensions. 

Patterns for the first three modes of flexural vibrations of a rectangular plate are shown in 
Fig. 1.9.  Vibration mode patterns in a cylindrical shell are also two-dimensional.  Specifically, 
for a shell of length l with hinged edges, the characteristic function for transverse displacement is 
represented as ψI,n(x,ϕ) = sin(kf,in x) cos(nϕ), where  kf,in - wave number of transverse vibrations 
at frequency of the shell’s natural vibrations, kf,i n = ω i n/cf,i n; cf,i n - phase speed of vibrations 
along the shell axis to be determined based on Table 1.4; n - number of waves along the shell 
circumference.   

Transverse vibration mode patterns for a cylindrical shell at some natural vibration 
frequencies are shown in Fig. 1.10. 
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Figure 1-9.  Patterns of vibration for the first three modes of flexural vibrations of 
rectangular plate with hinged edges. 

 

 

 

Figure 1-10.  Patterns of vibrations of some modes o vibrations of a cylindrical 
shell with hinged ends (simply supported). 

 

Energy W contained in a vibrating bounded structure equals total of energies of all modes 
set in oscillation.  Specifically, for a flexurally vibrating rod 
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                   2

1

2
,04
ωξ∑

∞

=
=

i
i

mlW  .                                                 (1.17) 

Equations for calculating main resonance frequencies of some ship structures are given in 
Table 1.5. 

The characteristic functions for the above bounded structures reveal substantial 
unevenness of the surface deformation.  If several vibration modes with roughly similar 
amplitudes are driven simultaneously, this unevenness is smoothed out.  With a considerable 
number of such modes, amplitude of deformation over the structure surface becomes essentially 
the same.  In the process a so-called diffuse vibration field is formed in the structure. 

To determine a sufficient number of the structure’s vibration modes driven 
simultaneously, we should know the number of the structure’s natural (resonance) frequencies N 
(∆ƒ) included within a given frequency range ∆ƒ.  Equations for calculating N (∆ƒ) are given in 
Table 1.5.  When calculating bounded structure parameters by equations from Table 1.5, one 
must keep in mind the necessity of factoring in the influence of entrained liquid mass on natural 
frequencies whenever it contacts the structure under study. 

 

1.3.7 Entrained Liquid Mass 
Some ship structures like fuel tank walls, and hull plating, below the waterline, come in 

contact with liquid.  Among structures of this kind are pipeline rods of hydraulic ship systems 
through which liquid is pumped.  For flexural (bending) vibrations of such structures, an increase 
in the structure’s weight is typical due to a certain quantity of liquid joining in the vibrations.  
The above liquid is called entrained or associated.  In calculating the above vibrations, this liquid 
is to be added to the structure’s weight. 

Entrained liquid mass for a beam of finite length l submerged in liquid and vibrating as a 
solid - perpendicular to its axis - is calculated by Eq. [26] 

     Ms = V ρ0    (1.18) 

where V - beam volume.  In this case entrained liquid is of the same mass as liquid to fill the 
volume of the solid submerged in it.  A prerequisite to Eq. (1.18) applicability is satisfying 
inequality k0L<1, where L - beam length.  For a round section R-radius beam, entrained mass Ms 
= πR2Lρ0.   

For a cylindrical liquid- submerged shell (for instance, a pipeline passing through a tank) 
that vibrates in flexure, linear entrained mass [26] ms = πR2ρ0, where R - shell radius.  This 
equation is suitable whenever inequality 6λf<λ0 is satisfied.  For a pipeline 0.15 m in diameter 
with 6•10-3 m thick walls, this equation is applicable for frequencies below 10 kHz, i.e. 
essentially in the entire audio frequency range.   

With liquid-filled shell (for instance, hydraulic system pipeline), mass of this liquid is 
added to the pipeline weight at frequency below ƒ0, equal to ƒ0 = c0/6R.  Comparison of this 
frequency with the shell’s circular frequency determined by Eq. (1.10) reveals relationship of 
these frequencies as ƒk/ƒ0 = cf,sh/c0, i.e. frequency ƒ0 is roughly 3.3 times lower than the shell’s 
circular frequency (with cb,sh = 5•103 m/sec and c0 = 1.5•103 m/sec). 
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With flexural vibrations of a plate in contact with liquid, the latter’s response to these 
vibrations is of inertial nature at frequencies below critical which is [19] 

     
bp

c ch
c

f
π

σ )1(3 22
0 −

=  

For a metal plate in contact with water, ƒc ≈ 0.23/hp kHz, where hp - plate thickness, m.  
With up to 10% error, this equation is approximately applicable to fuel and oils. 

For plate thickness up to 2•10-2 m typical for ship structures, response of liquid to 
vibrations of a contacting plate is of inertial nature at frequencies below at least 11.5 kHz.  
Inertial nature of the response means the entrained liquid manifests itself as a mass, which is 
additive to the plate weight. 

Entrained liquid mass with a plate’s flexural vibrations may be taken into account 
assuming thickness of a liquid layer to join vibrations is roughly 1/6 of a flexural wavelength in 
the plate 

     
f

f
s k

m
′

=
′

= 00

2
ρ

π
λρ

                          (1.19) 

  

where λ′f and k′f refer to a liquid-contacting plate.  Entrained mass of a flexurally-vibrating plate 
diminishes as vibration frequency rises. 

Wave number for a flexurally-vibrating plate that comes in contact with liquid is 
calculated by the equation 

     mplf
pl

spl
f k

B
mm

k µ
ω

+=
+

=′ 1
)(

,4

2

 

where kf,pl  refers to a plate in vacuum; µm = ms/mpl, here ms is determined by Eq. (1.19).  
Dependence of µm on ƒ/ƒc is given in [20]. 
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1.4  Sound Radiation of Ship Structure Components 

1.4.1 General 
 

Any structure whose surface vibrates in the direction of its normal is a radiator (source) 
of acoustic energy towards the acoustic environment. 

The acoustic field generated by vibrating structures features the following parameters: 

wave number  k0 = ω/c0; 

wavelength λ0, the distance between the closest points of a medium that vibrate in-phase; 

amplitude of sound pressure is p and the vibratory particle velocity ν, generated at the point 
of a medium when an acoustic wave passes through it; 

density of acoustic waves energy w, i.e. quantity of energy contained in a unit volume of 
the medium; 

flow of energy (intensity) of acoustic waves I, i.e. quantity of energy passing per unit time 
through unit surface in the direction of normal; 

acoustic power Nrad, i.e. quantity of energy to pass (beyond to infinity) per unit time 
through a closed surface in the acoustic field that surrounds the acoustic source; 

directivity pattern for the source’s sound radiation, i.e. angular dependence of sound 
pressure  generated around the source (for sound radiation in closed  ship’s room 
structures, directivity pattern is of little importance as multiple reflections against walls 
of the enclosed volume give rise to an essentially uniform distribution of sound 
pressure amplitude and, therefore, density of energy). 

 

 The types of vibrating systems and their interrelation equations are given in Table 1.5.  
The units of measurement of the above parameters and their interrelation equations are given in 
Table 1.6.  Applications require knowledge of the sound pressure in the acoustic medium for the 
area under study, or knowledge of the sound power radiated by a vibrating structure. 
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Table 1-6.  Basic parameters characterizing acoustic waves.    
Parameter Design

ation 
Unit of measurement 

SI system       CGS  
                       system 

Equation of 
interrelation with 
other parameters 

 

Sound pressure p Pa                 µbar p = νρ0c0 

Vibration speed ν m/sec            cm/sec ν = p/ρ0c0 

Wavelength λ0 m                  cm  λ0 = c0/ƒ 

Wave speed c0 m/sec            cm/sec c0 = λ0ƒ 

Energy density w W•sec/m3     erg/cm3 w = p2/2ρ0c0 

Flow (intensity) of energy I W/m2      erg/(sec•cm2) I = wc0 = pν 

Sound power N W                 erg/sec  N = IS 

Frequency ƒ Hz                Hz -- 

Noise level (of sound 
pressure) 

Lp --                  -- Lp = 20lg p/ p0 

(p0 = 2•10-5 Pa) 

 

If the vibratory velocity ξ& of the source surface is known, the sound power radiated by 
the source is characterized by the radiation impedance Rrad or radiation loss factor ηrad, and these 
are related by the ratios 

22
ξωηξ && MRN radradrad ==                                                   (1.20) 

where 
2

ξ& -- space- and time-mean value of the acoustic source vibratory velocity; ηrad = 

Rrad/ωM; M - vibrating source mass. 

Sometimes the acoustic source radiation is characterized by the radiation factor σ rad related to 
Rrad and ηrad by the ratios 

ScSc
R radrad

rad
0000 ρ

η
ρ

σ ==       (1.21) 

where S - area of the source surface in contact with the acoustic medium; ρ0c0 - characteristic 
acoustic impedance of the  medium. 

Radiation resistance Rrad is the real part (resistive) of the vibrating source’s radiation 
impedance, Zrad = Rrad + jωMa, where Ma is the entrained mass of the acoustic medium directly 
in contact with the vibrating source. 

If the amplitude of the excitation force F0 driving the acoustic source is known, the sound 
power radiated by the source is given by  
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where inradT ZZZ += , and inZ is the internal impedance of the source. 

If Zrad is governed by its imaginary component, i.e. the entrained mass, and if this 
combines with the stiffness characteristic of the internal impedance, the radiated sound power 
can rise considerably when these reactive components balance each other out (resonance effect). 

If the vibratory power N that enters the source from outside is known, the source-radiated 
sound power in accordance with the law of conservation of energy is 

inrad

rad
rad NN

ηη
η

+
=                                                          (1.23) 

where ηin is the vibration energy loss factor for the source. 

With several sources operating simultaneously, the total aggregate density of energy 
created by them at an arbitrary point of the acoustic field is not equal to the total of densities 
from each source separately.  For two sources, each creating sound pressures p1 and p2 , 
respectively at some point of a field, the total sound pressure is pT = p1 + p2.  The total aggregate 
density of energy is determined by the expression [27] 
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     (1.24) 

where  p1 and p2 are the complex values of sound pressure; p2∗ is the complex-conjugate value of 
p2.  Equation (1.24) shows that, in addition to the density of energy w1 and w2 generated in the 
medium at a given point from each source, there is a so-called reciprocal energy w1 2 caused by 
the acoustic interaction of the sources.  The reason for this interaction is that the sound pressure 
created by the other source acts upon a source's vibrating surface. 

With interaction between two identical concentrated sources (for instance, small-diameter 
pulsating spheres) in a point to lie at equal distance from each source (w1 = w2 = w0), we have 
[27] 
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where l - distance between sources;  (+) corresponds to in-phase vibrations of sources, and (-) 
corresponds to anti-phase vibrations. 
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Figure 1-11.  Dependence of ratio wΣ/(2 w0) on k0l for two point acoustic sources. 
1 - in-phase vibrations of sources 
2 - anti-phase vibrations of sources 

 

The dependence of ratio w/2 w0 on k0l is shown in Fig. 1.11.  With in-phase operation of 
sources, their interaction causes doubling of density of energy in the field, if k0l <<1.  With 
sources vibrating in opposite phase when k0l <<1, aggregate density of energy tends to zero.  
Reciprocal influence of the sources is essentially absent, if k0l > 2, that comes about with 
distance between the sources exceeding approximately 1/3 of the acoustic wave, i.e. at a 
relatively high frequency. 

The reason for such a considerable change in aggregate density of energy generated by 
the simultaneous operation of two sources at low frequencies is that, with the sources operating 
in-phase, each one has to overcome both its own sound pressure and the sound pressure radiated 
by the other source.  In this case these pressures are equal.  With the sources vibrating in 
opposite phase, the above-mentioned sound pressures offset each other.  As the result, in range 
the k0l→0, the sound pressure in proximity to the sources equals zero and radiation of acoustic 
energy stops. 

All of the proceeding comments related to the independence of point sources of sound are 
applicable to extended sources, too.  

1.4.2 Simple Sources of Sound 
Simple sources of sound are the sources that have in-phase vibration with equal 

amplitude of displacement of either the entire surface in contact with acoustic medium or the 
source as a whole.  These sources are called zero-order and first-order sources respectively. 

Simple zero-order sources comprise, among other things, pulsating spheres and cylinder, 
as well as circular pistons oscillating in-phase in a rigid screen.  Simple first-order sources are 
represented, for instance, by oscillating sphere and cylinder. 

Simple zero-order sources with the wave dimension far below 1 are also called acoustic 
monopoles; first-order sources are called acoustic dipoles.  A dipole is formed by two identical 
monopoles, oscillating in opposite phase, spaced from each other by a distance, small compared 
to an acoustic wavelength. 

The parameters characterizing radiation for the above sources of sound are given in Table 
1.7 for small wave dimensions of sources (k0a < 1), which are most common in practice.  
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Analysis of data given in the table allows the following conclusions as to frequency band, where 
k0a < 1. 

1. Radiating capabilities of sound sources are largely dependent upon the latter’s wave 
dimension k0a.  For source order up by 1, its radiating capabilities are (k0a)2 times down.  
Increase in one of the source’s wave dimensions beyond 1 boosts its radiating capabilities 
(k0a) times. 

2. The entrained mass of a source corresponds to the mass of the medium occupying a 
specific volume.  For an oscillating sphere, the entrained mass is equal to its half-volume, 
for an oscillating cylinder-to its full volume.  The entrained mass of an oscillating piston 
in a rigid baffle on both sides occupies volume of a cylinder with the same cross-
sectional section shape as the piston surface and height of 0.4 d (d - piston diameter). 

3. Oscillating spheres and piston with k0a << 1 have identical radiating capabilities with 
regard to difference in surface area of these sources.  This prompts a practically valuable 
conclusion that oscillating solids of different shape whose wave dimensions are much 
lower than 1 have the same radiating capabilities. 

4. Sources of the monopole type produce non-directional radiation whereas dipole sources 
feature directional radiation with maximum in the direction of their oscillations. 

 

1.4.3 Sound Radiation of Flexurally-Vibrating Plates 
The sound radiation of flexurally-vibrating plates is largely dependent on the so-called 

critical frequency ƒc at which the wavelength λfl of a flexural wave in a plate is the same as 
length λ0 of a radiated acoustic wave.  The critical frequency [19] is given by: 
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c hc
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π
υ )1(3 22

0 −
=  .     (1.25) 

At frequencies below ƒc, the radiation resistance per unit area of an infinite flexurally-
vibrating plate is imaginary (purely reactive)  and is given by 
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where mc - entrained mass of acoustic medium coming in contact with the plate, 
2/122

00 )( −−= ωωρ cc cm  

The inertial nature of the plate impedance at frequencies ƒ < ƒc is due to the fact that the 
distance between neighboring plate segments, vibrating in anti-phase, is shorter than the length 
of an acoustic wave.  This is why particles of the medium can flow, back and forth, between the 
above segments of the plate in an incompressible manner.  Thus, at frequencies ƒ < ƒc, the 
infinite flexurally-vibrating plate does not radiate acoustic energy into the adjoining acoustic 
medium. 
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At frequencies above ƒc, radiation impedance of the plate under study is of a resistive 
nature and equals 

2

00

)/(1 ff

c
Z

c

rad
−

=
ρ

 .    (1.26) 

At these frequencies, the entire surface of the plate radiates.  Moreover, with ƒ >> ƒc, Zrad 
→ ρ0c0 and σrad → 1. 

At the frequency ƒ = ƒc and with no losses in the plate, Zrad → ∞.  At this frequency, 
acoustic waves propagate along the plate surface; and as the result of summation of radiation 
from the entire plate surface, an infinitely large sound pressure exists, and accordingly, an 
infinitely large impedance to radiation is generated on the surface.  However, with the finite 
bounded dimensions of the plate and losses in it considered, Zrad becomes finite and has a 
maximum at the given frequency (Fig. 1.12). 

 

Figure 1-12.  Dependence on frequency of radiation resistance of an infinite 
flexurally-vibrating plate with  (η ≠ 0) and no loss(η = 0). 
1 -Zrad = jωmc 
2 - Zrad = ρ0c0 [1-(ƒc/ƒ)2]-1/2. 

 

For a point excitation transverse force F0 acting upon an infinite plate, radiation is largely 
dependent on the medium/plate impedance ratio ρ0c0/ωmpl.  With ρ0c0 << ωmpl (light acoustic 
medium like air), the plate radiation is non-directional, and the radiated sound power is [28] 

for frequencies ƒ < ƒc 
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at frequencies ƒ > ƒc 
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where plη  is the internal loss factor for plate; 
2
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Comparing Eq. (1.27) with the expression for sound power of a circular piston oscillating 
in a rigid screen (see Table 1.7) shows that they are virtually identical assuming the piston radius 
a = λfl/4.  The remaining part of the plate does not radiate in accordance with the above. 

With ρ0c0 >> ωmpl typical for a water-submerged plate at low frequencies, radiation of 
the plate is directional, similar to a dipole source.  The reason for it is that, with ρ0c0 >> ωmpl, 
plate becomes acoustically permeable and medium forced out by one side of the radiating 
circular segment of the plate flows over, as it were, to its opposite side as exemplified by the 
oscillating sphere with k0a < 1. 

With ƒ > ƒc and ρ0c0 << ωmpl, vibratory energy reaches the plate equal to 
ξ&FBmF plpl =162

0 .  This energy is partially absorbed in the plate as dictated by its loss factor 

ηpl and the remaining energy is radiated into the acoustic medium as given by Eq. (1.28).  In this 
case, radiation occurs over the plate’s entire surface.  With no losses in the plate, the whole 
energy received from force source will be radiated into the acoustic medium. 

With a linear transverse force acting upon an infinite plate when ρ0c0 << ωmpl, sound 
power radiated per unit length is 

at frequency ƒ < ƒc 
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at frequency ƒ > ƒc 
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[notations are the same as in Eq. (1.28)]. 

Radiation of the plate acted upon by a line force with ρ0c0 << ωmpl is also non-directional 
as in the case of a point force excitation. 

Comparison of Eq. (1.29) with the expression for sound power radiated by a pulsating 
cylinder (see Table 1.7) shows a plate strip located on both sides of the force application line 
2λfl/3 wide that provides a direct source in this case.  The remaining plate surface does not 
radiate at ƒ < ƒc.  At frequency ƒ > ƒc, the entire plate surface radiates.  In the process, the force 
source passes on to it vibrating power flpl cmF 222

0  to be partially absorbed in the plate, with 
the remaining part being radiated into the adjacent acoustic medium. 

With a transverse force evenly distributed along a limited l-long straight line segment 
acting upon an infinite plate, radiated sound power is 
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where Si is the Sine integral and F0 is the linear density of force acting upon the plate. 

Dependence of Nrad on k0l is shown in Fig. 1.13.  At low frequencies, Nrad calculated by 
Eq. (1.31) agrees with that calculated using Eq. (1.27) for a point force; at high frequencies, it 
coincides with that calculated by Eq. (1.29) for a linear force.  The approximate limit of (1.27) 
and (1.29) applicability is value k0l = π, the frequency at which half of an acoustic wavelength λ0 
fits along the segment length l. 

For an infinite plate excited by a point bending moment M0 at frequency ƒ < ƒc with ρ0c0 
<< ωmpl, the sound power radiated is 

     2
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The moment M0 can be represented as a resultant of two forces F0 , with arm b (that is 
small as compared to λ0 (k0b << 1).  The sound power radiated in the process is 
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Figure 1-13.  Dependence of sound power, radiated by an infinite plate excited by 
a transverse force evenly distributed along l-long straight line 
segment, upon parameter k0l. 
1 - calculation by Eq. (1.31) 
2 − calculation by Eq. (1.27) 
3 − calculation by Eq. (1.29). 

 

Comparison of Eqs. (1.32) and (1.27) shows that the radiation resulting from a moment 
acting upon the plate is lower than radiation resulting from force excitation by the ratio       
(k0b)2/3 << 1.  Thus, structure radiation when driven by moments is negligible. 
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With flexural waves passing through plate-located obstacles, forces and moments are 
generated at the obstacles’ attachment points.  The resultant field generated on the plate in this 
case can be represented as a superposition of a wave, existent on the plate in the absence of the 
obstacle, and of a wave caused by the obstacles’ response to a wave passing through it. 

The corresponding radiation from an infinite plate, with point connected or line 
connected obstacles placed on it, can be calculated by Eqs. (1.27)-(1.30), if the response 
(reaction) forces are known.  With two linear parallel obstacles of a hinged type between which a 
linear force F0 acts in the middle of the obstacle-created strip, the reaction forces are also of 
linear forces Fp nature.  The amplitude of these forces is governed by the force transmission 
coefficient of the system the maximum value of which occurs at the resonance frequencies of the 
strip and is equal to [22]  

     
pi

plp
Fi f

f
F
F

η
α 1

0

≈=  

where η -- loss factor in the obstacle-limited strip of plate dependent on the absorption of 
vibrational energy in the plate and outflow of energy through the obstacles; pif  - resonance 
frequencies of the strip (i == 1,2,3,...).  In practice η << 1 normally, so the amplitudes of reaction 
forces at resonance frequencies will exceed the force F0 applied to the plate. 

Radiation of the plate with obstacles can be calculated by Eqs. (1.29) and (1.30).  At 
frequencies ƒ < ƒc this radiation of the plate is dictated by its segments in the vicinity of the 
obstacles and have overall width of approximately 2λfl/3.  This radiation at frequencies ƒ = ƒpi 
and ƒ < ƒc is called resonance radiation.  Radiation governed by the force F0 is non-resonance.  
The larger the plate’s loss factor, i.e. the greater vibration energy absorption, the smaller is the 
value of the plate’s resonance radiation. 

Non-resonance plate’s radiation does not depend upon energy loss in the plate. 

The above for the ƒ < ƒc frequency range is explained in Fig. 1.14, in which flexurally-
vibrating plate/acoustic medium interaction patterns for various one-dimensional wave fields are 
depicted.  With traveling flexural waves in a plate at the given frequencies, the fluid medium 
flows over and between the plate’s neighboring segments with opposite oscillation signs, with a 
complete cancellation between the medium’s flowing-out volumes and the emptied volumes.  
Radiation is absent over the plate’s entire surface. 
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Figure 1-14  Patterns of interaction between flexurally-vibrating plate and medium 

placed above the plate. 
α) - plate with a traveling flexural wave;  
δ) - linear force-driven plate;  
в) - linear force-driven plate with hinged obstacles. 
1 -medium overflow;  
2 - sound radiation. 

 

With a plate driven by a line-force, the above offset is no longer valid in the proximity of 
the force application line due to the presence of inhomogeneous flexural waves.  The plate 
segment adjacent to the force application line and having overall width of approximately 

3/2 plflλ  starts radiating. 

With linear obstacles placed on a line-force-driven plate, the medium mass overflow 
offset is also disrupted near the above obstacles through the difference in flexural wave 
amplitude on both sides of the obstacles.  As a result of this disruption, plate segments adjacent 
to obstacles, that are 3/2 plflλ  wide each, will also radiate. 

With flexural vibrations driven in a limited-dimension plate at frequency ƒ < ƒc, segments 
of its surface adjacent to driving force application area and to the plate’s edges will radiate.  
Acoustic interactions of the plate’s edges provided they are separated at a distance shorter than 
1/3 of acoustic wavelength can be evaluated by Eq. [27] 

)](1[ 000, lkJNN radrad ±=                   (1.33) 
where 0,radN  - sound power radiated by the plate’s edges given no interaction between them;  
J0(k0l) - zero-order Bessel function; l - distance between the plate’s opposite edges; sign «+» 
corresponds to a symmetrical wave field in the plate in the direction of l, sign «-» corresponds to 
an asymmetrical field. 

Additional information about the radiation of flexurally-vibrating plates can be found in 
[27, 28]. 
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1.4.4 Sound Radiation of Cylindrical Shells 
The process of sound radiation of a cylindrical shell is much more complex than that of a 

flexurally vibrating plate due to the curvature of the shell surface.  However, for some practical 
purposes, relatively simple expressions suitable for engineering assessment can be offered.  For 
example, with a flexurally vibrating cylindrical isotropic shell whose length exceeds an acoustic 
wavelength, the sound power radiated by the shell can be evaluated by the equation for an 
oscillating cylinder given in Table 1.7.  For this case we have 

2
0

3
000

2 )(
4
1 ξρπ &RkcRlNrad =  .           (1.34), 

where l and R - length and radius of shell; 0ξ& – amplitude of shell surface velocity along the 
direction of vibrations. 

Equation (1.34) is suitable for frequencies at which the length of a flexural wave in the 
shell far exceeds its diameter (λflex >> 2R).  The shell radius, in its turn, is to meet condition k0R 
< 1 (see Table 1.7). 

Equation (1.34) is correct at frequency ƒ < ƒ2 , i.e. that frequency at which the first 
pattern of shell vibrations (lobar modes) in a cylindrical shell (n = 2)  is formed.  For example, 
for a the case of the shell length far exceeding its diameter, with equation for resonance 
frequencies of cylindrical isotropic shell from Table 1.5 taken into account, we have with n = 2 
and λ→∞ 

)4/( 2
,2 Rhcf plplb≈ .                          (1.35) 

At high frequencies, the wavelength of flexural waves, propagating along the shell and 
around its circumference, exceeds that of an acoustic wave, so that the shell’s entire surface 
becomes an effective source ( radσ =1).  In accordance with Eqs. (1.20) and (1.21), we have for 
this case 

2
0002 ξρπ &lcRNrad ≈  .     (1.36). 

The estimated frequency limit of (1.34) and (1.36) applicability can be obtained from the 
condition k0R = 2. 
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2 SOURCES OF ACOUSTIC VIBRATION ON SHIPS AND ITS MODES OF 
PROPAGATION  

2.1   Sources of Acoustic Vibration on Ships, Spectra and Levels 
The major sources of acoustic vibration on ships are its main engines, auxiliary 

machinery, ventilation and air conditioning systems, hydraulic systems, and propellers. 

The main engines of most modern ships are internal combustion engines (ICE), gas, and 
steam turbines. 

The vibrations of ICE's are caused by the explosive-like combustion of fuel in cylinders 
and impacts of reciprocally-moving parts (piston reset, valve impacts, etc.).  Its exhausts and air 
intakes, plus the internal compressors of ICE’s further enhance ICE vibration activity.  Sources 
of ICE vibration are normally of an impulsive nature; that is why ICE vibration typically appears 
as a wide-band spectrum as the background in which some discrete ingredients caused by 
compressor rotation sometimes appear.  A typical spectrum of this type is shown in Fig. 2.1.  The 
discrete components in ICE vibration spectrum appear at relatively high frequencies (above 
about a kilohertz). 

Empirical equations to evaluate vibration levels for engine foundations depending on 
power at propeller shaft rate are given in [55]. 

 

Figure 2-1.  ICE vibration spectrum at ∆ƒ = const. ƒi - blade frequencies for air 
intake compressor, i = 1,2,3; Frequency - Hz. 

 

An estimate of vibration levels for foreign-made ICE's in third-octave frequency bands is 
given by the equation taken from [29] 

 16log20log30
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a       (2.1)  

where M - engine weight, kg; Ní - rated frequency of engine rotation, min-1; N - operating 
frequency of engine rotation, min-1; Pí - rated power, kW; - dB. 

For Russian ICE's, Eq. (2.1) can be used with comparative assessment of value aL when 
the above parameters have different values. 
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Data on ICE vibration are given in [11].  Vibration levels for one of the ICE types, 
measured in octave-band frequencies, are given in Fig. 2.2.  Note that the ICE is the most 
vibroactive of the ship's equipment. 

Gas and steam turbines are normally used on ships in combination with reduction gears.  
In such cases the vibration spectra differ from that of an ICE alone since multiple discrete 
ingredients occur over the entire audio frequency range both at rotation frequencies of the rotor 
and gears and their harmonics 60/iNf rr = , 60/iNf gg = , ( rN –rotor rotation frequency, min-1; 
i = 1,2,3...) and at gear mesh frequencies of gears 60/3 zNf g=  ( gN – frequency of gear rotation 
in reduction gear, min-1; z - number of its teeth). 

Levels of vibration in third-octave frequency bands are roughly calculated by Eq. [29] 

 ffPPPdBL iia log20)32/log(13)/log(10log5.5)( +−+=                           (2.2) 

where Pí - rated turbine power, kW; P - power transmitted to reduction gear, kW. 

The auxiliary machinery maintaining ship operation are primarily diesel-generators and 
various electric current converters. 

The vibration spectra of diesel-generators resemble those of ICE (see Fig. 2.1), with the 
possible addition of discrete components resulting from the inhomogeneous nature of the 
magnetic field in the gap between stator and generator rotor (magnetic vibration).  These 
components’ frequencies are within the range of 0.1 - 4 kHz. 

 

Figure 2-2.  Levels of vibration for ICE of 64 РПН 36/45 type in octave frequency 
bands; кГц– kHz. 

The vibrations of electric converters comprising electric motors and generators stems 
from rotation of bearings, friction of brushes, aerodynamic phenomena around rotating parts, as 
well as magnetic vibration.  Discrete components at rotation rate and magnetic vibration 
frequencies and their harmonics are usually visible as the background of the continuum of 
converter vibration spectrum.  
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Figure 2-3.  Levels of vibration of electric converter in third-octave frequency 

bands. 
1 - rotation frequency 
2 - blade frequency of a cooling fan 
3 - generator’s magnetic vibration 
4 - engine’s magnetic vibration. 

 

Vibration level spectrum for electric converters [13] is shown in Fig. 2.3.  Discrete 
components at converter’s rotation frequency, cooling fan’s blade frequency, as well as 
frequencies of the engine’s and generator’s magnetic vibrations are clearly visible. 

The fan is a major source of vibration in a ship's ventilation system.  Aerodynamic forces 
acting upon the air duct walls as a result of turbulent air flow also provide a vibration source in 
these systems. 

A fan’s vibration spectrum normally consists of both wide-band and discrete components.  
The wide-band part of the spectrum originates from the rotation of the fan and drive bearings, as 
well as aerodynamic phenomena resulting from motion of rotating parts (vortex separation, etc.).  
Discrete components are caused by the imbalance of rotating parts and interaction between fan 
rotor blades and the inhomogeneous nature of the air flow.  Frequencies of these components 
match frequencies N of fan rotation and its harmonics 60/iNfr = , as well as blade frequency 
and its harmonics 60/izNfbr =  (z - number of rotor blades; i = 1,2,3,...). 

A typical fan vibration spectrum is shown in Fig. 2.4.  We see intense discrete 
components with frequencies in the low and medium audio frequency range.  Similar phenomena 
also take place in air-conditioning systems.  There are no data in the reference literature on 
vibration levels for ship fans and air-conditioners. 

In hydraulic ship systems, the major sources of vibrations are pumps, which are 
predominantly of the centrifugal, piston or screw type.  In addition, vibrational energy originates 
in the shutoff and regulating valves of systems, with moving fluids as the operating medium, as 
well as in pipeline walls excited by the moving liquid. 
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Figure 2-4.  Fan vibration spectrum with ∆ƒ = const. iƒr - rotation frequency and its 
harmonics; iƒbr - blade frequency and its harmonics; i=1,2,3; 
frequency - Hz. 

 

Pump vibration spectra, like those of fans, contain both wide-band and discrete 
components.  The wide-band component owes its appearance to rotation of pump and drive 
rotation, as well as turbulent pressure pulsations and eddies in the operating medium flow.  The 
discrete components are caused by mechanical and hydrodynamic misbalance in the pump plus 
interaction between blades or teeth and the inhomogeneous nature of the fluid flow.  The 
frequency of misbalance-related discrete components is    ƒbr = Ni/60; the frequency of discrete 
components related to the inhomogeneous nature of the flow is ƒí = N z i/60 (N - frequency of 
rotation of the pump’s operating element, min-1; z - number of blades, pistons or teeth; i = 
1,2,3,...). 

Vibration spectrum typical for pumps is given in Fig. 2.5.  The spectrum contains a 
considerable number of discrete components at low and medium audio frequencies.  The least 
distinct are discrete components at frequencies iƒí for screw pumps.  There are no data in the 
reference literature on ship pump vibration levels. 

Vortex separation and cavitation are a cause for vibration in shutoff and regulating valves 
of hydraulic systems.  This vibration spectrum is typically identified by its wide-band high-
frequency nature provided there is no self-excited vibration originating with the liquid flowing in 
valves.  Some data on valve vibration are given in [28]. 

With liquid flowing in pipelines of hydraulic systems, acoustic vibration is caused in 
pipeline walls due to pressure pulsations in the operating medium flow.  This vibration spectrum 
is normally of wide-band nature.  Its levels may be determined, according to [29], by equation 

dB  106)161log(10log5log25)( −+−++=
r
hrfLdBL pa                             (2.3) 

where r - internal radius of pipeline, m; h - pipeline wall thickness, m; Lp - level of sound 
pressure in the operating medium; values of Lp for some types of pumps may be roughly 
determined from Fig. 2.6 [29]. 
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Propellers also provide a source of sound vibration on ships.  Rotation of propeller blades 
gives rise to intensive hydrodynamic forces that act upon a ship's aft plating and excite vibration.  
These forces result from interaction between propeller blades and the inhomogeneous nature of 
the incoming water flow and have discrete spectrum with frequencies  ƒp = N z i/60 (N - 
frequency of propeller rotation, min-1; z - number of propeller blades; i = 1,2,3,...). 

 

Figure 2-5.  Spectrum of pump vibration at ∆ƒ = const. iƒr - rotation frequency 
and its harmonics; iƒí - pump frequency and its harmonics; 
i = 1,2,3,4; f – Hz. 

. 

 

 
Figure 2-6.  Levels of sound pressure in pipeline on the side of intake for some 

types of pumps in third-octave frequency bands. 
1 - piston pump 
2 - screw pump 
3 -- centrifugal pump; Frequency кГц– kHz. 
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Figure 2-7.  Levels of vibration of the ship aft plating above cavitating propellers 

in octave frequency bands. 
1 - vibration range measured on ships with various clearances 
between propeller edges and hull 
2 - calculation with 0.6-m clearance; Frequency кГц - kHz. 

. 

In addition, because of propeller blade cavitation occurring, the stern overhang plating is 
acted upon by wide-band forces at medium and high audio frequencies.  There also are wide-
band hydrodynamic forces stemming from turbulence of counter water flow.  These forces 
originate at low and medium audio frequencies. 

The larger the distance between propeller blade edges and the hull, the milder are the 
forces acting on the hull.  The magnitude of these forces also depends on the inhomogeneous 
nature of the water flow velocity field in the propeller disc, and on the number and shape of the 
propeller blades. 

Levels of hull plating vibration above cavitating propellers measured on ships with 
various values of the above-mentioned clearance are given in Fig. 2.7 [29].  Also shown are 
values for these levels calculated in [28] with 0.6-m clearance.  The good agreement between 
measured and calculated results is obvious.  The maximum levels of hull plating vibration caused 
by a cavitating propeller are found at low frequencies. 

Experimental equations to evaluate hull plating vibration levels in proximity to propellers 
depending on shaft power are given in [55]. 

Vibration related to structural excitation by a liquid flow occurs in areas below the 
waterline.  External walls of these rooms may vibrate intensely driven by pressure pulsation in 
the turbulent boundary water layer. 

The spectrum of hydrodynamic forces acting on these walls is normally of a wide-band 
nature.  Spectrum of vibration driven by these forces in room walls may include discrete 
ingredients caused by more intensive vibrations of overflowed structures at their resonance 
frequencies.  At low speed this vibration is negligible. 

Vibration in air duct walls results from pressure pulsations in the gas flow coupled with 
vibration in the same walls caused by the sound pressure of noise transmitted via the air duct 
from a fan of an ICE. 
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Collisions (impacts) of loosely fixed bilge boards, pipelines, and other elements of ship 
structures that result from hull vibration of a moving ship provide acoustic vibration sources.  
These collisions produce jarring and clanging that is extremely unpleasant for hearing. 

Acoustic vibration in room walls is induced by excitation of a room floor by sound 
pressure of air noise radiated by equipment placed in the room.  Level of this vibration is 
determined by Eq. [20] 
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where Lp - level of sound pressure in the room; V - room volume, m3; S, h, ρ -- area, thickness 
and density of the driven floor material respectively; ηrad - loss factor in the driven floor dictated 
by its sound radiation; ηin - internal loss factor in the same floor; µ = n1/n2 - density ratio for 
resonance frequencies of the room and driven floor, n1 = ω2V/(2π2 c0

3), n2 = ω S /(πcfl
2); c0 - 

speed of sound in the room; cfl - phase speed of flexural waves in the excited floor. 

