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ABSTRACT

The increasing size of screening libraries poses a significant challenge for the
development of virtual screening methods for drug discovery, necessitating a
re-evaluation of traditional approaches in the era of big data. Although 3D phar-
macophore screening remains a prevalent technique, its application to very large
datasets is limited by the computational cost associated with matching query phar-
macophores to database ligands. In this study, we introduce PharmacoMatch,
a novel contrastive learning approach based on neural subgraph matching. Our
method reinterprets pharmacophore screening as an approximate subgraph match-
ing problem and enables efficient querying of conformational databases by encod-
ing query-target relationships in the embedding space. We conduct comprehensive
evaluations of the learned representations and benchmark our method on virtual
screening datasets in a zero-shot setting. Our findings demonstrate significantly
shorter runtimes for pharmacophore matching, offering a promising speed-up for
screening very large datasets.

Keywords Contrastive representation learning · Order embedding space · Virtual screening ·
Pharmacophore modeling

1 Introduction

A challenging task in the early stages of drug discovery campaigns is the identification of hit molecules
that effectively bind to a protein target of interest. Due to the vastness of the chemical space, estimated
to encompass more than 1060 small organic molecules (Virshup et al. 2013), identifying molecules
with desirable drug-like properties is often compared to finding a needle in a haystack. Virtual
screening methods have therefore become an essential component of the computer-aided drug
discovery toolkit, aiding medicinal chemists in filtering molecular databases to efficiently explore the
search space for potential hit compounds (Sliwoski et al. 2014).

A pharmacophore represents non-bonding interactions of chemical features that are essential for
binding to a specific protein target (Wermuth et al. 1998). A pharmacophore query can, for example,
be generated from the interaction profile of a ligand-receptor complex and used to identify potential
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Figure 1: Overview of the PharmacoMatch workflow: Conformer and pharmacophore generation
from ligands and query creation, for example from a ligand-protein complex, precede pharmacophore
screening. The encoder model converts the screening database into embedding vectors, stored for
later use. A hitlist is generated by comparing the query embedding with the database embeddings.

hit compounds from databases by searching for molecules with similar pharmacophoric patterns
(Wolber and Langer 2005). The process involves a positional alignment of the pharmacophore model
with the three-dimensional conformations of molecules in the database, which are ranked based
on their agreement with the pharmacophore query (Wolber, Dornhofer, and Langer 2006). Since
pharmacophore screening focuses on abstract interaction patterns, rather than specific molecular
structures, it allows for the identification of structurally diverse hit compounds (Seidel et al. 2017).

Virtual screening of make-on-demand libraries like Enamine REAL (Shivanyuk et al. 2007) is
of growing interest because these libraries contain compounds that can be synthesized through
reliable synthetic routes within a short period, making them readily commercially available. These
libraries encompass billions of molecules and continue to expand due to advances in synthetic
accessibility (Llanos et al. 2019). While screening larger compound libraries enhances the likelihood
of identifying hit compounds, it also extends screening times, thereby necessitating the scaling up
of virtual screening methods (Sadybekov et al. 2022). However, scaling up 3D pharmacophore
screening to accommodate billions of molecules presents significant challenges (Warr et al. 2022).
Although various filtering techniques have been developed (Seidel et al. 2010), molecules that pass
these methods must still undergo alignment algorithms, which ultimately determine the speed of
the process. Despite substantial efforts to optimize these algorithms (Wolber et al. 2008; Permann,
Seidel, and Langer 2021), the overall screening procedure remains time-intensive.

In this work, we propose using self-supervised learning to create meaningful 3D pharmacophore
representations for efficient virtual screening. Our PharmacoMatch model employs a graph neural
network (GNN) encoder, trained with a contrastive learning objective, to map 3D pharmacophores
into an order embedding space (Ying et al. 2020), thereby enabling pharmacophore matching through
vector comparisons. The embedding vectors for the screening database are computed once and then
used to quickly generate a hitlist based on the query embedding. An overview of the workflow is
presented in Figure 1.

Our key contributions are:

• We develop a GNN encoder model that generates meaningful vector representations from
3D pharmacophores. The model is trained in a self-supervised manner on unlabeled data,
employing a contrastive loss objective to capture the relationships between queries and
targets based on their partial ordering in the learned embedding space.

