Computer Science > Machine Learning
[Submitted on 31 Mar 2020 (v1), last revised 19 Aug 2020 (this version, v2)]
Title:Information Leakage in Embedding Models
View PDFAbstract:Embeddings are functions that map raw input data to low-dimensional vector representations, while preserving important semantic information about the inputs. Pre-training embeddings on a large amount of unlabeled data and fine-tuning them for downstream tasks is now a de facto standard in achieving state of the art learning in many domains.
We demonstrate that embeddings, in addition to encoding generic semantics, often also present a vector that leaks sensitive information about the input data. We develop three classes of attacks to systematically study information that might be leaked by embeddings. First, embedding vectors can be inverted to partially recover some of the input data. As an example, we show that our attacks on popular sentence embeddings recover between 50\%--70\% of the input words (F1 scores of 0.5--0.7). Second, embeddings may reveal sensitive attributes inherent in inputs and independent of the underlying semantic task at hand. Attributes such as authorship of text can be easily extracted by training an inference model on just a handful of labeled embedding vectors. Third, embedding models leak moderate amount of membership information for infrequent training data inputs. We extensively evaluate our attacks on various state-of-the-art embedding models in the text domain. We also propose and evaluate defenses that can prevent the leakage to some extent at a minor cost in utility.
Submission history
From: Congzheng Song [view email][v1] Tue, 31 Mar 2020 18:33:36 UTC (125 KB)
[v2] Wed, 19 Aug 2020 19:58:14 UTC (125 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.