Main vibration sources layout on board is shown in Fig. 2.8. 

 
Figure 2-8.  Main vibration sources on board and their ways of spreading over 

ship structures.   
1 - ICE; 2 - thrust bearing; 3 - propeller; 4 - fan; 5 - air flow and noise 
in ventilation system air duct; 6 - air flow and noise in ICE exhaust 
system air duct; 7 - point of noise-induced vibration origination in the 
room; 8 - hydraulic system fittings; 9 - pump; 10 - water overflowing 
hull plating; 11 - vibration sources; 12 - vibration spreading routes; 
13 - sound radiation of room walls 

.
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3 VIBRO-ACOUSTIC CHARACTERISTICS OF SHIP STRUCTURES 

3.1   Mechanical Impedance of Ship Structures 

3.1.1   Basic Definitions 
The mechanical impedance of a structure is defined as the ratio of the structure-

exciting dynamic force to the force-induced vibration velocity (assuming harmonic time 
dependence of the form tje ω ).  The real and imaginary parts are defined as the 
mechanical resistance and inertia respectively.  With 1F , the force driving a structure, its 
input impedance 

11F
Z  equals the force divided by the vibration velocity 1ξ&  and is given 

by 

    1111
/ξ&FZ F =  .             (3.1) 

For a moment 1M driving a structure, its input impedance is the ratio of the 
moment to the angular velocity 1θ& of the structure at the drive point 1111

/θ&MZ M = . 

The transfer mechanical impedance 
12FZ , with the force 1F acting on the 

structure, is the ratio between this force and the vibration velocity 2ξ& at any point of the 
structure (other than the excitation point) 

2112
/ξ&FZ F =  .              (3.2) 

Similarly with a moment M1 driving a structure: 

  2112
/θ&MZ M =  .        (3.3)  

By multiplying and dividing right parts of expressions (3.2) and (3.3) by 1ξ& and 

1θ& , we obtain 

    
1211211112

/ ζµξξ &
&&

FFF ZZZ ==  

    
1211211112

/ θµθθ &
&&

MMM ZZZ ==  

where 
12ζµ &  and 

12θµ & are transfer characteristics of the structure describing the 
relationship between vibrations at an arbitrary point of the structure to those at the 
excitation point. 

The input mechanical impedance of a structure is an important parameter as it 
determines the magnitude of vibration power received by the structure from a source.  
For example, with F1, the amplitude of the force driving a structure, this power is given 
by [28] 
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where φ  - phase angle between the force F1 and the vibratory velocity 1ξ&  , and    
Re{

11FZ } -real part of ZF11; 11FZ  is the modulus of 
11FZ . 

The larger the mechanical impedance of a structure, the lower is the vibrational 
power transmitted to the excited structure from a source.  Therefore, to reduce such 
power and, subsequently, the acoustic vibration in hull structures, an increase in their 
mechanical impedance at the source attachment area is needed.  Increasing this 
impedance also increases the effectiveness of the structure-mounted equipment vibro-
isolation. 

There are three types of mechanical impedance: these are inertial, elastic 
(stiffness), and resistive.  Inertial resistance is a characteristic of the undeformed (rigid) 
mass M, given by MjZ F ω= .  The elastic or stiffness-like impedance characteristic of a 
mass-less spring with rigidity K is 

  ZF = K/jω .    (3.4) 

Resistance results from the absorption of vibration energy in structures.  In ship 
structures, this resistance R is normally proportional to the vibration velocity.  Generally, 
the impedance of a vibrating system with one degree of freedom, made up of impedances 
of M, K and R with respect to the force F, applied to the mass is equal to 

)/(ImRe ωω KMjRZjZZ FFF −+=+=  . 

If Re ZF = 0, then ϕ = ±π/2 and 0cos =ϕ .  Note that NF = 0, since the phase shift 
between force and the force-induced velocity  equals π/2, and, therefore, the velocity 
vector projected to the force application line is zero.  In this case, as is known from 
mechanics, the work expended by this force is equals to zero. 

For a structure, in which R = 0, there are no traveling acoustic vibrations.  
Interaction between a force source and the driven system involves energy exchange.  In 
the process energy accumulated by the system for a quarter of the oscillation period is 
returned to the source within the following quarter period. 

For the case Re ZF ≠ 0 ( 0cos ≠ϕ ), some energy is not returned to the source; the 
remaining energy spreads over the structure in the form of vibrations.  With Im ZF = 0 
(cos ϕ = 1), energy exchange between the source and the systems stops.  In this case, all 
energy passes from the source to the structure, spreads over it in the form of vibrations, 
and has its maximum value.  The frequency at which Im {ZF }= ω M - K/ω = 0 is called 
the resonance frequency of the system.  This frequency is given by the equation 

MKf r /)2/1( π= .  At the frequency rff = , the value ZF is minimal and equals the 
effective resistance, i.e. ZF min = R. 

The frequency response for the impedance of a vibrating system with one degree 
of freedom is given in Fig. 3.1.  At low frequencies, the system impedance is stiffness-
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like; the impedance becomes minimal at the frequency ƒ = ƒp and then rises proportional 
to frequency as the inertial component predominates in the system. 

With excitation through the spring element of a vibrating system with one degree 
of freedom, with M, K, and R impedances, its impedance dynamics are totally different.  
This impedance with respect to force F equals 
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when ωM = K/ω, ZF reaches its maximum value.  The frequency at which this happens is 
called anti-resonance, and it equals MKfar /)2/1( π= .  Frequency response for 
resistance ZF is shown in Fig. 3.1. 

In the low frequency range, the system impedance is of the inertial type and 
increases with frequency passing through its maximum, which equals RMZ arF

/22

2max
ω≈ , 

and then decreases as frequency increases since the elastic component of impedance 
becomes dominant in the system. 

 
Figure 3-1.  Frequency response for mechanical resistances ZF of systems 

with various degrees of freedom. 
(а) - one degree of freedom (force acts through mass) 
(б) - one degree of freedom (force acts through the spring) 
(в) - two degrees of freedom. 

 

With an increase in the number of inertial and stiffness elements of a vibrating 
system, the impedance frequency response becomes more complex.  For example, for a 
system with two degrees of freedom from Fig. 3.1, the frequency response of the 
impedance has two extreme values: maximum at frequency arf and minimum at 
frequency rf .  Therefore, the system has one resonance frequency and one anti-resonance 
frequency. 

The general principle of determining the number of extreme values in the 
impedance frequency response for vibrating systems with several degrees of freedom is 
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that such values number equals i-1, where i - number of inertia and elastic elements in the 
system. 

The term mechanical resistance is sometimes used instead of mechanical 
impedance.  The reciprocal of mechanical impedance is called mechanical compliance Y, 

     Y = 1/Z .    (3.5) 

Another term for Y could be suggested to better reflect this value’s physical 
essence.  This term, in our opinion, could be vibration excitability since the larger the Y 
of a structure, the greater is the excitation of vibration in this structure. 

For cases in which energy parameters of acoustic vibration are used for noise 
level calculation, for example, energy density in a structure proportional to the root-
mean-square velocity at a given structure point 

2
ξ& , effective (or energy) structure 

impedance [28] is sometimes used: 

     
2

/ ξ&FE NZ =     (3.6) 

where NF - vibrational energy flow (vibration power) passing through the same structure 
point.  Expression (3.6) is derived directly from Eq. (3.1) by multiplying of numerator 
and denominator by ξ& . 

3.1.2   Mechanical Resistance (Impedance) of Simple Structures 
Real ship structures are normally modeled as three-dimensional structures made 

up of rods, plates, and shells.  That is why it would be reasonable to start the impedance 
calculation for these structures by determining the impedance of simple (elementary) 
structures of finite dimensions. 

The precise determination of the mechanical impedance of such finite dimension 
structures as rods, plates, or shells is in most cases impeded by the complexity of 
boundary conditions.  The approximation for this parameter is possible as exemplified 
below by a cantilever-type finite rod with a free end. 

The input mechanical impedance of an l-length free-ended rod to a transverse 
force F acting at either end [27] is 
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B
DjZZ FF −=  

where FZ 0  - rod’s wave impedance, flF mcZ =0 , )(),( νν BD - Krylov Functions [18], 
.,1cossinhsincosh)(,1coscosh)( lkBD f=−−=−= υυυυυυυυυ  

Losses in the rod are accounted for by the complex representation of the flexural 
wave number )4/1(0, stflfl jkk η−≈ . 

At low frequencies 

8/3lmjZ stF ω≈  ,                                                      (3.7) 
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which corresponds to the inertial impedance of an undeformed l-length rod segment that 
rotates around the center of gravity as the force acts upon the rod.  With the F-force 
acting upon the center of gravity of the rod’s same segment, its resistance (impedance) at 
similar frequencies, lmjZ stF ω≈ , i.e. it has a greater value since no rotation occurs in 
this case. 

At high frequencies (νη/4 >> 1), the rod impedance becomes  

     FX
F

F ZjZZ =+≈ )1(
2
0    (3.8) 

where FXZ – characteristic rod impedance, i.e. the impedance of a semi-infinite rod to F-
force.  For a rod of considerable length and high loss factor, flexural waves driven by F-
force and reflected from its opposite end do not return to the excited end and have 
virtually no effect on its input impedance.  Since fmcZ flF ∝=0 ,  the value of  the 
characteristic impedance increases proportional to the square root of frequency. 

As the above rod provides a system with an unlimited number of degrees of 
freedom, the resonance and anti-resonance minima and maxima of the rod impedance 
occur at medium frequencies (Fig. 3.2).  The same figure shows curves for values ZF min 
and ZF max passing through the extreme points of the impedance ZF.  These values are 
given by the equations 
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where 4/0,1 ηlkv fl= .  It seems obvious that ZF min ZF max = ⏐ ZF∞ ⏐2.  With ν1 >> 1, Eqs. 
(3.9) and (3.8) coincide.  With ν1 << 1, Eq. (3.9) are approximated as 

   ZF min ≈ Z0F ν1; ZF max ≈ Z0F/(2ν1),    (3.10) 

which corresponds to a specific case of the problem studied in [27]. 
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.  

Figure 3-2.  Frequency responses of input impedance modulus ⏐ ZF ⏐for a 
rod of a finite length driven by a transverse force F. 
(а)-free-ended rod 
(б) - rod with one fixed end and other free one (cantilever). 

 

Figure 3.2 shows that the mean values of the finite length rod impedance may be 
approximated at frequencies below ƒ0 by Eq. (3.7), and at higher frequencies - by Eq. 
(3.8).  The value of ƒ0 is determined from equality of expressions described by these 
equations, 2

0 )/(4 lrcf gfl π= where rg - radius of gyration of the rod section inertia. 

If evaluation of minimal ZF is needed, it can be carried out by Eq. (3.9) or 
approximately by Eq. (3.10). 

Plots of the frequency response for the approximated mean values ZF of the given 
rod is shown in Fig. 3.3.  Besides ZF min, ZFí and ZFx, the first resonance frequency ƒp1 of 
the rod to be determined by Eqs. from Table 1.5 is needed to plot frequency response for 
minimal values of ZF.  Frequency ƒ2 value is found as the intersection point of the straight 
lines drawn by the equations (3.8) and (3.10). 

The input mechanical impedance of l-long rod with one end fixed and the other 
one free that is driven by transverse force F equals [27] 
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where E (ν) and B (ν) - Krylov’s functions [18], ννν coscosh1)( +=E  and 
.cossinhsincosh)( ννννν −=B  

At low frequencies (ν << 1) 
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where Kst = 3Bst/l3 - flexural rigidity of a cantilever with a static transverse force acting 
upon it. 

At high frequencies, rod resistance is described by Eq. (3.8).  What differs is only 
the position of resonance and anti-resonance frequencies of the rod. 

The frequency response ZF for a cantilever is given in Fig. 3.2.  In this case, 
approximation for the mean value ZF can be done at frequencies below ƒ0 by Eq. (3.11), 
at the higher frequencies - by Eq. (3.8).  The frequency ƒ0 value is in this case 

330 12

3

l

cr
f pg

π
=  . 

Determination of the minimal value ZF min at the frequencies above ƒp1 is carried 
out be Eq. (3.9).  Plotting of the frequency response of input impedance modulus for the 
cantilever with respect to the transverse force F is given in Fig. 3.3 (b). 

 

Figure 3-3.  Plotting of frequency response of input impedance modulus 
⏐ ZF ⏐for a rod of a finite length driven by a transverse force F. 
(а)-free-ended rod 
(б) - rod with one fixed end and the other free one. 

1 - mean values ⏐ ZF ⏐ 
2 - minimal values ⏐ ZF ⏐. 
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Simpler but less accurate equations for determining ZF min of rods and plates of 
finite dimensions are represented as: 

   -- for a rod driven at its end, 

   ZF min ≈ ω Mrodη/4    (3.12); 

   -- for a rod driven in the center, 

   ZF min ≈ ωMrodη/2    (3.13) 

   -- for a plate driven at the edge, 

   ZF min ≈ ωMplη     (3.14) 

   -- for a plate driven in the center, 

   ZF min ≈ ωMplη/4    (3.15) 

where Mrod = mrod l; Mpl = mpl S; S - plate area.  Equations (3.12) - (3.15) are suitable for 
ƒp1 -- ƒ2 frequency range whereƒ2 is found from the equality ZF min = ⏐ ZFx ⏐. 

The impedance of structures having less than two dynamic connections (one end-
supported rod, free rod) at frequencies below ƒp1 is of an inertial nature.  For structures 
having two or more connections, the impedance at the given frequencies is stiffness-like 
(two end-supported rods, cantilever, edge-supported plate, etc.).  Ship structures are 
normally of the second of the above types. 

To calculate mechanical resistance of simple structures typical for a ship, it is 
necessary to know: 

-- flexural rigidity of the structure when acted upon by static force in the excitation 
point (Table 3.1) to determine ZF at frequency below ƒp1; 

 -- characteristic resistance of an infinite structure to incorporate the one of finite 
dimensions under study (Table 3.2) to determine ZF at frequency above ƒp1; 

-- mass and loss factor of the structure to determine ZF min; 

-- first resonance frequency of the structure’s flexural vibrations (see Table 1.5). 

Equations to calculate mechanical resistance of some fundamental structures with 
various dynamic forces are given in Table 3.2. 



Notes: 1.  In Eq. (2) for a rectangular plate with hinged edges, value α equals 1.16; 1.38; 1.48; 
1.57; 1.62; 1.65; for a clamped-edge plate - 0.56; 0.65; 0.69; 0.71; 0.72 with l1/l2 equaling 1; 1.2; 
1.4; 1.6; 1.8; 2 respectively.  2. In Eq. (3), value α equals 1.16; 1.38; 1.48; 1.57; 1.62; 1.65 with 
l1/l2 equaling 2; 2.4; 2.8; 3.2; 3.6; 4 respectively.

Table 3-1.  Static Rigidity of Structures 

Structure Structure illustration Equation for calculating 
structures stiffness 
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Structure Drawing Equations to calculate structure’s 
mechanical resistance 

Simple structures 
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Table 3-2.  Mechanical impedance of various structures
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Structure Drawing Equations to calculate structure’s 
mechanical resistance 

Infinite structures (characteristic resistance) (Cont.) 

Infinite uniform plate  
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Table 3-2.  Mechanical impedance of various structures (Cont.)
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Structure Structure illustration Equation for mechanical 
impedance of structure 

Finite Dimensional Structures 

Finite length rod  
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Table 3-2.  Mechanical impedance of various structures (Cont.)

Note: a - radius of a plate’s rigid segment acted upon by bending moment; B1, B2 - flexural 
rigidity of an orthotropic plate in mutually perpendicular directions; 
νfl = kfl l; A(ν), B(ν), C(ν), S(ν), D(ν), E(ν) - Krylov’s functions;
A(ν) = coshν sinν + sinhν cosν; 
B(ν) = coshν sinν - sinhν cosν; 
C(ν) = 2coshν cosν; 
S(ν) = 2sinhν sinν; 
D(ν) = coshν cosν - 1; E(ν) = coshν cosν + 1.
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3.1.3 Mechanical Impedance of Composite Structures 
There are few structures on board ships that are defined as simply as those 

considered in 3.1.2.  Most real-life structures consist of several simple structures joined 
together to provide a complex composite structure.  The physical and mathematical 
modeling of the mechanical impedance of such composite structures is worked out based 
on the following. 

If the elements of the composite structure, when acted upon by a driving dynamic 
force have identical vibration velocity, they are taken to be connected in parallel; 
otherwise they are connected in series.  The mechanical impedance of a composite 
structure, consisting of n parallel connected elements, equals the sum total of the 

mechanical impedances Zi of the individual elements, i.e. ∑
=

=
n

i
iZZ

1
. 

For a structure made up of n in-series connected elements, their input mechanical 

compliance values are summed as ∑
=

=
n

i
iYY

1
.  If the input impedance value of the 

composite structure is to be known in this case, refer to Eq. (3.5). 

Example:  Mass M with impedance ZMF = jω M is placed on an infinite plate with 
impedance plplpl mBZ 8= .  For the force F acting upon the mass in the direction 
perpendicular to the plane of the plate, the displacement amplitudes of the mass 
and plate are the same, and their impedances are summed, therefore, the 
composite structures impedance becomes 

 

   ZF = Zpl,F  + ZM,F .     (3.16) 

 

If a spring with impedance ZK = K/ jω is placed on the same plate and force 
F acts upon the spring along its axis, spring and plate displacement amplitudes are 
different.  Therefore, compliance values are summed: YF = Ypl,F + YK,F. 

Composite structure impedance is governed by Eq. (3.5) in this case 

 

FKZFplZ
FKZFplZ

FKZFplZFYFZ
,,

,,

,/1,/1
11

+
=

+
==  .    (3.17). 

 

Equations (3.16) and (3.17) are graphically displayed in Fig. 3.4.  In the case of an 
n-parallel connection of impedances, their total value is dictated by minimal values of the 
separate elements’ impedances.  With impedances connected in series, their total value ZΣ 
is governed by maximum values of the separate elements’ impedances. 
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3.1.4 Vibration excitability of ship structures 
The vibratory response of hull structures, or the level of their response to applied 

dynamic forces, is inversely proportional to these structures’ mechanical impedance. 

Ship machinery is normally mounted on hull structures with the use of 
intermediate-units called foundations (bed-plates).  Therefore, ship structures’ 
mechanical impedances are calculated assuming they are composite structures that 
consist of a foundation (bed-plate) and a floor (deck, bulkhead) to accommodate the 
foundation (bed-plate). 

Two types of foundations are most common: supported (bed-plate) foundations 
and cantilevered (bed-plate) foundations.  Let us take these types into consideration when 
calculating mechanical impedance.  We shall use for calculation the method given in 
[54]. 

A support foundation drawing is given in Fig. 3.5, (a).  The total displacement at 
the point of application of force F on such a foundation is composed of the mounting 
floor displacement and the displacement (bending) of the foundation bed-plate.  These 
displacements are not generally equal.  Therefore, the cumulative foundation impedance 

FZ   is determined by successively including FLZ , the floor impedance, and plZ , the 
impedance of the foundation’s mounting plate.  In this case, by using Eq. (3.17) the 
impedance is given by 

plFL

plFL
F ZZ

ZZ
Z

+
=  . 

The mean impedance value for the floor, FLZ at frequencies greater than ƒ0,Fl, is 
calculated by Eq. (4) from Table 3.2, representing the floor characteristic impedance; and 
at lower frequencies by Eq. (3.4).  Here the static rigidity K, of the floor is determined by 
the Eqs. (1)-(3) of Table 3.1.  For a rectangular floor, for example, the value of K is 
calculated by Eq. (2) of this table.  The value of frequency ƒ0,Fl is determined based on 
the equality of Eqs. (3.4) and (2) from Table 3.1 or the Zf  frequency response diagram 
(Fig. 3.6).  When determining the characteristic impedance of the floor reinforced with 
stiffening ribs, the ribs’ flexural rigidity is to be considered. 

Mean impedance of the foundation’s mounting plate at frequencies above ƒ0,pl is 
determined by Eq. (2) of Table 3.2, and at lower frequencies - by Eq. (3.4) in which K 
can be evaluated by Eq. (1) of Table 3.2.  Value of the frequency ƒ0,pl is determined 
similarly to ƒ0,FL. 

Figure 3.6 shows frequency responses ⏐ ZF ⏐for support foundation placed in the 
center of a horizontal floor, with cross set of stiffening ribs.  The geometric parameters 
for the foundation (bed-plate see Fig. 3.5) are: Lpl = 0.9 m, Hpl = 0.4 m, lpl = 0.3 m, L = 
0.1 m, hpl = 0.008 m (transverse force acts in the center of the middle mounting plate of 
the foundation).  The geometric parameters for the floor are: dimensions 2.1×2.1 m2, hï = 
0.006 m, and the floor is reinforced with five stiffening ribs of bulbous-plate ribs (type 
#12) in one direction and five stiffening ribs (type #8) in the other (all stiffening ribs are 
positioned at equal distance one from another). 
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The total impedance of a foundation-floor ZΣ with respect to a transverse force F 
is governed by the impedance of the foundation’s mounting plate since the floor 
impedance generally exceeds it considerably.  Thus, for an approximate evaluation of ZF  
of the  foundation-floor assembly, the evaluation of its mounting plate’s impedance is 
enough. 

The above prompts some suggestions concerning an increase in the mean 
impedance plZ  of the support foundation.  At frequencies over plf ,0 , augmentation of 

plZ can be achieved by increasing the mounting plate’s thickness hpl only, since plZ  is 
proportional to hpl

2 as seen from Eq. (2) of Table 3.2.  Doubling of thickness hpl leads to a 
fourfold rise in plZ . 

At frequencies below ƒ0,pl, in order to increase impedance plZ , the static rigidity 
Kpl of a foundation’s mounting plate has to be increased.  To achieve this, it is suggested 
that one position the force F application point as close to the plate’s fixed edges as 
possible.  This becomes obvious from Eq. (3) of Table 3.1.  Increasing the mounting 
plate’s thickness provides another way of increasing Kpl as Kpl is proportional to hpl

3.  
Reinforcement of a free edge of the foundation’s mounting plate with a strap is also 
recommended as seen from comparing Eqs. (2) and (3) of Table 3.1. 

Fig 3.7 shows both calculated and measurement results for the mechanical 
compliance of a floor whose geometric parameters are given above as compared to those 
of a support foundation placed on this floor.  Good agreement between these results is 
obvious. 

Figure 3.7 also provides calculated values for some resonance frequencies at 
which the structure's compliance becomes maximum.  First resonance frequency of 
flexural vibrations of the floor (ƒp1 = 122 Hz), calculated by Eq. (9) of Table 1.5, agrees 
well with measurement data (ƒp1 ≈ 125 Hz).  Also in good agreement are the first and 
second resonance frequencies of flexural vibrations of the foundation-floor’s mounting 
plate, calculated by the Eqs. (5) and (6) of Table 1.5 (ƒp1 = 493 Hz, ƒp2 = 2160 Hz), and 
measurement results ((ƒp1 ≈ 500 Hz, ƒp2 ≈ 2000 Hz). 

Figure 3.7, (a) gives maximum compliance 1
min,max,

−= plpl ZY  of the foundation’s 

mounting plate, calculated by the Eqs. (3.5) and (3.15) with η = 0.173.  This value of the 
loss factor is determined by Eq. (3.30), considering the vibration energy leakage from the 
plate through its perimeter for which the energy transmission coefficient is assumed as 
0.2 in accordance with the equation of Table 3.4 for the plate’s angle connection. 

The total displacement at the point of application of a transverse force applied to a 
cantilever foundation’s mounting plate (see Fig. 3.5(a)) is made up of the displacement 
(bending) of the foundation’s mounting plate and displacement of the foundation as the 
result of its rotation caused by the moment of force F centered at a distance LF from a 
bulkhead.  These displacements displacement are not generally equal to each other.  
Therefore, impedance ZθF of the foundation governed by its rotation and impedance Zpl of 
the mounting plate is to be viewed as connected in series.  According to Eq. (3.17), 
impedance 
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Value of mean impedance FplZ ,  for this case is calculated in a manner similar to 
that of the support foundation. 

The mean impedance FZ ,θ  at frequencies θ0ff <  is determined by the equation 
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where RB – flexural rigidity of bulkhead-reinforcing vertical stiffening ribs directly 
linked to the foundation knees (Fig. 3.8). 

At frequencies θ0ff >  
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where mp -mass per unit length of stiffening ribs that reinforce a bulkhead vertically. 

Frequency θ0f  is determined by either equating Eqs. (3.18) and (3.19), or 
plotting a chart as shown in Fig. 3.8 (a).  Figure 3.8 (a) also provides the frequency 
responses FplF ZZ ,,  and θ  calculated by the Eqs. (3.19) and (4) of Table 3.2, for a 
cantilever foundation (bed-plate) with parameters LF = 0.2 m, Lô = 0.3 cm; lô = 0.3 m, hô 
= 0.008 m placed on a bulkhead with parameters l = 2 m, lï = 1 m, Bp = 3•106 kg•m2, mp 
= 0.078 kg (stiffening ribs from bulb plate #12).  Total mean impedance ZΣ of the 
cantilever foundation is dictated by impedance of its mounting plate in all audio 
frequency range.  Similar results stem from [54]. 

Calculation of mechanical impedance of foundations of other types can be done in 
the same fashion as for support foundation and cantilever foundation patterns.  
Recommendations concerning a problem of increasing impedance of cantilever and other 
foundations are analogous to those given above for a support foundation. 

Elements of ship foundations are usually attached both to reinforcing framing and 
to floor plates.  Figure 3.9 gives frequency response for input impedance of stiffening rib-
reinforced floor driven by concentrated transverse forces directed to framing 1 cross and 
a plate placed between neighboring stiffening ribs 2.  Floor parameters are the same as in 
the case illustrated in Fig. 3.6.  Calculation of floor impedance with forces acting upon 
the plate of the floor is done with reinforcing framing’s flexural rigidity taken into 
account.  Calculation of impedance at frequency above first resonance frequency of a 
plate placed between neighboring stiffening ribs is carried out by Eq. (2) of Table 3.2. 

Figure 3.9 shows that, with excitation of a ribbed floor directly to the plate, its 
impedance, with the exception of very low frequencies, is considerably lower (up to 100 
times) as compared to the excitation of the reinforcing framing.  Hence it follows that the 
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attachment of vibroactive elements to hull structure framing is recommended.  The 
attachment of framing is a major way of raising the mean impedance of floors. 

Consider the case of distributed forces, driving ship structures, such as those 
generated on the room-enclosing structures by incident noise acoustic pressures.  The 
vibratory response of the floor thus driven, represented as a ratio between root-mean-
square level of the floor’s vibration velocity 2

Fξ&  and the root-mean-square sound 

pressure 2
Rp in the room, equals [48] 

000
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where V0 - room volume; Sï - floor area; radη and inη – floor loss factors governed by the 
floor’s sound radiation and absorption of vibration energy, respectively, in it; FLn and n0 - 
density of resonance frequencies of floor and room vibrations.  By increasing its 
mass FLm , and lowering the density of its resonance frequencies by adding to its rigidity 
the vibratory response of the floor in this case is decreased. 

 

 
Figure 3-4.  Frequency responses for composite structures’ impedance 

modulus. 
(a)– infinite plate with mass 
(б) - infinite plate with spring 
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Figure 3-5.  A support (а) and cantilever (б) foundation drawing. 

1 - foundation’s mounting plate 
2 - knees 
3 - mounting floor 
4 - foundation’s support links (brackets) 
5 - bulkhead 

 

 

 
Figure 3-6.  Frequency responses for mean impedance modulus of support 

foundation and mounting floor. 
1 - calculation of FZφ  by Eq. (2) of Table 3.2 
2 - calculation of FZφ by Eq. (3.4) 
3 - calculation of FflZ by Eq. (4) Table 3.2 
4 - calculation of FflZ by Eq. (3.4). 
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Figure 3-7.  Frequency responses of mechanical compliance of rectangular 

floor (а) and support foundation placed on this floor (б). 
1-4 - designation analogous to Fig. 3.6 
5,6 - measurement results (less vibration -absorbing facing) 
7 - measurement results with vibration-absorbing facing on the 

floor 
8 - minimal compliance of the foundation’s mounting plate 

[calculated by Eqs. (3.5) and (3.15)]; f - kHz. 
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Figure 3-8.  Frequency response for mean impedance modulus of a 

cantilever foundation (а) and its drawing (б). 
1 - calculation of ZθF by equation (3.18) 
2 -- calculation of ZθF by equation (3.19) 
3 -- calculation of ZïF by equation (3.4) 
4 -- calculation of ZïF by equation (4) of Table 3.2 
5 - cantilever foundation 
6 - stiffening ribs of bulkhead 
7 - bulkhead. 

 
 

 
Figure 3-9.  Frequency response of input mean impedance modulus for a 

floor driven by transverse force directed to reinforcing framing 
cross and a plate between neighboring stiffening ribs; f– kHz. 

 

3.2   Spreading of Acoustic Vibration Along Ship Structures 

3.2.1 General 
The vibrational energy that resides on ship structures, due to the sources of 

vibration excitation, spreads along structural elements to various areas of the ship hull. 
This process is usually called propagation of acoustic vibration over ship structures. 

The major part of vibrational energy spreads over the ship structure in the form of 
flexural waves.  This results from the higher compliance of these structures with respect 
to transverse forces and bending moments as compared to other kinds of dynamic forces.  
However, other types of waves may also transmit vibrational energy over ship structures.  
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These arise due to the transformation of flexural waves at structural irregularities peculiar 
to some ship elements. 

The amplitude of acoustic vibration propagating over ship structures gradually 
diminishes due to the absorption of some energy of vibration and reflection at obstacles 
on its way.  Among those obstacles are various structural irregularities of ship elements 
such as changes in thickness of plates at their  connection, stiffening ribs and others.  In 
two-dimensional structures, the decrease of acoustic vibration amplitude in propagation 
also occurs by virtue of cylindrical spreading of the wave front. 

The physical mechanism of acoustic vibration spreading over ship structures 
largely depends on the vibration frequency.  At low frequencies, wave representation is 
usually utilized featuring amplitude and phase of structure’s acoustic vibration.  At high 
frequencies, energy representation of acoustic vibration spreading over ship structures 
proves to be easier and more convenient for use.  It employs energy parameters of this 
vibration representation (density and flow of energy). 

3.2.2 Propagation of Acoustic Vibration Along Uniform Structures (Wave Theory) 
A uniform structure is one having no intrinsic obstacles in the way of elastic 

waves, for example, a rod with constant cross section, a plate with constant thickness, a 
cylindrical shell with constant parameters and wall thickness. 

A decrease of vibrational energy during elastic wave propagation in such 
structures occurs by absorption of these waves in the structure’s material.  The 
mathematical approximation of absorption involves the use of a complex representation 
of the respective wave numbers k.  The representation of the wave number is: for flexural 
waves, kf = kf,0 (1 - jη/4); for dilatational waves, kl = kl,0 (1 - jη/2); for torsional waves, ks 
= ks,0 (1 - jη/2); and for shear waves, ks = ks,0 (1 - jη/2), where η -- loss factor for 
vibration energy in a structure. 

The distribution of flexural wave amplitude along a rod length is described by the 
equation 

                       yyjk eey f γξξ −−= 0,)0()(      (3.20) 

where y - coordinate plotted along the rod in the direction of positive values; ξ (0) - 
flexural displacement amplitude at the excitation point; yfjke 0,−  multiplier  describing 
displacement phase; γ -- wave amplitude damping indicator, γ = kf,0 η/4 = 2 πη/λf,0. 

The flexural wave amplitude damping per unit length of the rod (beam) is given by: 

  dB  15.2)( 0, lkl f ηξ∆ = .                (3.21) 

The larger the loss factor in the rod and number of wavelengths in the rod’s l-
length segment, the greater is the flexural wave amplitude decay on this segment.  For a 
low loss factor (in order of magnitude 0.01-0.001), flexural waves may propagate over 
rod structures to large distances with negligible attenuation. 
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The wave number for rod 0,fk  can be determined by the equation 0,0, / ff ck ω= , 
where 0,fc  is calculated by Eq. (1.8) or with the help of Table 1.4 for the frequency 
range ƒ < cring/6a  (a is the rod’s cross section dimension in the direction of displacement 
ξ).  Values of the moment of inertia I necessary for calculations using Eq. (1.8) for some 
types of rod’s cross sections may be taken from Table 3.3. 

In some rare cases, the rod’s wave number at higher frequency has to be 
calculated.  This can be done, among other things, with the help of [21] data. 

The propagation of flexural waves in cylindrical shells (for example, pipelines) 
can be described by Eqs. (3.20) and (3.21).  They incorporate wave number 

0,0, / ff ck ω= , where cf,0 is determined by the relevant equations of Table 1.4. 

Calculation of the frequency dependent wavenumber kf,0  for a cylindrical shell 
can be obtained approximately as outlined in the following.  In the range ƒ ≤ ƒring/3, the 
shell may be regarded as a hollow rod and cf,0 determined by the equation for such a rod 
from Table 1.4 at ƒ << ƒring.  At frequency ƒ ≥ 3ƒ0, the shell responds like a plate.  In this 
case cf,0  is determined by the equation for a plate from Table 1.4 at ƒ > ƒring.  Then 
plotting respective responses kf,0 or cf,0 on a chart with logarithmic scale of frequency for 
frequency range ƒ ≤ ƒ0/3 and ƒ ≥ 3ƒ0, it is necessary to connect values of these 
parameters at frequencies ƒ = ƒ0/3 and ƒ = 3ƒ0 with a straight line. 

Frequency ƒ0 equals [19] 
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where dsh is the internal diameter of shell. 

The propagation of flexural waves on uniform plates with point excitation is 
described by Eq. (1.13).  With the absorption of vibration energy in a plate, and when 
cylindrical spreading kf,0 r ≥ 1 (r - distance from the plate’s excitation point) is taken into 
account, this equation can be approximated as 

   rrkj
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r f γπ

π
ξξ −−−≈ )4/(

0,

0,2)0()(     (3.22), 

where ξ (0) - amplitude of the plate displacement at the excitation point.  Note, that at the 
frequency 50 Hz with hpl = 0.01 m, condition kf,0r ≥ 1 is met for r ≥ 24 cm.  The second 
factor in Eq. (3.22) describes the decrease in amplitude of a flexural cylindrical wave in 
the plate, as a result of cylindrical spreading of the wave front as it travels away from the 
excitation point.  A doubling of the distance r through the above factor reduces the wave 
amplitude by 3dB. 

 



Structure Drawing Equation for calculating 
moment of inertia 
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Table 3-3.  Moments of inertia for cross sections of various structures 
about their neutral axis .
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The decrease of wave amplitude through absorption of vibration energy in the 
plate is the same as in the case of one-dimensional structures.  Wave amplitude 
attenuation through absorption is described by Eq. (3.21). 

3.2.3 Wave Properties of Ribbed Structures 
Some ship structures such as bulkheads, floors, hull plates are plates reinforced 

with stiffening ribs (stringers). 

At low frequencies (ƒ << ƒpl, where ƒpl - the first flexural resonance frequency of 
the plating between the frames spacing), rib-reinforced plate structures can be viewed as 
orthotropic plates (with identical stiffening ribs and the equal number of ribs in mutually 
perpendicular directions, they are viewed as isotropic).  With this assumption, the value 
kfl determined by Eq. (3.23) is to be substituted in the Eqs. (3.20)-(3.22). 

For bending of a ribbed plate at the above-indicated frequencies, in a plane 
parallel to the stiffening ribs of one of the framing directions, the plate’s wave properties 
match those of a rod (beam) of width L  (L assumed equal to frame spacing width) cut out 
of a ribbed plate along the given stiffening ribs (Fig. 3.10).  The cross section of such a 
rod with ribs, incorporating a flange and a web, makes up an asymmetric I-beam section. 