• We use the learned representation for fast virtual screening in the embedding space and
evaluate the performance of our method through experiments on virtual screening benchmark
datasets.
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2 Related work

Pharmacophore alignment algorithms Alignment algorithms compute a rigid-body transforma-
tion, the pharmacophore alignment, to match a query’s pharmacophoric pattern to database ligands.
A scoring function then evaluates the pharmacophore matching by considering both the number of
matched features and their spatial proximity. The alignment is typically preceded by fast filtering
methods that prune the search space based on pharmacophoric types, pharmacophoric point counts,
and quick distance checks. Only molecules that pass these filters undergo the final, computationally
expensive 3D alignment step, which is usually performed by minimizing the root mean square
deviation (RMSD) between pairs of pharmacophoric points (Seidel et al. 2010; Dixon et al. 2006).
The algorithm by Wolber, Dornhofer, and Langer (2006) creates smoothed histograms from the neigh-
borhoods of pharmacophoric points for pair assignment using the Hungarian algorithm, followed
by alignment with Kabsch’s method (Kabsch 1976). A recent implementation by Permann, Seidel,
and Langer (2021) improves on runtime and accuracy by using a search strategy that maximizes
pairs of matching pharmacophoric points. Alternatively, shape-matching algorithms like ROCS
(Hawkins, Skillman, and Nicholls 2007) and Pharao (Taminau, Thijs, and De Winter 2008) model
pharmacophoric points with Gaussian volumes, optimizing for volume overlap.

Machine learning for virtual screening A common approach to using machine learning for virtual
screening is to train models on measured bioactivity values. However, these models are constrained
by the scarcity of experimental data, which is both costly and challenging to obtain (Li et al. 2021).
Unsupervised training of target-agnostic models for virtual screening avoids dependence on labeled
data, but remains relatively unexplored. DrugClip (Gao et al. 2023) approaches virtual screening as a
similarity matching problem between protein pockets and molecules, using a multi-modal learning
approach where a protein and a molecule encoder create a shared embedding space for virtual
screening. Sellner, Mahmoud, and Lill (2023) used the Schrödinger pharmacophore shape-screening
score to train a transformer model on pharmacophore similarity, which is a different objective
than pharmacophore matching. PharmacoNet (Seo and Kim 2023) uses instance segmentation for
pharmacophore generation in protein binding sites and a graph-matching algorithm for binding pose
estimation, employing deep learning for pharmacophore modeling, but not for the alignment nor
matching.

Contrastive representation learning A common approach for the extraction of vector embeddings
is the use of contrastive learning frameworks. These frameworks make use of a Siamese network ar-
chitecture and a contrastive loss function, where an embedding space is learned by comparing positive
and negative examples (Bengio, Courville, and Vincent 2013). In the last years, the computer vision
community reported great improvements in the use of self-supervised learning (SSL) frameworks,
which can be seen as a special case of contrastive learning. Instead of labels, these frameworks use
augmentations to create positive and negative examples during training, which allows to train models
on large datasets of unlabeled data. SSL is often used for model pretraining, followed by fine-tuning
through supervised learning, which is especially useful when data is limited; however, the learned
representations can also be utilized without fine-tuning if no labeled data is available (Balestriero
et al. 2023).

3 Preliminaries

Pharmacophore representation In this work, we treat 3D pharmacophores as attributed point
clouds (Mahé et al. 2006; Kriege and Mutzel 2012). A pharmacophore P can be represented by a set
of pharmacophoric points P = {(ri, li) ∈ R3×L}i with the Cartesian coordinates ri and the label li
of the pharmacophoric point pi. The label set L contains the following pharmacophoric descriptors:
hydrogen bond donors (HBD) and acceptors (HBA), halogen bond donors (XBD), positive (PI) and
negative electrostatic interaction sites (NI), hydrophobic interaction sites (H), and aromatic moieties
(AR). Directed descriptors like HBD and HBA can be associated with a vector component, but for
simplicity, we will omit this information in our study.
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The pharmacophore P can be represented as a complete graph G(P ) = (VP , EP , λP ), where
VP = {v1, ..., v|P |} denotes the set of nodes with node attributes λP (vi) = li, and EP = VP × VP
denotes the set of edges, where λP represents a labelling function λ : V ∪E → L that assigns a label
to the corresponding vertex v or edge e. The edges are undirected, edge euv can be identified with
edge evu, and the label of euv is the pair-wise Euclidean distance λP (euv) = ∥ru − rv∥2 between
the positions of nodes u and v. This representation is invariant to translation and rotation.

