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Abstract

The need of interpreting Deep Learning (DL) mod-
els has led, during the past years, to a proliferation
of works concerned by this issue. Among strategies
which aim at shedding some light on how informa-
tion is represented internally in DL models, one con-
sists in extracting symbolic rule-based machines from
connectionist models that are supposed to approxi-
mate well their behaviour. In order to better under-
stand how reasonable these approximation strategies
are, we need to know the computational complexity
of measuring the quality of approximation. In this
article, we will prove some computational results re-
lated to the problem of extracting Finite State Ma-
chine (FSM) based models based on trained RNN Lan-
guage models. More precisely, we’ll show the follow-
ing: (a) For general weighted RNN-LMs with a sin-
gle hidden layer and a ReLu activation: - The equiva-
lence problem of a PDFA/PFA/WFA and a weighted
first-order RNN-LM is undecidable; - As a corollary,
the distance problem between languages generated by
PDFA/PFA/WFA and that of a weighted RNN-LM is
not recursive; -The intersection between a DFA and the
cut language of a weighted RNN-LM is undecidable; -
The equivalence of a PDFA/PFA/WFA and weighted
RNN-LM in a finite support is EXP-Hard; (b) For con-
sistent weight RNN-LMs with any computable activa-
tion function: - The Tcheybechev distance approxima-
tion is decidable; - The Tcheybechev distance approx-
imation in a finite support is NP-Hard. Moreover, our
reduction technique from 3-SAT makes this latter fact
easily generalizable to other RNN architectures (e.g.
LSTMs/RNNs), and RNNs with finite precision.

Mots-clef : Recurrent Neural Networks, Finite State
Machines, Distances, Equivalence.

1 Introduction

Recurrent Neural Networks and their different variants
represent an important family of Deep Learning models
suitable to learning tasks with sequential data. How-
ever, just like all Deep Learning models in general, this
class of models lacks interpretability, which restricts its
applicability to highly critical tasks related for instance
to security and health, where a formal specification of
systems is a mandatory requirement to be approved for
deployment in real-case situations. Due to the crucial
importance of this limitation, the awareness of pro-
viding both expressive and interpretable models keeps
growing within the Deep Learning community, result-
ing in a proliferation of research works focusing on this
topic. In general, two major paradigms have been ex-
plored in the literature to tackle this issue:

• Interpretable models by design: In this fam-
ily of models, the idea is to construct deep learn-
ing architectures with the concern of interpretability
raised early on the design phase. This change of
the architecture may take the form of adding spe-
cial components to traditional models whose role is
to leverage the interpretability issue[14] [35], using
interpretation-friendly activation functions, modify-
ing the loss function by injecting a term that favours
a resulting interpretable model[29], or using a vari-
ant of the back-propagation algorithm for training,
which enforces that the resulting model is readily
interpretable [43]. Nevertheless, enforcing the con-
straint of interpretability by design leads inevitably
to a loss of flexibility of the constructed models, and
hence a drop of their expressive power.

• Post-hoc methods: Techniques belonging to this
family subsume the existence of an already trained
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DL model and the objective is then to design algo-
rithmic and visualization tools [18][41] that attempt
to answer questions related to the interpretability of
the original model such as:
(a) Semantics of hidden units of the network model:
Or, alternatively which role is played by each hid-
den unit in the network with respect to the learning
task (e.g. does a neuron serve as a counter in RNNs
trained to learn languages recognized by counter
machines[40], a neuron that stores the state of an
RNN trained to accept a regular language etc.)?
(b) Tracing the causal relationship between the pre-
dicted output with respect to the input, also called
instance-level interpretability [13][26][27][11]; meth-
ods form this class raise the problem of local inter-
pretability and, roughly speaking, aims at designing
algorithmic answers to the following question: What
is the influence degree of each input factor that ex-
plains the obtained output?
Another important sub-category of post-hoc tech-
niques concerns methods that attempt to extract
interpretable rule-based machines (e.g. Decision
trees, automata. . . ) from DL models [36][37]. Un-
like instance-level interpretability techniques, these
methods are global and the challenge is how to con-
vert the continuous representation of information as
encoded in RNNs into a discrete, symbolic represen-
tation, while maintaining a good quality of predic-
tion of these last structures.

In this work, we are interested in this last family of
interpretability methods. More precisely, we address,
from a computational viewpoint, the issue of extract-
ing FSM-based machines from general RNN language
models.

But this problem would benefit from understanding
better how well a finite-state model can approximate
an RNN. Which in turn requires solving essential
computational problems: can we compute distances
between these language models? Can we decide
equivalence? These questions have received answers
for PFA [8,10,22]. We aim in this work to extend these
results by including RNN language models into the
picture.

Our main results are summarized as follows: (a)
For general weighted first-order RNN-LMs with ReLu
activation function: 1. The equivalence problem of a
PDFA/PFA/WFA and a weighted first-order RNN-LM
is undecidable; 2- As a corollary, any distance metric
between languages generated by PDFA/PFA/WFA
and that of a weighted RNN-LM is also undecidable;

-The intersection between a DFA and the cut language
of a weighted RNN-LM is undecidable; - The equiva-
lence of a PDFA/PFA/WFA and weighted RNN-LM
in a finite support is EXP-Hard; (b) For consistent
first-order RNN-LMs with any computable activation
function: - The Tcheybetchev distance approximation
is decidable; - The Tcheybetchev distance approxima-
tion in a finite support is NP-Hard.