The wave number of flexural vibrations of such a rod and, therefore, a plate as a 
whole is given by [20] 
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where mpl - plate mass (less stiffening ribs) per unit surface; µm = mribl/mpl L; mrib - 
stiffening rib’s linear mass; µS = SL/Sl; SL,Sl - cross section area of lower and upper 
flanges of an I-beam section rod (in the case of a bulb stiffening ribs, Sl - cross section 
area of a bulb); H - stiffening rib height. 

It was assumed when deriving Eq. (3.23) that the neutral plane, with the ribbed 
plate being bent, is displaced with respect to the plane to distance )1/( sHx µ+≈ .  By 
substituting kf in (3.20), we can obtain the distribution of amplitude of flexural waves in 
the ribbed plate at low frequencies when the plate is driven by forces acting on framing 
and a plate between stiffening ribs.  With certain approximation, it is valid below 
frequency ƒ01 = 104 hpl/(4π2 L2) Hz, where hpl - plate thickness, m; L - plate length, m.  
Frequency ƒ01 value is determined from the condition kf L = 1. 

With a force acting upon a plate between stiffening ribs at frequency ƒ >ƒ01, a 
ribbed plate’s properties are dictated by the plate, i.e. the wave number kf,pl. 

For a ribbed plate, driven by a force acting upon the framing, expression (3.23) 
for the wave number is also valid for frequency ƒ >ƒ01.  This holds until the width of the 
stiffening rib-attached to the strap of plate πλ /,0 plsL = , ( pls,λ  is the wave-length of a 
shear wave in the plate) gets lower than L as the frequency rises.  The frequency up to 
which the wave properties of a ribbed plate, when driven at the framing, are roughly 
described by Eq. (3.23) is: 



 72

   
L

c
f plpll

π

σ

2

1,
02

−
≈  .                 (3.24) 

This equation corresponds to the equation 2=Lks . 

At higher frequencies, the effective dimension of the attached strap and the 
structure’s flexural rigidity decreases and the wave number for flexural vibrations starts 
increasing faster than f . 

Figure 3.11 gives the frequency response of the flexural vibrations wave number 
of a ribbed plate shown in Fig. 3.10 (a).  This uses exact equations given in [52] for L = 
0.6 m, hpl = hweb = 0.012 m, H = 0.2 m, l = 0.05 m, with excitation by a force, acting on 
the framing, and by the approximate Eq. (3.23).  Calculation results are in satisfactory 
agreement up to the frequency ƒ02  ≈ 1.4 kHz. 

At frequencies above ƒ02, the ribbed plate’s wave number is gradually 
approaching the value kf,pl.  This wave number value can be assumed above frequency ƒ03 
= 4ƒ02.  In the ƒ02 -ƒ03 frequency range, a ribbed plate’s wave number is approximately 
obtained by connecting values of the wave number at frequencies ƒ02 and ƒ03 with a 
straight line on a logarithmic frequency scale chart as exemplified by Fig. 3.11. 

 

 

 

Figure 3-10.  Drawing of a plate reinforced with stiffening ribs of I-beam (à) 
and bulb sections (b). 
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Figure 3-11.  Frequency response of the wave number for a ribbed plate 

flexural vibrations. 
1 - calculation based on data from [52] 
2 -- calculation by Eq. (3.23) 
3 -- calculation by the Equation plplplf Bmk 8, = . 

 

The typical ship hull is made up of a combination of plates (floors, bulkheads, 
etc.) connected in a specific fashion.  In most cases these plates are reinforced by sets of 
stiffening ribs or frames.  Within the junctions between the above plates and adjacent 
ones, the plates may be viewed as homogeneous structures. 

If several types of vibration of approximately equal amplitude are driven in a 
plate simultaneously, a diffuse process vibration field can be assumed to be generated, in 
analogy to the acoustics of spaces, i.e. one that is homogeneous and isotropic.  
Homogeneity implies here an approximate equality of vibration amplitudes over the 
entire plate’s area while isotropy involves a uniform angular distribution of vibrational 
energy at any point of the plate. 

The assumption of the diffuse nature of the vibration field considerably simplifies 
the solution of many engineering problems associated with assessment of acoustic and 
vibration fields.  This assumption was first employed for the solution of vibration 
problems by W. Westphal [60] and applied to building structures; the possibility and 
expediency of application of these methods to ship structures is shown in [19]. 

Measurements and calculations of engineering structures’ acoustic vibration 
amplitudes are performed for a certain frequency band (for example, octave or third-
octave).  Vibration field can be regarded as diffuse, if the frequency band includes at least 
3-5 natural frequencies of the plate’s flexural vibration modes.  The frequency to meet 
this condition is [19] 
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where β = 0.232 for 1/3-octave frequency band; β = 0.345 for 1/2-octave frequency band 
and β = 0.707 for an octave frequency band.  The plate’s natural frequency density 
increases as frequency increases.  Therefore, a diffuse field exists in the plate at 
frequencies such that ƒ ≥ ƒ0. 

A diffuse vibration field is characterized by the density of vibrational energy wpl. 
Values of wpl for all the plates making up a ship hull can be determined based on 
equations of energy balance to be formulated for each of the plates.  The equation of 
energy balance for a separate plate can be worked out by equating the vibrational energy 
coming from the plate-mounted sources plus adjacent connected plates and the 
vibrational energy lost by the plate to absorption and transmission to other plates.  In 
accordance with the above for the nth plate forming part of a p-plate structure, the 
equation of energy balance is represented as [19] 
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where qn - energy flow in the plate n , for flexural waves qn = 2 cf,pl wpl; Wn - vibration 
energy input to the n-plate from the plate-mounted sources; αin - coefficient of energy 
transmission from plate i to plate n [21], αin = 〈tin〉ϕ / π; 〈tin〉ϕ  -- coefficient of energy 
transmission from plate i to plate n determined by expression (3.32); δn - coefficient of 
energy absorption in plate n [21], δn = ηnω/(2cf,pl); Lin = Lni - length of plates i and n 
connection line; ηn - loss factor for plate n. 

The second member of equation (3.25) determines the quantity of energy entering 
plate n from all the remaining plates, the third one determines the quantity of energy 
released by plate n to all the remaining plates, the fourth one - quantity of energy 
absorbed (or dissipated) in plate n. 

For plates having no direct links to plate n, αin = αni = 0; moreover, αii = 0. 

On formulating p-number of equations analogous to (3.25) and solving the system 
of equations obtained with reference to values qn to be found, we get values of the root-
mean-square amplitudes of acoustic vibration velocities in ship hull plates using the result 

)2/( ,
2

plplfnn mcq=ξ& . 

The equations of energy balance are widely used for calculation of ship 
structures’ acoustic vibration amplitude and sound pressure of air noise in ship 
compartments.  The calculations are referred to in foreign technical literature as statistical 
energy analysis (SEA) [47]. 

As an example of the use of equation (3.25), let us formulate it for two connected 
plates (energy source is on the first plate only). 

  W1 + α21 Lq2 - α12 Lq1 - δ1S1q1 = 0 

  α12 Lq1 - α21 Lq2 - δ2S2q2 = 0. 

The solution with reference to q1 and q2 is: 
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where  A = α21Lδ1 S1 + α12Lδ2 S2 + δ1δ2 S1 S2. 

For ribbed plates on which the vibration energy source is mounted, considerable 
non-homogeneity of the field may occur at high frequencies that results from extension of 
the wave front propagating from the source.  Vibration field in such plates at the given 
frequencies (far beyond ƒp1 for plate segments between the neighboring stiffening ribs) is 
described by a differential equation similar to one of thermal conductivity [19] 

02 =− plpl ww γ∆                     (3.26) 

where ∆ -- Laplace operator; γ -- vibration attenuation coefficient of a plate, γ = [ωηpl 

/(αRcf,pll)]1/2; αR - coefficient of energy transmission through a stiffening rib for diffuse 
flexural wave field (according to [19], αp = 0.25); l - average distance between 
neighboring stiffening ribs; wpl - density of flexural wave energy in a plate. 

The solution of equation (3.26) for an isotropic ribbed plate (stiffening ribs are 
placed equidistantly in mutually perpendicular directions), with point sources of vibration 
power W, is represented as 

 )(
2

)( 0 rKWrwpl γ
πλ

=                   (3.27) 

where λ -- coefficient of the plate’s vibration conductivity, λ = αRcf,pll; K0 - modified 
Bessel function.  Flow of energy in the plate 
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Figure 3-12.  Distribution of acoustic vibration levels over deck plating with 

diesel-generator operating. 
1 - calculation by Eq. (3.29) 
2 - experiment at frequency 1kHz 
3 − experiment at frequency 16kHz. 

 

For an orthotropic ribbed plate (distance between stiffening ribs differs in the 
mutually perpendicular direction l1 ≠ l2, we have 
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where γ1, γ2 - coefficients of vibration damping in mutually perpendicular directions.  
Equation (3. 29 a) utilizes polar coordinates r, θ for simplification. 

Figure 3.12 shows the results of calculation and measurement of vibration level 
for deck plating that are in good agreement between one another.  Equations (3.27) to 
(3.29 a) can be used for calculating vibration level at frequencies above 1kHz.  At lower 
frequencies, the error using these equations increases.  The equations are not to be used 
below the first resonance frequency of flexural vibrations of plate segments between 
adjacent stiffening ribs.  

3.2.4 Wave Type Transformation in Inhomogeneous Structures 
For structures made up of connected plates, i.e. for inhomogeneous structures, 

wave type transformation (conversion) occurs when the structural waves pass through 
plate joints.  As a result, waves of several types exist on the structure instead of just one 
that is the primarily-excited type.  For instance, with a flexural wave passing through a 
corner at which two plates are joined, bending moments at the plates’ connection point 
are generated by two interacting forces, each directed along the opposite plate.  These 
forces give rise to reflected and transmitted longitudinal waves in the plates. 

Figure 3.13 (а) shows the frequency response of the energy reflection and 
transmission coefficients for a flexural plane wave passing through the corner-joint of 
two semi-infinite 0.005-m-thick plates oriented perpendicular to each other with wave 
type conversion considered.  Transformation of a flexural wave into a dilatational one 
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intensifies as frequency rises, since the values of the plates’ flexural and longitudinal 
rigidity (stiffness) get closer.  This same reasoning governs the increase in conversion 
with the joined plates getting thicker. 

For a longitudinal wave passing through the same joint, longitudinal forces 
generated at the joint are transverse with respect to the opposite plate.  This leads to the 
appearance of flexural waves in the plates in addition to the longitudinal ones.  Figure 
3.13 (б) shows the frequency response of energy reflection and transmission coefficients 
for a longitudinal plane wave passing through a corner joint of 0.005-m-thick plates with 
normal incline and wave type transformation considered.  In this case, too, transformation 
intensifies as frequency increases and the reason is the same as the above. 

The mutual conversion of waves of the two types in an inhomogeneous structure 
causes the generation of a wave type other than that of the primarily-excited wave in the 
structure.  As the distance from a source gets larger, gradual accumulation of the 
transformed-type wave energy continues in the structure until the energy flows for waves 
of both types become equal.  If the energy transmission velocity for waves of these types 
differs considerably as is the case with flexural and longitudinal waves, their damping per 
length unit is different for the same loss factor.  A longitudinal wave attenuates in a much 
larger length in the given conditions.  So, at some distance from a source, the damping of 
aggregate energy in the structure is governed by the damping of a longitudinal wave. 

Figure 3.14 shows the spatial distribution of energy flows of flexural 1 and 
dilatational 2 waves over a ship structure at a frequency of 1 kHz.  This distribution 
demonstrates more intensive damping of flexural waves at a distance within 5 m from a 
source (6 dB/m).  This is due to weak effect of transformed longitudinal waves and the 
lesser damping at longer distances from a source (∼0.6 dB/m) as the result of a greater 
influence of wave type transformation upon the acoustic vibration propagation process. 

3.2.5 Absorption of Acoustic Vibration 
The acoustic vibration of ship structures occurs with absorption (loss) of vibration 

energy.  This results in the gradual decrease of the amplitude of elastic structural waves 
that propagate over such structures.  If free vibrations originate in structures, their 
amplitude diminishes as time elapses after the external excitation stops. 

Vibration energy absorption value in structures is normally loss factor 
)2/( totabs WW πη = , where Wabs - energy absorbed in the structure during one oscillation 

period; Wtot - energy contained in the structure (potential energy). 

The parameters characterizing vibration damping are related to loss factor as 
follows: semi-width of resonance curve ∆ƒ = ηƒ;  logarithmic decrement d = πη; Q-
factor Q = 1/η; flexural wave amplitude damping ∆ξ = 27.3η / λfl dB/m; dilatational 
wave amplitude damping ∆ζ = 13.65η / λl dB/m. 

The absorption of vibrational energy in ship structures stems from the following: 

1.  Internal energy loss in the structure material.  These losses result largely from 
mechanical hysteresis phenomenon involving irreversible microchanges of material 
forming the structure.  With stress removed, the structure material retains residual 
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deformation, which with the process repeated, causes deformation/stress phase lag and, 
therefore, absorption of some vibrational energy through conversion into heat.  Loss 
factor dictated by mechanical hysteresis is not dependent on frequency.  Internal loss 
factors for some materials frequently used in ship-building are given in Table 1.1; values 
of these factors are extremely small (about 10-4 - 10-2). 

2.  Structural loss of energy due to presence of welds,  rivets, pipeline and cable 
connections, etc.  These loss factors are about 10-3 - 10-1. 

3.  Loss of energy through sound radiation into medium in contact with hull 
plating.  Since sound radiation of flexurally-vibrating plates into the air is relatively low, 
this type of loss is tangible only for plates in contact with liquids (water, fuel, etc.).  This 
factor value is about 10-3. 

4.  Loss of energy due to coatings on hull structures like heat-insulating and 
vibration-absorbing coatings.  The former energy-absorbing effect seems small while the 
latter’s loss factor is considerable (about 10-1 and higher). 

For hull structures directly excited by some vibration-active source, energy loss to 
attached structure may provide a reason for considerable loss in vibration energy.  Due to 
lower energy saturation of the latter, energy from a driven structure passes on to other 
structures in an amount exceeding that of energy coming back.  For instance, for an l-
wide plate with a one-dimensional field of standing flexural waves originating crosswise, 
loss factor equivalent to energy loss through plate edges is 

  )1(1 )/(2 , lk plflrr π

π
−=      (3.30) 

where r - coefficient of energy reflection from the plate edge.  If edges of this h2-thick 
plate form a rigid joint with two other infinite h1-thick plates, 
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as given by [19], where µh = h2/ h1. 

At the first resonance frequency of flexural vibrations of the driven plate, kfl,pll ≈ π 
and therefore, with µh = 2, r = 0.85 and η ≈ 0.089. 

For a two-dimensional vibration field in the plate, loss factor value is a bit lower.  
So, vibration energy loss factor in an excited ship structure can be very high even with no 
vibration-absorbing coatings (about 0.1). 
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Figure 3-13.  Frequency response of energy reflection r and transmission d 
coefficients for flexural (а) and dilatational (б) plane waves 
through corner joint of plates (perpendicular). 

 

 

Figure 3-14.  Distribution of energy flows of flexural and dilatational waves 
over a ribbed structure (hpl = 0.006 m; lrib,sp = 0.6 m; ηfl = 0.01; 
ηl = 0.001;ƒ = 1kHz). 

3.2.6 Dissipative Properties of Ship Structures 
To evaluate the dissipative properties of ship structures with no vibration-

absorbing coatings, a knowledge of the equivalent loss factor is enough.  Loss factor 
values in structures with vibration-absorbing coatings applied are given in Chapter 6. 
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Figure 3-15.  Frequency response of loss factor in ship structures. 

1 - river aluminum vessels 
2 - river steel vessels 
3 - steel 1,500-ton displacement ship 
4 - steel 900-ton displacement ship 
5 - aluminum vessel 
6 - steel 61,000-ton displacement ship 
7, 8 - electric motors. 

 

Figure 3.15 shows the frequency dependence of loss factors in structures of 
various vessels [11, 20, 21, 53].  The values of these loss factors vary from about 0.003-
0.03.  At frequencies above 1kHz, the loss factors show little dependence on frequency 
while at lower frequencies the factors tends to rise as frequency decreases.  The loss 
factor of aluminum-alloy ship structures is about three or four times that of steel ship 
structures at frequencies below 1kHz, which is probably due to the presence of riveted 
joints.  Loss factors in different structures of the same ship differ very little from one 
another.  The loss factor increases somewhat as the structures plating thickens and, 
therefore, the displacements decrease. 

Data offered in Fig. 3.15 are one order of magnitude higher than the internal 
(intrinsic) loss factors for the hull material.  This prompts the conclusion that losses in 
ship elements are mainly of structural origin. 

Figure 3.15 gives frequency responses of loss factors for ship electric motors that 
equal 0.01-0.1.  The factors are one order of magnitude higher than loss factors in hull 
structures and this may be due to the large presence of machines with vibration-absorbing 
elements (insulation, windings, etc.). 

 

3.2.7 Acoustic Vibration Insulation 
When spreading over ship structures, structure-borne vibrations encounter 

obstacles that possess isolation properties.  These are represented by interconnections of 
various hull elements (bulkheads, floors, hull plating) and the joints between piping and 
hull structures. 

Besides natural obstacles, there are additional ones (vibration-inhibiting masses, 
reinforced coamings, etc.) that may be called artificial obstacles. 
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Insulating property of an obstacle is generally characterized by its vibration 
isolation  VI  defined as [19]  

2

1log10
w
w

VI =  

where 〈w1〉, 〈w2〉 -- average density of vibration energy in structure prior to and 
subsequent to its mounting, respectively. 

For normal incidence of a plane monochromatic wave over a linear obstacle, its 
vibration isolation is  
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where T - coefficient of wave transmission passing through the obstacle; m1, m2 - 
structure (plate) weight per area unit prior to and after the obstacle, respectively; τ -- 
coefficient of vibrational energy passing through the obstacle with normal incidence.  
With a wave passing through a rod-mounted obstacle, m1 and m2 are the rod’s linear 
masses. 

With waves to form a diffuse (two-dimensional) field passing through a linear 
obstacle, the obstacle’s vibration insulation 

   ϕτlog10−=VI      (3.31) 

where  〈τ〉ϕ -- average (with respect to incidence angle) value of vibration energy 
transmission coefficient through an obstacle, 
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where µ12 = h2/h1 - for plates: µ12 = (B2c1 / B1c2)2/5 - for ribbed structures (at low 
frequencies); 
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E and F - full elliptic integrals, tables for which are given in [33].  If the thickness of 
plates partitioned by an obstacle differs by no more than 30%, parameter ψ (µ12) may be 
approximately (with less than 20% error) assumed to equal 2/3 and therefore, Eq. (3.31) 
gives 

dBVI 2log10 +−= τ  .                     (3.33) 

A hinged plate or rod support provides a basic type of obstacle for flexural waves.  
With normal incidence of a plane wave on such an obstacle, the lateral deformations of a 
flexurally-vibrating structure do not pass through it while the rotational deformations 
pass through easily.  Since energy is equally transmitted by these deformations, the 
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obstacle vibration insulation in this case is 3 dB.  With respect to a diffuse field of 
flexural waves, vibration insulation of such an obstacle is 5 dB, according to Eq. (3.33). 

The coefficients of dilatational and flexural wave energy passing through various 
joints of flat structures (linear, corner, T-, cross) under normal incidence of a plane wave 
are given in Table 3.4.  Structures through which flexural waves spread are assumed to be 
rigid )( flb cc ≥ .  Table 3.4 data are based on results from [35, 36]. 

Value of coefficient of vibration energy transmission through structural joints is 
largely and inversely dependent upon their parameters ratio: the higher the ratio, the 
smaller the coefficient.  These parameters are: for rods ijij SS /=µ , for plates 

ipljplij hh /)( 2/5 =µ , and for ribbed structures (at low frequencies) iflijfljij kBkB /=µ . 

Figure 3.16 shows the dependence of vibration insulation of various type plate 
joints upon their thickness ratio.  The elastic properties of the plates joined together at the 
junctions are assumed identical.  The cross-joint possesses the maximum vibration 
insulation while the linear one - the minimum.  Flexural waves pass through plate joints 
with a greater difficulty than dilatational ones.  The minimum vibration insulation is 
typical when the plates forming a joint are of equal thickness.  The T-joint provides an 
exception with the minimum vibration insulation occurring for h2/h1 = 1.32, which is 
traced to axial asymmetry of the joint. 



Table 3-4. Transmission coefficients of elastic wave energy passing through 
structural irregularities. 

Structural irregularity      Irregularity drawing Equations to calculate the 
transmission coefficient 
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Figure 3-16.  Dependence of vibration insulation of plate joints  = 10lg τ-1, 

dB, upon their thickness ratio µ12 = h2/h1: a - linear; á – corner. 
â - T-; ã - cross. 
1 - flexural waves;  
2 - dilatational waves; hinged support vibration insulation. 

 

The asymmetry of vibration insulation curves in the T- and cross plate joints with 
a flexural wave passing in the plate extension 13VI  attracts ones attention.  In fact, with a 
decreasing transverse plate thickness, its resistance to bending moment tends to zero 
unless there are transverse displacements at the joint as in a hinged support (VI = 3 dB). 

If the flexural wave amplitude difference on the obstacle is to be determined, the 
following equation may be used 
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where i and j - structure indices before and after the obstacle respectively. 

A rigid joint between a rod (for example, a pipeline) and a plate also has some 
vibration insulation properties.  With a dilatational wave spreading along an infinite rod 
rigidly connected to a lateral infinite plate, the vibration insulation of such an obstacle is 
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where )/(8 ,rodbrodplpl cmBm=α . 

Since the factor α for a uniform plate does not depend on frequency, the vibration 
insulation of rod - plate connection is also frequency-independent.  For a ribbed plate, Bpl 
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increases at low frequency.  As a result, the vibration insulation of rod - ribbed plate 
connection rises at the given frequencies. 

Let us determine value of vibration insulation for a rigid connection between a 
hollow steel rod with external diameter 3•10-2 m and internal one 2•10-2 m and a steel 
plate 10-2-m thick plate.  For this case α = 0.59 and, therefore, VI= 0.3 dB.  With the 
plate reinforced by stiffening ribs to have the parameters shown in Fig. 3.11, vibration 
insulation of the joint increases at low frequencies up to 0.6 dB.  So, with respect to 
dilatational waves rod -- plate connection has little vibration insulation. 

With a flexural wave spreading along a rod rigidly connected to a lateral infinite 
plate, vibration insulation of such a connection 
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where )/( 3
,

2
rodbrodplM cmZ ωα = ; MZ  is determined by Eq. (3) from Table 3.2.  

According to Eq. (3.35), with α→0, VI = 3 dB.  This corresponds to the case with a 
hinged rod in the area of its passing through a plate.  For the above rod - plate connection, 
factor α = 0.03 - j 0.2 and VI = 3.1 dB that nearly matches vibration insulation value of a 
rod’s hinged support. 

Equations (3.34) and (3.35) are correct for 1, <<ak rodfl , (a - radius or half of the 
maximum dimension of a rod section).  This condition is met for the audio frequency 
range in the majority of cases. 

3.2.8 Vibration Conductivity of Ship Structures 
The vibration conductivity of structures implies their ability to transmit acoustic 

vibration from its origin to various areas of the ship hull.  This parameter is sometimes 
called a transmission one. 

 
Figure 3-17.  Frequency dependence of vibration level decay dB/m along 

hull. 
1 - 900-ton displacement ship 
2 - 13,000-ton displacement ship 
3 - steel vessels [29]. 
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Figure 3-18.  Dependence of vibration level upon distance l from a vibration 

source. 
1 - 0.5 kHz frequency 
2 -- 2 kHz frequency 
3 -- 8 kHz frequency 

 

Figure 3.17 shows the damping per unit length of acoustic vibration level for 900- 
and 13,000-ton displacement ships plus related data on this parameter from [29].  
Damping values correspond to a remote area of the ship structures where vibrational 
wave front spreading has very little effect.  Therefore, the damping is caused by 
absorption of vibrational energy in these ship structures. 

Acoustic vibration level damping is less intense for larger displacement ships.  
This can be traced to smaller values of loss factor for such ships.  Damping increases 
somewhat as frequency increases and this is related to a decreasing flexural wave-length 
(increase in a wave number). 

Data given in Fig. 3.17 pertain to vessels with no vibration-absorbing structures.  
For this case damping is approximately 0.5-1.2 dB/m, depending on frequency. 

Level of acoustic vibration in close proximity to the source decreases at a greater 
rate due to the additional effect of wave front spreading according to [29] data, the rate 
reduction in vibration level is on average 1 dB/m at a 5-10-m distance from the source.  
Figure 3.18 shows the dependence of acoustic vibration level for a 900-ton displacement 
vessel hull upon distance from a vibration source at various frequencies.  Vibration rate 
reduction is higher in the proximity of the source than in remote areas. 

The value of vibration level reduction in vertical direction, for instance, in a ship 
superstructure, is roughly 5-6 dB per deck at frequency 0.1-4 kHz [50]. 

Based on the above, the following conclusions can be drawn concerning vibration 
conductivity of ship structures. 

1.  Vibration amplitudes decrease as distance from its source increases.  This 
takes place, firstly, due to absorption of some vibrational energy in structures and, 
secondly, through spreading of a divergent wave front (in close proximity of just a few 
meters to the acoustic vibration source). 

2.  The reduction of vibration amplitude in ship structures depends largely on loss 
factor and wave number of acoustic vibration in these structures, as well as on distance 
from a source.  To lower the amplitude, loss factor should be increased (for instance, with 
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the use of vibration-absorbing structures), wave number also should be higher (for 
instance, by decreasing structural stiffness - decreasing plating thickness), as well as a 
longer distance from a source is required. 

3.  The wave number of flexural vibrations of ship structures governing the 
structures’ vibration conductivity is dependent on the structural rigidity.  Stiffening ribs 
usually lower the wave number (increased flexural wavelength) of the structure leading to 
a decrease of vibration amplitude.  The influence of stiffening ribs depends on driving 
force application area.  With these forces acting upon framing, the structure’s wave 
number at low and medium frequencies is determined taking into account stiffening ribs 
presence.  For excitation of a plate, limited by neighboring stiffening ribs, at the 
frequencies above first resonance frequency of this plate’s flexural vibrations, framing 
influence gradually diminishes as frequency rises (at medium and high frequencies). 

4.  Natural obstacles for vibration spreading over ship structures are joints of 
structural elements such as bulkheads, floors, hull plating, etc.  The larger the difference 
in mechanical impedance of the joint-forming structures, the stronger is the vibration 
insulation of these obstacles.  Vibration insulation of rods (pipelines) connection with 
structures through which they pass is little (with respect to elastic waves spreading along 
the rod).  The amount of energy transmitted from the rod to the plate is small due to 
significant difference in their mechanical impedances. 

3.3 Sound Radiation of Ship Structures 
Practical applications require the calculation of sound radiation for two types of 

ship structures - enclosures (partitions) and pipelines that are vibrating transversely (i.e. 
flexurally).  A ship compartment partition is in most cases a rectangular plate of finite 
dimensions reinforced with cross-stiffening rib framing assumed as hinged (i.e. simply-
supported). 
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Figure 3-19.  Dependence of critical frequency of a plate (radiating into the 

air) upon thickness hpl and the material of the plate.   
1 - steel, aluminum alloys, glass 
2 - fiber glass 
3 – plywood 
4 - glass textolite 
5 - organic glass. 

 

The sound radiation of such plates differs greatly for frequencies above and below 
the critical frequency ƒcr .  The latter is calculated by Eq. (1.25) or determined from Fig. 
3.19, showing the dependence on material and thickness of the plate. 

At frequencies such that ƒ > ƒcr, the entire plate surface radiates, and that is why 
the plate-radiated sound power is determined by using Eqs. (1.21), (1.22) or (1.23).  The 
value of the radiation resistance is determined by Eq. (1.26). 

At frequency ƒ < ƒcr , but above the first resonance frequency of the flexural 
vibrations of the plate ƒp1, the plate edges or corners radiate.  The radiation depends upon 
the relationship of the rectangular coordinates projections of the flexural wavelength on 
the plate edges to the acoustic wavelength in air λ0.  If the plate vibration distribution is 
such that both projections of flexural wavelength λfl,x and λfl,y are less than λ0, radiation of 
all plate areas vibrating in opposite phase is mutually canceling, except for the quarter-
wavelength areas at the plate corners (Fig. 3.20, a).  The respective plate vibration modes 
are conventionally called piston modes.  If either projected wavelength of a flexural wave 
(for example, λfl,x) is longer than λ0 and the other shorter, the radiation of quarter-
wavelength strips on the plate edges along the x-coordinate is left uncompensated (Fig. 
3.20, b).  These plate vibration modes are called strip modes. 
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Figure 3-20.  Patterns of flexural vibrations of a rectangular hinged plate 

(cross-hatched are the plate’s radiating segments). 
(a) - for piston modes with λfl,x < λ0, λfl,y < λ0 
(б)– for strip modes with  λfl,x > λ0, λfl,y < λ0. 

 

The radiation resistance of a rectangular plate with hinged edges or frequencies ƒ 
< ƒcr equals [6] 
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As seen from Eq. (3.36), the sound radiation of a plate, all other factors being 
equal, is dependent on the critical frequency ƒcr that, in turn, depends upon the thickness 
and material of the plate.  Figure 3.21 shows frequency response Rrad of two plates of 
identical dimensions but different ƒcr.  At frequency ƒ < ƒcr, min, the plate with lower ƒcr 
radiates more. 

It was assumed in deriving Eq. (3.36) that the plate under consideration was 
uniform, i.e. with no stiffening ribs.  But the presence of the reinforcing stiffening ribs 
increases the flexural waves in the plate considerably.  The dimensions of quarter-wave 
radiating segments on the plate at frequency ƒ < ƒcr increases, leading to a higher sound 
radiation of the plate.  The presence of stiffening ribs triples the flexural wavelength on 
average causing an approximately 5 dB increase in sound power radiated by the plate. 

Figure 3.22 gives the frequency response for air-borne noise levels in a ship room 
related to acoustic vibrations of floors reinforced with stiffening ribs.  The level is 
determined with and without the effect of stiffening ribs considered.  In the first case, 
agreement between calculation results and the experiment at frequency ƒ < ƒcr (ƒcr ≈ 2 
kHz) is more obvious.  With the stiffening ribs’ effect on acoustic vibration level taken 
into account, the critical frequency of the plate is decreased somewhat. 

 

 
Figure 3-21.  Frequency response of resistance to radiation of steel 

rectangular hinged 3.6×1.8 m2 plates. 
1 - hpl = 2•10-3 m 
2 -- hpl = 4•10-3 m; κГц - kHz. 
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Figure 3-22.  Frequency response of air noise level in a ship room related to 

acoustic vibration of floors reinforced with stiffening ribs. 
1 - calculation with no stiffening ribs considered [6] 
2 - calculation with ribs considered 
3 - experiment [6]; ДБ– dB; кГц - kHz. 

 

Therefore, to lower the sound radiation of ship area enclosures, their thickness 
(flexural rigidity for ribbed partitions) is to be decreased, and materials are to be selected 
having lower speed of dilatational waves (with the partition area dimensions unchanged). 

Sound-insulating boards [6] provide the primary means of lowering the acoustic 
radiation of room partitions.  Parameters of a ship structure on which such a board is 
placed have no impact on its acoustic effectiveness.  When selecting board attachment 
places, the need for ensuring minimal levels of vibration of a board’s outward plates is to 
be borne in mind.  This could be achieved by attaching a board to the partitions 
reinforcing framing, and not to the plating between the framing elements.  This is dictated 
by the fact that, at frequencies above the first resonance frequency of flexural vibrations 
of plates between neighboring stiffening ribs, the amplitudes of the latter’s vibrations are 
5-20 dB lower as compared to the amplitudes of plate vibrations [6]. 

If the evaluation of sound power radiated by a flexurally-vibrating pipeline is 
required, Eq. (1.34) may be suitable.  To lower the sound radiation of a pipeline, 
decreasing its diameter and amplitude of flexural vibration is advisable.   

3.4 Sound Insulation of Ship Structures 
For acoustic waves (air-borne sound) incident on a room partition, part of these 

waves’ energy passes through them (i.e. transmitted.  The remaining energy of the waves 
reaching the partition is reflected from and absorbed in it. 

Reflection of acoustic energy from a partition is traced to differences in the 
impedance between the partition and environment in contact with the partition.  The 
larger the impedance difference, the greater is the reflection. 

The sound insulation of an enclosure is characterized by the ratio of the acoustic 
energy reaching the enclosure and the energy passing through it.  In line with the above, 
sound insulation for a partition is [5] 
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where τ -- coefficient of acoustic energy passing through the partition; r - coefficient of 
acoustic energy reflection from the partition; δ -- coefficient of acoustic energy 
absorption in the partition.  The equation τ = 1 - r - δ is derived from the law of energy 
conservation. 

Sound insulation phenomenon can be explained as follows.  The sound pressure 
of air-borne noise originating in a room acts upon an enclosure driving it into vibration.  
In turn, the structural vibrations of the enclosure cause radiation of some acoustic energy 
into the adjacent room, resulting in the generation of air-borne noise in this room.  This 
explanation of partition sound insulation facilitates the understanding of the physical 
phenomena occurring in the process. 

Sound insulation of an enclosure, modeled as a rectangular plate with hinged 
edges is divided in three regimes by the frequencies ƒp1 and ƒcr (ƒp1 - first resonance 
frequency of the enclosure’s flexural vibrations, determined by Eq. (2) from Table 1.5, 
ƒcr - frequency of sound and flexural wavelength coincidence).  At frequency ƒ < ƒp1, the 
plate impedance is stiffness-like, and, therefore, the amplitude of the plate vibrations, 
generated by the incident sound pressure, and the radiated sound pressure increase as 
frequency increases (range A, see Fig. 3.23). 

At frequencies ƒp1 < ƒ < ƒcr, enclosure radiation is governed by radiation of λfl/4-
wide band segments on the plate edges.  The magnitude of radiated acoustic energy is 
proportional to the above band width and amplitude of acoustic vibration.  Since λfl 
diminishes as frequency rises, sound radiation of the enclosure gets lower and sound 
insulation increases. 

The sound radiation of flexurally vibrating structures within the given frequency 
range depends upon boundary conditions, and, therefore, the sound insulation of these 
structures also changes as conditions do.  The radiation of a structure is relatively 
independent of the internal loss of vibration energy in the partition since, as can be 
demonstrated by calculation, this loss is negligible as compared to losses related to sound 
radiation of the structure (range Á). 

At frequency ƒ > ƒcr, the entire enclosure surface is radiating.  Therefore, its 
radiation increases and, therefore, its sound insulation diminishes.  The sound radiation of 
flexurally vibrating structures at frequency ƒ > ƒcr is virtually independent of the 
boundary conditions since the entire structure surface radiates. 

The resultant loss factor is governed by the enclosures sound radiation and is 
inversely proportional to frequency (with ƒ > ƒcr) and becomes smaller than the internal 
loss factor for the enclosing structure.  So, rise in this factor adds to sound insulation of 
the enclosure as the quantity of vibration energy absorbed in the enclosure increases 
(range Â). 

 

. 
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Figure 3-23.  Frequency response of sound insulation of a ship room 

enclosure.   
1 - calculation by Eq. (3.37) 
2 - calculation by Eq. (3.38) 
3 - calculation by Eq. (3.39); slope of 7.5  dB/octave. 

 

At frequency ƒp1, mechanical impedance of the enclosure is a minimum.  
Therefore, the amplitude of acoustic vibration resulting from the sound pressure acting 
upon the enclosure is maximum at this frequency and sound insulation is minimum. 

At frequency ƒcr, we have the maximum radiating ability of the structure.  What 
follows is sharp drop in sound insulation of the enclosure at this frequency. 

Sound insulation of the enclosure both at frequency ƒp1 and ƒcr is proportional to 
internal loss factor of the enclosure.  Typical frequency response for enclosure sound 
insulation and the distinctive frequency ranges A, b and B are shown in Fig. 3.23. 

Sound insulation of the enclosure represented by a plate without stiffening ribs 
(without sound-absorbing coatings and sound-insulating boards) in À frequency range 
equals [5] 
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where mpl - enclosure mass per area unit.  At frequency ƒ = ƒp1 (ω = ωp1) 
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where ηin - internal loss factor of the enclosure including loss as the result of vibration 
energy leakage through the enclosure edges. 