Subgraph matching Two graphs G1 = (V1, E1, λ1) and G2 = (V2, E2, λ2) are isomorphic,
denoted by G1 ≃ G2, if there exists an edge-preserving bijection f : V1 → V2 such that ∀(u, v) ∈
E1 : (f(u), f(v)) ∈ E2. Additionally, we require the preservation of node and edge labels, such
that ∀v ∈ V1 : λ1(v) = λ2(f(v)), and ∀(u, v) ∈ E1 : λ1((u, v)) = λ2((f(u), f(v))). Let GQ =
(VQ, EQ, λQ) be a query graph, GT = (VT , ET , λT ) a larger target graph, and GH = (VH , EH , λH)
a subgraph of GT such that VH ⊆ VT , and EH ⊆ ET . The objective of subgraph matching is
to decide, whether GQ is subgraph isomorphic to GT , denoted by GQ ≲ GT , which requires the
existence of a non-empty set of subgraphsH = {GH | GH ≃ GQ} that are isomorphic to GQ.

Pharmacophore matching In its most general setting, pharmacophore matching seeks to match
all pharmacophoric points of a query pharmacophore PQ with the corresponding pharmacophoric
points of a larger target pharmacophore PT .

Let PH ⊆ PT denote a subset of the pharmacophoric points of PT . Then PQ matches PT after
alignment if there exists a bijection g : PQ → PH such that ∀i ∈ PQ : li = lg(i) and ∥ri − rg(i)∥2 <
rT , where rT is the radius of a tolerance sphere. It is thereby sufficient that query pharmacophoric
points are mapped into the tolerance sphere of their target counterpart. For simplicity, we assume
the same tolerance radii among all pharmacophoric points. The ultimate goal of pharmacophore
matching is to retrieve molecules from a database. A matching pharmacophore is always linked to a
corresponding ligand molecule via a look-up table.

Figure 2: Illustration of the pharmacophore match-
ing objective: The aim is to match the pharma-
cophoric points of a query with the corresponding
points of a target pharmacophore such that the
query points fall within the tolerance sphere of the
target points, with a tolerance radius rT .

When represented as graphs GQ = G(PQ),
GH = G(PH), and GT = G(PT ), this task
boils down to the node-induced subgraph match-
ing of a query pharmacophore graph GQ to a
target pharmacophore graph GT . The tolerance
sphere, however, weakens the requirement on
edge label matching. An approximate match-
ing λQ((u, v)) ≈ λH((f(u), f(v))) is suffi-
cient if the difference between λQ((u, v)) and
λH((f(v), f(u))) is less than 2rT , where rT
represents the tolerance radius of each phar-
macophoric point. This ensures that the query
points fall within the tolerance spheres of the

target points (compare Figure 2). Our problem formulation of pharmacophore matching relies on
relative distances instead of the absolute positioning of pharmacophoric features and is therefore
independent of prior alignment.

4 Methodology

Overview In the following we introduce PharmacoMatch, a novel contrastive learning framework
with the aim to encode query-target relationships of 3D pharmacophores into an embedding space.
We propose to train a GNN encoder model in a self-supervised fashion, as illustrated in Figure 3. Our
model is trained on approximately 1.2 million unlabeled small molecules from the ChEMBL database
(Davies et al. 2015; Zdrazil et al. 2023) and learns pharmacophore matching solely from augmented
examples, comparing positive and negative pairs of query and target pharmacophore graphs, while
optimizing an order embedding loss to extract relevant matching patterns.
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Figure 3: (a.) The embedding model learns an order embedding space by comparing augmented
pharmacophores. (b) Illustration of the embedding space, where pharmacophores matching a query
are positioned to the upper right.

Unlabeled data for contrastive training To span the pharmaceutical compound space, we down-
load a set of drug-like molecules sourced from the ChEMBL (2024) website in the form of Simplified
Molecular Input Line Entry System (SMILES) strings (Weininger 1988) and curate an unlabeled
dataset using the open-source Chemical Data Processing Toolkit (CDPKit) (Seidel 2024) (see Ap-
pendix A.1 for details). After an initial data clean-up, which includes the removal of solvents and
counter ions, adjustment of protonation states to a physiological pH, and elimination of duplicate
structures, the dataset contains approximately 1.2 million small molecules. To ensure a zero-shot
setting in our validation experiments, we remove all molecules from the training data that also
appear in the test sets. Finally, we generate a low-energy 3D conformation and the corresponding
pharmacophore for each ligand.