The rest of this article is organized as follows. Sec-
tion 2 gives a concise literature overview of issues re-
lated to our problematic. Section 3 presents our re-
sults for the case of general first-order RNN language
models(RNN-LM) with ReLu activation function. Sec-
tion 4 is dedicated to the case of consistent RNN-LMs.

2 Related works

The problem of symbolic knowledge extraction from
connectionist models is not a new issue, and one
can trace back works interested in this problem
since the development of the first neural architec-
tures [25][23]. However, with the development of novel
spatio-temporal connectionist models in the nineties,
the most important of which is Ellman RNNs[12],
and their great empirical success on inferring language
models with limited amount of data and with perfor-
mance results that often outscore rule-based algorithms
traditionally used in the Grammatical Inference field
[9], research interests in this issue has regained more
attention. In fact, these works were mostly driven by
a legitimate motivation: if an RNN-like structure is
trained to recognize a language belonging to a given
class of languages C, and this latter can be recognized
by a class of computing devices M, then there must be
a close connection between the representation of the
target language as encoded in the RNN-like structure
on one hand, and that of the corresponding computing
device in M that is capable of recognizing it on the
other.
This aforementioned motivation raises two fundamen-
tal questions, at least from a theoretical viewpoint:

1. What is the expressive power of different classes of
“RNN Machines”, as compared to classical symbolic
machines (e.g. deterministic/non deterministic fi-
nite state automata, deterministic/non determinstic
pushdown automata, Turing machines etc.)?

2. How can we design algorithms that extract sym-
bolic machines from RNN models? What are the
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theoretical guarantees of such methods? What is
the computational complexity of such problems?

We should note that these two questions are, in some
sense, interrelated. If a class of RNNs is very pow-
erful –say Turing Equivalent– computational problems
related to the extraction of finite state machines are
more likely to be undecidable. In fact, as a corol-
lary of Rice’s Theorem1, the equivalence between a
Turing machine and any non-trivial class of comput-
ing devices is necessarily undecidable, which means in
practice that no algorithm can exist that can answer
the question of equivalence between symbolic machines
and “Turing- Equivalent” RNN ones. In other words,
from the perspective of the theory of computation, the
trade-off between expressiveness and interpretability2

in connectionist models is unavoidable. As a conse-
quence of the above discussion, we argue that analyz-
ing a class of RNNs as a computational model can give
many insights with regard to its interpretability.
Guided by questions raised above, we divide the rest
of this section into two parts: In the first part, we ex-
amine works present in the literature that focused on
the computational power of recurrent neural networks
and its consequences on some computational problems
concerning RNNs. In the second part, we give a brief
overview of existing methods in the literature aimed
at extracting finite state machines from trained RNN
ones.

2.1 Computational power of RNNs

The question of the computational capabilities of
different classes of RNN has been addressed since the
early development of neural systems. To the best of
the author’s knowledge, early works that addressed
this dates back to the middle of the previous century
by McCulloch et al. [23] and Kleene[20], where it was
proven that networks with binary threshold activation
functions are capable of implementing finite state
automata. In [30], Pollack designed a Turing-complete
class of high-order recurrent neural networks with two
types of activation function (linear and Heaviside).
This result was later extended in [32], where authors
relaxed the high-order requirement, and showed that
first-order RNNs with saturated-linear activation

1The Rice Theorem states that any class of non-trivial lan-
guages recognized by a Turing machine is not recursive

2In our context, we quantify the interpretability of a model
as a measure of the computational difficulty by which one can
extract a finite state machine. A more rigorous formal defini-
tion of what is an intepretable model is still an arguably open
question.

functions were Turing Complete. Later on, Kilian
et el. generalized this result to sigmoidal activation
functions [19].
The Turing Completeness of some classes of RNNs has
many consequences with respect to the computational
class to which belong many problems related to them.
In [7], the authors proved that the problem of deciding
whether a RNN language model -RNN-LM- with
ReLu activation function is consistent (encodes a valid
probability distribution) or not is an undecidable
problem. Moreover, the consensus string problem
and finding a minimal RNN-LM equivalent to a given
RNN-LM or testing the equivalence between two
RNN-LMs are also undecidable.

Given these pessimistic results about computability
of several important problems related to RNNs, a new
line of research suggests to analyze the practical ca-
pabilities computational power of neural nets instead
of the classical “unrealistic” theoretical model, by con-
straining the amount of memory resources of the RNN
hidden units to be finite [40][24]. Under this constraint,
Korskky et al. [21] proved that RNNs with one hidden
layer and ReLu activation, and GRUs are expressively
equivalent to deterministic finite automata. In [40],
Weiss et al. showed that the class of finite precision
LSTMs were able to simulate counter machines, while
the simple class of Elman RNNs and GRUs can’t.