In the frequency range Á, sound insulation of the enclosure is governed by the 
mass law; with diffuse acoustic field in a room, this law is represented as [5] 

                         dBfhR plpl )101(5.14 2−⋅+= ρ                                                (3.38) 

where hpl - enclosure thickness ( in m.); ρpl - enclosure material density, kg/m3; ƒ -- 
frequency, Hz.  Equation (3.38) is the result of many measurements’ data processing. 
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In frequency range Â, with loss factor ηin known, sound insulation of the enclosure 
can be determined by Eq. [29] 
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Ship room partitions in the form of homogeneous plates are seldom used.  In most 
cases, they are plates reinforced with stiffening ribs on which sound insulation treatments 
are also placed.  Such treatments include sound-absorbing materials, sound-insulating 
boards, vibration-absorbing coatings, and combinations of the above. 

 
Figure 3-24.  Frequency response of ship room enclosure sound insulation 

facilitated with various means. 
(а) - reinforcement of the enclosure with stiffening ribs 
(б) - application of sound-absorbing material 
(в) - application of vibration-absorbing coating 
(г) - placement of sound-insulating boards. 
1 - enclosure without stiffening ribs 
2 - enclosure with stiffening ribs 
3 - enclosure without sound-absorbing material 
4 - enclosure with sound-absorbing material applied 
5 - enclosure without vibration-absorbing coating 
6 - enclosure with vibration-absorbing coating 
7 - enclosure without board 
8-- enclosure with board without sound-absorbing material 
9 - enclosure with board and sound-absorbing material in-
between; frequency in Hz. 

 

Reinforcement of plates with stiffening rib framing affects their sound insulation 
considerably.  An increase in the structure's flexural rigidity raises its resonance 
frequencies of flexural vibrations, including first frequency ƒp1.  As a result, the sound 
insulation of the enclosure at frequencies below ƒp1 is considerably enhanced (Fig. 3.24, 
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a).  In the remaining frequency range, sound insulation of the enclosure decreases a bit 
with mounting of stiffening ribs on it.  This occurs due to an increase in the flexural 
rigidity of the structure and respective lengthening of flexural waves.  This translates into 
an enlargement of the area of radiating segments and sound radiation of the enclosure as 
a whole.  The vibration excitability of the enclosure by the incident air-borne sound 
pressure remains virtually unchanged as it is governed by mechanical impedance of 
segments of plates positioned between neighboring stiffening ribs. 

 
Figure 3-25.  Frequency response of sound insulation of a 1.2×1.4 m2 

aluminum panel. 
1 - uni-directional stiffening rib 
2 - bi-directional stiffening ribs; кГц - kHz. 

 

As proved by the experiment [13], sound insulation of an enclosure decreases 5-
10 dB at frequency ƒ > ƒp1 due to reinforcement of the enclosure with stiffening ribs.  
Sound insulation of such structures is practically identical with stiffening ribs available in 
one and two directions alike (Fig. 3.25) [37].  Note that change in ƒp1 with reinforcement 
of real-dimension enclosures is largely beyond standardized frequency range (ƒp1 < 
63Hz). 

To enhance sound insulation of an enclosure, a layer of a sound-absorbing 
material is usually applied to its internal surface (as viewed from the noise source).  Use 
of this means lowers levels of sound pressure acting upon the structure by absorbing 
some energy when sound penetrates the material.  Besides that, positive effect is achieved 
through some decrease in sound pressure levels in the room where the noise source is 
situated that is made possible by drop in intensity of acoustic energy reflection from the 
room enclosures. 

Sound-absorbing material layer has a positive impact on an enclosure’s sound 
insulation starting from frequencies at which its thickness becomes comparable to length 
of an acoustic wave propagating over the layer.  For real materials and structures of 
sound-absorbing coatings utilized in ship-building, the above frequencies lie beyond 
500Hz.  Sound insulation intensifies, as frequency rises, and equals 25-30 dB at high 
audio frequencies (see Fig. 3.24, б). 

By applying vibration-absorbing coatings to an enclosure, the internal loss of 
energy in the enclosure increases.  At frequencies above ƒкр at which sound radiation - 
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induced loss is lower than internal one, rise in the latter’s value as the result of the above 
coating application leads to proportional enhancement of sound insulation due to 
decrease in the enclosure’s vibration amplitude.  At frequency below ƒкр at which, with 
absence of vibration-absorbing coating, sound radiation - induced loss is prevailing, 
sound insulation is little boosted.  In real ship structures, application of a vibration-
absorbing coating enhances sound insulation of enclosures by 10-25 dB at frequency 
above ƒкр (see Fig. 3.24, в). 

Effective mean in boosting sound insulation is placing of sound-insulating boards 
on an enclosure’s internal surface (with respect to a guarded room).  A board is a light 
plate made normally of aluminum alloys, plywood and similar sheet materials, placed at a 
certain distance d from the enclosure surface.  This results in appearance of two partitions 
on the way of acoustic energy penetrating the enclosure that ensure jump in acoustic 
resistance -- namely, the enclosure itself and the board.  Magnitude of additional sound 
insulation from the board is generally governed by the rules similar to those analyzed 
above for enclosures. 

However, the presence of an air gap between the enclosure and the board adds 
some peculiarities to their aggregate sound insulation.  These are related to resonance 
phenomena originating in the structure.  These phenomena are traced primarily to a 
resonance of the mass of plates forming the structure and the air compressibility in the 
gap between them (frequency ƒa,i.).  They are also traced to resonances of air layer when 
an integral number of  acoustic wavelengths fits into the air gap (frequencies  i = 1, 2, 3, 
...). 

Frequency ƒa,0 is determined by the equation [5] 
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where d - distance between a board and an enclosure, m (meters); mpl,1 and mpl,2 - surface 
mass of the enclosure and the board, kg/m2.  Frequency ƒa,i = ic0/(2d), i = 1, 2, 3, ...  At 
the given frequency, sound insulation of the structure weakens until it totally disappears 
(see Fig. 3.24, г). 

To eliminate the board’s negative effect on sound insulation in the gap, sound-
absorbing materials are placed between the board and the enclosure, and structures are 
damped out with vibration-absorbing coatings.  In this case, the sound insulation 
increases due to the boards additionally by 20-30 dB at high frequencies.  The effect 
manifests itself from 100-200 Hz upward. 

Use of a board with a layer of a sound-absorbing material between the board and 
the enclosure plus damping of both with vibration-absorbing coatings provide the best 
way of sound insulation of a ship room enclosure. 

The effectiveness of a board is suppressed by a short-circuiting effect (shunt 
effect) on it because of the attachment of the board to the enclosure.  Attachment makes 
so-called sound bridges through which a considerable portion of acoustic energy is 
transmitted.  To lower this transmission, attachment fittings incorporate inertia and elastic 
elements. 
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Introducing higher compliance of the enclosure edges helps add a bit to sound 
insulation as this lowers their sound radiation.  According to [5], sealing of enclosure 
edges with elastic filler boosts the enclosure’s sound insulation at frequency below ƒcr by 
3-4 dB. 

The procedure for engineering calculation of sound insulation of ship room 
enclosures is described in [28].  Specific structures, materials used and their sound 
insulation values are given in [5, 28]. 
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4   DESIGN MEASURES FOR LOWERING OF SOUND VIBRATION   

4.1   Selection of Acoustically-Expedient Ship Architecture 
Ship architecture directly affects the acoustic and vibration situation on board.  

Selection of acoustically expedient ship architecture is the most important stage of a ship 
acoustic design.  Incorrect architecture with regard to the ship’s acoustics in the design 
phase is extremely difficult to alter when no alteration seems feasible on board a built 
vessel. 

The selection of acoustically expedient ship architecture incorporates the 
following: selection of a power plant, arrangement of the vibro-active equipment, 
arrangement of accommodation spaces, selection of a propeller aft end design, 
distribution of inlet and exhaust devices, ventilation and other ship systems.  When 
considering each of the above, it is necessary to choose equipment and devices producing 
minimal noise and vibration, and to separate accommodation spaces and sources of noise 
and vibration as far apart from each other as possible. 

The selection of a ship power plant and systems is dictated by their service 
properties and acoustic characteristics.  Note that purchasing of the best in terms of 
service properties but noise-producing and more vibroactive plants may prove 
economically inexpedient as lowering of noise levels in rooms to meet sanitary 
requirements will take costly noise-combating measures and equipment. 

The power plant of propeller-driven ships is normally placed in the stern section 
since moving it to the forward end is economically unreasonable through lengthening of a 
propeller shaft and other reasons.  When arranging the specific components of the power 
plant, one must ensure optimal conditions for engine room operators.  Diesel-generators 
are to be placed in areas separate from the main engines so that staff maintaining these 
engines can work with lower noise levels when the ship is dockside.  It is expedient to 
position the diesel-generators in separate rooms to ensure that repair and servicing of one 
has no noise effect on the other [11].  Less noisy auxiliary machines (converters, pumps, 
etc.) are also to be placed in separate areas insolated from the high noise and vibration 
levels of the internal combustion engine (ICE). 

The arrangement of accommodation spaces (cabins, posts, dining rooms, medical 
and other rooms where extreme acoustic habitability requirements are to be met) is 
especially important when selecting acoustically expedient ship architecture.  The 
acoustic situation on board is largely dependent on this arrangement.  Data demonstrates 
that the optimal arrangement of accommodation spaces with respect to engine rooms and 
other sources of intense vibration and noise is enough to lower noise levels in these areas 
by 25 dB and more [11]. 

Variants of arrangement of accommodation spaces provide the basis for the 
following ship categories: large length dimensioned cargo vessels (tankers, dry-cargo 
ships, etc.), passenger ships, and small-displacement cargo vessels. 

The optimal arrangement of accommodation spaces on large length dimensioned 
ships is their concentration in a superstructure placed on the ship’s forward end far 
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removed from engine and diesel generator rooms.  With the distance between living areas 
and engine rooms on the order of 30-40 m., lowering of sound vibration and related air 
noise by 20-25 dB can be ensured through damping of vibrations along the hull length 
alone.  But this makes cables and other communications longer.  Therefore, the selection 
of accommodation spaces arrangement on large length dimensioned ships should be 
motivated both acoustically and economically. 

If the above arrangement proves impossible or inexpedient, follow 
recommendations given below for small-displacement cargo vessels with a stern 
superstructure. 

The arrangement of accommodation spaces on passenger ships has one 
peculiarity: these areas occupy most of the hull and superstructures.  This prompts the 
following recommendations for the architectural selection for this type of ship. 

There should be a buffer zone of non-living areas (storage rooms, cofferdams, 
bathrooms and laundry, corridors, etc.) separating the noisy areas (engine and diesel-
generator rooms and their trunks, rooms close to propellers) and accommodation spaces.  
Adjacent to a buffer zone rooms with less stringent acoustic habitability requirements 
(galley, service and public rooms) are to be located.  Elevators, fans, air conditioners, and 
other sources of acoustic vibration are not to be installed on the enclosures (walls) of 
accommodation spaces.  Doors leading to engine and diesel-generator rooms are not to be 
positioned in close proximity to accommodation space entrances unless there are sound-
insulating lock chambers.  Buffer zones should be used to separate noisy areas from 
accommodation spaces both in the horizontal and vertical planes (Fig. 4.1). 

 

 
Figure 4-1.  Buffer zone arrangement plan on board. 

1 - buffer zone 
2 - accommodation spaces 
3 - engine room trunk 
4 - engine room. 

 

Selection of small-displacement vessel architecture provides the most difficult 
challenge for low-noise ship designers since sufficient separation of accommodation 
spaces from noisy ones is impossible because of the limited length of the hull.  The best 
solution of this problem might be to move accommodation areas out to the superstructure, 
which is to be as far away from engine and diesel-generator areas as possible.  However, 
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there is no choice sometimes but to place the superstructure right above those areas.  In 
this case there could be three variants of the superstructure placement. 

Traditionally, the engine room trunk extends through the superstructure.  This 
dictates providing for buffer zones between accommodation spaces in the superstructure 
and the engine room with its trunk (Fig. 4.2, a).  But this does not serve full acoustic-
improvement purpose and a noise-suppressing means complex is still needed to meet 
sanitary (habitability) requirements in the accommodation spaces. 

 

 
Figure 4-2.  Drawings of superstructures with accommodation spaces at 

the aft end. 
а - superstructure incorporating engine room trunk 
б - superstructure with engine room trunk designed for outside 
placement 
в - spring-mounted superstructure. 
1 -engine room 
2 - engine room trunk 
3 – superstructure 
4 - vibration-insulating shock absorbers. 

 

Placing the engine room trunk outside of the superstructure produces the best 
results.  In this case, a buffer zone available between the engine room and the 
superstructure is enough (Fig. 4.2, а ).  Noise-suppressing measures are still necessary for 
the accommodation spaces on the lower decks of the superstructure.  «Floating» floors 
are to be used there [28].  Besides, with the coincidence of the resonance frequencies of 
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longitudinal vibrations of a superstructure (which is shortened), and frequencies of the 
hull’s vibrations due to ship’s motion, adding to the superstructure’s shear rigidity may 
be necessary.  This could be achieved, for instance, by thickening of the side walls, their 
combination with the ship sides, ensuring continuity of longitudinal vertical links of the 
superstructure, etc. 

Mounting of a superstructure on vibration-insulating shock absorbers provides the 
most powerful way of lowering vibration and vibration-related noise in rooms (Fig. 4.2, 
а).  Attempts at mounting of up to 2,500-ton superstructures on vibration-insulating 
shock absorbers have proved successful [51, 59].  Measuring noise levels on similar-type 
vessels, one having the superstructure mounted in a traditional way and the other - on 
shock absorbers, revealed noise reduction of approximately 10 dB on the superstructure’s 
first deck.  On other decks, spring-mounting effectiveness was higher. 

To lower intensified longitudinal and lateral vibration of the superstructure, 
vibration dampers are sometimes used.  Calculation of a superstructure’s spring-
mounting parameters can be done in accordance with [11]. 

The selection of a propeller and aft end design is necessary to reduce 
hydrodynamic forces acting on the ship hull from the propeller and causing acoustic 
vibrations in it.  Reductions may be achieved by: (1) widening the gap between the 
propeller blade edges and the hull plating; (2) use of multi-blade propellers including 
more distinctively crescent-shaped ones (skewing); (3) shaping the outline of the stern in 
a way that brings minimal distortion to the inflow velocity field of the propeller disc; (4) 
use techniques allowing for equalization of the flow velocity field into the propeller disc.  
Reference [25] provides more detailed information on selection of a propeller and the aft 
end type. 

Optimal distribution of intake and exhaust devices on the upper deck improves 
acoustic environment on the conning bridge, promenade and service areas of the ship 
deck and in accommodation spaces on it.  The above devices should be positioned as far 
away from these areas of the upper deck as possible and are to be spaced for safe 
direction of their maximum sound radiation. 

4.2   Separation of Ship Structures Vibration Resonance Frequencies from 
Driving Force Frequencies 

During excitation of ship structures at their resonance frequencies, their vibrations 
intensify through diminishing of mechanical resistance (impedance).  At the same time, 
vibration spectra of many vibroactive sources contain discrete components at specific 
frequencies.  When these frequencies coincide with the resonance frequencies of ship 
structures, the latter may acquire inadmissibly high vibration levels. 

The amplitude of vibrational velocity for resonance flexural vibrations of a rod- or 
finite dimension plate-type ship structures is, according to Eqs. (3.13) and (3.15): for a 
rod )/(2 ηωξ rodp MF=& and for a plate )/(4 ηωξ plp MF=& . 

The acoustic vibration level of a ship structure with resonance flexural vibrations 
is proportional to the amplitude of the driving force F and inversely proportional to 
frequency ƒ, the structures mass M, and loss factor η.  With the force magnitude F 
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constant, lowering the structure’s resonance vibration level requires the addition of 
weight to the structure, and an increase in the loss factor.  A considerable increase in a 
ship’s structural weight is impossible in practice, but an increase in loss factor η may 
produce better results. 

 

 

Figure 4-3.  Frequency response of vibration speed amplitude of a system 
with one degree of freedom (see Fig. 3.1, a) in the vicinity of its 
resonance frequency. 

The mutual separation of dangerous resonance vibration and driving force 
frequencies is the best way of eliminating such resonance vibrations.  When separating 
the above frequencies, the structural vibration amplitude diminishes at a rate dependent 
on loss factor η.  This is seen from the expression for vibrational velocity with one 
degree of freedom (see Fig. 3.1, a). 

)]1(1[ 2 ηµω
ξ

jMj
F

Z
F

f +−
== −

&                                           (4.1), 

where Z - input mechanical impedance of a system; M - mass; µƒ = ƒF/ƒP - coefficient of 
separation of the driving force frequency ƒF from the resonance frequency ƒP of the 
system. 

Equation (4.1) can be used for both rod- and plate-type structures resulting from 
the fact that systems with distributed parameters such as these consist of innumerable 
systems with one degree of freedom.  Expression (4.1) is illustrated in Fig. 4.3.  At the 
resonance frequency (ƒF = ƒP), the amplitude of the system’s vibrational velocity is 
maximum ( maxξξ && = ). 

For specified decrease of the system’s vibrational velocity ξξα && /max=  to be 
achieved, the separation µƒ, required for this goal to be achieved is found from the 
equation 

1)
4

1(
4

1
22

2
22

2 −+±+=
ηααηηαµ f  

considering that, in practice, α2η2 << 4, then 112 −±≈ αµ f .  For example, with α2 = 

10, ηµ 312 ±≈f , therefore, with η = 0.05, 15.01±≈fµ . 
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So, to ensure the given effectiveness of separation of frequencies ƒF  and ƒP, they 
are to differ by 7% (with η = 0.05). 

The dependence of the necessary frequency separation µƒ on the value of the 
required reduction of amplitude of the system’s vibrational velocity α  for different loss 
factors is shown in Fig. 4.4. 

Equations for resonance frequencies of systems with distributed parameters (see 
Table 1.5) show that an increase in these frequencies’ ordinal number shortens the 
interval between them.  That is why possibility of separation of ƒF  and ƒP frequencies 
with a specific lowering of the system’s vibration amplitude remains until a certain 
ordinal number imax is reached at which distance between the neighboring resonance 
frequencies ∆ƒmin ensures required lowering of amplitude α (Fig. 4.5, a). 

 

 

 

Figure 4-4.  Dependence of the required separation µƒ of driving force 
frequencies and resonance vibrations of a system а) for a one 
degree of freedom system with different loss factors η. 

 

 

Figure 4-5.  Charting of value ∆ƒmin (α) and dependence of imax on parameter 
β (β).  
1 -- dilatational and torsional vibrations of a finite rod 
2 -- flexural vibrations of a finite rod 
3 -- flexural vibrations of a rectangular plate. 
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For dilatational and torsional vibrations of a finite dimension rod 
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for flexural vibrations of a finite dimension rod 
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for flexural vibrations of a rectangular plate 
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εi ; 

where operator E  means whole part of expression put in brackets; ε = (1 + β)/(1 - β); 
12/ 2 −≈ αηβ  (β2 << 1). 

Values of imax depending on parameter β are shown in Fig. 4.5, α.  The need to 
separate the resonance frequencies of dilatational and torsional vibrations is limited as 
compared to those of flexural vibrations due to the much lower density (sparsity) of the 
latter’s resonance frequencies.  With η = 0.05 and α2 = 10, for dilatational and torsional 
vibrations of a rod imax = 6, for flexural vibrations of a rod imax = 11, for flexural 
vibrations of a plate imax = 12. 

 

 

Figure 4-6.  Decrease of a structure’s vibration velocity dependent on the 
order of its resonance frequency under constant driving force. 
1 -- dilatational and torsional vibrations of a finite rod 
2 -- flexural vibrations of a finite rod 
3 -- flexural vibrations of a rectangular plate 
4 - required decrease of a structure’s vibration velocity;  in dB. 

 

A structure’s highest vibration velocity assuming equal driving forces occurs at its 
first resonance frequency.  As the order number of the resonance frequency increases, the 
vibration velocity at this frequency decreases inversely proportional to its value.  That is 
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why there is no need to separate all the resonance frequencies from the driving force 
frequencies. 

Figure 4.6 shows the dependence of a structure’s vibration velocity decrease on 
the increase of the resonance frequency order number i for various types of vibrations.  In 
practice, value 10 dB of lowering of resonance vibration amplitude is enough.  So, for 
dilatational and torsional vibrations of rods, the first three resonance frequencies are to be 
considered, for flexural vibrations of rods - the first two resonance frequencies; for 
flexural vibrations of plates - the first resonance frequency. 

Resonance frequencies of the above structural vibrations can be evaluated by 
respective equations from Table 1.5.  The following are examples for possible resonance 
frequencies of ship structural vibrations. 

Example 1.  Calculate the first resonance frequency of flexural vibrations of a steel 
mounting plate segment of a foundation limited by neighboring brackets (see Fig. 1.3,a).  
Width of the mounting plate l2 = 0.1 m, distance between brackets l1 = 0.3 m, the 
thickness of the mounting plate hpl = 0.01 m, 3 3 kg/m 108.7 ⋅=ρ , 411 Pa/m102 ⋅=E . 

Three edges of the above segment of the mounting plate are assumed to be 
hinged, the fourth one (external one) is free.  Equation (5) from Table 1.5 corresponds to 
these boundary conditions, and using it, we have 

 Hz.493
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Example 2.  Calculate the first resonance frequency of flexural vibrations of a ship 
room’s steel enclosure reinforced with five stiffening ribs (i = 5) vertically (along 
dimension l2).  Enclosure dimensions l1 = l2 = 2.15 m, plate thickness hpl = 0.006 m.  
Stiffening ribs from bulbous plate #10.  Edges are assumed hinged.  Equation (10) from 
Table 1.5 corresponds to these boundary conditions.  Enclosure weight M = 360 kg 
(framing accounts for 32% of M); ribs’ linear (running) weight mr2 = 7.44 kg; 

43 m Pa1028.3 ⋅⋅=plB ; 45
2 m Pa108.7 ⋅⋅=rB . 

According to the above equation, we have 
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The above examples of the calculation of ship structures’ resonance frequencies 
show that these frequencies may coincide with frequencies of some machine’s discrete 
components under certain circumstances.  Specifically, the first resonance frequency of a 
foundation’s mounting plate may coincide with the frequency of an electric mechanism’s 
magnetic vibration.  The first resonance frequency of an enclosure may coincide with one 
of the harmonics of a machine’s rotational frequency. 

Mutual separation of ship structural resonance frequencies and driving force 
frequencies may be carried out in two ways.  The first one is variation of driving force 
frequency (rotational frequency of vibration source).  This way is employed when, for 
instance, selecting a propeller rotation frequency to ensure no coincidence of this 
frequency and propeller blade frequency with calculated values of resonance frequencies 
(normally, of the first three ones) of the hull’s vibration. 

If a vibration source rotation frequency is not controllable that is typical for 
auxiliary mechanisms, there still is another way of separating this frequency from first 
resonance frequency of flexural vibrations of a ship structure on which the above source 
is mounted.  This way involves change of the resonance frequency. 

The respective change in ship structure’s flexural rigidity provides the most 
effective technique to ensure change of resonance frequencies of these structures’ 
flexural vibrations.  A two-fold change in this rigidity translates into a proportional up to 
40% change of the resonance frequency.  Reinforcement of an enclosure (whose 
resonance frequency of flexural vibrations was calculated above in Example 2) with the 
use of six stiffening ribs of bulbous plate #8 that are perpendicular to the original framing 
boosts the resonance frequency up to 122 Hz, i.e. by 11%, with a 20% increase in the 
enclosure weight. 

Reinforcement of the same enclosure by adding to the rigidity (stiffness) of uni-
directional ribs mounted on it takes a lesser weight increase with the same frequency 
change.  For example, use of bulbous plate #16a stiffening ribs in an enclosure provides 
an increase of the first resonance frequency of the enclosure’s flexural vibrations by 28% 
(ƒ1 = 140.8 Hz), as compared to example 2, with the same increase in weight (by 20.4%). 

An increase in the flexural vibrations’ resonance frequencies of a foundation’s 
mounting plate elements may be achieved by strengthening its free edge with a strap.  A 
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comparison of Eqs. (2) and (5) of Table 1.5 shows that this method nearly triples the first 
resonance frequency of flexural vibrations of this foundation element. 

To eliminate ship structures’ resonance vibrations, the following methods are 
utilized: 

• selection of machines with constant rotation rate whose discrete component 
frequencies of vibrations differ from the above-listed resonance frequencies of 
vibrations of ship structures on which those machines are mounted; magnitude 
of this difference ∆ƒ is selected considering resonance frequency calculation 
error (normally within 10%) and necessary lowering of resonance vibration 
amplitude (see Fig. 4.4); in practice, ∆ƒ = 20 ÷ 30% is regarded as sufficient; 

• change in rotation frequency for variable rotation rate machines so that it 
differs from resonance frequencies of ship structure vibrations at least by ∆ƒ = 
20 ÷ 30%; 

• change in ship structures’ resonance frequencies, for instance, through the 
structure reinforcement as much as to ensure difference of these frequencies 
from frequencies of discrete components of mechanism vibrations at least by 
∆ƒ = 20 ÷ 30%; 

• vibration-absorbing means. 

4.3   Use of Anti-Resonance Phenomena’s Advantageous Effect in Ship 
Structure Elements 
At the anti-resonance frequencies, of various ship structures’ its mechanical 

impedance increases considerably.  Therefore, their vibration amplitude diminishes.  If 
the anti-resonance frequency of a mounting structure closely or exactly matches the 
frequency of a discrete component of the mechanism, the vibration, level of acoustic 
vibration of this structure at the given frequency is considerably decreased. 

The resistance (impedance) of structures at the anti-resonance frequencies of 
flexural vibrations is determined by equations: 

for rods of length rodl  

rod

rodflrod
F lf

cm
Z

ηπ2
,

max =  

for plates of Spl area 

pl

plflpl
F Sf
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ηπ 33
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,
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32
= . 

Since max
24

,
2

, , and , Fplflrodfl Zfcfc ∝∝  for rods does not depend on the value of 
the anti-resonance frequency; for a plate, it is inversely proportional to this value. 

The value of anti-resonance frequencies of flexural vibrations for rods (for 
example, pipelines) and plates (bulkheads, floors) fixed along edges and excited in the 
center can roughly be determined by the equation 
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K,3,2,1,2
1,

2
, =+≈ +− ifff iresiresresanti          (4.2). 

Consider a foundation mounting plate whose mechanical compliance is shown in 
Fig. 3.7, its first anti-resonance frequency is 1080 Hz, calculated using Eq. (4.2) and this 
agrees well with experiment. 

The maximum effectiveness of adjusting the anti-resonance frequency of a ship 
structures flexural vibrations to the driving force frequency is: 

for a rod 
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Let us consider a few examples of potential effectiveness of adjusting the anti-
resonance frequency of ship structures to driving force frequencies. 

Example 3.  For a mounting plate element of a support foundation with parameters  
corresponding with Example 1 from § 4.2, we have Hz 10801 ≈−resantif according to 

Equation (4.2).  With 1.0 and sec/m 1008.1 2252
, =⋅= ηplflc , 

dB) (27.8 7.24
03.01.0)080.1(

1008.18
22

5

max =
⋅⋅

⋅⋅
=Ε

π
. 

The value maxΕ  for this case is in satisfactory agreement with the experimental 
results from Fig. 3.7. 

Example 4.  For a ship room enclosure with parameters corresponding to Example 
2 from § 4.2, we have Hz 2301 ≈−resantif , according to Eq. (4.2).  With 

1.0 and sec/m 105.5 2252
, =⋅= ηplflc  (the enclosure has vibration-absorbing coating 

applied), 

dB) (25 18
03.01.0)080.1(
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22

5

max =
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⋅⋅
=Ε

π
. 

The value maxΕ  obtained also agrees well with the experimental results from 
Fig. 3.7. 

Example 5.  For a steel pipe with 48-mm internal diameter mounted on rigid 
suspensions placed at m 1=rodl  from each other, the pipe walls being 0.004-m-thick, we 
have ƒres1  = 18.8 Hz and ƒres2  = 75.3 Hz, according to Eq. (1) of Table 1.5.  Equation 
(4.2) gives ƒanti-res1 ≈ 38.8 Hz.  With m/sec 90, =rodflc  and η = 0.1 (pipe has vibration-
absorbing coating glued around it), 
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The above examples show that adjustment of the anti-resonance frequencies of 
ship structures’ flexural vibrations to the driving force frequencies causes a significant 
lowering of those structures’ vibration level. 

The maximum effectiveness maxΕ  is achieved only when the driving force 
frequency is in close proximity to the anti-resonance frequency.  As these frequencies get 
further away from each other, the effectiveness of the anti-resonance frequency 
adjustment to the driving force frequency ƒF will decrease according to the expression 
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With admissible lowering of maxΕ  by 3 dB, frequency band ∆ƒ, in which 

resantiff −=∆2/Ε≥Ε≥Ε η is max .  That is why utilizing the above ship structures’ 
acoustic vibration lowering technique is only possible when the deviation of the rotation 
frequency of a structure-mounted machine is within %1002/ ⋅η  from the rated value. 

The effective use of the adjustment of the ship structures’ anti-resonance 
frequencies to the driving force frequency requires an accurate determination of the anti-
resonance frequency values, and these are difficult to calculate given the accuracy of 
currently available methods (about 10%).  Therefore, experimental determination of the 
anti-resonance frequencies on ships or their scale models should be considered as more 
reliable.  Similar to resonance frequencies, adjusting the anti-resonance frequencies is 
better performed through changes in these structures’ flexural rigidity (stiffness). 

4.4 Increase in Static Rigidity (Stiffness) of Ship Structures 
At frequencies below the first resonance frequency ƒres 1 of the structures’ flexural 

vibrations, an increase in their rigidity (stiffness) causes an increase in these structures’ 
mechanical impedance resulting in a lowering of their vibration excitability.  By adding 
to the thickness or reinforcing the plates’ free edge with a strap, this method allows a 
decrease at specific frequencies of the vibration excitability of foundations’ mounting 
plates.  According to Eq. (3.4) and Eqs. (2), (3) of Table 3.1, a doubling of the thickness 
causes an eight-fold increase in the foundation impedance, and reinforcement of a free 
edge - a five-fold increase. 

With increasing flexural rigidity (stiffness) through a mounting plate thickening, 
the foundation resistance (impedance) also increases at frequencies above ƒres1.  
According to Eq. (2) of Table 3.2, a doubling of the plate thickness causes a four-fold 
increase in the foundation’s mean resistance (impedance) at frequencies above ƒres1.  
Reinforcement of a constant-thickness mounting plate’s free edge with a strap has no 
impact on the foundation’s mean resistance (impedance) at frequencies above ƒres1. 
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The frequency response curves of mechanical impedance of a foundation with 
parameters corresponding to Fig. 3.6 are shown in Fig. 4.7.  A doubling of its mounting 
plate thickness and reinforcement of the plate’s free edge with a strap are considered. 

When an acoustic vibration source is mounted directly on the hull structure (i.e. 
no foundation), decreasing the vibration excitability requires an increase in the structure’s 
flexural rigidity (stiffness).  Minimizing the structure’s weight is accomplished by adding 
to its rigidity by increasing the reinforcing framing.  An increase in the mechanical 
impedance of such a structure is proportional to the increase in its flexural rigidity 
(stiffness) B at frequencies below ƒres1 and approximately B  at frequency over ƒres1. 

In the case of a floor without ribs, its thickening translates, as it does with a 
foundation’s mounting plate, into an increase in mechanical impedance proportional to 

3
plh  at frequencies below ƒres1 and 2

plh  at frequency above ƒres1. 

 

 

Figure 4-7.  Frequency response of input mechanical impedance for a 
foundation with parameters corresponding to Fig. 3.6 in a 
mounting plate’s various structural patterns. 
1, 2 - external edge of the mounting plate is free 
3 - external edge of the mounting plate is strap-reinforced 

rZ  - N • sec/m, кГц - kHz. 
 

Increasing the ship structures’ flexural rigidity, also leads to changes not only in 
mechanical impedance but other vibro-acoustic properties of the ship structures, such as 
vibration conductivity, sound radiation ability and sound insulation, as well. 

Frequency dictates the way flexural rigidity influences a structure’s vibro-acoustic 
properties.  Let us single out the following frequencies to govern the vibro-acoustic 
properties of ship structures: 

first resonance frequency ƒres1 of a structure’s flexural vibrations; 
first resonance frequency ƒpl, res of a segment of the plate limited by adjacent  

stiffening ribs; 
critical frequency ƒcr; 
frequency, above which the reinforcing framing no longer influences the wave 

properties of the structure ƒ02. 
 

For rib-less structures, only frequencies ƒres1 and ƒcr matter. 
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The given frequencies limit typical frequency ranges for structures reinforced 
with stiffening rib framing: ƒ<ƒres1 - range A, ƒres1<ƒ<ƒpl,res1 - range Б,  ƒpl,res1<ƒ<ƒ02 - 
range В, ƒ02<ƒ<ƒcr - range Г, ƒcr<ƒ - range Д, for ribless structures: ƒ<ƒres1 - range А, 
ƒres1<ƒ<ƒcr - range Б,  ƒcr<ƒ - range В. 

Dependence of ship structures’ vibro-acoustic characteristics on their flexural 
rigidity for ribless plates with a change of thickness is shown in Table 4.1, and for ribbed 
plates with variation of reinforcing framing rigidity - in Table 4.2.  In the tables, sign «+» 
means improvement of a structure’s vibro-acoustic characteristic, sign «-» means its 
deterioration, sign «0» means no impact of rigidity variation on a characteristic value.  
Specifically, for vibration excitability, vibration conductivity and sound radiation ability, 
sign «+» means lowering of their values, but for sound insulation - increase in values.  
The upper sign corresponds to an increase in rigidity, the lower one - to its decrease. 

Table 4-1.  Dependence of vibroacoustic characteristics of ribless 
structures on their flexural rigidity (see Fig. 3.23). 

Vibroacoustic characteristic Characteristic variation in frequency range 

 A Б В 

Vibration excitability (mechanical 
impedance) 

         ±           ±           ±  

Vibration conductivity          m            m           m  

Sound radiation ability           0           m            0 

Sound insulation           ±            ±           ±  

 

Table 4-2.  Dependence of vibroacoustic characteristics of structures on 
flexural rigidity of reinforcing framing. 

Vibro-acoustic characteristic Characteristic variation in frequency range 

 À Б В Г Д 

Vibration excitability: 

excitation into framing 

excitation into plate 

 

±  

±  

 

±  

±  

 

±  
 0 

 

    0 

    0 

 

    0 

    0 

Vibration conductivity: 

excitation into framing 

excitation into plate 

 

      m  

m  

 

m    
±  
 

 

    m   
     0 

  

 

    0 

    0 

 

   0 

   0 

Sound radiation ability       0       m      m    0    0 

Sound insulation ±  ±      m     0    0 
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Variation of a ship structure’s flexural rigidity (stiffness) has an ambiguous 
impact on the vibro-acoustic characteristics.  Adding to the rigidity (stiffness) of the 
framing to reinforce ship room enclosures in ƒres1 -- ƒpl.res1 frequency range (Á) lowers 
vibration excitability but all other vibro-acoustic characteristics deteriorate at the same 
time, while in frequency range above ƒcr all characteristics of the given enclosure remain 
unchanged.  Therefore, when changing ship structure’s flexural rigidity (stiffness) to 
improve one or several vibro-acoustic characteristics, make sure that the other 
characteristics do not deteriorate.  Bear in mind that variation of a structure’s flexural 
rigidity causes subtle changes in its typical frequencies ƒres1 and ƒcr too. 

4.5   Means of Lowering Vibration Conductivity of Ship Structures 
To lower the vibration conductivity of ship structures, use the following methods 

that are based upon alteration of the geometric parameters of these structures: 

adding to the vibration insulation of ship structure links (bulkheads, floors, hull 
plating), through which acoustic vibrations are transmitted; 

use of vibration inhibiting masses and other similar purpose means; 
non-periodicity in the location of stiffening ribs (frames). 

 

 

Figure 4-8.  Frequency responses of vibration insulation of a spaced 
vertical structure link and a cross link; Дб - dB; кГц - kHz. 