Model input We represent the node labels λP (VP ) of a given pharmacophore graph G(P ) =
(VP , EP , λP ) as one-hot-encoded (OHE) feature vectors h = (h1, ...,h|P |). We employ a distance
encoding to represent pair-wise distances, which was inspired by the SchNet architecture (Schütt
et al. 2018). The edge attributes of edge euv are derived from the edge label λP (euv) and represented
by a radial basis function ek(ru − rv) = exp(−β(∥ru − rv∥2 − µk)

2), where centers µk were taken
from a uniform grid of K points between zero and the distance cutoff at 10 Å, and the smoothing
factor β represents a hyperparameter. To this end, the pharmacophore P is represented by a data
point x = [h, e] which is a tuple of the feature matrix h ∈ R|P |×L and the distance-encodings
e ∈ R(|P |×|P |)×K .

GNN encoder architecture The encoder input is the pharmacophore graph representation x =
[h, e], with the feature matrix h and the edge attributes e. Node feature embeddings are generated by
initially passing the OHE feature matrix through a single dense layer without an activation function.
We then update the node representations through message passing using the edge-conditioned
convolution operator (NNConv) by Gilmer et al. (2017); Simonovsky and Komodakis (2017), which
was originally designed for representation learning on point clouds and 3D molecules, to aggregate
distance information into the learned node representations (see Appendix A.3 for details). We find that
DenseNet-style skip-connections (Huang et al. 2017) are beneficial for learning robust representations.
Graph-level read-out is achieved by additive pooling of the updated feature matrix h ∈ R|P |×m into
a graph representation q ∈ Rm, which is then projected to the final output embedding z ∈ RD

+ by a
multi-layer perceptron. The employed loss function requires to map the final representation to the
non-negative real number space. We accomplish this by using the absolute values of the learnable
weights for the last linear transformation immediately after the final ReLU unit (see Appendix A.4
for details).

Loss function In order to encode query-targets relationship of pharmacophores into the embedding
space, we employ the loss function by Ying et al. (2020). The key insight is that subgraph relationships
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can be effectively encoded in the geometry of an order embedding space through a partial ordering of
the corresponding vector embeddings. Let zQ the embedding of graph GQ, zT the embedding of
graph GT , and fΘ : G → RD

+ a GNN encoder to map pharmacophore graphs G to embedding vectors
z ∈ RD

+ . The partial ordering zQ ⪯ zT reflects, whether GQ is subgraph isomorphic to GT :

zQ[i] ≤ zT [i], ∀i ∈ {1, ..., D} iff GQ ≲ GT (1)

The following max-margin objective can be used to train the GNN encoder fΘ on this relation:

L(zQ, zT ) =
∑

(zQ,zT )∈Pos

E(zQ, zT ) +
∑

(zQ,zT )∈Neg

max{0, α− E(zQ, zT )} (2)

The penalty function E : RD
+ ×RD

+ → R+ reflects violation of the partial ordering on the embedding
vector pair:

E(zQ, zT ) = ∥max{0, zQ − zT }∥22 (3)

Pos is the set of positive pairs per batch, these are pairs of query zQ and target graph embedding zT
with a subgraph-supergraph relationship, and Neg is the set of negative examples, these are pairs of
query and target embedding vectors that violate this relationship. The positive and negative pairs are
generated on-the-fly via augmentation during training.

Figure 4: Augmentation strategies for model train-
ing involve generating positive and negative query-
target pairs on-the-fly by combining node deletion
with varying degrees of node displacement. Neg-
ative pairs are also created by shuffling the batch,
mapping query pharmacophores to random target
pharmacophores.

Augmentation module The PharmacoMatch
model correlates the matching of a query and a
target pharmacophore with the partial ordering
of their vector representations. Positive pairs
represent successful matchings, while negative
pairs serve as counter examples. In order to
create these pairs from unlabeled training data,
we define three families of augmentations T ,
which are composed of random point deletions
and positional point displacements.

For positive pairs, valid queries are created by
randomly deleting some nodes from a phar-
macophore P , leaving at least three, and dis-
placing the remaining nodes within a tolerance
sphere of radius rT . This augmentation, de-
noted as t1(·) ∼ T1, produces the positive pair
(t1(P ), P ).