2.2 Extraction of automata-based ma-

chines from trained RNNs

Early works investigating the problem of extracting
automata-based machines from trained RNNs coincide
with the emergence of novel RNN architectures [12][15]
in early nineteens that have shown promising results
for the task of inferring language models from limited
data. These early works have mainly focused on the ex-
traction of deterministic finite automata (DFAs) from
RNNs trained to recognize regular languages, and most
of which were based on the assumption that a well-
trained RNN to recognize a regular language tend to
group hidden states of the RNN into clusters that maps
directly to states of the minimal DFA recognizing the
target regular language. Based on this assumption, the
problem of DFA extraction from RNNs boils down to
a clustering/quantization problem of the RNN’s hid-
den state space, and many clustering techniques were
proposed for this task: Quantization by Equipartition
[16][38], Hierarchical Clustering [1], k-means [42][31],
fuzzy clustering [6] etc.
During the last few years, as RNN-based architec-
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tures became more sophisticated and thus harder to
be a subject of interpretative analysis, the issue has
gained an increasing interest among researchers, and
new methods were proposed in the literature to ex-
tract automata-based machines from different classes
of RNNs. In [39], Weiss et al. proposed an adaptation
of the L∗ algorithm [2] to extract deterministic finite
automata (DFA) from RNN Acceptors, where an RNN
Acceptor model serves as a black box oracle for ap-
proximate equivalence and membership queries, hint-
ing that the exact equivalence query is “likely to be
intractable”. Same authors extended their work in [39]
to extract Probabilistic Deterministic Finite Automata
from RNN-LMs. In order to answer the equivalence
query, authors used a sampling strategy of both mod-
els, and gave theoretical guarantees of its convergence
in probability under a relaxed notion of equivalence.
Ayache et al. [3] employed the spectral learning frame-
work [4] to extract Weighted Finite Automata(WFA)
from a RNN language model. In [28], Okudono et al.
raised the problem of answering the equivalence query
between a RNN language model and a WFA propos-
ing an empirical regression-based technique to perform
this task. However, no theoretical guarantees were pro-
vided to back their method.

3 Definitions and Notations

Let Σ be a finite alphabet. The set of all finite strings
is denoted by Σ∗. The set of all strings whose size is
equal (resp. greater than or equal) to n is denoted by
Σn(resp. Σ≥n). For any string w ∈ Σ∗, the size of w is
denoted by |w|, and its n-th symbol by wn. The prefix
of length n for any string w ∈ Σ≥n will be referred to
as w:n. The symbol $ denotes a special marker. The
symbol Σ$ will refer to the set Σ

⋃

{$}.

Weighted languages: A weighted language f
over Σ is a mapping that assigns to each word
w ∈ Σ∗ a weight f(w) ∈ R. A WL f is called
consistent, if it encodes a valid probability dis-
tribution, i.e. satisfies the following properties:
∀w ∈ Σ∗ : f(w) ≥ 0,

∑

w∈Σ∗

f(w) = 1. Two WLs f1, f2

are said to be equivalent if: ∀w ∈ Σ∗ : f1(w) = f2(w).
The Tcheybetchev distance metric between two
WLs is denoted d∞(f1, f2), and defined as:
max
w∈Σ∗

|f1(w) − f2(w)|. Finally, we define, for a

given scalar c > 0, the cut-point language of f with
respect to c and denoted Lf,c, as the set of finite words
whose values are greater or equal to c.

In Section 4, a 3-SAT formula will be denoted by the
symbol Ψ. A formula is comprised of n Boolean vari-
ables denoted x1, ..xn, and k clauses C1, ..Ck. For each
clause, we’ll use notation li1, li2, li3 to refer to its three
composing literals. For a given string w ∈ {0, 1}n, the
number of clauses satisfied by w will be denoted by Nw.

For the rest of this section, we shall first provide
a formal definition of the class of first-order weighted
RNN-LMs that we’ll study in this work. Also, we’ll give
a brief recall of basic definitions of different automata-
based machines that we’ll encounter throughout the
rest of this article.

Definition 3.1. [7] A First-order weighted RNN Lan-
guage model is a weighted language f : Σ∗ → R and is
defined by the tuple < Σ, N, h(0), σ,W, (W ′)Σ$

, E,E′ >
such that:

• Σ is the input alphabet,
• N the number of hidden neurons,
• σ : Q → Q is a computable activation function,
• W ∈ QN×N is the state transition matrix,
• {W ′

σ}σ∈Σ$
, where each W ′

σ ∈ QN is the embedding
vector of the symbol σ ∈ Σ$,

• O ∈ QΣ$×N is the output matrix,
• O′ ∈ QΣ$ the output bias vector.

The computation of the weight of a given string w
(where $ is the end marker) by R is given as follows.
(a) Recurrence equations:

h(t+1) = σ(W.h(t) +W ′
wt
)

Et+1 = Oh(t+1) +O′

E′
t+1 = softmax2(Et+1)

(b) The resulting weight:

R(w) =

|w|+1
∏

i=0

E′
i

where w0 = w|w|+1 = $

Remark that, in order to avoid technical
issues, we used softmax base 2 defined as:
softmax2(x)i = 2xi

n∑

j=1

2xj

for any x ∈ Rd instead

of the standard softmax in the previous definition.
In the following, hidden units of the network will be
designated by lowercase letters n1, n2, .., and their
activations at time t by ht

n. Also, we denote by Rσ the
class of RNN-LMs when σ is the activation function.
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For example, an important class of RNN-LMs that
will be used extensively in the rest of the article is
RReLu.