Increasing the vibration insulation of ship structure links may be achieved by 
mismatching the mechanical resistance (impedance) of the structures forming the link 
resulting from a change in the flexural rigidity or thickness (in case of ribless structures).  
However, in most cases this involves increasing a structures weight and this is not always 
admissible in practice. 

An increase in the vibration insulation of a cross joint may be achieved by spacing 
vertical structures 1 of this joint at l-distance as shown in Fig. 4.8.  This joint 3 is more 
vibration-insulated as compared to cross link 4 through increase in mechanical 
impedance with respect to turn of horizontal structure 2 at the point of its connection with 
vertical structures.  An impedance increase occurs at frequencies at which no bending 
deformations originate in a segment of a horizontal structure bounded with vertical 
structure joints.  Such deformations are absent with .6/or    1 11 flfl lk λ≤≤   Frequency 

),34/( 2
10 lcf flB π≤ meets this condition. 
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At a higher frequency, a spaced vertical structure link is like two T-joints placed 
in series.  Their aggregate vibration insulation exceeds that of a cross joint.  Obviously, 
with frequency lowered, vibration insulation of a spaced vertical structure joint equals 
vibration insulation of a cross link.  This occurs at frequency )./(16 44

2
3
20 lchf pfl π≤  

Vibration insulation (VI ) of a spaced vertical structure link is determined by 
equations: 

in the frequency range Bfl ff 00 −   
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Figure 4-9.  Vibration-inhibiting mass (VIM) drawing. 

a) - VIM in a plate’s linear joint 
б) - VIM in plate’s T-joint 
в) - VIM with a section’s increased radius of gyration;  
г) - reinforced coaming 
1 -- vibration-inhibiting mass (VIM) 
2 - coaming. 
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With h1 = h2, use Eqs. (4.3) and (4.5) to get VI = 11 dB and VI = 17 dB 
respectively.  Therefore, the increase in vibration insulation of a spaced vertical structure 
link as compared to cross links’ vibration insulation is 6 dB.  Equations (4.3)-(4.5) are 
used for non-ribbed plate structures.  With ribbed plates, ratio 1221 / flfl cIcI  replaces 
(h2/h1)-2.5. 

Example of frequency response for vibration insulation of a spaced vertical 
structure link is offered in Fig. 4.8 for a joint of ribless plates h1 = h2 = 0.01 m thick with 
l = 0.05 m.  This drawing also gives frequency response for vibration insulation of a cross 
link of the same thickness plates. 

To obtain greater vibration insulation of a spaced vertical structure link at low 
frequencies, add to distance l between structures. 

Vibration-inhibiting masses (VIM) are massive blocks of rectangular or square 
sections placed on a plates’ butt joint along acoustic vibration path to insulate the  
vibration transmission (Fig. 4.9, a, á, â).  To produce maximum effect, make sure that the 
largest dimension of the masses cross section is considerably (at least six times) shorter 
than the shortest elastic wavelength, i.e. flexural wave propagating in the VIM section.  
This condition is met with inequality [19] 

2l1/l2 ≤ 105/α                                                      (4.6) 
where ;})2(67.1])2()104{[( 2/12

2
4/14

2
2

2
5 lflflf BBB ++⋅=α  l2 - half the smallest 

dimension of the VIM cross section, cm; ƒB - the upper frequency of a given range, Hz. 

The vibration insulation of a VIM placed in a linear (planar) connection of 
identical thickness plates (see Fig. 4.9, a) is, with respect to a diffuse field of flexural 
waves in a plate, 
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where mM - linear weight of the VIM, kfl,M - wave number of VIM flexural vibrations 
along the l1 dimension; kt M - wave number of VIM torsional vibrations; 2lk plfl=γ ; Mr – 
the radius of gyration of the VIM cross section about its rotation center, 

2
0

2
2

2
1 3/)( lllrM ++= ; l0 - distance between VIM section’s center of gravity and its 

rotation center.  For a VIM structure shown in Fig. 4.9, a, l0 = l1 and 3/)4( 2
2

2
1 llrM += . 

The propagation of plane flexural waves that form a diffuse vibration field in a 
plate is largely dependent on their angle of incidence to a VIM.  Figure 4.10,a shows the 
angular dependence of the amplitude squared of a plane flexural wave amplitude passing 
through a linear VIM.  There are two maximum values, i.e. T = 1, at the angles Tϕ  and 

flϕ .  Flexural wave energy passes through mainly at angles close to Tϕ  and flϕ  [19].  
These angles are determined by the equations plflMTT kk /sin ≈ϕ  and 

plflMflfl kk /sin ≈ϕ , i.e. by coincidence between a flexural wave trace length in a plate 
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and a flexural and torsional wavelength in the VIM.  These phenomena are analogous to 
the full transmission of a plane acoustic wave through an infinite plate at the so-called 
plate and acoustic wave numbers coincidence frequency.  Angle flϕ  for the given VIM 
does not depend on frequency ( Tϕ = 26° in Fig. 4.10, a) but the angle Tϕ increases with 
frequency ( Tϕ = 4° in Fig. 4.10). 

Increasing the VIM height and reducing its width 2l2, while satisfying condition 
(4.6) as well yields an improvement of VIM vibration insulation (with its weight 
unchanged). 

Comparison between calculated results for a VIM’s vibration insulation by Eq. 
(4.7) and those of an experiment is illustrated in Fig. 4.11 for a steel round VIM with 
radius l2 = 0.045 m welded to two steel plates with thickness hpl = 0.006 m and 1×1.5 m2 
in dimension.  One of the plates was driven with a wide-band vibrator, and both were 
partially submerged in sand to minimize reflection from edges.  Good agreement between 
calculation and experiment results is shown.  Use of one VIM yields about 10-20 dB in 
vibration insulation in the audio frequency range. 

Increasing the number of VIMs placed in parallel does not improve vibration 
insulation [40].  The reason is that, beyond the first VIM, flexural waves propagate 
mainly at the angles flϕ and Tϕ , and, therefore, pass through the next VIM virtually 
unimpeded. 

 

Figure 4-10.  Angular dependence of squared modulus transmission 
coefficient (through VIM) for plane flexural wave amplitude in 
linear (a) and T- (б) plate joints with mM = 45 kg/m, ƒ = 1 kHz, 
mpl = 48 kg/m2. 
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Figure 4-11.  Vibration insulation of a steel round VIM for a linear and T-

joint of plates. 
1 - Calculation for a linear joint by Eq. (4.7); --• -- experiment 
2 - Calculation for a T-joint by Eq. (4.9); o  -- experiment. 

 

Some improvement of aggregate vibration insulation can be achieved by placing 
VIMs, varying in weight and cross sectional shape, i.e. VIMs with different flϕ and Tϕ  
angles, one after another.  This could be done through a 90°-turn of one of the two 
identical (not square) VIMs.  A VIM rotated this way possesses a different flϕ  angle 
value while the Tϕ  angle remains virtually unchanged.  This may improve vibration 
insulation by approximately 5 dB in a wide frequency range [40]. 

Improvement of aggregate vibration insulation of several VIMs may also be 
achieved by disturbing their parallel alignment.  Plane flexural waves, having passed 
through the first VIM, reach the rest of them at angles inhibiting complete transmission 
and are arrested. 

When placing several evenly spaced VIMs on a plate, bear in mind that, at the 
resonance frequencies of flexural vibrations of plate segments bounded by adjacent 
VIMs, complete penetration of discrete components of acoustic vibration at these 
resonance frequencies is possible.  This is due to the penetrability (transparency) 
properties of stepped-obstacle structures at certain frequencies with respect to waves 
propagating through them [19]. 

When placing VIM in ship structures reinforced with stiffening ribs, VIM-
bypassing vibration energy transmission occurs along stiffening ribs crossing the VIM.  
Best-attainable VIM vibration insulation in this case is determined by Eq. [19] 

),2log(10 lkVI plfl=                 (4.8)  

where l - is the distance between stiffening ribs. 

There is no doubt that better vibration insulation of VIM is ensured by placing 
VIM-crossing stiffening ribs as far from each other as possible.  Equation (4.8) is correct 
at frequencies above the first resonance frequency of flexural vibrations of a plate limited 
by neighboring stiffening ribs. 
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Value of VIM vibration insulation depends on the way it is attached to the 
structure to be protected.  No bolts or rivets are allowed as this significantly reduces the 
vibration insulation in the entire audio frequency range.  Deterioration of VIM vibration 
insulation at high frequencies occurs as a result of tack welding in VIM cross section 
corners.  Welding of a VIM onto the structure produces optimal results (see Fig. 4.9, a 
and á). 

The VIM location on a ship structure is to be chosen in a way that ensures making 
of a closed (in a plane) VIM circle around an acoustic vibration source. 

Vibration insulation of a VIM placed in a plate’s T-joint (see Fig. 4.9, á) with 
respect to flexural waves’ diffuse field in a vertical plate (joint-forming plates thicknesses 
are the same) is determined by the equation  
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Dependence of υ  value on γ1 with variable β is given in Fig. 4.12.  It shows that, 
with γ1 ≈ 2 to 3, υ  parameter increases and VIM vibration insulation deteriorates.  The 
best results are obtained with γ1 < 1.  Make sure lengthening of the horizontal dimension 
of a VIM cross section does not violate condition (4.6). 

Dependence of the square modulus of the plane flexural wave amplitude 
transmission coefficient upon its incidence angle on a VIM in a T-joint of plates is shown 
in Fig. 4.10, б.  The maximum value of the coefficient occurs with the angle Tϕϕ =  that 
is determined from ./sin plflMTT kk≈ϕ .  Similar to the case of a VIM placed in a linear 
joint of plates, the angle Tϕ  in this case is determined from the equality between a plane 
flexural trace wavelength in a plate and a torsional trace wavelength in a VIM.   With 

9/2)( 2 == ϕϕϕ TT  that corresponds to a T-joint of identical thickness plates without 
VIM. 
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Figure 4-12.  Dependence of ν parameter on value 11 lk plfl=γ  for different β. 

 

An improvement of the VIM vibration insulation is ensured by increasing the 
radius of gyration for its cross section rM.  This could be done by taking the VIM at a 
distance d from horizontal plates as shown in Fig. 4.9, δ.  The value 2

Mr is determined by 
the equation 
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3
)( dlllrM ++

+
=  

The increase in d improves the VIM vibration insulation until a d-long and hpl -
thick plate segment becomes comparable to the length of a flexural wave in it.  Therefore, 
the condition 1≤lk plfl  is to be met as d increases, where plflk  - is an hpl-thick plate’s 
wave number. 

The vibration insulation frequency response of a round steel VIM with radius l1 = 
l2 = 0.06 m placed at a 0.006-m-thick steel plate’s T-joint is determined experimentally 
and shown in Fig. 4.11.  A vertical plate was driven with a wide-band vibrator, while the 
horizontal plates were partially sand-submerged to suppress flexural wave reflection from 
the plate edges.  The VIM vibration insulation Eq. (4.9) based calculation results are 
given there, too.  The plots reveal good agreement between the experimental and 
calculated results.  The VIM yields up to 10-20 dB vibration insulation. 

To ensure such insulation on board, the VIMs should be placed along the entire 
perimeter of the ship structure surrounding a vibration source.  Follow recommendations 
on the methods of VIM attachment to ship structures described above for a VIM placed at 
a linear joint of plates. 

For flexural waves transmitted via VIM over horizontal plates, an increase in a 
cross section 2l1 dimension may improve the vibration insulation.  To maintain the high 
vibration insulation of a VIM, satisfying condition (4.6) is necessary. 

The above-type VIM is sometimes represented with a so-called reinforced 
coaming which is a thicker insertion piece in a vertical plate (see Fig. 4.9, г).  Figure 4.13 
shows the frequency response 1 of such a coaming’s vibration insulation with 2l1 = 0.2 m 
and 2l2 = 0.02 m.  The coaming is placed along the bulkhead perimeter on a 100-ton 
displacement steel ship [6].  The vibration insulation of a reinforced coaming manifests 
itself at frequencies above 100 Hz and comes to about 10 dB.  Smaller vibration 
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insulation values at high frequency, as compared to a VIM, could be traced to a protruded 
shape of a reinforced coaming’s cross section where, with frequency increasing , wave 
phenomena lowering the obstacle’s vibration insulation becomes possible. 

 

Figure 4-13.  Vibration insulation frequency response of (1) a reinforced 
coaming and (2) a «vibration-inhibiting saw». 

 

An isolated stiffening rib (SR) provides much lower vibration insulation as 
compared to VIM.  A protruded shape of SR cross section makes flexural waves along its 
height possible.  As a result, SR mechanical impedance with respect to bending moment 
acting around the SR-supported plate connection line is very low.  At the same time, SR 
resistance to bending moment acting around the axis perpendicular to the above-
mentioned line is relatively high.  That is why SR is usually regarded as a hinged line 
with respect to flexural waves in the supported plate.  For this obstacle, angular 
dependence of square modulus of a transmission coefficient for flexural wave amplitude 
is represented as 

ϕϕ 22 cos
2
1)( ≈T  .           (4.10) 

This dependence is plotted in Fig. 4.14 (curve 1).  The largest part of the flexural 
wave energy penetrates the SR at angle ± 45° from ϕ = 0°.  With ϕ = 0°, maximum 
energy passing is possible for flexural waves with transmission coefficient 0.5. 

Integration of angles of flexural waves’ diffuse field energy passing through a SR 
gives value of its vibration insulation VI = 6 dB [19]. 

However, presence of several parallel SR on a supported plate does not allow 
summation of their vibration insulation values.  The reason for this is that flexural wave 
energy that has penetrated the first SR becomes related to waves concentrated near 
transmission angles ϕ = ± 45° and reaching the next SR at angles of maximum 
transmission. 
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Figure 4-14.  Angular dependence of the squared modulus of the 
transmission coefficient of a plane flexural wave amplitude 
passing through a stiffening rib. 

 

 

Figure 4-15.  «Vibration-inhibiting saw» drawing. 
 

Vibration insulation of the next SR can be improved by turning the latter about 
the first SR through an approximately 45° angle.  In so doing, we allow flexural waves to 
have passed through the first SR with minimal damping to reach the second one at an 
angle that ensures the waves’ substantial insulation (curve 2 in Fig. 4.14). 

«Vibration-inhibiting saw» (Fig. 4.15) is a structure incorporating the above [19].  
Its calculated vibration insulation is about 6 dB at medium and high audio frequencies 
[19].  Figure 4.13 gives frequency response 2 of such a pattern’s vibration insulation 
measured on a mock-up.  Satisfactory agreement between the experiment results and the 
above evaluation is obvious. 

The above data on SR vibration insulation are correct at frequencies over ƒ1 = 
2/08.0 RRl HhC  determined from condition kflRHR = 1, where kflR is the wave number of 

flexural vibrations in a hR-thick plate of which SR is made and HR is the SR height.  At 
frequencies below ƒ1, SR resembles VIM and its vibration insulation can be evaluated by 
Eq. (4.7). 

In a periodic structure, characteristic of most ship structures, which incorporates 
plates reinforced with parallel equidistant stiffening ribs (frames), a full penetration of 
plane flexural waves is possible in certain frequency bands [19].  These bands are 
determined from condition [21] flflplfl Tk <− )cos( γ , where l - distance between 
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obstacles; γ -- phase change for a flexural wave passing through an obstacle; flflT – 
coefficient of a flexural wave amplitude passing through an obstacle.  According to Eq. 
(4.10) for a stiffening rib with a plane flexural wave at normal incidence,  

4/,2 πγ ≈= aT flfl , [21]. 

 

Figure 4-16.  Frequency response of flexural wave amplitude damping ∆ in 
a periodic structure of hull plating reinforced with frames; 
showing stop bands. 

 

In between the full pass bands (sometimes referred to as transparency bands) there 
are areas of flexural wave amplitude damping.  These frequency bands (stop bands) are 
governed by the condition flflplfl Tk >− )cos( γ . 

An example of calculation of stop and transparency frequency bands for real hull 
structures is given in [56].  The calculated results for a 0.013-m-thick hull plating on 
which 0.45-m-high frames are placed at a distance of 2.8 m from each other is shown in 
Fig. 4.16.  When calculating the results it was assumed that lines of frame and plating 
connection are hinged supports (simple supports).  The calculation shows that there are 
45-100 Hz, 180-275 Hz, 400-540 Hz and 700-900 Hz transparency (pass) bands within 0-
1000 Hz range.  In the above publication, frequencies of driving forces acting upon the 
ship hull from main engines and the propeller are analyzed based on the calculation.  It is 
noted as an unfavorable condition that the third and fourth blade frequencies of the 
propeller (62 and 82.7 Hz) are in a transparency band (pass-band). 

Frequencies at about which there are transparency bands in a structure with 
parallel equidistant stiffening ribs are determined from the condition  

K,3,2,1),12(2/4/  i.e. 
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Frequencies satisfying the condition (4.11) are the resonance frequencies of 
flexural vibrations of a free-ended rod of length l.  Therefore, full passing of flexural 
waves in a structure to be considered occurs at about the resonance frequencies of  
flexural vibrations. 

With a plane flexural wave incident angle deviating from a normal one, a periodic 
structure’s transparency bands drift towards higher frequencies.  That is why, in flexural 
wave’s diffuse field where the field’s components are evenly oriented in the plate plane, 
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each of those components has its own transparency bands, with its frequency shifted a bit 
about other components’ transparency bands.  This results in no distinct transparency 
bands in ship’s ribbed structures in the diffuse vibration field.  Frequencies of driving 
forces’ discrete components are only dangerous when coinciding with resonance 
frequencies of ship structure segments bounded by neighboring stiffening ribs. 

 

 

 

Figure 4-17.  Frequency response of four steel VIMs’ vibration insulation 
measured in 1/3-octave and octave frequency bands with mM = 
2.5 kg/m, hpl = 8•10-4 m; ДБ - dB; ҝГц– kHz. 

If the above coincidence occurs and there is no possibility of changing the driving 
force frequencies, non-periodicity in the stiffening ribs (frames) placement may be 
helpful by separating the resonance frequencies of neighboring spacings from one 
another.  Irregularities in a periodic pattern of ship structures prevent unimpeded 
propagation of acoustic vibration over vast areas, if driving forces’ discrete components 
frequencies coincide with resonance frequencies of flexural vibrations of these structures 
spacings. 

With a continuous spectrum of driving forces and sufficient bandwidth of 
frequency analysis, resonance frequencies of flexural vibrations of periodic rib spacings 
are not dangerous. 

Figure 4.17 shows the frequency response of vibration insulation of four VIMs 
spaced on a plate at a distance of l = 0.125 m from each other.  Insulation is measured in 
1/3-octave (1) and octave (2) frequency analysis bands with wide-band excitation of the 
structure.  When measuring in 1/3-octave frequency band, deterioration of VIM vibration 
insulation is witnessed at frequencies close to the resonance frequencies of flexural 
vibrations of the rib spacings.  Calculation of these bands is done with the use of Eq. 
(4.11).  With frequency analysis band expanded to an octave, the above deterioration of 
vibration insulation does not occur. 
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5 REACTIVE DAMPING OF SHIP STRUCTURES’ ACOUSTIC VIBRATION 
 

5.1   Physical Fundamentals of Reactive Damping  
Vibration system damping is the traditional way of referring to those measures used for 

the absorption of vibrational energy causing a decrease of those systems’ vibration amplitude.  
Measures such as, for instance, the application of vibration-absorbing coatings to ship structures 
(see Chapter 6) constitute what is referred to as active (resistive) damping. 

There is another way of achieving vibration system damping, and this consists of loading 
the vibrational system with mechanical impedance elements of the inertial or elastic type.  The 
added mechanical impedance value must far exceed that of the systems own mechanical 
impedance.  This approach is known as reactive damping. 

Loading of a vibrational system with a considerable-size concentrated mass provides an 
elementary way of reactive damping.  Consider using it in the example of an infinite plate 
excited with a transverse force F.  The mechanical impedance of such a plate, according to Eq. 
(2) of Table 3.2: plplFpl BmZ 8, = .  The impedance of an added mass M is MjZ FM ω=, .  The 
displacements of the added mass and the plate at their contact point are equal, so, their 
impedances are arithmetically summed.  The total impedance of the structure in this case is 
therefore: 

MjBmZZZ plplFMFplF ω+=+=Σ 8,, . 

Therefore, the vibrational velocity amplitude of the mass-loaded plate at the excitation 
point is determined by the equation 
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The frequency response of plξ&  is shown in Fig. 5.1.  For low frequencies 

( plpl BmM 8<<ω ), the amplitude plξ& does not depend on the added mass value and has the 
same value as what it was before the mass was attached.  At the high frequencies  
( plpl BmM 8>>ω ), the amplitude plξ&  is much lower when the loading mass is attached 
compared to a plate without the mass.  Reactive damping is obviously taking place at frequencies 
above MBmf plpl π/40 = , determined from the condition plpl BmM 8=ω .  Damping 
effectiveness is: 
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Figure 5-1.  Frequency response of vibration velocity amplitude in the point of 

excitation of concentrated mass M-loaded infinite plate by transverse 
force. 
1 - plate without mass 
2 - mass-loaded plate. 

 

Example 1.  To be determined is the value of the mass required to achieve the reactive 
damping of a steel plate plh = 10-2 m thick with 10 dB effectiveness at frequency ƒ = 100 Hz.  
Assuming Ε = 3 based on Eq. (5.1), we have M = 40 kg. 

Therefore, to ensure an even insignificant addition to the reactive damping, a large 
loading mass is required.  That is why the above reactive damping method is very rarely used. 

5.2   Mechanical Resistance of a Mass-Loaded Spring 
 A vibrational system incorporating a mass, a friction (dashpot) element and a 

resilient element (spring) that is driven through the spring (Fig. 5.2) provides a more useful 
means of reactive damping.  Such a system with one degree of freedom is usually referred to as a 
dynamic vibration (absorber) damper, or anti-vibrator.  It has higher mechanical resistance 
(impedance) above a certain frequency.  Such a system is utilized for putting reactive damping in 
practice. 

Let us consider the basic properties of an anti-vibrator.  Its mechanical resistance with 
respect to a force applied is determined by Eq. [14] 

aFaFaF ZjZZ ImRe += ,                             (5.2) 
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Figure 5-2.  Diagram and frequency responses of real (a) and imaginary (б) 
components of mechanical resistance of the anti-vibrator. 

 

Ma - anti-vibrator mass; ωF - anti-resonance frequency of the anti-vibrator in a forward 
motion and 0=Fη , aFF MK /0=ω ; KF - complex rigidity (stiffness) of the anti-vibrator, 

)1(0 FFF jKK η+= ; Fη – vibration energy loss factor in the anti-vibrator in a forward motion; 

FF ωωµω /= ; ω  frequency of force applied to the anti-vibrator. 

The frequency responses of Re Za and Im Za are shown in Fig. 5.2 with ηF = 0.3 and ηF = 
1.  Analysis of these responses reveals governing dependencies (below) of Re ZaF and Im ZaF on 
frequency variation. 

With 1=Fωµ , FaFaF MZ ηω /Re =  and aFaF MZ ω=Im .  Therefore, curves Im ZaF vs. 
frequency, at variable ηF, pass through one point with µωF = 1.  With µωF = µ0 = (1 + η2

F)1/2, Im 
ZaF = 0 and there is no change in sign of the imaginary component of ZaF, which is of an inertial 
nature with µωF < µ0 and elastic nature with µωF > µ0.  With µωF 2/12/12

max ]1)31[( −+== Fηµ , 
real component of ZaF is maximum that equals FaF M ηω / , and µ0 is always a bit higher than 
µmax. 

There are frequencies on both sides of ωF at which aFZIm acquires the extreme value 
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with Fηµ ±≈ 1
2,1max .  The difference between these frequencies increases as ηF increases.  

Therefore, the frequency range, in which ZaF has higher values, increases.  The increase of ηF 
and decrease of ZaF values occur simultaneously. 

At about µωF = µ0 , where Im ZaF = 0, the real part of ZaF is maximum.  Therefore, the 
amplitude of ZaF is high in the entire range from 

1maxµ through 
2maxµ which corresponds to the 

extreme values of Im ZaF.  The maximum values of the amplitude of ZaF are determined at about 
µ  = µmax , where Re ZaF is maximum.  The frequency band at which ZaF is maximum is 
determined with η2

F << 1 as 

     ∆ƒ1 ≈ 4ηFƒaF ,              (5.3) 

where πω 2/FFf = . 

There is a range in the ∆ƒ1 frequency band where the mechanical resistance (impedance) 
of an anti-vibrator is predominantly active (resistive).  This range occurs at about ƒmax frequency 
with µωF = µmax.  The segment width, with η2

F << 1, equals ∆ƒ2 ≈ ηFƒaF.  Within the ∆ƒ2 
frequency band, the anti-vibrator is a vibration absorber with loss factor 
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where Re ZaF is determined by Eq. (5.2); and Zk - mechanical resistance (impedance) of a 
vibrating system at the anti-vibrator mounting (attachment) point. 

Comparison of (5.3) and (5.4) shows that, with η2
F << 1, ∆ƒ1 >> ∆ƒ2, i.e. the frequency 

range in which the anti-vibrator acts like a vibration absorber is small as compared to the 
frequency range in which it performs as a reactive damping device. 

Analysis of curves given in Fig. 5.2 also shows that, with ηF = 1, the maximum resistance 
(impedance) ZaF =  ωF Ma, i.e. it tends to the Ma mass resistance (impedance) value.  Therefore, 
substantial increase in the mechanical resistance (impedance), when an anti-vibrator is used, is 
only possible with ηaF << 1. 

Anti-vibrators with one degree of freedom may be made as masses fixed to structures 
with a rubber layer.  Possible anti-vibrator designs are shown in Fig. 5.3. 

The anti-resonance frequencies of the anti-vibrators for the flexural vibrations of a 
structure to be damped are determined by the equations: 

♦ for a design in Fig. 5.3, a, б, в 
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♦ for a design in Fig. 5.3, в 
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♦ for a design in Fig. 5.3, д 
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With tangential displacements of a damped structure surface, the same equations are 
represented as: 

♦ for a design in Fig. 5.3, a, б, г 
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♦ for a design in Fig. 5.3, в 
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♦ for a design in Fig. 5.3, д (dilatational and torsional vibrations of a rod) 
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where Ea and Ga are - Young’s modulus and rubber layer shear modulus respectively; h - rubber 
layer thickness; L - mass length along a rod; S - area of mass/rubber layer contact, S = πD2/4 - for 
a design in Fig. 5.3, a; S = π/4(D2 - D2

0) -- for a design in Fig. 5.3, б; S = πDH -- for a design in 
Fig. 5.3, в; S = πDL -- for a design in Fig. 5.3, г; S = π/2(D2 - D2

0) -- for a design in Fig. 5.3, д. 

Equation (5.6) - (5.10) are valid for h ≤ λc/6, where λc - length of a shear wave in the 
rubber layer material.  

The selection of the anti-vibrator type is dictated by the frequency at which damping is 
required, the reliability and shape of the structure to be damped.  The lowest damping frequency, 
all other parameters identical, is provided by the type of structure shown in Fig. 5.3, б.  
Structures in Fig. 5.3, в, г are the most reliable in service.  Structure in Fig. 5.3, д is for rod 
structures (like pipelines).  The physical and mechanical parameters of some types of rubber are 
given in Table 5.1. 

These are the following ways of using anti-vibrators for vibration systems’ reactive 
damping: 

♦ single anti-vibrator on a lumped-element system (Fig. 5.4, a); 
♦ separate anti-vibrator on distributed parameters (continuous) system (Fig. 5.4, б); 
♦ multiple anti-vibrators on a lumped-element system like a plate or a rod that vibrates at a 

resonance frequency  (Fig. 5.4, в); 
♦ multiple anti-vibrators on a distributed parameter system (Fig. 5.4, г). 
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Figure 5-3.  Anti-vibrator structure designs. 

1 - metal mass 
2 - rubber layer 
3 - structure to be damped 
4 - housing 
5 - clamping washer 
6 - attachment bolt 

 

 

 

Figure 5-4.  Anti-vibrator designs for vibration systems’ reactive damping. 
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Table 5-1.  Basic physical and mechanical parameters of rubber. 
Rubber grade Young’s dynamic 

modulus E0 ⋅10-7, Pa 
Shear dynamic 
modulus G0 ⋅10-7, Pa

Loss factor η0 

ИРП 1074 

1002 

1011 

278.4 

922 

615 

3 

3 

3.6 

1.8 

0.9 

0.54 

1 

1 

1.2 

0.6 

0.3 

0.18 

0.5 

0.6 

0.2 

0.27 

0.35 

0.27 
 

5.3   Dynamic Vibration Damper 
A single anti-vibrator mounted on a machine that vibrates as a solid body provides an 

elementary reactive damping device.  This anti-vibrator, more commonly referred to as a 
dynamic vibration damper (absorber-DVA), is used to lower the amplitude of resonance 
vibrations of a machine placed on an elastic base.  The use of a dynamic vibration damper 
(absorber-DVA) is justified when the machine’s rotational frequency or the frequency of a 
machine’s resonance vibrations cannot be changed to avoid dangerous proximity (coincidence) 
of those frequencies. 

 

Figure 5-5.  Frequency response of mechanical resistance (impedance) of a spring-
mounted mechanism and a dynamic vibration damper, with ηa = 0. 

 

In 1909 Fram suggested using a dynamic vibration damper incorporating a spring-
mounted mass to lower the amplitude of resonance vibrations of equipment mounted on an 
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elastic base [9].  All inherent properties of a dynamic vibration damper’s damping effect stem 
from mechanical resistances (impedances) of the entire system and its elements. 

Figure 5.5a shows the frequency response of a dynamic vibration damper resistance ZaF = 
Im ZaF  with  ηa = 0; Fig. 5.5,б shows that of a damped mechanism mounted on spring absorbers, 
ZMF = jωMM - jKM/ω (MM - mechanism mass, KM - rigidity (stiffness) of its absorbers), and that 
of aggregate impedance ZΣF obtained as ZΣF = ZMF + ZaF since vibratory velocity of both the 
mechanism mass and dynamic vibration damper spring are equal at the F force application point. 

Figure 5.5 shows that, at the frequencies where ZMF = - ZaF, ZΣF = ZMF + ZaF = 0; there are 
two frequencies of this kind.  So, that a system with an added vibration damper has two 
resonance frequencies ωaF1 and ωaF2 (ωaF1 < ωaF2) rather than one as in a system without a 
dynamic vibration damper (ωMF Mm = KM/ωMF, ωMF - resonance frequency of a spring-mounted 
mechanism). 

Frequency ωaF1 corresponds to mass Ma and Mm oscillating towards each other, while 
frequency ωaF2 corresponds to in-phase oscillations of these masses (with different amplitudes).  
Frequencies ωaF1 and ωaF2 happen to be on both sides of resonance frequency ωMF. 

At the frequency ωMF, corresponding to the resonance frequency of a spring-mounted 
mechanism without a dynamic vibration damper, the resistance (impedance) of a system 
incorporating the latter increases sharply.  Therefore, with F force acting at frequency ω = ωMF, 
mounting of a dynamic vibration damper with resonance frequency ωaF = ωMF on a mechanism 
translates into a significant lowering of the mechanism’s vibration amplitude. 

Effectiveness of a dynamic vibration damper 

 
KF

F

Z
ZΣ

Σ

Κ ==Ε
ξ
ξ
&

&
     (5.11) 

where ZKF  is the mechanical resistance of a damped structure, ΣΚ ξξ && , - are the  amplitudes of the 
damped structure’s vibration velocity prior to placing a dynamic vibration damper and after, 
respectively. 

The frequency response of the Ε value when ZKF = ZMF and ηa = 0 is shown in Fig. 5.5, г.  
Values above one that occur in the range of frequencies ω1 to ω2 indicate positive effect (see Fig. 
5.5, в).  With Ε  < 1, amplitude of mechanism’ vibrations (with a dynamic vibration damper 
mounted) rises. 

A dynamic vibration damper effectiveness when placed on a spring-mounted mechanism 
is determined by Eq. (5.11) with substitution of ZaF determined by Eq. (5.2), 

])1([ 2 M
M

MF jKZ ηµ
ω ω −= , 

where µω2 = ω/ωM; ωM = (KM/ Mm)1/2; ηM - loss factor in a mechanism’s spring-mounting.  As 
the result, 
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At about frequency  ω = ωMF = ωaF, Eq. (5.12) is represented as 

Ma

m

ηη
µ

+1≈Ε ,              (5.13) 

where µm = Ma/MM.  Equation (5.13) is correct if η2
a << 1 which is typical in practice. 

Equation (5.13) determines the maximum effectiveness for a dynamic vibration damper 
placed on a spring-mounted mechanism vibrating at its resonance frequency.  To ensure 
significant effectiveness in practice, the condition µm >> ηaηM is to be met. 

The performance of a mechanism with a dynamic vibration damper placed on it is 
normally governed by a frequency-dependent value staticMM ,/ξξ , where Mξ – amplitude of the 
mechanism mass vibrations; staticM ,ξ – static deformation of the mechanism’s spring-mounting, 

MstaticM KF /, =ξ , F - amplitude of dynamic force causing vibrations of the mechanism.  The 
value of staticMM ,/ξξ  is determined by the equation 

2/1222
2

,

}]Re[]Re)1{[(
)(

−+++−=
+

= aF
M

MaF
MaFMF

M

staticM

M Z
K

Z
KZZ

K ωηωµ
ωξ

ξ
ω . 

Ratio µωF = ω/ωaF being part of expression for Re ZaF and Im ZaF that are determined by 
Eq. (5.2) is related to ratio µω2= ω/ωMF in the following manner: µωF = µω2/µω1 where µω1 = 
ωaF/ωMF. 

Figure 5.6 shows frequency response of value staticMM ,/ξξ  for various values of ηa with 
µM = 0.02 and ηM = 0.  If no loss occurs in a dynamic vibration damper, there are two 
frequencies at which mechanism vibration amplitudes are infinite. 

With infinitely big losses in a dynamic vibration damper that takes place when it is 
rigidly connected to the mechanism mass, there is just one frequency at which vibration 
amplitude ξm → ∞ as typical for a system with one degree of freedom.  This frequency is 
somewhat shifted to the left close to the resonance frequency of a spring-mounted mechanism 
ωMF (µω2 = 1), with displacement magnitude mµ−1  which is due to an increase in MM mass by 
the value Ma. 

All of the curves staticMM ,/ξξ  pass through two points for any ηa [9].  Generally, the 
ordinates of points P and Q may be different.  Equal ordinates are optimal as they correspond to 
the lowest values of maximum Mξ  (note that, with one point elevated, the other one decreases 
along the curve when ηa = 0). 

A dynamic vibration damper featuring equal ordinates of points P and Q is referred to as 
optimal. 
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)1/(1,1 mopt µµω +=     (5.14) 

The loss factor in a dynamic vibration damper is considered optimal, if tangents to the 
curves ⏐ξm ⏐/ξм.ст in the points P and Q are horizontal.  The condition is met through loss factor 
ηa value that equals: 
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=                               (5.15) 

 
Figure 5-6.  Frequency responses of amplitude of a spring-mounted mechanism 

vibrations with a dynamic vibration damper placed on it. 
1 -- ηa = 0; 2 -- ηa → ∞; 3 -- ηa = ηa опт = 0.175. 

 

The approximate equality (5.15) is met provided that µm << 1 which is typical in 
practice.  Vibration dampers weighing at most 5% of a mechanism weight are normally used (µm 

≤ 0.05).  High values of ma are unsuitable in practice.  With lower-than-optimal values of ma, 
vibration amplitude increases as µm diminishes and may exceed values admissible for the given 
strength. 

Amplitude of maximum displacement of a vibration damper mass about a mechanism 
mass is determined by Eq. [13] 

mm

m

staticM

Ma

µµ
µ

ξ
ξξ 15.11

,

≈
+

=
−                             (5.16) 

Approximate equality (5.16) is correct with µm << 1.  Equations (5.14)-(5.16) are correct 
with losses in a mechanism’s spring-mounting as well when ηM  ≤ 0.4. 

The ∆ωa frequency band width in which vibrations of a mechanism mass with a dynamic 
vibration damper have roughly identical amplitude is dictated by location of the points P and Q 
on the chart, Fig. 5.6.  For an optimal vibration damper, 



 133

]
2
11[

1
12

2
m

m

m
PQ µ

µ
µ

µω +
+

±
+

=  

with µm << 1, µω2 Q ≈ 1.31(1 - µm/2) and µω2 P ≈ 0.54(1 - µm/2), so, ∆ωa ≈ 0.77(1 - µm/2) ωm. 