Negative pairs are used to show the model exam-
ples of unsuccessful matching, employing three
strategies that illustrate different types of unde-
sired outcomes. Our first strategy provides the
model with examples of positional mismatch, by

placing the pharmacophoric points of P on the surface of the tolerance sphere without any point
deletions. This augmentation, denoted by t2(·) ∼ T2, is used to generate the negative query-target
pair (t2(P ), P ).

Our second strategy teaches the model that every pharmacophoric point in the query should correspond
to a point in the target. This is achieved by deleting some target nodes, using an augmentation operator
t3(·) ∼ T3, where T3 involves node deletion without displacement. As a result, the query in the pair
(t1(P ), t3(P )) only partially matches its target.

6
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With the third strategy, we train the model to avoid matching queries with targets that are significantly
different. This approach involves randomly mapping queries t1(Pi) to the incorrect targets Pj , where
i ̸= j (for more details, see Appendix A.2).

Curriculum learning We design a curriculum learning strategy for training on pharmacophore
graphs. We start training with pharmacophores containing four nodes. If the loss does not decrease
significantly within 10 epochs, we add pharmacophores with one additional node to the training data.
This approach allows the model to start with very simple examples, gradually increasing the difficulty
of the matching task.

Model Training Our GNN encoder model is implemented with three convolutional layers with
an output dimension of 64. The MLP has a depth of three dense layers with a hidden dimension of
1024 and an output dimension of 512. The final model was trained for 500 epochs using an Adam
optimizer with a learning rate of 10−3. The margin of the best performing model was set to α = 100.
The tolerance radius rT for node displacement was set to 1.5 Å, which is the default value in the
pharmacophore screening functionalities of the CDPKit (see Appendix A.5 for more details).

Decision function for model inference We are using the trained GNN encoder fΘ to precompute
vector embeddings zT of the database pharmacophores. These are queried with the pharmacophore
embedding zQ by verification of the partial ordering constraint (3), which shall not be violated by
more than a threshold t. This leads to the decision function g : RD

+ × RD
+ → {0, 1}:

g(zQ, zT ) =

{
1 iffE(zQ, zT ) < t

0 otherwise
(4)

which evaluates to 1 if the partial ordering on zQ and zT reflects a pharmacophore matching, and 0
otherwise. In the following, we will refer to equation (4) as matching decision function. In practice,
we recommend a decision threshold of t = 6500, which was determined during our benchmark
experiments.

5 Experiments

We designed our embeddings to reflect the type and relative positioning of pharmacophoric points.
Comparison of embedding vectors via the matching prediction function should emulate the matching
of the underlying pharmacophores. To get a better understanding of the encoder’s latent space, we
investigate these properties as follows:

1. Pharmacophoric point perception: We investigate the learned embedding space quantita-
tively through dimensionality reduction.

2. Positional perception: We investigate the influence of positional changes on the output of
the matching decision function.

3. Virtual screening performance: The performance of our model is evaluated using ten
DUD-E targets, and the produced hitlists are compared with the performance and runtime of
the CDPKit (Seidel 2024) alignment algorithm.

DUD-E benchmark dataset We perform our experiments on the DUD-E benchmark dataset
(Mysinger et al. 2012), which is commonly used to evaluate the performance of molecular docking and
structure-based screening. The complete benchmark contains 102 protein targets, each accompanied
by active and decoy ligands in the form of SMILES strings (Weininger 1988) and the PDB template
(Burley et al. 2017) of the ligand-receptor complex. We randomly select ten different protein targets
for the evaluation of our model. Ligands in these datasets are processed according to the data
curation pipeline outlined in the Methodology section, except that we sample up to 25 conformations
per compound. The ligand-receptor complex is used to generate a structure-based query with 5-7
pharmacophoric points (see Appendix A.6 for more details).
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5.1 Pharmacophoric point perception

We conduct a quantitative analysis through dimensionality reduction to gain a first intuition for the
properties of the learned embedding space.

The partial ordering of graph representations in the embedding space, based on the number of
nodes per graph, is essential for encoding query-target relationships. This ordering property of the
embedding space can be visualized using principal component analysis (PCA). Figure 5a displays the
first two principal component axes of the learned representations, with the representations labeled
according to the number of pharmacophoric points of the corresponding pharmacophore. This
visualization demonstrates how the embedding vectors are systematically ordered relative to the
number of nodes in each pharmacophore graph.