Weighted Finite Automata (WFA). WFAs
represent weighted versions of nondeterministic finite
automata, where transitions between states, denoted
δ(q, σ, q′) where q, q′ ∈ Q represents states of the WFA
are labeled with a rational weight T (q, σ, q′), and each
of its nodes q ∈ Q is labeled by a pair of rational
numbers (I(q), P (q)) that represents respectively the
initial-state and final-state weight of q. WFAs model
weighted languages where the weight of a string w is
equal to the sum of the weights of all paths whose
transitions encode the string w. The weight of a path
p is calculated as the product of the weight labels
of all its transitions, multiplied by the initial-state
weight of its staring node and the final-state weight of
its ending node.

Probabilistic Finite Automata (PFA). A PFA
is a WFA with two additional constraints: First, the
sum of initial-state weights of all states is a valid
probability distribution over the state space. Second,
for each state, the sum of weights of its outcoming
edges added to its finite-state weight is equal to 1. This
additional constraint restricts the power of PFAs to
encode stochastic languages [33], which makes it useful
for representing language models. Interestingly, PFAs
are proven to be equivalent to Hidden Markov Models
(HMMs), and the construction of equivalent HMMs
from PFAs and vice versa can be done in polynomial
time[34]. The deterministic version of PFAs, a.k.a
Deterministic Probabilistic Finite Automata (DPFA),
enforces the additional constraint that for any state q,
and for any symbol σ there is at most one outgoing
transition labeled by σ from q.

4 Computational results for

general RNN-LMs with ReLu

activation functions

The choice of ReLu in this part of the article is not
arbitrary. In fact, due to its nice piecewise-linear prop-
erty and its wide use in practice, the ReLu(.) function
is first choice to analyze theoretical properties of RNN
architectures. Recently, Chen et al. [7] provided an
extensive study of first-order RNN Language Models
with ReLu as an activation function from a computa-

tional viewpoint. Weiss et al. [40] proved both theo-
retically and empirically that first-order RNNs with
ReLu(.) can simulate counter machines. Korsky et
al.[21] proved that finite precision first-order RNNs
with ReLu are computationally equivalent to deter-
ministic finite automata. Moreover, when allowed arbi-
trary precision, they can simulate pushdown automata.
Analyzing RNNs with other widely used activation
functions, such as the sigmoid and the hyperbolic tan-
gent, are left for future research.

4.1 Turing Completeness of general

weighted-RNNs: Siegelmann’s con-

struction

The basic building block for proving computational re-
sults presented in this part of the article is the work
done by Siegelmann and al. in [32] to prove the Tur-
ing completeness of a certain class of first-order RNNs.
Hence, we propose, in this section, to provide a global
scope of this construction, followed by an equivalent
reformulation of their main theorem that will be rele-
vant for our work.
The main intuition of Siegelmann et al.’s work is that,
with an appropriate encoding of binary strings, a first-
order RNN with a saturated linear function can read-
ily simulate a stack datastructure by making use of
a single hidden unit. For this, they used 4-base en-
coding scheme that represents a binary string w as a

rational number: Enc(w) =
|w|
∑

i=1

wi

4i . Backed by this

result, they proved than any two-stack machine can
be simulated by a first-order RNN with linear satu-
rated function, where the configuration of a running
two-stack machine (i.e. the content of the stacks and
the state of the control unit) is stored in the hidden
units of the constructed RNN. Finally, given that any
Turing Machine can be converted into an equivalent
two-stack machine (The set of two-stack machines is
Turing-complete [17]), they concluded their result.
In the context of our work, two additional remarks
need to be noted about Siegelmann’s construction: -
First, although the class of first-order RNNs exam-
ined in their work uses the saturated linear function
as an activation function, their result is generalizable
to the ReLu activation function (or, more generally,
any computable function that is linear in the support
[0,1])? - Second, although not mentioned in their work,
the construction of the RNN from a Turing Machine is
polynomial in time. In fact, on one hand, the num-
ber of hidden units of the constructed RNN is linear in
the size of the Turing Machine, and the construction
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of transition matrices of the network is also linear in
time. On the other hand, notice that the 4-base en-
coding map Enc(.) is also computable in linear time.
In light of these remarks, we are now ready to present
the following theorem:

Theorem 4.1. (Theorem 2, [32]) Let φ : {0, 1}∗ →
{0, 1}∗ be any computable function, and M be a
Turing Machine that implements it. We have,
for any binary string w, there exists N =
O(poly(|M |)), h(0) = [Enc(w) 0..0] ∈ QN , W ∈
QN×N , such that for any finite alphabet Σ, ∀σ ∈
Σ$ : W ′

σ ∈ QN , O ∈ Q|Σ$|×N , O′ ∈ Q|Σ$|, R =<
Σ, N,ReLu,W,W ′, O,O′ >∈ RReLu verifies:

• if φ(w) is defined, then there exists T ∈ N such that
the first element of the hidden vector hT is equal to
Enc(φ(w)), and the second element is equal to 1,

• if φ(w) is undefined (i.e. M never halts on w), then
for all t ∈ N, the second element of the hidden vector
ht is always equal to zero.