The width ∆ωm of the resonance curve for vibration amplitude of a spring-mounted 
mechanism at the amplitude level equal to 0.71 of the maximum is: ∆ωm = ηMωM, that is 
narrower than frequency band ∆ωa given real values of ηM (ηM  ≤ 0.5).  So, the maximum 
effectiveness of a dynamic vibration damper usage determined by Eq. (5.13) is ensured in the 
frequency band  ∆ωm. 

At frequencies above the resonance frequency of a spring-mounted mechanism vibrations 
ωM (µω2 >> 1, µω1 >> 1, µωF = 1), the dynamic vibration damper effectiveness 

     2/1
2

2

]
a

m
m η

µµ +2+[1=Ε  . 

As compared to the dynamic vibration damper effectiveness at the frequency ωM, 
described by Eq. (5.13), the same damper effectiveness at the frequencies above ωM is much 
lower. 

At the low frequencies (µω2 << 1), the dynamic vibration damper effectiveness tends to 
one.  Figure 5.7 gives dependence of effectiveness on ratio µm/ηa with various loss factors ηM in 
a mechanism that is spring-mounted.  With ηM ≈ 0.3 typical for rubber-metal shock absorbers, 
substantial effect of a dynamic vibration damper usage can be ensured only through a relatively 
high ratio of µm/ηa. 

 

Figure 5-7.  Dependence of the dynamic vibration damper efficiency on ratio  
µm/ηa with various loss factors ηM; дБ = dB. 

 

If a dynamic vibration damper is utilized at a high frequency with µω2 >> 1, it can be 
placed both on a mechanism and its foundation.  Better effectiveness, as seen from Eq. (5.11), is 
achieved when the vibration damper is placed on a structure with a lower mechanical resistance 
(impedance).  Foundation (⏐ZфF⏐ < ⏐ZMF⏐) normally possesses lower resistance at the given 
frequencies. 
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Besides the lowering of resonance vibration amplitude for spring-mounted mechanisms, 
dynamic vibration dampers may also be used to suppress the flexural vibrations of ship’s 
partitions at resonance.  At the resonance frequencies, those structures resemble an oscillating 
lumped-element system.  So, dynamic vibration damper usage effectiveness on partitions, which 
are subjected to resonance flexural vibrations, can be determined by Eq. (5.11) assuming a 
partition’s mechanical resistance is, according to Eq. (1.17), 

in

plplin
Fpl

M
Z

χ
ηω
4

=                               (5.17) 

where plM  - partition mass; plη  - vibration energy loss factor in a floor; ωin - resonance 
frequencies of a partition’s flexural vibrations determined by Eqs. (2)-(10) of Table 1.5; χin - 
excitation coefficient thni ),(  mode of the partition’s flexural vibrations.  With hinged (simply-
supported) edges of a rectangular plate with dimensions l1×l2 [27], the coefficient is: 
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where x, y - are the coordinates of the vibration damper location point.  Specifically, for first 
resonance frequency with the damper placed in the partition center, χ11 = 1. 

A dynamic vibration damper better serves its purpose when placed at anti-node of the 
damped partition’s flexural vibrations.  The dynamic vibration damper effectiveness with respect 
to resonance flexural vibrations of a rectangular partition is determined by the equation 
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With adjusting anti-resonance frequency ωaF of a vibration damper to the resonance 
frequency ωin of a partition and the latter coinciding with the driving force frequency (ω = ωin, 
µωF = 1), Eq. (5.18) is represented as 
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If ηa << ηpl  which is typical in practice, this equation becomes even simpler: 
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A number of dynamic vibration damper designs are shown in [2].  Figure 5.8 illustrates a 
classic design.  A horizontal steel rod represents the elastic (stiffness) element with concentrated 
masses loaded on its ends.  When the rod is attached in the center, its mechanical resistance at 
anti-resonance frequencies gets high and that lowers the amplitude of the damped structure’s 
vibrations.  The first anti-resonance frequency is normally used: 
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                                     (5.19) 
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where rodB  - rod’s flexural rigidity; Mrod - rod mass; MM - mass loaded on the rod end; l - half-
length of the rod.  Mass MM can move along the rod with the help of a thread that allows one to 
adjust the anti-resonance frequency of the dynamic vibration damper at the point of its mounting. 

Vibration energy losses in such a vibration damper are negligible; this ensures a 
relatively high effectiveness as seen from Eq. (5.13).  A dynamic vibration damper of the above 
design helped lower the vibration levels of an oil pump and a stopover diesel-generator on board 
by 10-12 dB [13].  But keep in mind, that with a low loss factor in dynamic vibration dampers, 
their high effectiveness manifests itself in a relatively narrow frequency band, which means that 
their use is possible for mechanisms with a more or less stable revolution (rotation) rate. 

 

 
Figure 5-8.  Drawing of dynamic vibration damper. 

1 - load on rod end 
2 - horizontal rod 
3 - vertical rod 
4 - damped structure. 

 

 

 

Figure 5-9.  Dependence of the ratio between rod vibration damper length l1 with 
free ends and vibration damper rod length l with masses upon the 
ratio between vibration damper weight MM and its rod weight Mrod. 

  

Similar effect can be ensured using a rod without end masses as it also has anti-resonance 
frequencies at which its mechanical resistance is high.  The first of these frequencies can also be 
calculated by Eq. (5.19) assuming MM = 0. 

The loading of the rod ends produces the required results at a given frequency with a 
shorter rod that is part of a dynamic vibration damper.  Loading lowers the resonance and anti-
resonance frequencies of the rod. 
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Figure 5.9 shows the dependence of l1/ l value upon ratio MM/Mrod.  With MM/Mrod  ≈ 2, 
the vibration damper dimensions are halved, as compared to the case where MM = 0, and its 
weight is up about 1.5 times. 

The anti-vibrator designs shown in Fig. 5.3 are also employed for dynamic vibration 
damping.  Loss factor values for rubber used as the elastic gaskets of an anti-vibrator are given in 
Table 5.1.  Rubber-metal shock absorbers of АКСС-И type [13] may be used as the elastic 
element of a dynamic vibration damper. 

On push boats (tugs), anti-vibrators like those depicted in Fig. 5.3, б were used to lower 
the intense resonance vibrations of the hull structures.  Anti-vibrators were glued to the middle 
sections of rib spacings.  Each anti-vibrator weight was 3.3 kg.  There were 30 anti-vibrators 
placed and that helped to lower the structures vibration amplitude by 20 dB [1]. 

On an Italian 5000-ton-displacement vessel, use of a dynamic vibration damper in the 
form of a heavy plate mounted on elastic elements helped lower the amplitude of resonance 
vibrations of a passenger area floor above the engine room by 10 dB at the frequency 16 Hz [13]. 

Dynamic vibration damper use is not confined to shipbuilding.  Reference [29] describes 
the use of such devices for lowering the amplitude of resonance vibrations of a high-power 
industrial transformer’s casing walls. 

Example 2.  Calculate the parameters of a dynamic vibration damper designed to lower the 
amplitude of flexural vibrations of the floor given in Example 2 of § 4.2 at its first resonance 
frequency 1plf .  The rated frequency 1plf  value is 110 Hz, the floor mass plM  = 300 kg.  Choose 
a vibration damper structure from Fig. 5.3, в for calculation.  The value µm = Ma/ Mpl is assumed 
to be µm = 0.02.  The floor is treated with a vibration-absorbing coating that provides a loss 
factor ηpl = 0.08.  Choose material of 922 type with η0 = 0.35 and shear modulus G0 = 0.3•107 

N/m2 from Table 5.1 for a rubber layer. 

Optimal value of ratio µω1 = ƒa /ƒp1, according to Eq. (5.14), is 
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or 1,1 pla ff ωµ=  = 0.98•110 = 107.8 Hz. 

Vibration damper mass is kgMM mpla 602.0300 =⋅== µ .  A steel cylinder with diameter 
D = 0.12 m and height H = 0.068 m weighs that much.  The anti-resonance frequency of such a 
damper is calculated by Eq. (5.6), with rubber layer thickness h = 0.0025 m, 
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where S is the contact area of the rubber layer and vibration damper mass, S = πDH = 
256.0068.02.0 =⋅⋅π  m2. 

The derived value ƒaF differs from the optimal by 4% which is admissible.  The dynamic 
vibration damper effectiveness is determined by Eq. (5.11).  The value of the floor’s mechanical 
resistance (impedance) Zpl F as part of (5.11) is calculated using Eq. (5.17) 
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in which the position of the vibration damper in the floor center is taken into consideration, i.e. 
χ11 = 1. 

Finally, 
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5.4   Audio Frequency Anti-Vibrators 
The anti-vibrators described in § 5.2 and placed in way of flexural waves propagating 

along a structure impede these passing waves at specific frequencies (see Fig. 5.5, б).  Such 
vibration-insulating devices are referred to as audio frequency anti-vibrators [14].  

In a rod structure, anti-vibrator vibration insulation VI = 20 log(1/⏐T⏐) dB, where T - 
coefficient of transmission of flexural wave amplitudes reaching the anti-vibrator, 
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where ZaF, ZaM are the mechanical resistances (impedances) with respect to force and moment, 
respectively, ZaF is determined by Eq. (5.2), while ZaM = Re ZaM + j Im ZaM; 
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where Ia is the moment of inertia of the anti-vibrator mass; ωM is the anti-resonance frequency of 
the anti-vibrator, ωM = (KM 0/Ia)1/2; KM 0 is the rigidity (stiffness) of the anti-vibrator’s elastic 
element with respect to moment, KM = KM 0(1 + jηM); ηM is the loss factor of the anti-vibrator in a 
rotational motion; µωM = ω/ωM. 

Vibration insulation of the anti-vibrator is high at the frequencies where ⏐T⏐ → 0 that 
occurs in the vicinity of frequencies at which rodflrodaF cmZ ,4Im →  with α = 4, and 
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2
,, /4Im rodflrodfrodaM kcmZ →  with β=4.  These occur at two frequencies to the right of ωF (ωF1 

and ωF2) and two to the left of ωM (ωM1 and ωM2). 

The presence of pairs of frequencies in the vicinity of which better vibration insulation of 
the anti-vibrators is observed is due to the fact that the frequency response curves for 

2
,,0,0  and −== rodirodflrodrodMrodflrodrodF kcmZcmZ  cross curves for Im ZaF and Im ZaM respectively 

twice (Fig. 5.10).  The conditions to be met are: 
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Values of the frequencies in the vicinity of which better vibration insulation of anti-
vibrators is observed can be calculated using the following equations which are precise enough 
to be used in practice: 

                       ωF2 ≈ ωF /νF; ωF1 ≈ ωF / (2νF) ;     (5.21) 

ωM2 ≈ ωM νM; ωM1 ≈ 2 ωM νM ,     (5.22) 

where νF = 4 Z0F rod / (ωF Ma); νM =  4 Z0F rod / (k2
fl,rodωM Ia). 

 

 

 

Figure 5-10.  Illustration of the determination of the frequencies ωF1, ωF2, ωM1 and 
ωM2 relative to the anti-resonance frequencies ωF and ωM of anti-
vibrator. 

 

Equations (5.21) and (5.22) are correct, if the conditions 22
2 FF ωω >> and 22

2 MM ωω <<  
respectively, are met. 

The frequency range in which the anti-vibrator’s vibration insulation occurs is bounded 
by the frequencies ωM2 and ωF2.  For realistic structures of anti-vibrators,       ωF2 >> ωM 2.  For 
real structures of anti-vibrators, the maximum vibration insulation is observed in the frequency 
range ωF1 to ωF2. 

Values of the frequencies ƒF = ωF / 2π for anti-vibrators depicted in Fig. 5.3 are 
determined by the Eqs. (5.5)-(5.10).  The frequencies ƒM = ωM / 2π for the same anti-vibrators 

Im ZaF Im ZaM 
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are determined by the equation ƒM = ƒFl / (2ra), where l is the length of the contact line between 
the anti-vibrator mass and the rubber layer; ra is the radius of gyration of the anti-vibrator mass 
about its rotation center. 

For drawing in Fig. 5.3, а, б, l = D, 
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for drawing in Fig. 5.3, в, l = H and 12/hra = ; for drawing in Fig. 5.3, г, l = D and 

12/hra = .  With 22 1 FmF ηµ += , maxVI  = 3 dB that is typical for a hinged rod.  The reason is 
that, with 22 1 FmF ηµ += , ⏐ZaF⏐ → ∞.  Therefore, the displacement at the anti-vibrator mounting 
point is zero and the anti-vibrator rotational resistance (impedance) is negligible. 

Vibration insulation of audio frequency anti-vibrators can also be ensured in plates.  To 
do that, encircle the vibroactive source with a ring of anti-vibrators.  Distance between anti-
vibrators shall be within λi.fl/2 at the highest frequency of the frequency range in which vibration 
insulation is to be ensured through the use of these devices. 

Frequencies ƒF1, ƒF2, ƒM1, ƒM2 for a plate can be determined by the Eqs. (5.21) and (5.22) 
after replacing cfl,rod with cfl,pl and mrod with mplL (L is the distance between centers of the 
neighboring anti-vibrators). 

The vibration insulation of anti-vibrators can be improved by an increase in the number 
of rings to two or three.  Bigger number of concentric rings around the acoustic vibration source 
fails to proportionally improve the aggregate vibration insulation [13]. 

The vibration insulation of anti-vibrators improves as thickness of plates on which they 
are mounted diminishes.  So, the most effective are audio frequency anti-vibrators mounted on 
thin-wall ship structures like sound-insulating shells, thin-wall room enclosures, air duct walls, 
etc. 

Frequency response of effectiveness of 0.075-kg-mass anti-vibrators with the anti-
resonance frequency ƒF = 1400 Hz placed in two rows on an aluminum alloy 0.002-m-thick plate 
is shown in Fig. 5.11.  Maximum vibration insulation of anti-vibrators is 24 dB at the frequency 
2.2 kHz exceeding the frequency ƒF = 1.4 kHz.  Major effect is observed at about ƒF 1 and ƒF2  
frequencies which, in accordance with (5.21), are 2.1 and 4.2 kHz, respectively.  When 
calculating the frequencies, it was considered that distance between anti-vibrators L ≈ 0.06 m. 
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Figure 5-11.  Frequency response of vibration insulation of two rows of anti-
vibrators placed on aluminum alloy plate [13]. 

 

The above results suggests the way to design a ship structure with improved vibration 
insulation while using audio frequency anti-vibrators.  If anti-vibrators are to be mounted on a 
rib-less plate, the best result can be achieved by making the plate thinner or using lower-density 
materials for the plate.  For a stiffening rib-reinforced structure, bearing in mind its minimal 
weight is to be ensured, lower rigidity of the structure is advisable.  This improves vibration 
insulation of anti-vibrators at frequencies below first resonance frequency of flexural vibrations 
of the plate segments between neighboring stiffening ribs. 

5.5   Waveguide Vibration Insulation 
The oscillation process in a rod (a plate) through which elastic (for instance, flexural) 

waves propagate occurs due to the fact that elastic forces originated in a rod during deformation 
are resisted by equal value of the inertial resistance (impedance) of its mass.  If the inertial 
resistance (impedance) of a rod is joined by elastic resistance evenly distributed along its length 
and exceeding inertia one in absolute value, aggregate wave resistance of the rod becomes purely 
elastic and flexural waves no longer propagate through it.  This phenomenon was first described 
in [45] and referred to as reactive damping.  Analysis of the phenomenon laid the foundation for 
a method of insulating elastic waves in a rod (a plate) with the use of anti-vibrators placed along 
its length (see Fig. 5.4, г) and is referred to as the waveguide vibration insulation method [12]. 

Differential equation describing flexural vibrations of a rod for a time-harmonic process 
is represented as 

   0)( =++ ωξωξ jZmjB Frod
IV

rod ,   (5.23) 

where mrod is the inertial wave resistance (impedance) of a rod; ZF is the resistance (impedance) 
of an external load per unit length of the rod, ZF = Re ZF + j Im ZF.  Equation (5.23) can be 
written as 

   ξIV (x) - α4 (1 - jη) ξ (x) = 0 ,    (5.24) 

where α is the propagation constant for flexural waves on  a rod (beam), 
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In general, equation (5.24) yields xjjex )1(
0)( ηαξξ −= .  In particular with Re ZF = 0, the 

expression is becomes xjex αξξ 0)( = . 

The value of 4α may in general be both positive and negative, depending on the sign and 
value of Im ZF as compared to ωmrod.  Specifically with Re ZF = Im ZF = 0, α = kfl,rod where kfl,rod  
is the wave number of a flexurally-vibrating rod.  Eight values of the propagation constant α are 
possible. 

Positive values of α4 correspond to two flexural waves traveling in mutually-opposite 
directions (α1,2 = α± ) and two nonhomogeneous flexural waves attenuating in mutually-

opposite directions ( αα j±=4,3 ).  Negative values of α4 correspond to four traveling attenuating 
flexural waves with the following propagation constants: 
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These waves can only propagate in pairs creating, as the result of superposition, standing 
flexural waves with their amplitude dropping towards positive (α5,6) and negative (α7,8) values of 
x-coordinates respectively: 
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Therefore, it is observed that there is no transfer of vibration energy with α4 negative. 

To investigate possible design methods for the application of wave guide vibration 
insulation, consider one-dimensional flexural vibrations in a system consisting of a plate loaded 
with another plate attached through a layer of an elastic material as described in [15].  The first 
plate is referred to as the main plate with the index 1 as its designation.  The elastic material is 
designated with index 2.  We assume its loss factor equals zero (η2 = 0).  The second plate is 
referred to as the auxiliary one with index 3 as its designation. 

We suppose that the elastic layer vibrations are caused by dilatational (thickness-stretch) 
waves in the direction of its depth, having speed cl,2 < cfl,1.  The vibrations of the main system are 
regarded as based on normal planes remain plane hypothesis for flexurally-vibrating plates with 
kfl,1 h1 << 1 and kfl,3 h3 << 1. 

The value α for the above system is determined from the dispersion equation 
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where ν2 = kfl,2 h2; and C2 is the compressional modulus of the elastic layer. 

Let us work out the solution of the equation (5.25) for various versions of the system. 

1. Assume auxiliary plate is absent (B3 = 0, m3 = 0).  This condition is used for the case of a 
vibration absorbing coating consisting of a visco-elastic material layer applied to the 
main plate (Fig. 5.12, a).  In this case  

)tan1(
12

22
1,

4

m
mk plfl ν

να +=  .                                       (5.26) 

At low frequencies, at which tanν2 ≈ ν2, )/1( 12
4

1,
4 mmk plfl +≈α .  At the low frequencies, 

the elastic layer increases the surface mass of the system (m = m1 + m2) giving rise to an increase 
of the propagation constant α. 

The propagation constant α4 versus frequency-dependent variable ν2 is shown in Fig. 5.12, 
a.  The areas of negative values α4 are cross hatched.  There are relatively narrow frequency 
bands where α4 ≤ 0, therefore, there is no propagation of vibration energy in the main plate.  
These bands of waveguide vibration insulation are located in the vicinity of the anti-resonance 
frequencies of in-depth (thickness-stretch) vibrations of the elastic layer (ν2 = π [2n - 1]/2, n = 1, 
2, 3, ...) at which the resistance (impedance) of the layer with respect to transverse vibrations of 
the plate surface is high. 

Boundary frequencies are determined from the equations 
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1
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mn fl
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where l
n2υ  and  u

n2υ correspond to lower and upper boundary frequencies of the nth-band of wave 
guide vibration insulation.  The values of u

n2υ  can be determined from a chart in Fig. 5.13.  As 
frequency increases the bands of wave guide vibration insulation get narrower.  To widen them, 
the ratio m2 / m1 must be increased. 

2. The case where the auxiliary plate possesses high flexural rigidity (Fig. 5.12, б) 
compared to the rigidity (stiffness) of the main plate (B3 → ∞).  In this case 

)
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221

24
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m
mk plfl −= .                    (5.27) 

The dependence of α4 described by (5.27) on the parameter ν2 is shown in Fig. 5.12, б.  There is 
a low-frequency area of waveguide vibration insulation in the main plate at frequencies below 
the frequency determined the equation 1222 /tan mm=υυ .  With m2 << m1, this frequency is: 
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Besides the low-frequency regime of waveguide vibration insulation, Fig. 5.12, б shows the 
narrow frequency bands in the vicinity of the anti-resonance frequencies of the elastic layer 
vibrations (in the thickness direction).  Boundary frequencies of these bands l

nf and u
nf  are 

determined from the equations 

   πυ nl
n =2 ; K,3,2,1,/tan 1222 == nmmu

n
u
n υυ  

The values of u
n2υ can be determined from the chart in Fig. 5.13.  To widen the areas of 

waveguide vibration insulation in this case, the ratio of m2 / m1 should be decreased. The 
widening of the analogous low-frequency area occurs provided that the rigidity of the elastic 
layer is higher and the layer itself is thinner. 

 

 
Figure 5-12.  Drawings of system versions with two (main and auxiliary) plates 

connected with the elastic layer, and frequency response of 
propagation constant α4 for these versions. 
1 - main plate 
2 - elastic layer 
3 – springs 
4 - concentrated masses 
A - wave number of main plate 4

1, plflk . 
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Figure 5-13.  Dependence of functions tanν2/ν2 and ν2 tanν2 upon m2 and m1 mass 
ratio. 

 

3. The auxiliary plate possesses high flexural rigidity (stiffness) compared to the rigidity of 
the main plate (B3 → ∞) and the elastic layer is represented as multiple springs (Fig. 5.12, 
в).  This is implemented in the case of a plate mounted on an elastic base (sometimes 
called a “Winkler” foundation).   In this case 
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At low frequency α4 → 212
2
1 / hBCm  and is negative below the frequency 

120 /)2/1( mKf π=  where K2 - rigidity (stiffness) of the spring per unit surface area of the main 
plate.  The propagation of flexural waves in the main plate is zero at frequencies below ƒ0, i.e. 
starting from the lowest frequencies.  To widen the area of wave guide vibration insulation 
towards higher frequencies, more rigid (stiffer) springs are to be used. 

 

4. Consider the case when the auxiliary plate is of lower flexural rigidity compared to that 
of the main plate  (B3 → ∞), which occurs for an inertial loading over the  surface of the 
elastic layer (Fig. 5.12, г).  The propagation constant in this case is: 
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With m3 = 0, the equation (5.30) translates into the equation (5.26) for the case of only the 
elastic layer being present on the main plate.  Dependence of α4 on parameter ν2 is given in Fig. 
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5.12, г.  There are bands of wave guide vibration insulation in the vicinity of the anti-resonance 
frequencies of the elastic layer (thickness) vibrations.  These frequencies are somewhat displaced 
towards  lower frequencies, compared to similar frequencies with the elastic layer’s free surface, 
due to loading of this layer with mass m3. 

Values of the boundary frequencies for area of waveguide vibration insulation in this case 
are determined from the equations: 

   
]

tan
1[

;,3,2,1,tan

2

31

2

2

31

2
2

2

3

2
22

m
mm

mm
m

n
m
m

u
n

u
nu

n

l
n

l
n

+
+=

==

υ
υυ

υυ K

 

      

5. Auxiliary plate has no flexural rigidity (B3 = 0), multiple springs provide the elastic layer  
(Fig. 5.12, д).  This occurs when waveguide vibration insulation is ensured through many 
anti-vibrators as described in [12].  The propagation constant is 
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where ωF = (K2/m3)1/2 is the anti-resonance frequency of anti-vibrator with mass m3 per unit 
surface of the main plate; K2 is the rigidity of springs per unit surface of the main plate.  Area of 
wave guide vibration insulation is at the frequencies between ωF and ωF[1 + (m2 + m3) × m1

-1]1/2.  
The frequency response of α4 is given in Fig. 5.12, д.  To widen the band of wave guide 
vibration insulation, increase mass m3. 

The above results for various versions of the system incorporating two plates are obtained 
in the elastic layer with η2 = 0.  In real materials used for the layer (like rubber gaskets), η2 > 0.  
This decreases deviations of the propagation constant α in areas of wave guide vibration 
insulation from the wave number of flexural vibrations of the main plate 1, plflk .  In the case of 
extremely high η2, α4 may never have negative values.  Specifically, in case 4 (see Fig. 5.12, г) 
the condition for wave guide vibration insulation development is as follows: 

)12/( mmF µµη +< , where  µm = m3/ m1  (m3 - anti-vibrator mass per unit area of the main 
plate). 

Frequency limits of the waveguide vibration insulation area are determined by the 
expression: 
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The creation of frequency ranges of wave guide vibration insulation, using a vibration-absorbing 
coating over a flexural-vibrating plate with m3 = 0 (see Fig. 5.12,a), is of no practical use.  The 
elastic layer using materials with a low loss factorη2 required for the case, gives rise to a 
decrease in vibration-absorbing effect of the coating beyond the above-mentioned areas. 
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Figure 5-14.  Design of waveguide vibration insulation for pipelines 

effective at low frequencies. 
1 - stiffening ribs of the supplementary structure 
2 - bolt attachment 
3 - supplementary structure housing 
4 - elastic layer 
5 - pipeline. 

 

Version 2 (see Fig. 5.12, б) is most useful in practice because it allows the effective 
damping of acoustic vibrations at low frequencies.  Wave guide vibration insulation in this case 
may be ensured through a light but rigid (stiff) structure of the same configuration as the damped 
structure placed on the latter with the use of a thin layer of solid rubber.  Mechanical contact 
between the structures shall be ensured over the entire surface using a suitable glue (with 
minimal unglued surface). 

In the case of a flat damped structure, the auxiliary plate is to be a ribbed one with 
flexural rigidity (stiffness) at least 3-4 times that of the main plate.  The minimal length of the 
auxiliary plate in the direction of the damped flexural wave propagation is to be 

α/649.1min Ε=L  ,                        (5.31) 

where Ε  - is the damping effectiveness to be achieved, dB; α  is determined by Eq. (5.27).  This 
structure can ensure effective reactive damping of flexural vibrations at frequencies below the 
frequency ƒ0, the latter determined by Eq. (5.28).  Keep in mind that at the resonance frequencies 
of flexural vibrations of the auxiliary structure, damping effectiveness can decrease significantly. 

Circular section rod-type structures such as pipelines provide the easiest way of meeting 
the conditions for wave guide vibration insulation at low frequencies.  The auxiliary structure 
may be in the form of a hollow metal cylinder with stiffening ribs placed along the cylinder on 
four sides as shown in Fig. 5.14.  The minimal length of the structure with the given flexural 
vibration damping effect for a pipeline or similar structures is determined by Eq. (5.31). 

If the vibrations of ship structures is to be damped in a limited frequency range, versions 
4 and 5 or similar are most expedient for ensuring wave guide vibration insulation (see Fig. 5.12, 
г,д).  To create a waveguide vibration insulation band up to an octave wide or wider, condition 
m1 ≤ m2 + m3 is to be met. 
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To damp flexural vibrations of flat ship structures, use anti-vibrators like those depicted 
in Fig. 5.3, в, г.  With a cylindrical rod-type structure like a pipeline, use anti-vibrators like those 
depicted in Fig. 5.3, д.  Length of the damped structure to place anti-vibrators on is to be 
determined by Eq. (5.31) to make sure the desired effect is achieved.  The distance between 
separate anti-vibrators shall be within a half-length of a flexural wave in the damped structure at 
a given frequency. 

Example 3.  Calculate the structural parameters of a wave guide vibration insulation for 
damping flexural waves to propagate over a steel pipeline 100 mm in diameter (walls are 0.003-
m-thick).  The required effectiveness at the frequency 100 Hz is 10 dB.  Calculate the moment of 
inertia for the pipeline’s cross section by the equation for a ring section rod from Table 3.3: 
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Make the auxiliary structure of the wave guide vibration insulation the way it is given in 
Fig. 5.14.  The moment of inertia of its cross section shall be at least 3 times that of Itor.  The 
cylindrical part of the auxiliary structure provides approximately 1/3 of the moment of inertia 
required.  Therefore, one reinforcing rib shall have the moment of inertia Ir = Irot with respect to 
the structure section diameter.  The rib’s moment of inertia 

    )1( 2
0

2
2
0

r
rrr r

LrSI += , 

where Sr - cross section area of rib, rrr hlS = ; rr0 - the radius of gyration of the rib section about 
its neutral axis; L - distance between this axis and the structure diameter, L = 0.5(D + L).  
Considering that 120 rr hr = rp0 and assuming hr = 0.006 m, we have 
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The chart-plotting way of solving the equation gives lr = 0.05 m.  Choose the most rigid 
rubber ИРП-1074 from those in Table 5.1 (F2 = C2 = 3⋅107 Pa) for the elastic layer; assume the 
layer thickness to be the least possible: h2 = 0.002 m. 

Use the equation for a ring section rod from Table 1.4 to calculate the phase speed of a 
flexural wave in the pipeline at frequency 100 Hz: 
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The corresponding wave number: 
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Use Eq. (5.29) to determine the propagation constant: 
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Calculate minimal length of the auxiliary structure by Eq. (5.31): 

m 28.35/1064.1/649.1min =⋅== αL . 

Determine the damping of flexural wave amplitude in the same pipeline after an effective 
vibration-absorbing coating ensuring loss factor ηpipe = 0.1 has been applied to a 3.28 m length 
segment of the pipeline.  According to Eq. (3.57), we have 

  dB 3.11.028.39.115.215.2 , =⋅⋅⋅==Ε pipepipeflk η . 

Therefore, even the most effective vibration-absorbing coating fails to provide the kind of 
flexural vibration damping that is made possible through wave guide vibration insulation devices 
at frequencies where insulation manifests itself in the specific structure conditions.  

5.6   Reactive Damping of Flexural Vibrations of Ribbed Structures 
With excitation of ship structures reinforced with the interlaced framing, flexural 

vibrations of these structures at low frequencies are governed by the stiffening rib grid.  Plate 
segments within neighboring stiffening rib area are driven in the process by transverse forces 
distributed along the plate perimeter in an even and in-phase manner.  At certain (anti-resonance) 
frequencies, mechanical resistance of the plates rises and can exceed resistance of grid formed by 
stiffening ribs.  Amplitude of the structure’s flexural vibrations generally decreases as the result 
of the reactive damping, like many anti-vibrators placed on a concentrated parameters system 
(see Fig. 5.4, в). 

The highest amplitudes of the structural vibrations are most commonly observed at the 
first resonance frequency 1Κ,pf .  By adjusting the anti-resonance frequencies plresantif ,−  of the 
plates to this frequency, the amplitudes of the structure’s resonance vibrations are lowered. 

Anti-resonance frequencies of plates excited by transverse forces along the perimeter 
correspond to resonance frequencies of the same plates but driven by transverse force inside the 
perimeter.  The first resonance frequency of flexural vibrations of plates bounded with 
neighboring stiffening ribs (the plates’ edges correspond to fixed edges with in-phase motion of 
the stiffening rib grid) is normally much higher than the first resonance frequency of flexural 
vibrations of the structure as a whole. 

The frequency ƒr,pl can be lowered by loading the plate with concentrated mass Mc [16].  
The value Mc required is determined by the equation 
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M .                                   (5.32) 

Reactive damping occurs in the following frequency band [57]: 

∆ƒpl = 0.86γ (1 - 2/n) ƒr,pl 1, 
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where n is the number of the structure’s plates, separated by the stiffening ribs; γ ≈ 0.15 (for 
stiffening ribs’ of open section).  The frequency band ∆ƒpl can be considerable in a wide 
frequency range (about 10-15% of ƒr,pl 1). 

The feasibility of reactive damping of ribbed structures’ flexural vibrations by adjusting 
the resonance frequencies of the structure forming the plates is demonstrated experimentally in 
[16].  Concentrated masses, eight kilograms each, were placed on structures with bulb plate #12 
stiffening ribs that reinforced a steel 0.006-m-thick plate and divided the plate into 0.4×0.4 m2 
segments.  This allowed a shift of the plates’ resonance frequencies to the 120-160 Hz band, with 
the first resonance frequency of the structure’s flexural vibrations at 122 Hz.  Reactive damping 
manifested itself at the frequencies 110-150 Hz reaching about 40 dB at frequency ƒr,К1 = 122 
Hz. 

Therefore, there exists the possibility the acoustic adjustment of ship ribbed structures 
that lowers their vibration excitability at least at the first resonance frequency of flexural 
vibrations by loading of plates, limited by neighboring stiffening ribs, with concentrated masses 
of certain dimensions. 

Example 4.  Perform the acoustic adjustment of a ship structure described in Example 2 of 
§ 4.2 to lower its vibration excitability at the first resonance frequency of flexural vibrations 

 Hz110, =1Κpf by decreasing the resonance frequencies of plate segments bounded with the 
structure’s stiffening ribs.  These plates’ dimension l1 = l2 = 0.4 m, thickness hpl = 0.006 m. 

Use Eq. (3) of Table 1.5 for a rectangular plate with fixed edges to determine its first 
resonance frequency 
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Use Eq. (5.32) to calculate the weight of the concentrated mass to be placed at the centers 
of the plates, bounded with stiffening ribs, in order to lower their resonance frequency from 310 
to 110 Hz. 
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If concentrated masses are placed on all plates of the structure mentioned in Example 2 of 
§ 4.2, their total weight would amount to kg 38036 =⋅cM that is comparable to the damped 
structure weight (Mк = 360 kg).  A concentrated mass, which is that big, is inadmissible in 
practice.  To decrease its weight, it should be enough to place the concentrated masses on central 
plates only.  The technique was utilized in [16] with 16 masses whose aggregate weight was 170 
kg that accounted for 47% of the damped structure weight. 
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6 SUPPRESSION OF SHIP STRUCTURES USING ACOUSTIC 
VIBRATION MEANS 

6.1 General 
Vibration absorption techniques are utilized on board to combat the following negative 

phenomena: 

♦ propagation of the acoustic vibrational energy over ship structures which are generated by the 
operation of the ship machinery systems on their foundations and propellers; 

♦ the resonance vibrations of ship structural elements; 
♦ self-excited vibration phenomena generated, for example, by a moving liquid flow in 

hydraulic systems; 
♦ jarring of loosely attached elements of ship structures caused by the moving hull-related 

vibrations or movements of crewmembers; 
♦ collisions between ship structural elements and solid bodies (loading of on-board bunkers 

with bulk materials and coal, hoisting and paying-out of the anchor, movement of the ship 
through ice, etc.); 

♦ fatigue strain in the ship structures’ material. 
 

Vibration absorption (suppression) means effectively combat the above phenomena by 
lowering the amplitude of ship structures’ respective vibration types. 

Basic vibration absorption methods include vibration-absorbing coatings applied to ship 
structures, structural vibration-absorbing materials, and bulk vibration-absorbing materials.   

6.2   Physical Fundamentals of Vibration Absorption 
Absorption (loss) of vibration energy in vibrating systems results from the irreversible 

transformation of some of this energy into that of the thermal type (heat).  Two types of 
absorption are distinguished: (1) natural absorption of vibration energy in oscillating structures 
stemming from intrinsic dissipative properties, and (2) the artificial (man-induced) type caused 
by various vibration absorption techniques. 

The major governing laws of vibration absorption are revealed by considering a basic 
oscillating system with one degree of freedom incorporating a mass M, a rigid (stiffness) 
element K0 and a loss resistance R. 

With the system’s free oscillations, its mass oscillations are described with Eq. [21] 

],)exp[()( *
0 tjxtx δω −= &&  

where 0x&  is the amplitude of the mass vibration velocity; 22
0

*
0 δωω −=  is the system’s natural 

oscillation frequency with R ≠ 0 and δ < ω0; MK /0 =ω is the system’s natural oscillation 
frequency with no loss in the system (R = 0); δ = R/(2 M) is the system’s attenuation constant. 

The system’s natural oscillations with losses (R ≠ 0) attenuate as time evolves, and the 
higher the attenuation constant δ value, the faster is the attenuation (Fig. 6.1).  The ratio of two 
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consecutive maxima of amplitudes ix ,0&  and 1,0 +ix&  is constant for the given value δ, i.e. 
d

ii exx =+1,0,0 / && , where d is denoted as the logarithmic decrement of vibrations, and 

Td δωπδ == *
0/2  ; T is the mass system’s oscillation period. 

