Computer Science > Machine Learning
[Submitted on 3 Mar 2020]
Title:Novel Meta-Heuristic Model for Discrimination between Iron Deficiency Anemia and B-Thalassemia with CBC Indices Based on Dynamic Harmony Search
View PDFAbstract:In recent decades, attention has been directed at anemia classification for various medical purposes, such as thalassemia screening and predicting iron deficiency anemia (IDA). In this study, a new method has been successfully tested for discrimination between IDA and \b{eta}-thalassemia trait (\b{eta}-TT). The method is based on a Dynamic Harmony Search (DHS). Complete blood count (CBC), a fast and inexpensive laboratory test, is used as the input of the system. Other models, such as a genetic programming method called structured representation on genetic algorithm in non-linear function fitting (STROGANOFF), an artificial neural network (ANN), an adaptive neuro-fuzzy inference system (ANFIS), a support vector machine (SVM), k-nearest neighbor (KNN), and certain traditional methods, are compared with the proposed method.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.