Moreover, the construction of h0 and W is polynomial
in |M | and |w|.

In the following, we’ll denote by RM,w
ReLu the set of

RNNs in RReLu that simulate the TM M on w. It
is important to note that the construction of a RNN
that simulates a TM on a given string in the previous
theorem is both input and output independent. The
only constraints that are enforced by the construction
are placed on the transition dynamics of the network
and the initial state. In fact, the input string is placed
in the first stack of the two-stack machine before run-
ning the computation (i.e. in the initial state h(0)).
Under this construction, the first stack of the machine
is encoded in the first hidden unit of the network. Af-
terwards, the RNN Machine runs on this input, and
halts(If It ever halts) when the halting state of the
machine is reached. In theorem 1.1, the halting state
of the machine is represented by the second neuron of
the network. In the rest of the article, we’ll refer to
the neuron associated to the halting state by the name
halting neuron, denoted nhalt.
We present the following corollary that gives a charac-
terization of the halting machine problem3 that relates
it to the class RReLu:

Corollary 4.2. Let M be any Turing Machine, and w
be a binary string, M halts on w if and only if for any

3The Halting Machine problem is defined as follows: Given
a TM M and a string w, does M halt on w? This problem is
undecidable.

R ∈ RM,w
Relu , there exists T ∈ N, such that ∀t < T :

h
(t)
nhalt

= 0, and h
(T )
nhalt

= 1.

4.2 The equivalence problem between

FSAs and general RNNs

The equivalence problem between a DPFA and a gen-
eral RNN-LMs is formulated as follows:
Problem. Equivalence Problem between a DPFA and
a general RNN
Given a general weighted RNN-LM R ∈ RReLu and a
DPFA A. Are they equivalent?

Theorem 4.3. The equivalence problem between a
DPFA and a general RNN is undecidable

Proof. We’ll reduce the halting Turing Machine prob-
lem to the Equivalence problem. Let Σ = {a}. We first
define the trivial DPFA A with one single state q0, and
T (δq0,a,q0) = P (q0) =

1
2 , I(q0) = 1. This DPFA imple-

ments the weighted language f(an) = 1
2n+1 .

Let M be a Turing Machine and w ∈ Σ∗. Let
R ∈ RM,w

ReLu such that O[nhalt, a] = 1 ,0 everywhere
and O′ is equal to zero everywhere. We construct a
RNN R′ from R by adding one neuron in the hidden

layer, denoted n′ such that: h
(0)
n′ = 0, ∀t ≥ 0 : h

(t+1)
n′ =

ReLu(h
(t)
n′ ), O[n′, $] = 1.

Notice that, by Corollary 4.2, the TM M never halts

on w if and only if ∀T : (h
(T )
nhalt , h

(T )
n′ ) = (0, 0), i.e.

R(an$) = 1
2n+1 . That is, the TM M doesn’t halt on w

if and only if the DPFA A is equivalent to R′, which
completes the proof.

A direct consequence of the above theorem is that
the equivalence problem between PFAs/WFAs and
general RNN-LMs in RReLu is also undecidable, since
the DPFA problem case is immediately reduced to the
general case of PFAs (or WFAs). Another important
consequence is that no distance metric can be com-
puted between DPFA/PFA/WFA and RReLu:

Corollary 4.4. Let Σ = {a}. For any distance metric
d of Σ∗, the total function that takes as input a de-
scription of a PDFA A and a general RNN-LM RReLu

and outputs d(A, R) is not recursive.
This fact is also true for PFAs and WFAs.

Proof. Let d be any distance metric on Σ∗. By defini-
tion of a distance, we’ll have d(A, R) = 0 if and only if
A and R are equivalent. Since the equivalence problem
is undecidable, d(.) can’t be computed.

6



4.3 Intersection of the cut language of

a general weighted RNN-LM with

a DFA

In this subsection, we are interested in the following
problem:
Problem. Intersection of a DFA and the cut-point
language of a weighted RNN-LM
Given a general weighted RNN-LM R ∈ RReLu, c ∈ Q,
and a DFA A, is LR,c

⋃

LA = ∅? Before proving that
this problem is undecidable, we shall recall first a result
proved in [7]:

Theorem 4.5. (Theorem 9, [7]) Define the highest-
weighted string problem as follows: Given a weighted
RNN-LM R ∈ RReLu, and c ∈ (0, 1): Does there exist
a string w such that R(w) > c?
The highest-weighted string problem is undecidable.
This problem is also known as the consensus problem
[22] and it is known to be NP-hard even for PFA.

Corollary 4.6. The intersection problem is undecid-
able.

Proof. We shall reduce the highest-weighted string
problem from the intersection problem. Let R ∈
RReLu a general weighted RNN-LM, and c ∈ (0, 1).
Construct the automaton A that recognizes Σ∗. We
have that LA

⋂

LR = LR = ∅ if and only if there exist
no string w such that R(w) > c, which completes the
proof.