 

 

Figure 6-1.  Time dependence of natural attenuating oscillations of a one degree 
of freedom system. 

 

Ratio between the energy absorbed in a system during the oscillation period T and the 
potential energy contained in the system is referred to as the absorption coefficient.  With 
negligible losses (d 2 << 6 that is typical in practice), the coefficient is *

0/42 ωπδψ =≈ d . 

To describe vibration absorption, a factor of the vibration energy losses in an oscillating 
system that equals πψπη 2// ≈≈ d  with d 2 << 6, is preferred in acoustics.  The loss factor 
numerically determines the magnitude of the energy absorbed in the oscillating system roughly 
within one-sixth of an oscillation period.  The ratio between the listed parameters characterizing 
the oscillation process in a system with losses is given in § 3.2. 

The parameters *
0ω  and δ  are represented through the loss factor as follows: 

4/1 2
0

*
0 ηωω −=  and δ = ηω0/2. 

With an increase in the vibration energy losses in an oscillating system, the latter’s 
frequency of natural oscillations (the resonance frequency) decreases.  With δ > ω0, oscillations 
of the system become aperiodic.  The value of the loss factor satisfying the equality δ = ω0 is 
referred to as the critical loss factor 2=crη .  The western technical publication literature 
sometimes presents the loss factor value as a percentage of crη . 

The above ratios connecting the loss factor and the absorption coefficient correspond to a 
frequency independent parameter R.  In practice R could depend on frequency.  For instance, for 
the internal friction of solids under deformation, R is inversely proportional to a frequency.  
However, with η < 1 typical in practice, these ratios are correct no matter what the dependence 
of R on frequency is. 

With forced oscillations of a system with one degree of freedom, energy consumed to 
keep it in motion is partially absorbed through losses.  The ratio between the energy absorbed in 
a system within the forced oscillation period and the potential energy accumulated in the system 
is πηψ 2/ .. ==EPabs WW , i.e. is governed by the vibration energy loss factor value η = ω R /K 0 
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in the system.  With a system’s forced oscillations, the amplitude of its oscillations is dictated by 
the complex rigidity (stiffness) K = K0 (1 + jη), i.e. 
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With a change in ω, the system’s excitation frequency, with respect to the frequency of 
its natural oscillations ω 0, the forced oscillation amplitude decreases (see Fig. 4.3).  A decrease 
of the oscillation amplitude down to 2/0x&  occurs within the frequency range ∆ω = ηω 0. 

Similarly to electric filter theory, the inverse value of η is referred to as the oscillating 
system’s Q-factor (Quality factor) given by: 
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The phase shift between the driving force F and the vibration velocity x& of a mass with 
forced oscillations of a one degree of freedom system with losses equals 

),/arccos( FZR=ϕ where ωω jKMjRZ F /0++=  is th system’s mechanical resistance 
(impedance) with respect to the force F.  With no losses (R = 0), ϕ = π/2, and no energy is 
absorbed in the system. 

The amplitude of forced oscillations of a system with one degree of freedom at the 
frequency of the driving force F that is 0ωω =  is given by the equation )/( 00 ηω MFx =& .  The 
higher the loss factor η, i.e. the greater is the amount of energy that is absorbed in the system 
being excited, and the lower the vibration velocity amplitude. 

Whatever is mentioned above concerning the behavior of a system with one degree of 
freedom is fully applicable to vibrations of finite dimensioned structures as each of the vibration 
modes of such structures manifests itself in a similar manner. 

The process of elastic wave propagation in long structures in which the vibration energy 
losses are inevitable shows a gradual damping of the amplitude as the waves move farther away 
from their source.  Such damping is described using the expression (3.21).  The higher the loss 
factor in a structure, the greater is the rate of amplitude reduction of the propagating elastic 
waves . 

6.3 Vibration-Absorbing Methods 

6.3.1   Vibration Absorption Coatings 
Vibration-absorbing coatings that are applied to ship structures are either one or multi-

layered structures incorporating viscoelastic materials with large internal losses.  Vibration-
absorbing coating designs vary in the nature of deformations occurring during vibrations of the 
damped structures. 

Three basic types of the vibration-absorbing coatings are distinguished: rigid (stiff) 
vibration  absorbing coatings, reinforced vibration-absorbing coatings and soft vibration-
absorbing coatings. 
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Figure 6-2.  Designs of the vibration absorbing coatings and types of their 

deformations. 
1 - the damped plate 
2 - viscoelastic layer. 
3 - light and rigid material gasket 
4 - the reinforcing layer 
∆ - deformation of the viscoelastic material. 

 

Rigid (stiff) vibration-absorbing coatings are layers of a rigid (stiff) plastic applied to a 
damped structure.  Such a coating’s structure and the type of deformation occurring with 
bending of the damped plate are shown in Fig. 6.2, a.  Deformation of a viscoelastic material 
(plastic) causes its compression (or tension) in the direction of the damped structure plane.  The 
loss factor of a flexurally vibrating plate faced with a rigid (stiff) vibration-absorbing coating is 
determined by Eq. [21] 

12
21

2
222

2

)]12([1 −++
≈

ααβα
η

η ,                  (6.1) 

where 2η  is the coating material’s loss factor; 122 / hh=α , 122 / EE=β ; 
2/)1(/ 212121 αα +== hh ; h1 and h2 are the thicknesses of the damped plate and the viscoelastic 

layer respectively; E1, E2 is Young’s modulus for the damped plate and the coating material; h21 
is the distance between the neutral planes of the damped plate and the viscoelastic layer (see Fig. 
6.2, a).  Eq. (6.1) is correct provided 2

2 10−<β , which is usually the case in practice. 
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Figure 6-3.  Dependence of the loss factors ratio η / η2 in a plate faced with a rigid 
vibration-absorbing coating upon the coating/plate thickness ratio α2 
= h2 / h1 with various ratios β2 = E2 / E1. 

 

Dependence of η on 2α  with various values of 2β is shown in Fig. 6.3.  As 2α  increases, 
the loss factor in a damped plate increases, asymptotically approaching the 2η value.  This 
demonstrates that indefinitely increasing the rigid (stiff) coating thickness as a way of boosting 
its effectiveness is unreasonable.  In practice, the optimal value is 2  to5.12 =optα .  Higher values 
of the loss factor in a damped plate can be ensured through applying a vibration-absorbing 
material on one side of the plate. 

Introducing a standoff between the plate surface and the rigid vibration-absorbing 
coating filled with a gasket made of a rigid but light material such as foam plastic increases the 
loss factor in a plate.  This increase occurs through an increase in the viscoelastic layer’s tensile 
strain as the layer is moved further away from the damped plate (Fig. 6.2,б). 

An increase in effectiveness of a rigid vibration-absorbing coating when a gasket is used 
is observed at frequencies below the frequency ƒ0 which is: )218/( 33120 hEcGf l= .  Specifically, 
for a rigid «Aгат» material coating (Table 6.1) with thickness h3 = 0.004 m applied to a steel 
plate with the use of a ΠΒΧ-1  foam plastic gasket with 27

2 N/m104 ⋅=G , ƒ0 ≈ 120 Hz.  At a 
higher frequency, the loss factor in a plate having a rigid (stiff) vibration absorbing coating 
applied with the use of a gasket drops significantly. 

The larger the product 22βη  or 22Eη  sometimes referred to as the loss modulus, the 
larger is the loss factor of a damped plate. 

The known materials for rigid vibration-absorbing coatings feature a loss modulus at its 
maximum (ηE) max at a certain temperature T max.  The more significant a deviation from this 
temperature, the lower is the material’s loss modulus. 

A material is assumed effective in an operational temperature range ∆T within which the 
loss modulus is halved.  For the known materials, this operational temperature range is normally 
about 40°C.  The operational temperature range is limited due to the fact that viscoelastic 
materials possess a high value of ηE only at the vitrification (glass transition) stage - transition 
from the glassy to the rubbery condition of a material.  To shift the operational temperature 
range in either direction, so-called plasticizers are usually added to the viscoelastic material 
content.  The temperature dependence of loss factors of some rigid vibration-absorbing coatings 
is given in Fig. 6.4. 
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Figure 6-4.  Temperature dependence of a loss factor of some rigid vibration-

absorbing coatings made of viscoelastic materials. 
1 - material «Вмп-25» 
2 - material «Адем-ИШ» 

 

To increase the loss factor of viscoelastic materials, fillers such as mica, vermiculite, 
graphite, etc. are added to the materials.  Polyvinyl chloride, polyvinyl acetate, epoxy resin, etc. 
usually provide the base for such materials.  A rigid vibration-absorbing coating application 
procedure depends on the coating type.  Sheet materials are applied with the use of glues 
(normally of ПН-Э or ЭПК-519 types).  Paste materials are applied in 2-4 mm thick layers until 
a required thickness is obtained via spraying, extrusion or with the help of a spatula.  Coatings 
are applied to degreased and primed surfaces. 

The physical and mechanical properties of some viscoelastic materials forming the rigid 
(stiff) vibration-absorbing coatings are given in Table 6.1.  The best Russian materials are as 
good in properties as similar-purpose materials made overseas.  Materials designed specifically 
for vibration-absorbing coatings are much more effective than those utilized in the ship structure 
finishing (for instance, polyvinyl chloride linoleum).  Rigid (stiff) vibration-absorbing coatings 
are barely effective when used against dilatational waves in structures. 

Example 1.  Calculate the loss factor value for a steel plate with thickness h1 = 0.006 m 
faced with a vibration-absorbing coating of “ВМЛ-25” material with thickness h2 = 0.012 m.  
From Table 6.1: Pa 105  9

2 ⋅=E , η2 = 0.4.  For the above coating’s parameters, 
2

2212 105.2;5.1;2 −⋅=== βαα .  According to Eq. (6.1), we have: 

1222 )]5.1122(105.22[1
1

−− ⋅+⋅⋅+
=η . 

The coating’s relative weight (mass) in this case accounts to 40% of m1. 

 

Reinforced vibration-absorbing coatings are layers of a viscoelastic material covered 
on top with a thin metal layer reinforcing the viscoelastic material.  The coating design and the 
type of its deformation with a damped plate bent are shown in Fig. 6.2, б.  With a structure bent 
in a viscoelastic layer, a shear strain occurs that prompts absorption of the vibration energy in a 
specific coating. 
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The loss factor for a flexurally vibrating damped plate with a reinforced vibration-
absorbing coating applied can be calculated by Eq. [21]: 

)]1(1[)1(1 2
222

2
2

2
2

22

ηγη
γη

η
+++++

≈
ggg

g                                   (6.2) 

where   
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1212113312233
2
312

2
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ββα
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Eq. (6.2) is correct provided that 1,1, 2
3
32

3
232 <<<<<< βαβαββ , all of which are 

usually true in practice. 

Dependence of the loss factor for a damped plate with a reinforced coating upon the 
coating layer thickness is governed by the geometrical parameter γ, and the frequency response 
is dictated by the shear parameter g2 , which is inversely proportional to the frequency. 

Figure 6.5 shows dependence of the loss factor for a plate with a reinforced coating upon 
the shear parameter g2 ≡ ƒ-1 with η2 = 1.  The maximum η = ηmax occurs at the frequency optf .  
When further removed from this frequency, the η value decreases monotonically.  The value of 
the frequency optf  is determined by the equation 

1

2
2

3
11

233

2

12
)1)(1(

2 m
hE

hhE
Gfopt

ηγ
π

++
=                                    (6.3) 

where m1 is a damped plate mass per unit surface area. 

The loss factor value reaches its maximum at the frequency optf  and is then determined 
by the equation 

 
)1(2 2

2
max

optg++
=

γ
γη

η ,                                                    (6.4) 

where 2/12
22 )]1)(1[( −++= ηγg . 

The loss factor η increases as the geometrical parameter γ increases.  Figure 6.6 
demonstrates such dependence with the variable 2η .  Increase in η virtually stops with γ = 10. 

The use of viscoelastic materials for a reinforced coating with η2 > 1 is unjustified.  The 
factor η cannot exceed the 2η  value that is evident from Eq. (6.4) with γ tending to infinity. 

A reinforced coating design shall be selected to make sure that optf  is in close proximity 
to a frequency at which the maximum lowering of the damped plate’s vibration level is required.  
The frequency band in which the reinforced vibration-absorbing coating is most effective lies 
roughly within the limits of a decade (3.5 octaves) where the damped plate’s loss factor gets 
down to 0.7 of ηmax. 
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Figure 6-5.  Dependence of the loss factor for a plate faced with the reinforced 
vibration-absorbing coating upon the shear parameter g2. 

 

 

 

Figure 6-6.  Dependence of the loss factor’s maximum value for a plate  faced 
with the reinforced vibration-absorbing coating upon the geometrical 
parameter γ. 

 

Rubber meeting the oil-resistance and other necessary service property requirements is 
used as a viscoelastic material for reinforced coatings (physical and mechanical properties of 
some rubber grades are given in Table 5.1).  A sticky viscoelastic material is sometimes used 
that serves as a bonding element at the same time.  Such materials are produced in rolls and that 
allows one to «bandage» the damped cylindrical structures (like pipelines). 

To increase the loss factor in a damped plate, the reinforced vibration-absorbing coatings 
are sometimes applied in several layers to provide a multilayered coating (Fig. 6.2, г).  

Domestic shipbuilders widely use «Полиакрил-В» (Polyacril B) multilayered reinforced 
vibration-absorbing coating, with an acrylic polymer [21] as the viscoelastic layer.  Its physical 
and mechanical properties are: Pa10)10  to2( 6

2 ⋅=G , 0.5  to3.02 =η .  The reinforcing layers 
are made of aluminum foil 6106 −⋅ m thick, thickness of the viscoelastic layers is 4102.1 −⋅ m.  
The number N of layers depends upon the thickness h1 of the damped plate and is calculated by 
the equation N = 1 + h1, with h1 in mm.  The coating’s relative weight accounts for 40 to 50% of 
the damped plate weight. 

The frequency response of the loss factor for a plate faced with «Полиакрил-В» 
(Polyacril B) coating is shown in Fig. 6.7.  The loss factor value is considerable (about 0.1) over 
the entire audio frequency range. 
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Figure 6-7.  The frequency response of the loss factor for a plate faced with 
«Полиакрил-B» (Polyacril-B) reinforced vibration-absorbing coating 
with T = 20 to 23 ° C; f - kHz. 

 

The «Полиакрил-В» (Polyacril-B) coating is applied to a damped structure using a 
viscoelastic layer.  Holding the coating pressed against the damped structure for 48 hours 
provides a durable connection.  As far as the dilatational (longitudinal in-plane) vibrations of the 
damped structure are concerned, the reinforced vibration-absorbing coatings, as well as the rigid 
ones, are barely effective. 

Example 2.  Calculate the design of a reinforced vibration-absorbing coating to ensure 
the loss factor ηmax = 0.1 in a damped steel plate at the frequency optf  = 100 Hz.  The reinforcing 
sheet is also made of steel with 13 =β .  Select 1002-type rubber with G2 = 107 N/m2 and η2 = 0.6 
for the viscoelastic layer. 

Determine the geometrical parameter γ = 1 for ηmax = 0.1 with η2 = 0.6 from the diagram 
in Fig. 6.6.  The expression for γ given in Eq. (6.2) states that, with α31 ≈ 0.5, h2 << h1 and h3 << 
h1, α ≈ 1/3 which means the reinforcing layer shall have thickness 3

3 102 −⋅=h m.  We determine 
h3 h2 ≈ 10-6 m2 from Eq. (6.3).  Therefore, m105 4

2
−⋅=h  (h2 = 0.5 mm).  The coating’s relative 

weight accounts for about 35% of the damped plate weight. 

The soft vibration-absorbing coatings consist of viscoelastic material layers in which a 
transverse displacement of the flexurally vibrating plate surface causes elastic waves to 
propagate in the thickness direction.  A design and the deformation type for such a coating are 
shown in Fig. 6.2, ä. 

The loss factor for a flex-vibrating plate with a soft vibration-absorbing coating applied 
is determined by Eq. [21] 

,
)sinh(2)2sin()]cosh()2[cos(2

)]2sin()sinh(2[

222222222

22222

ηννηηνννηµ
νηηνηη

+++
−

=
m

               (6.5) 

where 221222 ;/; kmmhk m == µν  is the modulus of the wave number for the viscoelastic layer 
oscillations in the direction of its depth (thickness); m1, m2 stand for the damped plate and the 
viscoelastic layer mass, respectively, per unit surface area. 

Eq. (6.5) is correct with 12
2 <<η  and no load on the coating’s external surface.  The 

frequency response of the loss factor calculated by Eq. (6.5) is given in Fig. 6.8.  At the low 
frequencies where ν2<<1, 
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)1(3
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η
+

≈  .                                (6.6) 

At the frequencies where the condition h2 = λ2 / [4(2n - 1)], n = 1, 2, 3,..., is met, the 
coating’s spatial resonance occurs that involves larger deformation of the coating  

  
)

2
tanh(1 2

2

2

ην
νηµ

η
ηη

nres
nresm

nres

+
≈=                                          (6.7) 

where πν )2/1( −= nnres .  This occurs at the frequency 
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2 h
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f nres
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==

π
ν

, n = 1, 2, 3,...,           (6.8) 

where c2 is the velocity of the elastic waves propagating in the direction of the 
viscoelastic layer depth. 

At the frequency where the condition h2 = λ2 / (2n), n = 1, 2, 3,..., is met, the spatial anti-
resonance occurs, the coating deformation diminishes and that entails lowering of the loss factor 
η. 

   
)

2
coth(1 2

2

2

ην
νηµ

η
ηη

nresanti
nresantim

nresanti
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−

−

+
≈=  .      

(6.9) 

The coating’s spatial anti-resonance takes place at the frequency 
K,3,2,1),2/( 22 ==− nhncf nresanti . 

The highest value of 1resηη =  is observed at the first resonance frequency 

)4/( 221 hcfres =  

.
23.11 2

2

2
1 ηµ

η
η

m
res +

≈                                           (6.10) 

• The values nresanti−η and  nresη  tend to the same value as frequency increases 

1

22

22

2

1 m
c

m ω
ρ

νηµ
η

η ≈
+

≈ .                                (6.11) 

At the high frequencies, the loss factor for a plate with the soft vibration-absorbing 
coating does not depend upon the coating material’s loss factor as the flexurally-vibrating plate 
is charged with a semi-infinite medium with the acoustic resistance ρ2c2 in which the energy 
radiated by the plate into the medium is fully absorbed. 
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Figure 6-8.  The frequency response of the loss factor for a plate with the soft 

vibration-absorbing coating. 
1 - calculation by Eq. (6.5) 
2 -- calculation by Eq. (6.6) 
3 -- calculation by Eq. (6.7) 
4 -- calculation by Eq. (6.9) 
5 -- calculation by Eq. (6.11.) 

 

 
Figure 6-9.  Dependence of the soft vibration-absorbing coating’s relative weight 

µm = m1 / m2 upon the coating material’s loss factor η2 with a 
specifically required value of the loss factor 1resη  in a damped plate. 

 
 

 
Figure 6-10.  Dependence of the wave thickness 1resν  of the soft vibration-

absorbing coating at the first resonance frequency 1resf  upon the 
load weight m3 and the coating weight m2 ratio. 
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To widen the frequency range in the direction of lower frequencies for greater 
effectiveness of the soft vibration-absorbing coating, its first resonance frequency can be 
lowered by adding to the coating thickness.  But the coating thickness cannot be increased 
indefinitely.  Reducing the elastic wave propagation velocity c2 provides an alternative method 
of lowering the coating’s first resonance frequency.  It is achieved in practice by incorporating 
air cavities in the coating material that enhances its compressibility and, therefore, reduces the 
elastic wave velocity c2.  This, however, lessens the loss factor for a plate at the higher 
frequencies as stated by Eq. (6.11). 

To increase the effectiveness of the soft vibration-absorbing coating, an increase in the 
loss factor of the viscoelastic material used is required.  But raising the factor above the 
value 122 /9.0 mm=η  serves no useful purpose. 

Eq. (6.10) helps determine the coating’s relative weight µm = m2 / m1 required for 
ensuring a targeted value 1resη  with a given loss factor 2η  of the material.  Figure 6.9 shows 
such dependencies for two values 1resη  that equal 0.1 and 0.2. For example, with 9.02 =η and 

1.01 =resη , µm = 7 is required, i.e. ~ 15% of the damped plate weight is enough for the coating 
weight. 

An important feature of the soft vibration-absorbing coating is that the loss factor for a 
structure with this coating is dependent upon the structure weight whereas the factor for the rigid 
(stiff) and reinforced vibration-absorbing coatings is governed by the structure’s flexural 
rigidity. 

An estimate for the loss factor in a flexurally vibrating plate with the soft vibration-
absorbing coating can be calculated by the Eqs. (6.6) and (6.11) above and below the frequency 
ƒ0 which is identified in a drawing in the point of intersection for the curves representing the 
above equations (see Fig. 6.8). 

Lowering of the first resonance frequency for the soft coating is also possible by loading 
the coating’s free surface with an inertial mechanical resistance (impedance) in the form of metal 
straps whose maximum dimension l shall be far less than the flexural wavelength in the damped 
plate at the upper frequency of the range under consideration ( 1<<plflk ).  The loss factor for a 
plate with such a coating at a frequency below ƒ0 can be calculated by the equation  

m

mm

µ

µµν
ηη

+

++
≈

1

)
3
1( 2

00
2
2

2 . 

where µm0 = m3 / m2;  m3 is the mass of straps per damped plate’s unit surface area.  At a 
frequency above ƒ0, the loss factor for the strap-covered plate is determined by Eq. (6.11). 

Decrease in the wave thickness ν2 of the soft coating at the frequency 1resf  with the use 
of straps depending upon the strap and coating weight µm0 ratio is shown in Fig. 6.10.  Straps 
weighing below 10% of the coating weight hardly cause any variation in the frequency 1resf .  
With the strap and coating weight values equal, the frequency 1resf  is roughly halved.  The value 
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of the frequency 1resf  related to the value 1resν  of the coating’s wave thickness is determined 
with the use of the drawing, Fig. 6.10, and can be calculated by Eq. (6.8). 

The frequency responses of the loss factors for a flexurally vibrating 0.006-m-thick steel 
plate faced with a soft vibration-absorbing coating made of ИРП-1074 rubber having 0.004-m-
thick air cavities, steel square straps (5×5×0.4)•10-2 m3 in dimensions (µm0 = 2.65) or no straps 
are given in Fig. 6.11.  Straps diminish the frequency 1resf  6.2 times and this agrees well with 
the calculated value of this decrease which is 5.5 according to the drawing, Fig. 6.11.  The 
calculation shows that velocity of the elastic wave propagation in the coating c2 ≈ 300 m/sec, 
according to Eq. (6.11). 

                                         
Figure 6-11.  The frequency responses of the loss factor  for a flexural vibrating 

steel plate faced with a soft vibration-absorbing coating. 
1 - with the steel straps 
2 - without the steel straps. 

 

Some grades of the sheet rubber listed in Table 5.1 may be used for making soft 
vibration-absorbing coatings.  The air cavities in the rubber can be made either with the use of 
suitable dies or by gluing narrow rubber stripes with a certain spacing.  The air inclusions 
coefficient in the rubber ensuring the ductility required is to be about 0.1 to 0.2.  The soft 
vibration-absorbing sheet-rubber coatings are applied with the use of a suitable glue to a cleaned 
and primed surface of the damped structure. 

With longitudinal oscillations of the damped plate, the soft vibration-absorbing coating is 
as effective as with the plate’s flexural oscillations, unlike the rigid and reinforced coatings.  In 
this process, the shear waves propagate in the coating layer in the direction of its depth 
(thickness) with the velocity 222 / ρGc = .  For a rubber grade with G2 = 107 N/m2 and ρ2 = 
103 kg/m3, c2 = 100 m/sec, i.e. approximately 3 times slower than the compressional waves that 
propagate in a coating layer in response to transverse displacements of a damped plate’s surface.  
Therefore, in the case of longitudinal oscillations, the frequency response curve for the plate’s 
loss factor differs from that for the flexural oscillations as it drifts roughly one and a half octave 
towards the lower frequencies with the value 1resη  unchanged.  At the lower frequencies, this 
causes a decrease in the loss factor, at the higher ones - an increase. 
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6.3.2 Structural Vibration-Absorbing Materials 
Some materials used for in fabricating ship structures feature substantial internal losses, 

so that, damping of their oscillations requires no vibration-absorbing coatings to be applied.  
Application of these coatings to materials with the loss factor over 0.03 is assumed to have little 
additional acoustic effect. 

Layered vibration absorbing materials, vibration-absorbing alloys and nonmetallic 
vibration absorbing materials represent structural vibration absorbing materials. 

 

Layered vibration-absorbing materials made up of two metal plates, normally of the 
same thickness, bonded with a viscoelastic sticky layer, which is thinner than the plates.  In 
foreign technical publications they are oftentimes referred to as «sandwiches».  

 
Figure 6-12.  Design of a layered vibration absorbing  material (a) and the nature 

of its deformation (б). 
1 - the metal plates 
2 - the viscoelastic layer 
∆ -- deformation of the viscoelastic layer. 

 

Layered vibration-absorbing materials can be used for making soundproof casings for 
noisy equipment, light partitions for rooms, bilge boards, the bulk cargo bunker walls and other 
elements of the ship structures having moderate static load. 

Design and the type of a viscoelastic layer deformation with the layered vibration-
absorbing material subjected to the flexural vibrations are shown in Fig. 6.12.  Similarly to the 
reinforced vibration-absorbing coatings, the viscoelastic layer is exposed to shear strain. 

The frequency response of the loss factor for the foliated vibration-absorbing material is 
maximum at the frequency optf  which, for a symmetrical structure with h1 = h3, equals [21] 
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π Eh
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where 2
2 )1(3 += αγ  is the geometrical parameter; 122 / hh=α . 

At the frequency 1resf  the material’s loss factor 
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An increase in the parameter γ causes an increase in ηmax, asymptotically tending to the 
value η2.  Typically, 1=optf  kHz is ensured. 

«Випонит» layered vibration-absorbing material made of aluminum alloys or steel 
sheets may be used in shipbuilding [21].  The material’s maximum loss factor is 0.5 at the 
frequency 1=optf  kHz at the temperature 20°C.  The viscoelastic layer in the «Випонит» 
material is manufactured with polyvinyl acetate as the base.  It can be subjected to welding, 
cutting, riveting, and bending.  The use of «Випонит» material rather than conventional metal 
sheets lowers a structure’s acoustic vibration level by 10-20 dB. 

 

Vibration-absorbing alloys are typically represented by two-phase combinations of 
manganese with copper, nickel with titanium, etc.  Absorption of energy during deformations in 
such alloys occurs largely at the boundary between the phases.  In the process, the dissipative 
properties of such alloys increase as their deformation amplitude rises.  Some known alloys have 
the internal loss factor up to 0.05-0.07.  But the vibration-absorbing alloys are harder to machine 
as compared to the traditional shipbuilding metals.  There is «Аврора» vibration-absorbing alloy 
with the loss factor about -2105)  to1( ⋅=η  [21].  The use of the alloy in making a ship pump 
case reduced its vibro-activity by 5 dB on average.  Vibration absorbing alloys are good for use 
in making single units of the vibroactive equipment that disallow application of vibration 
absorbing coatings due to small dimensions or other reasons. 

 

Nonmetal materials utilized in shipbuilding possess certain vibration-absorbing 
abilities.  The use of these materials rather than the metal sheets can be effective, especially 
when the metal sheets cause jarring of structures (for instance, when the sound-insulating boards 
are used) as the result of the resonance oscillations.  Physical and mechanical properties of some 
materials utilized in shipbuilding are given in Table 6.2. 

In addition to making the hull structure components, nonmetal vibration-absorbing 
materials can be used for manufacturing single units of the vibroactive equipment.  For example, 
the use of fiber-glass in making a cover for the ICE helped lower its air noise levels by 5 to 6 dB 
at the higher frequencies.  An even greater effect is ensured when using the above materials in 
fabricating the machine components, in which the vibration energy originates.  For example, the 
use of a caprolan master propeller to replace a steel one in the oil pump reduced its vibration 
levels at the high frequencies by 8 to 16 dB. 
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Table 6-2.  Physical and mechanical properties of nonmetal materials utilized in 
shipbuilding. 

Material Loss factor  
η•102 

Young’s modulus  
E•10-10, Pa 

Density  
ρ•10-3, kg/m3 

Fiber glass 1-2 10-20 1.72 

Plywood 1.3 3.4 0.8 

Pine planks 1 10 0.5-0.8 

Organic glass 5 3.1 1.2 

Wood-fiber plates 2 3 1 

Mineral-fiber plates 1 3 0.8 

Fiber glass laminate 1.7 5 1.3 

Foam plastic plates 2.1 2104.3 −⋅  0.1 

 

6.3.3 Bulk Vibration-Absorbing Materials 
Some bulk materials like sand possess substantial vibration-absorbing properties.  Since 

no material of this kind can be permanently shaped, they should be used for damping hollow 
structures (pipes, pillars, frames, etc.). 

Elastic waves can propagate in bulk materials.  In dry sand, for example, 
150≈longc m/sec,  shearc ≈ 100 m/sec.  Friction between the material particles occurs in the 

process causing partial absorption of the wave energy.  The loss factor used to describe the 
absorption is η ≈ 0.1 [21]. 

The bulk material spread in an even layer over the surface of a flexurally vibrating 
structure is similar to the soft vibration-absorbing coating.  That is why such a layer begins to 
actively absorb the vibrational energy starting from the frequency 1resf  determined by Eq. (6.8) 
with n = 1.  At the frequencies above 1resf , the loss factor for a plate with a bulk material layer is 
determined by Eq. (6.11).  The velocity longc  of the elastic wave propagation in the sand 
incorporated in these equations is assumed to be 150 m/sec, density ρ2 ≈ 2.2. 

Figure 6.13 gives the frequency response of the loss factor for a steel pipe 6′′ in diameter 
filled with sand.  The 0.05-0.1 value factor is ensured at the frequencies 0.3-10 kHz that is 
enough for the effective damping of the given structure’s flexural vibrations.  Bear in mind that 
filling hollow structures with the bulk material lowers their resonance frequencies through 
adding to their weight.  For instance, for a rod structure this lowering is determined by the 
equation mmff resres ′=′ / where the filled structure parameters are designated with the stroke 
symbol. 
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Besides sand, fine cast iron pellets (within 0.5 mm in diameter), milled asbestos cement, 
etc., may be used as bulk vibration-absorbing materials.  The abrasive properties of some bulk 
materials shall be taken into consideration as they might produce a negative effect when hitting 
rubbing parts of the ship equipment. 

 

Figure 6-13.  The frequency response of the loss factor for a steel pipe 6′′ in 
diameter filled with sand; f – kHz. 

 

6.4 The Use of Vibration-Absorbing Means to Lower the Acoustic Vibration of 
Ship Hull Structures 

Vibration-absorbing techniques on the ship hull structures should be primarily used in 
two cases: 

♦ to lower the level of the acoustic vibration transmitting over the hull structures that connect 
the vibration source and the radiating partitions when the vibration-absorbing coatings are 
applied to these structures; 

♦ to lower the sound radiation of partitions by applying the vibration-absorbing coatings or 
making such from the layered vibration-absorbing materials. 

In the first case, the higher the loss factor for the coating treated structures, the shorter is 
the distance over which the flexural waves propagate in these structures, and the longer the 
structures over which the flexural waves propagate - the higher the vibration-absorbing coatings 
effectiveness. 

Application of the vibration-absorbing coating adds to the damped structures weight and 
its flexural rigidity.  Therefore, the coating effectiveness in terms of damping the flexural wave 
to propagate over the structure is determined by the following equation with these parameter 
variations considered: 

Э dB   )(15.2 4/1 ⎟
⎠
⎞

⎜
⎝
⎛ −

′
′

′=′−= ηηξξ Bm
BmlkLL fl                 (6.12) 

where m′ = m + m p; m p is the coating weight; flflk λπ /2=  ; l is the distance from the acoustic 
vibration source; the stroke symbol marks the structural parameters with the applied coating 
taken into account. 

For homogeneous (rib-less) plates, Eq. (6.12) applies easily.  With stiffening ribs added, 
the structure’s dynamic behavior gets more complex due to the frequency response of its 
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vibratory properties.  In this connection the loss factor value η and the flexural wave-length 
flλ in the structure differ significantly in the frequency subranges divided by the first resonance 

frequency 1resplf  of the plate segment bounded with the neighboring stiffening ribs, and by the 
frequency 02f  determined by Eq. (3.60) at which the structure’s elastic properties are no longer 
governed by the stiffening ribs.  Similarly to the designations in Fig. 3.23, mark these subranges 
as A′, Б' and В'. 

In the subrange A′, the loss factor for a ribbed structure with the rigid and reinforced 
coatings is low due to the structure’s high rigidity.  In the subranges Á′ and Â′, the loss factor for 
a structure with the above coatings rises significantly as the flexural rigidity of the plate proper 
becomes the dominant factor.  Figure 6.14 gives the frequency responses of the loss factors for 
the steel rib-less 1 and ribbed 2 plates with the rigid vibration-absorbing coating.  The ribbed 
plate has its loss factor dropping sharply at the frequencies below 1resplf (the subrange A′).  At 
the higher frequencies (the sub-ranges Б' and В'), the loss factors in both cases are identical. 

 

 
Figure 6-14.  The frequency responses of the loss factor for the ribless and 

ribbed plates with the rigid vibration-absorbing coating of  «Адам-
ПШ» type; f -- kHz. 

 

Measurements whose results are shown in Fig. 6.14 were made on plates 1.4×1×0.006 m 
in dimensions, one having a cross stiffening rib framing 0.05 m high and 0.006 m thick; the 
stiffening ribs divided a plate in 16 identical parts.  « Адем-НШ » paste 0.012 m thick was used 
as a coating.  It was applied in a continuous layer to the ribless plate and segment by segment 
between the stiffening ribs to the ribbed one. 

The drop in the ribbed plate’s loss factor observed in the subranges Б' and В' is, 
probably, due to the end effect of a decrease in the rigid coating strain with lengthening of the 
coating’s free edges [21].  In the sub-range A′, the loss factor is approximately 10 times lower as 
compared to its value in the sub-ranges Б' and В'. 

Calculation of the frequencies 1resplf  and ƒ02 produces 0.32 and 3.6 kHz respectively that 
is in good agreement with the experiment.  If the soft vibration-absorbing coating is utilized, the 
loss factor for the rib-less and ribbed plates is the same in the entire frequency range as it 
depends upon the structure weight only. 
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The flexural wavelength in the ribbed plate at the frequencies above ƒ02 (the sub-range 
Â′) is governed by rigidity of the plate proper.  At the lower frequencies (the sub-ranges Б' and 
В'), the flexural wavelength is dictated by the rigidity of the stiffening ribs. 

The effectiveness of a vibration-absorbing coating when applied to a radiating partition is 
determined by Eq. [21] 

Э dB  log10log10
2

2

Bm
Bm
′

′′
=′=

η
η

ξ

ξ

&&

&&
 .                            (6.13) 

The following requirements to be met in the vibroacoustic characteristics of the ship hull 
structures to ensure higher effectiveness of the vibration-absorbing coatings applied can be 
formulated based on the above: 

♦ the ribbed structures’ flexural rigidity shall be minimal provided the strength and other 
general shipbuilding requirements are met.  This raises the wave number of the structure’s 
flexural oscillations in the sub-ranges Б' and В′; 

♦ the first resonance frequency of the flexural oscillations of the structure segments bounded 
with the neighboring stiffening ribs shall be as low as possible, therefore, the distance l0 
between the stiffening ribs shall be as long as possible; this allows a widening of the sub-
range Б′, in which the structure’s loss factor is relatively high, in the direction of the lower 
frequencies; 

♦ a ribbed plate shall be as thin as possible, this increases the loss factor for the coating in the 
sub-ranges Б' and В′ as well as the wave number of the structure’s flexural oscillations in the 
sub-range Б′; for a rib-less plate, a decrease in thickness increases the loss factor and the 
wave number at all frequencies; 

♦ when applying the soft vibration-absorbing coating to a structure, ensuring the structure’s 
minimal weight is expedient. 

