Computer Science > Machine Learning
[Submitted on 1 Apr 2020 (v1), last revised 21 Feb 2021 (this version, v2)]
Title:MetaPoison: Practical General-purpose Clean-label Data Poisoning
View PDFAbstract:Data poisoning -- the process by which an attacker takes control of a model by making imperceptible changes to a subset of the training data -- is an emerging threat in the context of neural networks. Existing attacks for data poisoning neural networks have relied on hand-crafted heuristics, because solving the poisoning problem directly via bilevel optimization is generally thought of as intractable for deep models. We propose MetaPoison, a first-order method that approximates the bilevel problem via meta-learning and crafts poisons that fool neural networks. MetaPoison is effective: it outperforms previous clean-label poisoning methods by a large margin. MetaPoison is robust: poisoned data made for one model transfer to a variety of victim models with unknown training settings and architectures. MetaPoison is general-purpose, it works not only in fine-tuning scenarios, but also for end-to-end training from scratch, which till now hasn't been feasible for clean-label attacks with deep nets. MetaPoison can achieve arbitrary adversary goals -- like using poisons of one class to make a target image don the label of another arbitrarily chosen class. Finally, MetaPoison works in the real-world. We demonstrate for the first time successful data poisoning of models trained on the black-box Google Cloud AutoML API. Code and premade poisons are provided at this https URL
Submission history
From: Wenqian Ronny Huang [view email][v1] Wed, 1 Apr 2020 04:23:20 UTC (6,851 KB)
[v2] Sun, 21 Feb 2021 02:40:40 UTC (25,066 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.