4.4 The equivalence problem in finite

support

Given that the equivalence problem between a
weighted RNN-LM and different classes of finite state
automata is undecidable, a less ambitious goal is to
decide whether a RNN-LM agrees with a finite state
automaton over a finite support. We formalize this
problem as follows:
Problem. The EQ-Finite problem between PDFA and
weighted RNN-LMs
Given a general weighted RNN-LM R ∈ RReLu, m ∈ N

and a PDFA A. Is R equivalent to A over Σ≤m?

Theorem 4.7. The EQ-Finite problem is EXP-Hard.

Proof. We reduce the bounded halting problem 4 to
the EQ-Finite problem.

4The bounded halting problem is defined as follows: Given
a TM M, a string x and an integer m, encoded in binary form.
Decide if M halts on x in at most n steps? This problem is
EXP-Complete.

The proof is similar to the used for Theorem 4.3. We
are given a TMM , a string w andm ∈ N. Let Σ = {a}.
We construct a general weighted RNN-LM R′ by aug-
menting R ∈ RM,w

ReLu with a neuron n′ as in Theorem
4.3. By Theorem 4.1, this reduction runs in polynomial
time. On the other hand, let A be the trivial PDFA
with one single state q0, and T (δq0,a,q0) = P (q0) =
1
2 , I(q0) = 1. Note that R′ doesn’t halt in m steps

if and only if ∀T ≤ m : (n
(T )
halt, n

′(T )) = (0, 0), i.e.
R′(an$) = 1

2n+1 for the first m running steps on R′, in
which case the language modeled by R′ is equal to f in
Σ≤m. Hence, A is equivalent to R in Σ≤m if and only
if M doesn’t halt on the string w in less or equal than
m steps.

5 Computational results for con-

sistent RNN-LMs with gen-

eral activation functions

In the previous section, we have seen that many in-
teresting questions related to measuring the similarity
between weighted languages represented by different
classes of weighted automata and first-order RNN-LMs
with ReLu activation function turned out to be either
undecidable, or intractable when restricted to finite
support. In this section, we examine the case where
trained RNN-LMs are guaranteed to be consistent,
and we raise the question of approximate equivalence
between PFAs and first-order consistent RNN-LMs
with general computable activation functions. For
any computable activation function σ, we formal-
ize this question in the following two decision problems:

Problem. Approximating the Tchebychev distance
between RNN-LM and PFA
Instance: A consistent RNN-LM R ∈ Rσ, a consis-
tent PFA A, c > 0
Question: Does there exist |w| ∈ Σ∗ such that
|R(w)−A(w)| > c

Problem. Approximating the Tchebychev distance be-
tween consistent RNN-LM and PFA over finite support
Instance: A consistent RNN R ∈ Rσ, a consistent
PFA A, c > 0 and N ∈ N+,
Question: Does there exist |w| ≤ N such that
|R(w)−A(w)| > c
Note that there is no constraint on the activation func-
tion used for consistent RNN-LMs in these defined
problems, provided it is computable. The first fact
is easy to prove:
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Theorem 5.1. Approximating the Tcheybechev dis-
tance between RNN-LM and PFA is decidable.

Proof. Let R be a consistent RNN-LM and A be a con-
sistent PFA. An algorithm that can decide this problem
runs as follows: enumerate all strings w1, .. in Σ∗ until
we reach a string that satisfies this property in which
case the algorithm returns Yes. If there is no such
string, by definition of consistency, there will be a finite

time T such that
T
∑

t=1
R(wt) ≥ 1− c,

T
∑

t=1
A(wt) ≥ 1− c

in which case, we have: ∀t > T : R(wt) < c and
A(wt) < c which implies ∀t > T : |R(wt −A(wt)| < c.
When T is reached, the algorithm returns No.

5.1 Approximating the Tcheybetchev

distance over a finite support

Proving the NP-Hardness of the Tcheybetchev
distance approximation in finite support is more
complicated, and we’ll give below the construction of
a PFA and a RNN from a given 3-SAT formula which
will help us prove the result. Let ǫ ∈ (0, 1

2 ) whose
value will be specified later.

• Construction of a PFA A: The construction
of our PFA is inspired from the work done in [5], and
illustrated in Figure 1. Intuitively, each clause i in Ψ is
represented by two paths in the PFA, one that encodes
a satisfiable assignment of the variables for this clause,
and the other not. More formally, the PFA A is defined
as:

• QA = {q0}∪ {qci,j : i ∈ [1, k], j ∈ [1, n], c ∈ {T, F}}
is the set of states,

• Initial probabilities: IA(q0) = 1, 0 otherwise,

• For every i ∈ [1, k], c ∈ {T, F} and a ∈ Σ:
(q0, a, q

c
i,1) ∈ δA,

• ∀i ∈ [1, k], j ∈ [2, n− 1], a ∈ Σ : (qTi,j , a, q
T
i,j+1) ∈ δA

• For each clause i:

– If x1 ∈ {li1, li2, li3}, then ∀a ∈ Σ : (qTi,1, a, q
T
i,2) ∈

δA. And:

