Computer Science > Machine Learning
[Submitted on 18 Dec 2022 (v1), last revised 4 Aug 2023 (this version, v4)]
Title:Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs
View PDFAbstract:Graph neural networks (GNNs), as the de-facto model class for representation learning on graphs, are built upon the multi-layer perceptrons (MLP) architecture with additional message passing layers to allow features to flow across nodes. While conventional wisdom commonly attributes the success of GNNs to their advanced expressivity, we conjecture that this is not the main cause of GNNs' superiority in node-level prediction tasks. This paper pinpoints the major source of GNNs' performance gain to their intrinsic generalization capability, by introducing an intermediate model class dubbed as P(ropagational)MLP, which is identical to standard MLP in training, but then adopts GNN's architecture in testing. Intriguingly, we observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training. This finding sheds new insights into understanding the learning behavior of GNNs, and can be used as an analytic tool for dissecting various GNN-related research problems. As an initial step to analyze the inherent generalizability of GNNs, we show the essential difference between MLP and PMLP at infinite-width limit lies in the NTK feature map in the post-training stage. Moreover, by examining their extrapolation behavior, we find that though many GNNs and their PMLP counterparts cannot extrapolate non-linear functions for extremely out-of-distribution samples, they have greater potential to generalize to testing samples near the training data range as natural advantages of GNN architectures.
Submission history
From: Chenxiao Yang [view email][v1] Sun, 18 Dec 2022 08:17:32 UTC (1,316 KB)
[v2] Sun, 5 Mar 2023 13:07:28 UTC (3,766 KB)
[v3] Mon, 5 Jun 2023 12:02:49 UTC (1,373 KB)
[v4] Fri, 4 Aug 2023 05:08:44 UTC (1,191 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.