The Eqs. (6.12) and (6.13) are only correct when the acoustic vibration source and the 
sound radiating partition are connected by just one structure.  In practice, such structures are 
typically more than one and the vibration energy is transmitted to the partition in several ways.  
Therefore, a more sophisticated procedure is required to provide a more accurate assessment of 
the effectiveness of the vibration-absorbing coating application technique employed (see § 7.1). 

When working out a vibration-absorbing coating application technique for the ship hull 
structures, one should be guided by the two basic principles.   

First, a coating should be preferably applied to structures or those segments with the 
maximum levels of the acoustic vibration.  In this connection, the closer the coatings identical in 
area covered are applied to the vibration source, the more effective the coatings. 

Secondly, the coating shall be applied to all structures serving as the vibration energy 
conductors from the source to an observation point.  In so doing, bear in mind difference in the 
acoustic vibration attenuation for the various transmission paths.  Application of a coating serves 
no purpose whenever the attenuation difference surpasses the effectiveness of the coating placed 
along the major route of transmission. 

Experience of the use of the vibration-absorbing coatings on board prompts expediency 
of their application in accordance with the following standard patterns: 
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♦ coatings are applied to the structures adjacent to the vibroactive source and the room 
accommodating the source; this pattern is preferable whenever the acoustic vibration level 
and the air noise are to be lowered in many rooms surrounding the one with the vibration 
source; 

♦ the coating is applied to partitions of the room that requires lowering of the air noise levels; 
the pattern is suitable for a small number of rooms that require lowering of the air noise level; 

♦ the coating is applied to the structural elements that oscillate intensely at the resonance 
frequencies and radiate more air noise as exemplified by the damping of the structure 
elements that produce jarring when acted upon by the hull moving vibration or other vibration 
sources (specifically, jarring of bilge boards caused by attendants walking on them). 

 

The vibration-absorbing coatings applied to ship hull structures can reduce the air noise 
level in the rooms by 10 to 15 dB.  For more detailed information on the use of vibration-
absorbing coatings on board, refer, in particular, to [21]. 

Example 3.  Calculate the flexural wave damping at the distance l = 5 m from the source 
in structures with the rigid (stiff) vibration-absorbing coating (their loss factor measurement 
results are given in Fig. 6.14).  Calculation is carried out by Eq. (6.12).  The flexural rigidity of a 
plate with stiffening ribs is increased approximately 10 times as compared to a rib-less plate.  
Values of the frequency 3201 =resplf Hz,  ƒ02 = 3600 Hz. 

The damping calculation results for the rib-less 1 and ribbed 2, 3, 4 plates are given in 
Fig. 6.15.  The stiffening ribs hinder damping of the flexural wave amplitude significantly, with 
the damping value at the frequencies below 1resplf  (the range A′) being really small.  At 
frequencies above ƒ02, the calculated damping proves to be very substantial.  However, 
achieving such a high damping value in practice is impossible due to transformation of flexural 
waves into dilatational (longitudinal) waves whose damping by the rigid vibration-absorbing 
coating is moderate. 

 

 

 

Figure 6-15.  The frequency responses of the flexural wave amplitude damping 
for the ribless and ribbed plates with the rigid vibration-absorbing 
coating (the structure and the coating are the same as in Fig. 6.14); 
Э–dB;  f - kHz.  
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6.5  Damping of Rod Structure Oscillations by Vibration-Absorbing Coatings 
Rod-type elements of ship structures are pipelines, pillars (tube components) as well as 

frames, boxes (beam elements).  In general, damping of all types of such structures’ vibrations 
(flexural, longitudinal and torsional) is required.  To achieve this, the above considered types of 
vibration-absorbing coatings may be used including: rigid (stiff), reinforced and soft types. 

The equations to calculate the loss factors for the tube and beam structures with rigid and 
soft vibration-absorbing coatings are given in Tables 6.3 and 6.4.  Table 6.5 offers the loss 
factors of the structures with reinforced vibration-absorbing coatings.  The tables provide the 
equations correct in the range of the frequencies at which the rod structures oscillate as described 
assuming the «plane section» hypothesis, i.e. no distortion of the structure’s cross sectional 
shape.  For longitudinal vibrations, this is correct in the entire audio frequency range, for other 
types of vibrations there is the limiting frequency ƒ0 in the tables indicating the given equations 
range of applicability. 

 



 172

 

Table 6-3.  The loss factors of the tube structures with rigid and soft vibration-
absorbing coatings. 

Structure 
drawing 

Coating type Oscillation 
type 

Loss factor η Applicability 
limit with ƒ≤ƒ0 
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Note: M1 is the tube’s linear weight, I1 is the polar moment of inertia for the tube section. 
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Table 6-5.  The loss factors of the tube and beam structures with the reinforced 
vibration-absorbing coating. 

Structure 
drawing 

Vibration type Frequency OPTf  Applicability 
limit with ƒ≤ƒ0 
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Notes: 1.  I1x, S1, Ip1 - see designations in Table 6.4; 2.  The loss factor 
)122/(2max γγγηη +++= .   In the equations to determine ƒ0, the values l, h, 

H are given in centimeters. 
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At a higher frequency, each element of the structure’s cross section can be subjected to 

flexural oscillations, with a cylindrical structure oscillating as a shell.  That is why at a frequency 
above ƒ0, with the flexural and torsional oscillations of the rod structures, their loss factors can 
be calculated by the equations for plates with their respective vibration-absorbing coatings.  The 
plate’s thickness is assumed equal to that of the rod structure section. 

The effectiveness of the rod structure oscillation damping with the use of the vibration-
absorbing coatings is determined for flexural oscillations by Eq. (6.12), for the longitudinal and 
torsional ones by the equation Э )(3.4 )( ηη −′′= mmlk kpl .  The higher the structure’s loss 
factor, its wave number (the wave is shorter) and the length, the higher is the effectiveness. 

The soft vibration-absorbing coating (at the first resonance frequency along its thickness) 
features the maximum loss factor when applied to the rod structures.  The reinforced coating can 
provide a satisfactory value of the loss factor.  The rigid vibration-absorbing coating has 
virtually no effect (at the frequencies below ƒ0). 

The advantage that the soft coating possesses is because of the fact that its loss factor is 
inversely proportional to the damped structure weight, which is relatively light for the thin-
walled rod structures.  At the same time, the loss factor of the reinforced and rigid vibration-
absorbing coatings is inversely proportional to the rod structures’ rigidity (stiffness) which is 
considerable at the frequency below ƒ0.  The wave number for the rod structures at the frequency 
below ƒ0 can be determined by the equations from Table 1.4. 
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7   RECOMMENDATIONS ON THE ACOUSTIC DESIGN OF SHIP 
STRUCTURES 

7.1   Basic Principles of the on Board Acoustic Design  
Taking acoustic requirements into consideration at the earliest stages of designing a ship 

provides the fundamental principle of the ship’s acoustic design.  Unfortunately, experience 
accumulated thus far is not sufficient, but it demonstrates the possibility of meeting on board 
habitability requirements through considering the acoustic aspects, which is cost-effective, too.  
A good example [10] could be seen with the foreign experience of designing and building the 
«Rudolf Schmidt» and «Johanes Hers» suction dredgers: the acoustic requirements were met at 
the early stages of design and this allowed for meeting the habitability norms in terms of the air 
noise level in the rooms with the cost of work involved accounting to a negligible 2.5% of the 
total cost of this type ship.  Noteworthy is the fact that reducing the air-borne noise level to 
normal on board an already built vessel of the above class would take up to 9% of the total cost 
[45]. 

The ship acoustic design involves: 

♦ selection of the ship’s optimal acoustic architecture; 

♦ selection of low-noise sources of acoustic vibration and the air-borne noise and their 
distribution over the ship; 

♦ the acoustic design of ship structures; 

♦ the design and arrangement of acoustic vibration and air noise suppression techniques 
on board (designing of a noise mitigation complex). 

Selection of the ship’s optimal acoustic architecture at the early stages of design largely 
determines success in meeting the sanitary (habitability) requirements.  In some particular cases 
sticking to the sanitary (habitability) norms in terms of the air noise level on board can only and 
exclusively be ensured through selection of an acoustically favorable architecture.  Basic 
recommendations on selection of the acoustically optimal architecture are given in Section 4.1. 

Selection of low-noise sources of acoustic vibration and air noise, which include 
machinery, the system fittings and various devices should also be done at the early stages of the 
ship design. 

Selection of the type of machinery is oftentimes carried out with their mass and 
dimensions considered for further attempting to lessen these parameters.  In this connection it 
should be noted that lessening of the machinery mass and dimensions normally contributes to an 
increase in the acoustic vibration and air noise level that necessitates using more effective but at 
the same time costlier and heavier noise-suppressing complexes.  According to the data collected 
[11], the mass-to-mass ratio between the complex and the corresponding engine comes to 2-5.  
So, selection of a lighter and smaller but noisier machine may prove unjustifiable through the big 
losses in mass and dimensions over the ship as a whole. 

Comparative data [39] on the air borne noise levels of shipboard machinery are given 
below (for more information, refer to Section 2.1 and [28]): 
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Type of machine                             Air-borne noise level, 
                                                                                                       dB (A) 

 

Main internal combustion engines    100-110 

Diesel-generators       105-110 

Main turbogear assembly      95 

Turbogenerators       100 

Fans        105 

Oil pumps        115 

Water pumps       105 

Main electric motors      95 

An acoustically correct selection of the noise and vibration sources arrangement at the 
earliest stages of the ship design is vital as any alteration in the arrangement upon completion of 
the general design stage, not to mention the as-built one, is virtually impossible (see § 4.1). 

The acoustic design of ship structures aims at ensuring the optimal vibro-acoustic 
properties of the structures as well as achieving the maximum effectiveness of the noise- 
mitigation methods placed on the structures.  The design of a noise-mitigation complex [11, 28] 
should be worked on concurrently with the ship’s general design guaranteeing a lower cost and 
higher effectiveness of the complex. 

Bear in mind that the acoustic design of the ship structures should not come in conflict 
with the general shipbuilding requirements.  Besides the acoustic effectiveness of measures 
planned, it is necessary to consider the noise-suppressing complex’s additional mass, 
«squeezing» of the rooms interior due to the use  of the complex, the cost of the air noise level 
lowering measures at the stage of building and running a ship, etc.  Unfortunately, a method of a 
complex evaluation of the social and economic efficiency of the air noise level lowering 
measures on board with the above and other related factors considered has not yet been worked 
out.  Some information pertaining to the issue can be found, among other sources, in [7]. 

It is common knowledge that the faulty equipment produces much more vibration and 
noise than the serviceable one.  According to data [17], suitable repair work in many cases helps 
lower the air noise level of the faulty equipment by 10-20 dB.  Therefore, when designing a ship, 
it is expedient to specify intervals between the vibroactive equipment maintenance based not 
only on the equipment functional requirements but on the objective of keeping the noise and 
vibration activity minimal as well. 

A psychological factor to be considered when taking noise-countering measures on board 
is also important.  It has been observed that a noise source invisible to attendants and passengers 
is less discomforting for them than a source that is open for viewing [17].  With this considered, 
the screens to shield a noise source from people may be useful; such gadgets may also screen off 
the noise to a certain extent. 
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7.2   Acoustic Design of the Ship Machinery Foundations 

The acoustic design of foundations is primarily intended for raising the machines’ input 
mechanical impedance to lower the oscillation amplitude of the foundation’s mounting plates 
and structures on which it is placed. 

Listed below are the following recommendations on the acoustic design of the ship 
machinery foundations: 

♦ the foundation’s mounting plate should be as thick as possible; it is good to reinforce a 
free edge of the foundation’s mounting plate with a strap; 

♦ distance between knees that divide the mounting plate in parts should be as short as 
possible; shock absorbers and the mechanism lugs should be attached next to the knees; 

♦ the static flexural rigidity of a partition in a support foundation mounting area should 
be at least three times the static flexural rigidity of a mounting plate in the shock absorbers or the 
mechanism lugs attachment area; if it is impracticable, increase in the foundation’s inertial 
resistance is expedient through, for instance, filling of hollows formed by the foundation 
components with concrete; 

♦ it is better to position the foundation close to the mounting partition edge to suppress 
transmission of the acoustic vibration onto the partition at the frequencies below its first 
resonance frequency of flexural oscillations; 

♦ the cantilever foundation should be placed directly on the vertical stiffening ribs that 
reinforce the mounting partition; the aggregate flexural rigidity of these ribs should be such that 
ensures the resistance ZθF determined by Eq. (3.18) being at least three times the input 
impedance of the foundation’s mounting plate calculated by Eq. (3.4). 

When selecting dimensions of the foundation’s mounting plates, make sure their first 
resonance frequency of flexural vibrations is kept away from the frequencies of the main high-
frequency discrete components of the machines’ acoustic vibration.  A sufficient frequency 
separation value is 20-30%.  This allows prevention of a rise in the mechanism’s acoustic 
vibration transmitted onto the mounting partition when the above frequencies coincide.  The first 
resonance frequency of the mounting plate’s flexural oscillations can be calculated as described 
in Example 1 of § 4.2. 

When working on the acoustic design of a ship mechanism foundation, measures may 
also be taken to increase absorption of the vibration energy in the foundation’s flexurally-
vibrating components, for example, in the foundation’s support links, with the use of vibration-
absorbing coatings. 

 

7.3   Acoustic Design of the Ship Hull Structures 
The main purpose of the acoustic design of the ship hull structures is the maximum 

improvement in their vibro-acoustic characteristics (vibration excitability, vibration conductivity, 
sound radiation and sound insulation).  In practice, these characteristics can be best changed by 
variation in the relevant structures’ flexural rigidity. 
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Nevertheless, alteration in the ship hull structures’ flexural rigidity has a number of 
effects upon the vibro-acoustic characteristics.  For the structures to accommodate the vibration 
source, vibration excitability matters most; for the structures serving as the vibration energy 
conductors from the source to the protected area partitions, it is vibration conductivity that 
primarily matters; and for the compartment partitions, the sound radiation ability is predominant.  
If a room containing an acoustic vibration source is located next to the protected area, sound 
insulation of the partition between them is most important. 

When isolating the vibration conducting (transmitting) structures, detect those that are 
transmitting the most vibration; this could be done using the evaluation techniques from § 7.5, or 
relying on experience (using a prototype).  Data on the qualitative impact of a variation in a ship 
hull structure’s flexural rigidity on the structure’s vibro-acoustic characteristics are given above 
in Table 4.1 for rib-less structures and in Table 4.2 for ribbed structures.  Quantitative 
dependencies of rib-less and ribbed structures’ vibro-acoustic characteristics upon variations in 
their flexural rigidity are given in Tables 7.1 and 7.2. 

The value of a vibro-acoustic characteristic after the flexural rigidity (stiffness) has been 
altered can roughly be calculated through multiplying or dividing it by ∆B given in Tables 7.1 
and 7.2.  With the rigidity variation influencing the characteristic in a positive way, 
multiplication is performed with ∆B > 1 and division with ∆B < 1.  With the rigidity variation 
influencing the vibroacoustic characteristic in a negative way, do the opposite. 

 

Table 7-1.  Dependence of the ribless structures’ vibroacoustic characteristics 
upon variations in their flexural rigidity ∆B. 

Vibroacoustic characteristic Variation in the characteristic in a 
frequency range 

 A Б В 

Vibration excitability (mechanical 
resistance) 

B∆±  B∆±  B∆±  

Vibration conductivity (attenuation of 
the flexural wave amplitude per unit 
length) 

4 B∆m  4 B∆m  4 B∆m  

Sound radiation ability (radiation 
resistance Rrad) 

0 4 B∆m  0 

Sound insulation (lowering of the sound 
pressure level) 

B∆±  4 B∆m  4 B∆m  

Note: ∆B = B/B0, where B0, B stand for the structure rigidity prior to and after its variation 
respectively. 



 180

 

Table 7-2  Dependence of the ribbed structure’s vibroacoustic characteristics 
upon variations in flexural rigidity ∆B of the reinforcing framing. 

Vibroacoustic characteristic Variation of the characteristic in a frequency range 

 А Б В Γ Д 

Vibration excitability 
(mechanical resistance) with 
excitation: 

to the framing 

to a plate 

 

 
 
 

B∆±  

B∆±  

 
 
 

4 B∆±

B∆±  

 
 
 

B∆±  

0 

 

 
 
 
0 

0 

 
 
 
0 

0 

 

Vibration conductivity 
(attenuation of the flexural wave 
amplitude per unit length) with 
excitation: 

 

to the framing 

 

to a plate 

 
 
 
 

4 B∆m  

 
4 B∆m  

 
 
 
 

4 B∆m  
 

4 B∆m  

 
 
 
 

4 B∆m  
 
0 

 
 
 
 
0 

 
0 

 

 
 
 
 
0 

 
0 

Sound radiation ability (radiation 
resistance radR ) 

0 4 B∆m  4 B∆±  0 0 

Sound insulation (lowering of 
the sound pressure level) 

B∆±  4 B∆±  4 B∆m  0 0 

Note: ∆B = B/B0, where B0, B stand for the structure rigidity prior to and after reinforcing the 
framing. 

 

Similar to Tables 4.1 and 4.2, the dependencies of a structural characteristic upon the 
rigidity alteration are given in Tables 7.1 and 7.2 in frequency ranges Α, Б, В, Γ, and Д, bounded 
with the frequencies ƒrib,1, ƒpl,1, ƒ0 and restorf − .  Note that with an increase in a structure’s flexural 
rigidity, the frequency ƒp1 is proportional to B∆  and the frequency restorf − is inversely 

proportional to 3 B∆ .  The rest of the above frequencies do not depend upon a structures rigidity 
(stiffness) variation.  Similarly to Tables 4.1 and 4.2, the sign «+» means improvement, the sign 
«-» means deterioration, the sign «0» indicates no change in a characteristic; the upper sign 
corresponds to an increase in rigidity, the lower one corresponds to its decrease. 
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Analysis of Tables 7.1 and 7.2 proves the substantial dependence of the vibroacoustic 
characteristics of the ship hull structures upon alterations of their flexural rigidity.  Specifically, a 
doubling increase or decrease in the parameter causes up to a 3 to 6 dB alteration of some 
characteristics.  Even with the small dependence of a structure’s vibration conductivity upon 
rigidity proportional to ,4 B∆   the change in the acoustic vibration level damping can be 
significant.  Eq. (3.21) proves that if the initial damping was 20 dB, the additional damping 
comes to 4 dB with a two-fold decrease in ∆B. 

Prevention of coincidence in the frequency of the main discrete components (rotational 
ones, for pumps blade ones as well) of the source’s acoustic vibration with the first resonance 
frequencies of the excited structures’ flexural oscillations provides yet another task for the 
acoustic design of the ship hull structures (for structures bearing the acoustic vibration source, no 
less important one).  Calculation of the structures’ resonance frequencies can be carried out with 
the Eqs. (2)-(10) of Table 1.5 in accordance with Example 2 from § 4.2.  The above-mentioned 
frequencies shall differ by at least 20-30%, ensuring a sufficient decrease of the resonance 
oscillation amplitude in the driven structures. 

When placing the vibro-active equipment like system fittings and pipelines, etc. on the 
hull structures, bear in mind that the maximum input resistance (impedance) of these structures is 
observed in the reinforcing framing elements.  In this connection, note that it is better if the 
equipment is attached to the stiffening ribs (frames) that reinforce the structure.  This causes a 
decrease in the input vibration energy.  This is standard practice when selecting spots on the hull 
structures to attach elements that require the minimal vibration energy possible coming from the 
mounting structures.  This pertains, for example, to the sound-insulating boards.  Their 
attachment to the reinforcing framing is also advisable. 

When designing ship hull structures, also allow for the necessity of ensuring a reliable 
attachment of elements such as bilge boards, sound-insulating boards, etc. that can cause jarring 
of the structures with drawbacks in assembly manifesting themselves or attachment units getting 
loose as the vessel is run.  This type of air borne noise, having a pulsatile nature, as a rule may 
stay within the habitability norms, but creates a discomforting acoustic environment for 
attendants and passengers. 

Based on all the above, the following ship design procedure may be recommended to ensure 
the acoustically-oriented design of the ship hull structures: 

♦ select a ship architecture type to maximally meet the acoustic requirements, with 
observing the  general shipbuilding parameters desired; 

♦ assess the major acoustic vibration and air noise sources on board and their arrangement 
by experience (with the use of a prototype); 

♦ locate rooms where the sanitary requirements with respect to the air noise level are to be 
met and determine whether the level shall be lowered (the latter may be achieved, for instance, as 
recommended in [11] and Table 7.3); 

♦ detect structures serving as primary conductors of the vibration energy from noise and 
vibration sources to the rooms where the habitability requirements are to be met; consider a 
suitable change in these structures’ flexural rigidity within the set strength and other general 
shipbuilding limits; 
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♦ calculate the first resonance frequencies of the structures on which the major acoustic 
vibration sources are mounted; if necessary, separate these frequencies from ones of those 
sources’ main discrete components by a respective variation in the flexural rigidity or change in 
the driven structure weight; 

♦ within the dangerous range (∆ƒ < 0.2 to 0.3 ƒres1) of the first resonance frequency ƒres1 of 
a driven ribbed structure’s flexural oscillations to the discrete component frequency of the 
source’s acoustic vibration, and no way of the frequency  ƒres1 separation, the acoustic adjustment 
of the structure elements may be used (see § 5.6); 

♦ calculate the airborne noise level in rooms that require the habitability norm observance; 

♦ if necessary, the vibration-absorbing, vibration-damping and vibration-insulating means 
are utilized (see § 7.4) and suitable noise-suppressing complexes are developed (for instance, 
[28]). 

 

Table 7-3.  The air borne noise levels in rooms of various-type vessels (mean 
data). 

Vessel type Length, 
m 

The air noise levels, dB (A) 

  engine 
room 

control 
station 

main 
deck 

pilot 
house 

radar 
room 

conning 
bridge 

Bulk oil-carrying 
ship 

. 100-110 70-75 65 60 60 75 

Freighter . 105-110 80 75 70 70 85 

Passenger ship . 100-110 70-80  55 50 60-70 

Container carrier, 
refrigerator 

100 100-110 70-75 65-70 60 55 70 

Roll on-roll off 100 105-110 75-80 60 55 55 65 

Tug, service ship 100 105-110 75-85 60 65-70 65 80 

Ore-carrier: 

diesel-driven 

turbine-driven 

 

200 

200 

 

100-105 

95-100 

 

65-75 

65-75 

 

65 

65 

 

55 

55 

 

55 

50 

 

70 

65 

Note: A bulk oil carrier displacement is 10,000 - 50,000 tons, a freighter displacement is 
1,000 tons. 
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7.4 Recommendations on the Use of Vibration Insulation, Absorption and 
Damping Approaches 

The vibro-acoustic characteristics of the ship structures have a certain impact on the 
acoustic effectiveness of the vibration-insulating, vibration-absorbing and vibration-damping 
means placed on the structures.  The correct choice of the above characteristics allows for 
increased effectiveness of the means to a certain extent. 

The vibration insulation of the hull structure links (bulkheads, partitions, hull plating) can 
be improved a bit by adding to the difference in the flexural rigidity (for rib-less structures, in 
thickness of the link-forming elements).  Evaluate the vibration insulation improvement 
procedure with the respective equations from Table 3.4. 

The vibration-inhibiting masses are most suitable for vibration insulation of an acoustic 
vibration source-carrying partition when placed along the partition perimeter.  Note, however, 
that the stiffening ribs crossing the vibration-inhibiting mass limit its vibration insulation 
properties via bypassing transmission of some vibration energy.  This limitation can be 
determined by Eq. (4.8).  The vibration insulation of a vibration-inhibiting mass is calculated by 
Eqs. (4.4) and (4.9) depending on its location (within the bounds of the partition or in an area 
where it is connected to adjacent structures, respectively). 

«The vibration-inhibiting coaming» (see Fig. 4.15) is less effective (~ 6 dB at the high 
frequencies) but it is lighter.  «The vibration-inhibiting saw» is only suitable with the hull 
structure having the stiffening ribs perpendicular to the acoustic vibration propagation direction. 

The reinforced coaming is fit for protection against the acoustic vibration for partitions of 
one or more rooms.  The maximum effect (up to 10 dB) can be achieved when positioning the 
coaming along the partition perimeter on the side of the acoustic vibration source (Fig. 7.1). 

Placement of the reinforced coaming in the partition joints spaced in the vibration source 
direction is dictated by the necessity of barring way for the acoustic vibration that propagates 
along a bypass route.  Placing of the same coaming in the partition links on the partition side 
opposite to the source is not expedient as only a little part of the vibration energy is transmitted 
through these links due to the long distance from the source. 

 
Figure 7-1.  The reinforced coaming layout for protection of partitions against the 

acoustic vibration.  
1 - vibration’s mainstream route 
2 - vibration’s short circuit route 
3 - orientation towards the acoustic vibration source 
4 - a reinforced coaming 
5 - a room to be protected. 
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To improve the vibration insulation of the hull structures’ cross-shaped links at the low 
frequencies, add to the distance between the links’ vertical elements (see § 4.5). 

The vibration-absorbing coatings when applied to the ship hull structures can be effective 
only provided these structures’ flexural rigidity is suitable.  Recommendations on variations in a 
hull structure’s flexural rigidity in order to boost effectiveness of the vibration-absorbing coating 
applied are identical to those listed in Section 7.3 for the structure vibration conductivity. 

The values of the flexural vibrations’ first resonance frequency for the plate segments 
bounded with the neighboring stiffening ribs are governed by a frequency range in which the 
coating’s loss factor can be significant.  So, the first resonance frequency should be lowered, if 
necessary, by adding to the distance between the adjacent stiffening ribs that reinforce the hull 
structure’s plate.  The plate is to be as thin as possible to raise the loss factor for a coating 
applied to the plate.  When applying a soft vibration-absorbing coating to a structure, it is 
advisable to make the structure lighter to ensure an increase in this coating’s loss factor. 

Note that applying a vibration-absorbing coating to the plates of the foundations’ main 
links (brackets and knees) may cause a certain drop (up to 6 dB) in the acoustic vibration, 
transmitted to a mounting partition, only at the frequencies above the first resonance frequency 
of these links’ flexural oscillations. 

When applying vibration-absorbing coatings to cylindrical structures (such as pipelines), 
take into account that the maximum effectiveness of these coatings is achieved at the frequency 
above ƒ0 (see Tables 6.3-6.5) when these structures walls oscillate as a plate.  At a lower 
frequency (ƒ < ƒ0), the effectiveness of reinforced and, particularly, rigid (stiff) vibration 
absorbing coatings is low.  A soft vibration-absorbing coating whose loss factor is governed by 
the damped structure weight, not its flexural rigidity, is more suitable here.  This coating is 
preferable when damping cylindrical structures, if its thickness can be increased. 

 
Figure 7-2.  The frequency response of the loss factor for a flex-vibrating steel H-

beam with « Агат » plastic rigid vibration-absorbing coating applied 
to a structure’s flanges; κГц - kHz. 

When applying vibration-absorbing coatings to rod structures with a more complex cross-
section as compared to a cylindrical one (for example, a double-T section), bear in mind that 
such coatings are only effective at a frequencies above which the flexural oscillations occur in 
the section elements (Fig. 7.2).  At lower frequencies (ƒ < ƒflex0), reinforced and soft vibration-
absorbing coatings are highly effective. 

A dynamic vibration damper used to lower the resonance vibration amplitude of a hull 
structure shall be positioned in close proximity to the structure areas where the vibration 
antinode (maximum) occurs.  For the first and most dangerous resonance frequency of the 
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partition (bulkhead)’s flexural oscillations, such areas are located at the structure center.  The 
admissible displacement of a dynamic vibration damper’s mounting point from the partition 
center shall in this case be within 1/6 of the damper dimension.  The vibration damper is to be 
attached to the reinforcing framing, at its cross lines (intersection) for best results. 

To ensure the maximum effect of a dynamic vibration damper use, the structure 
accommodating the damper shall be as light as possible.  For such dampers’ designs, the 
equations to calculate their parameters and effectiveness are given in § 5.3. 

The audio frequency anti-vibrators (see Section 5.4) are placed on the ship hull 
structures.  To increase effectiveness of the anti-vibrators, decrease these structures’ flexural 
rigidity.  For ribless structures, the structure plate is to be made thinner as well. 

The waveguide vibration insulation (see Section 5.5) is placed on the hull and rod 
structures whose weight should be minimal ensuring a broader frequency range for these 
devices’ effectiveness. 

 

7.5   Calculation of the Acoustic Vibration and Airborne Noise Levels on Board 

The use of the recommended techniques of the ship structures’ acoustic design (see 
Section 7.3) is only made possible through calculation of these structures’ acoustic vibration and 
related air noise level in the rooms. 

The air noise level calculation methods have recently been developed including 
calculation of the acoustic vibration level in the ship room partitions [28].  The acoustic vibration 
level calculation is based on an approximation of the vibration process in the partitions as a 
diffuse vibration field.  These methods have been programmed for running on the IBM type EC-
1035 computer [25].  The program allows for calculation of the acoustic vibration levels in ship 
partitions, the external hull plating, and the vessel bottom adjacent to the propellers.  The 
programming language is FORTRAN OC EC, and the main memory required is 256K.  These 
methods ensure the calculation accuracy acceptable in practice (Fig. 7.3). 

Similar methods employed in shipbuilding design abroad are also based on the energy 
method of the vibration processes in ship structures (SEA method in [42]).  There also are 
simplified methods of the air noise level calculation for ship rooms based on the statistically-
processed measurement results for prototype ships [11, 55]. 

For an approximate calculation of the acoustic vibration and air noise levels in ship 
structures and rooms, the following expressions are offered [20]: 

♦ the sound pressure p of the air noise caused by a noise source placed in the room (Fig. 
7.4, a),   
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♦ the amplitude of the oscillation (vibration) acceleration for the partition ξ&&  caused by an 
acoustic vibration source placed on it (Fig. 7.4, б), 
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♦ the amplitude of the oscillation acceleration for the partition ξ&&  caused by the sound 
pressure of the air noise in the room (Fig. 7.4, в), 
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♦ the sound pressure p of the air noise caused by the partition’s acoustic vibration in the 
room (Fig. 7.4, г), 
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♦ differential sound pressure amplitudes in the similar-volume rooms divided with a 
partition (Fig. 7.4, д ), 

   
00

0
21 1/

γ
γ

+≈pp                              (7.5) 

♦ differential oscillation acceleration amplitudes in the similar-area partitions divided with 
an obstacle for the flexural waves (see Fig. 7.4, д), 

ΠΠΠ+≈ γγξξ /1/ 21
&&&& .                                               (7.6) 

 
Figure 7-3.  The frequency response of the air noise level in a ship room induced 

by the partitions’ acoustic vibration.1 - calculation [28]; 2 - experiment 
[6]; p– dB; f - kHz. 
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Figure 7-4.  The acoustic vibration intensity ΠI  and the air-borne noise intensity I0 

layout plus arrangement of these parameters levels calculation points 
ξ&& and p. 

 

The following designations are conventional for the Eqs. (7.1)-(7.6): 01 / γγβ Π= , 

ΠΠ= 02 / γγβ ; ΠΠΠ = ηγ n ;  ΠΠΠ ηγ n= ; ;000 ηγ n=  )/(0 ΠΠΠΠ = SmRn rad ωγ ; ΠS  is the partition 
area; Πm  is the partition mass per unit area; V0 is the room volume; Πn is the resonance 
frequency density for the partition’s flexural vibrations, )4/( 2

ΠΠΠ = flcSn πω ; Πflc is the phase 
velocity of the flexural waves in the partition (see Table 1.4); n0 is the room’s resonance 
frequency density, )2/( 2
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S0 is the total area of the room partitions; α is the diffuse sound absorption coefficient for the 
room partition surface (see [28]), 
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〈t π π〉 ϕ is the coefficient of the flexural wave energy transmission through obstacles with the 
diffuse vibration field acting; I0 stands for the sound power radiated by the air noise source, 
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distance; ΠI  stands for the vibration power transmitted from a partition-mounted acoustic 
vibration source onto the partition itself, 
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φξ&&  is the oscillation (vibration) acceleration amplitude for the source foundation’s 
support plate; φL  stands for the perimeter of the foundation envelope (footprint) (on the 
mounting partition as per layout). 

 

7.6   The Use of the Finite-Element Method in the Acoustic Design of Ship 
Structures 

The finite-element method (FEM) is being increasingly utilized for calculation of the 
vibro-acoustic characteristics of engineering structures.  The FEM formalism suggests splitting a 
structure into the separate (finite) elements whose dimensions are smaller than the shortest 
elastic wave at the given frequency, and representing these elements deformation with the use of 
polynomials and joining the elements based on equality of deformations or strains along the 
joined elements’ boundaries. 

The FEM is centered around matrix equations of the linear analysis 

   ([K] + jω [R] -- ω2 [M]) {ξ} = {F},  

where [K] is the matrix for the structure’s desired rigidity; [R] is the matrix for the structure’s 
desired absorption of the vibration energy; [M] is the matrix for the structure’s desired weight; 
{F} is the vector of the given forces acting on the structure; and {ξ} is the vector of the structure 
displacements to be determined. 

Based on the FEM, the MSC/NASTRAN universal programming software has been 
worked out abroad and this yields calculations of the engineering structures’ dynamic 
characteristics.  For example, [53] offers the results of calculation for the resonance frequency of 
the ship superstructure’s longitudinal oscillations using the above programming approach.  
According to the FEM-based calculations, this frequency equals 7.4 Hz, which corresponds to a 
full-scale experiment - 7.7 Hz.  There also is domestic experience in calculation of the resonance 
frequencies of ship structure oscillations (see, for instance, [4]).  The calculation error for the 
resonance (natural) frequencies of ship structure oscillations does not exceed 6%. 

Table 7.4 gives values of the flexural oscillations’ resonance frequencies for a rectangular 
0.006-m-thick steel plate 1.4×1 m2 in dimensions with a gridwork (grillage) framing of 0.05-m-
high and 0.006-m-thick equidistant stiffening ribs (five in each direction).  The resonance 
frequencies were determined based on the FEM calculation and experimentally.  Calculation 
error does not exceed 3.8%. 

The use of the FEM for calculation of the ship structure oscillations’ resonance 
frequencies is possible no matter how complex the structural configuration may be. 

Calculation of the structures’ resonance frequencies through the FEM is widely used in 
ship design abroad.  Such calculations are very costly.  Depending on the structures complexity, 
for example, Reference [34] shows that a ship structure’s resonance frequency calculation is 
worth $1,500 through $4,500.  It is noted, however, that expenses incurred at the design phase 
are insignificant as compared to the cost of eliminating the structures’ resonance oscillations at 
the as-built stage. 
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The FEM can also be utilized for calculation of the airborne noise level radiated by a 
machines body and stemming from the ship compartment’s acoustic vibration.  Reference [58] 
shows the feasibility of the FEM-based calculation of the sound pressure radiated by the 
principle modes of the machinery’s simulated vibrations. 

Reference [49] gives the sound pressure calculation results for a car interior driven in the 
engine location area.  Calculation was carried out with the use of the MSC/NASTRAN program.  
The FEM was employed for calculating the structure’s vibration and the airborne noise inside the 
body.  The experiment was performed in the 20-100 Hz frequency range.  A satisfactory 
agreement between the FEM-based calculation results and those of the experiment was observed 
up to 80 Hz.  An obvious analogy is traced between this calculation and a possible one for the 
airborne noise sound pressure in a ship compartment that stems from the acoustic vibration of the 
compartment partitions.  

All the above prompts a conclusion on possibility of simulating the ship structures’ 
acoustic vibration and resultant air noise in the ship rooms via the FEM.  Such a simulation has a 
great advantage over the scale modeling as it permits supervision and control virtually over an 
infinite number of source, room and noise-suppressing complex arrangement variants when 
designing a vessel acoustically.  This helps select truly optimal ways of the low-noise vessel 
design. 
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. 

Table 7-4.  The resonance frequencies of the first four patterns of the flexural 
oscillations for a rectangular ribbed plate. 

Oscillation pattern Resonance frequency, Hz Error, % 

 FEM Experiment  

 

 
 

100 96.3 3.8 

 

 
 

152 153 0.7 

 

 
 

177 174.3 1.5 

 

 
 

236.5 242 2.3 
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