∗ If x2 ∈ {li1, li2, li3}, then (qFi1, 1, q
T
i2) ∈ δA, and

(qFi1, 0, q
F
i2) ∈ δA,

∗ If x̄2 ∈ {li1, li2, li3}, then (qFi1, 0, q
T
i2) ∈ δA, and

(qNi1 , 1, q
N
i2) ∈ δA

∗ Otherwise a ∈ Σ : (qFi1, a, q
F
i2) ∈ δA

– If x̄1 ∈ {li1, li2, li3}, then ∀a ∈ Σ : (qFi1, a, q
T
i2) ∈

δA, and:

∗ If x2 ∈ {li1, li2, li3}, then (qTi1, 1, q
T
i2) ∈ δA, and

(qTi1, 0, q
F
i2) ∈ δA,

∗ If x̄2 ∈ {li1, li2, li3}, then (qTi1, 0, q
T
i2) ∈ δA, and

(qTi1, 1, q
F
i2) ∈ δA

∗ Otherwise, ∀a ∈ Σ : (qTi1, a, q
F
i2) ∈ δA

– Otherwise ∀a ∈ Σ, c ∈ {T, F} : (qci,1, a, q
c
i,2) ∈ δA

• For each clause i and every Boolean variable xj

where j ∈ [2, n− 1]:

– if xj ∈ {li1, li2, li3}, then (qNi,j , 1, q
S
i,j+1) ∈ δA

– if x̄j ∈ {li1, li2, li3}, then (qNi,j , 0, q
T
i,j+1) ∈ δA

– Otherwise, ∀a ∈ Σ : (qNi,j , a, q
N
i,j+1) ∈ δA

• Transition probabilities:

– ∀i ∈ [1, k], a ∈ Σ, c ∈ {S,N} : TA(q0, a, q
c
i1) =

1
2k − ǫ

k

– ∀i ∈ [1, k], a ∈ Σ : TA(q
T
in, a, q

F
in) = ǫ

– All the other transitions belonging to δA has a
weight 1

2 − ǫ

• Final-state probabilities:

– For each clause i: PA(q
N
in) = 1− 2ǫ

– All the other states in A has a final-state proba-
bility equal to 2ǫ

• Construction of a RNN: The RNN R we’ll con-
struct is simple, and It generates the quantitative lan-
guage R(w) = 2(12 − ǫ)|w|ǫ. More formally, our RNN is
defined as:

• N = 2 (2 hidden neurons),

•

(

h
(0)
n1

h
(0)
n2

)

=

(

0
0

)

• Transition matrices: Win =

(

1 0
0 1

)

; W0 = W1 =

W$ =

(

0
0

)

• Output matrices: O =





1 0
1 0
0 1



, O′ =





log2
1−2ǫ
4ǫ

log2
1−2ǫ
4ǫ

0





where log2(.) is the logarithm to the base 2

What’s left is to show that R(w) = 2(12 - ǫ)|w| defines
a consistent language model:

Proposition 5.2. For any ǫ < 1
2 , the weighted lan-

guage model defined as f(w) = 2(12 − ǫ)|w|ǫ is consis-
tent.
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1/2ǫ

q0

0/2ǫ

qT11

0/2ǫ

qT12

0/2ǫ

qT13

0/1− 2ǫ qT14

0/2ǫ

qF11

0/2ǫ

qF12

0/2ǫ

qF13

0/2ǫ qF14

0/2ǫ

qT21

0/2ǫ

qT22

0/2ǫ

qT23

0/1− 2ǫ qT24

0/2ǫ

qF21

0/2ǫ

qF22

0/2ǫ

qF23

0/2ǫ qF24

1
:
1
4
−
ǫ
2

0 : 1
′
−

ǫ
2

1 : 1
4 − ǫ

20
: 1
4 −

ǫ
2

0, 1 : 1
2 − ǫ 0, 1 : 1

2 − ǫ 0, 1 : 1
2 − ǫ

1 :
1
2
− ǫ

0 : 1
2 − ǫ

1 :
1
2
− ǫ

0 : 1
2 − ǫ

1 :
1
2
− ǫ

0 : 1
2 − ǫ

0, 1 : ǫ

0, 1 : 1
2 − ǫ

0 : 1
2 − ǫ

1 : 1
2 − ǫ

0, 1 : 1
2 − ǫ 0, 1 : 1

2 − ǫ

1 : 1
2 − ǫ

0 :
1
2
− ǫ

0 : 1
2 − ǫ

1 :
1
2
− ǫ

0 : 1
2 − ǫ

1 :
1
2
− ǫ

0, 1 : ǫ

0, 1 : 1
2 − ǫ

Figure 1: A graphical representation of the PFA constructed from Ψ = (x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x3 ∨ x4)

Proof. We have:
∑

w∈Σ∗

f(w) = 2ǫ
∑

n∈N

∑

w:|w|=n

(
1

2
− ǫ)n

= 2ǫ
∑

n∈N

(1− 2ǫ)n

By applying the equality:
∑

n∈N

xn = 1
1−x

for any |x| <

1 on the sum present in the right-hand term of the
equation above, we obtain the result.