Similarly, the Uniform Manifold Approximation and Projection (UMAP) algorithm (McInnes, Healy,
and Melville 2020), a dimensionality reduction technique that preserves the local neighborhood
structure of high-dimensional data, was employed. Figure 5b shows the UMAP representation of the
embeddings, labeled by the number of pharmacophoric points of a specific type. This visualization
suggests that pharmacophores with a similar set of points are mapped proximally within the order
embedding space.

Figure 5: (a.) Dimensionality reduction of the ADA target’s embedding space via PCA, with em-
beddings labeled by pharmacophoric point count. (b.) Dimensionality reduction via UMAP, with
embeddings labeled by pharmacophoric point type. (c.) Experimental validation of the model’s per-
ception of 3D point positions, showing the mean matching decision function versus the displacement
radius rD of the augmentation, with a decision threshold set to t = 6500.

5.2 Positional perception

We define a family of augmentations TrD to randomly delete nodes from a pharmacophore P and
displace the remaining nodes by a radius rD. We sample augmentations trD (·) ∼ TrD with increasing
radius rD taken from a uniform grid of m distances between 0 and 10 Å.

For a given batch of pharmacophores {P1, ..., Pn}, we generate the query-target pairs
{(trD (P1), P1), ..., (trD (Pn), Pn)}. We then evaluate the decision function g(·, ·) (Equation 4)
on the corresponding vector representations and calculate the mean of the decision function across all
pairs against an increasing radius rD, which is illustrated in Figure 5c.

Without node displacement, the mean matching decision function is close to 1, indicating that the
model recognizes pharmacophores with reduced node sets as valid queries. With a displacement of
approximately 1.5 Å, the mean matching decision value drops to 50%, demonstrating the model’s
consideration of the chosen tolerance radius. Beyond a displacement of 1.5 Å, the decision function
further decreases, approaching a plateau at approximately 6 Å. The results show that our model
integrates 3D-positional information of pharmacophoric points into the learned representations.
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5.3 Virtual screening

Each benchmark set is comprised of a pharmacophore query PQ and a set of ligandsL = {L1, ..., Ln},
where each ligand Li is associated with a set of pharmacophores {P1, ..., Pki

}i and a label yi, which
indicates whether the ligand is active or decoy. The task is to rank the database ligands w.r.t. the
query, based on a scoring function F : P × P → R+. The ranking score ψi of ligand Li is
calculated through aggregation of the pharmacophore scores

⊕
({F (PQ, P1), ..., F (PQ, Pki)}i),

where
⊕

is an aggregation operator. PharmacoMatch transforms the query G(PQ) 7→ zQ and the
set of pharmacophores {G(P1), ..., G(Pki

)}i 7→ {z1, ..., zki
}i via encoder model fΘ : G → RD

+ and
evaluates the penalty function E : RD

+ × RD
+ → R+. A low penalty corresponds to a high ranking.

The ranking score of database ligand Li is calculated as ψi = min({E(zQ, z1), ..., E(zQ, zki
)}i).

Baseline algorithm The baseline for our comparison is the alignment algorithm implemented
in the open-source software CDPKit (Seidel 2024), which utilizes clique-detection followed by
Kabsch alignment (Kabsch 1976). The alignment of a query PQ and a target PT is evaluated with an
alignment score S : P × P → R+, which takes into account the number of matched features and
their geometric fit (further details are provided in the Appendix A.6). The ligand ranking score is
calculated as ψi = max({S(PQ, P1), ..., S(PQ, Pki)}i), the highest alignment score represents the
score for the database ligand. Analogous to equation (4), we can also define a matching decision
function ϕ based on the alignment score, where t = |PQ|:

ϕ(PQ, PT ) =

{
1 iffS(PQ, PT ) ≥ t
0 otherwise

(5)

Evaluation Both algorithms rank database ligands to produce a hitlist. We assess the performance
of PharmacoMatch on the benchmark using two approaches. First, we demonstrate that the Phar-
macoMatch penalty E(·, ·) correlates with the matching decision function ϕ(·, ·) of the alignment
algorithm. We evaluate both functions against all pharmacophores in a dataset w.r.t. query PQ. The
outputs are compared by generating the corresponding receiver operating characteristic (ROC) curves,
and the performance is quantified using the area under the ROC curve (AUROC) metric.