Proposition 5.3. Let Ψ be an arbitrary 3-SAT for-
mula with n variables and k clauses. Let A be the PFA
constructed from Ψ by the procedure detailed above, the
probabilistic language generated by A is given as:

A(w) =











2(12 − ǫ)|w|ǫ if |w| < n

2(12 − ǫ)|w|ǫ[Nw

k
1−2ǫ
2ǫ + k−Nw

k
] if |w| = n

2(12 − ǫ)|w|ǫ[
Nw:n

k
2ǫ

1−2ǫ +
k−Nw:n

k
] else

Proposition 5.4. For any rational number ǫ < 1
4 ,

there exists a rational number cǫ such that Ψ is satis-
fiable if and only if d∞(R,A) > c

Proof. For any w such that |w| < n, |R(w)−A(w)| = 0
.
For |w| = n, we have:

|R(w)−A(w)| = 2ǫ(
1

2
− ǫ)n

Nw

k
(
1 − 4ǫ

2ǫ
)

On the other hand, for |w| > n, we have:

|R(w) −A(w)| = 2ǫ(
1

2
− ǫ)|w|Nw

k

1− 4ǫ

1− 2ǫ

Note that we have for any ǫ < 1
4 :

∀w ∈ Σ≥n : |R(w)−A(w)| ≤ |R(w:n)−A(w:n)|

This means that, under this construction, the maxi-
mum is reached necessarily by a string whose length is
exactly equal to n. Thus, we obtain:

d∞(R,A) = 2
ǫ

k
(
1

2
− ǫ)n

1− 4ǫ

2ǫ
max
w∈Σn

Nw

Note that Ψ is satisfiable if and only if max
w∈Σn

Nw = k.

As a result, pick any s ∈ [k−1, k), and define cepsilon =
2 ǫs

k
(12 − ǫ)n 1−4ǫ

2ǫ , the formula is satisfiable if and only
if d∞(R,A) > c.

Theorem 5.5. The Tchebychev distance approxima-
tion problem between consistent RNN-LMs and PFAs
in finite support is NP-Hard.

Proof. We reduce the 3-SAT satisfiability problem to
our problem. Let Ψ be an arbitrary 3-SAT formula.
Construct a PFA A and a RNN R as specified previ-
ously. Choose a rational number ǫ < 1

4 . Let cǫ > 0 be
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any rational number as specified in the proof of propo-
sition 5.4, and N = n+1. By proposition 5.4, Ψ is sat-
isfiable if and only if d∞(R,A) > c, which completes
the proof

Remarks:

• NP-Hardness for LSTMs/GRUS: Although our
main focus in this article was on first-order weighted
RNNs with one hidden layer, It is worth noting the
the NP-Hardness reduction technique from 3-SAT
problem we employed can easily be generalized to the
case of LSTMs [], and GRUs, two widely used RNN
architectures in practice. Indeed, our reduction relies
on the construction of a memoryless first-order RNN
which makes abstraction of the state of the hidden
units of the network, and exploits only the output
bias vector O′. Hence, provided we have first-order
output function for a LSTM (or GRU) architecture,
the NP-Hardness result demonstrated above is easy
to extend our proof to these architectures.

• Finite precision RNNs: As said earlier in sec-
tion II, a new line of work considered the anal-
ysis of the computational power of RNNs with
bounded resources, which is a realistic condition in
practice[24][40]. Broadly speaking, a finite-precision
RNN is one whose weights and values of its hidden
units are stored using a finite number of bits (See
[21] for further details). Under our construction, the
same remark raised above about LSTMs/GRUs can
be applied to RNNs with finite precision. In fact, It’s
easy to notice that, with a judicious choice of ǫ, say
1
10 (in which case O′[0] = O′[1] = 2), the toy memo-
ryless RNN we constructed in the proof requires only
2 bits to encode a hidden unit and a weight value of
the network. This shows that even approximating
the Tcheybetchev distance in finite support between
a language represented by PFA and that of a finite-
precision first-order RNN with any computable acti-
vation function is also NP-Hard.

6 Conclusion and perspectives

In this article, we investigated some computational
problems related to the issue of approximating trained
RNN language models by different classes of finite state
automata. We proved that the equivalence problem of
PDFAs/PFAs/WFAs and general weighted first-order
RNN-LM with ReLu activation function with a single
hidden layer is generally undecidable, and, as a result,
trying to calculate any distance between them can’t be

computed. When restricting RNN-LMs to be consis-
tent, we proved that approximating the Tcheybetchev
distance between consistent RNN-LMs with general
computable activation functions and PFAs is decidable,
and that the same problem when restricted to a finite
support is at least NP-Hard. Moreover, we gave argu-
ments that the reduction strategy from 3-SAT problem
we employed to prove this latter result makes this re-
sult generalizable to the class of LSTMs/GRUs and
finite precision RNNs.
This work provides first theoretical results of examin-
ing equivalence and the quality of approximation prob-
lems between automata-based models and RNNs from
a computational viewpoint. Yet, there are still many
interesting problems on the issue that could motivate
future research, such as: Is the equivalence problem
between general RNN-LMs and different classes of fi-
nite state machines still undecidable when other highly
non-linear activation functions (e.g. sigmoid, hyper-
bolic tangent ..) are used instead of ReLus? Is the
equivalence problem between the cut-point language
of an RNN-LM and a DFA decidable? If an RNN-LM
is trained to recognize a language generated by a reg-
ular grammar, can we decide if its cut-point language
is indeed regular? etc.
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