Second, we compare the virtual screening performance of our model and the alignment algorithm
using the ligand ranking score ψ. The primary objective of virtual screening is to find active
compounds amongst decoys. We evaluate this using two different metrics. The AUROC metric is
used to evaluate the overall classification performance w.r.t. activity label yi. A drawback of this
metric is that it does not reflect the early enrichment of active compounds in the hitlist, which is of
significant interest in virtual screening. Early enrichment is assessed using the Boltzmann-enhanced
discrimination of ROC (BEDROC) metric (Truchon and Bayly 2007), which assigns higher weights
to better-ranked samples. Note that these performance metrics are entirely dependent on the chosen
query. Rather than aiming to maximize those metrics, our goal is to achieve comparable values
between our model and the alignment algorithm.

Screening performance Our results, comparing PharmacoMatch with the alignment algorithm
across all ten targets, are summarized in Table 1 (ROC plots are provided in the Appendix A.6). We
observe a robust correlation between the hitlists generated by the two algorithms, demonstrating the
effectiveness of our approach. This correlation varies by target, reflecting the sensitivity of virtual
screening to the chosen query. Although the alignment algorithm achieves generally higher AUROC
scores and early enrichment, our method consistently produces hitlists with competitive performance
across several targets.

Runtime comparison In terms of runtime, PharmacoMatch significantly outperforms the alignment
algorithm. We compare the time required for alignment, embedding, and vector matching per
pharmacophore. Alignment is performed in parallel on an AMD EPYC 7713 64-Core Processor
with 128 threads, while pharmacophore embedding and matching are run on an NVIDIA GeForce
RTX 3090, with both devices having comparable purchase prices and release dates. Creating vector
embeddings from pharmacophore graphs takes 92± 12 µs per pharmacophore, which takes longer
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Table 1: Method comparison and screening performance of the PharmacoMatch algorithm and the
CDPKit alignment algorithm on ten different DUD-E protein targets (see Appendix A.6 for details).
BEDROC values are calculated with α = 20, as recommended by Truchon and Bayly (2007). Metrics
are reported in percent. Confidence intervals are calculated using bootstrapping (Efron 1979), with
standard deviations reported based on 1,000 resampled datasets.

Protein Method Screening Performance
Target Comparison PharmacoMatch CDPKit

AUROC AUROC BEDROC AUROC BEDROC

ACES 90.7± 0.2 57± 2 19± 2 55± 1 15± 1
ADA 97.7± 0.3 80± 3 39± 4 93± 2 80± 4

ANDR 98.0± 0.2 78± 2 32± 2 72± 2 26± 2
EGFR 90.4± 0.5 59± 1 10± 1 72± 1 22± 1
FA10 84.2± 0.1 48± 1 2.1± 0.4 55± 1 5.8± 0.6
KIT 80.2± 0.1 52± 2 2.3± 0.6 58± 2 7± 1

PLK1 79.1± 0.5 61± 3 9± 2 75± 3 39± 3
SRC 95.6± 0.1 77± 1 22± 1 77± 1 24± 1

THRB 86.4± 0.4 73± 1 26± 2 81± 1 40± 2
UROK 83.3± 0.2 59± 2 3± 1 91± 1 52± 3

than aligning a query to a target with 13 ± 7 µs. However, the embedding process only needs to
be performed once. Subsequently, the preprocessed vector data can be used for vector matching,
which takes 0.30± 0.09 µs, being approximately two orders of magnitude faster than the alignment.
Additionally, vector comparison is independent of the query size, an advantage not shared by the
alignment algorithm. Although executed on different hardware, this comparison highlights the
speed-gain of our algorithm.

Practical considerations There are two options for integrating our model into a virtual screening
pipeline. First, the PharmacoMatch model can be used in place of the alignment algorithm to generate
a hitlist of ligands, which is suitable for quickly producing a compound list for experimental testing.
Alternatively, our method can serve as an efficient prefiltering tool for very large databases, reducing
the number of molecules from billions to millions, after which the slower alignment algorithm can
be applied to this filtered subset. Note that alignment will still be necessary if visual inspection of
aligned pharmacophores and corresponding ligands is desired.

6 Conclusion

We have presented PharmacoMatch, a contrastive learning framework that creates meaningful phar-
macophore representations for virtual screening. The proposed method tackles the matching of
3D pharmacophores through vector comparison in an order embedding space, thereby offering a
valuable method for significant speed-up of virtual screening campaigns. PharmacoMatch is the first
machine-learning based solution that approaches pharmacophore virtual screening via an approximate
neural subgraph matching algorithm. We are confident that our method will help to improve on
existing virtual screening workflows and contribute to the assistance of medicinal chemist in the
complex task of drug discovery.

Code & data availability

We will make our code publicly available upon acceptance via https://github.com/
molinfo-vienna/PharmacoMatch and share the curated datasets via (https://zenodo.org/).
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A Appendix

A.1 Dataset curation & statistics

Unlabeled training data was downloaded from the ChEMBL database to represent small molecules
with drug-like properties. At the time of data download, the ChEMBL database contained 2,399,743
unique compounds. We constrained the compound category to "small molecules" and enforced
adherence to the Lipinsky rule of five (Lipinski et al. 1997), specifically setting violations to "0,"
resulting in a refined set of 1,348,115 compounds available for download. The molecules were
acquired in the form of Simplified Molecular Input Line Entry System (SMILES) (Weininger 1988)
strings. Subsequent to data retrieval, we conducted preprocessing using the database cleaning func-
tionalities of the Chemical Data Processing Toolkit (CDPKit) (Seidel 2024). This process involved
the removal of solvents and counter ions, adjustment of protonation states to a physiological pH value,
and elimination of duplicate structures, where compounds differing only in their stereo configuration
were regarded as duplicates. To prevent data leakage, we carefully removed all structures from the
training data that would occur in one of the test sets we used for our benchmark experiments. The
final set was comprised of 1,221,098 compounds. For each compound within the dataset, a 3D
conformation was generated using the CONFORGE (Seidel et al. 2023) conformer generator from the
CDPKit, which was successful for 1,220,104 compounds. To enhance batch diversity, we generated
only one conformation per compound for contrastive training. Subsequently, 3D pharmacophores
were computed for each conformation, with removal of pharmacophores containing less than four
pharmacophoric points. The ultimate dataset comprised 1,217,361 distinct pharmacophores.

Figure A1 shows the frequency of pharmacophores with a specific pharmacophoric point count in the
training data. On average, a pharmacophore consists of 13 pharmacophoric points, with the largest
pharmacophore in the dataset containing 32 points. Pharmacophores with fewer than four points were
omitted during data clean-up. Hydrophobic pharmacophoric points and hydrogen bond acceptors
are the most prominent, while hydrogen bond donors and aromatics occur less frequently. Ionizable
pharmacophoric points and halogen bond donors are comparatively rare.
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Figure A1: Pharmacophoric point statistics of the training data. The respective histograms display the
total number of pharmacophoric points and the number of points of specific types per pharmacophore
in the training data. The complete training dataset contains 1,217,361 distinct pharmacophores.
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A.2 Augmentation module

The augmentation module receives the initial pharmacophore x0 = [h0, r0], with the initial OHE
feature matrix h0 and the Cartesian coordinates r0. Edge attributes of the complete graph were
calculated from the pair-wise distances between nodes after modifying the input according to the
augmentation strategy, which combines random node deletion and random node displacement. The
module outputs the modified tuple x = [h, e] with the feature matrix h and the edge attributes e.

Node deletion Random node deletion involved removing at least one node, with the upper bound
determined by the cardinality of the set of nodes Vi of graph Gi. To ensure the output graph retained
at least three nodes, the maximum number of deletable nodes was |Vi| − 3. The number of nodes to
delete was drawn uniformly at random.

Node displacement There are two modes for the displacement of pharmacophoric points. Positive
pairs were constructed by displacing the pharmacophoric points within the tolerance sphere of the
initial pharmacophore. For simplicity, we assumed the same tolerance sphere radius rT across
different pharmacophoric types. The coordinate displacement (∆x,∆y,∆z) was created from
spherical coordinates ϕ ∼ U(0, 2π) and cos θ ∼ U(−1, 1), which were drawn at random from a
uniform distribution. The coordinate displacement was calculated as

∆x = ∆r sin θ cosϕ, ∆y = ∆r sin θ sinϕ, ∆z = ∆r cos θ (6)

where ∆r = rT 3
√
u and u ∼ U(0, 1). Negative pairs were created by displacement of the nodes at

the border of the tolerance sphere. This was achieved by random sampling from a sphere surface, i.e.
with u = 1.

A.3 Message passing neural network

Convolution on irregular domains like graphs is formulated as message passing, which can generally
be described as:

h
(k)
i = γ(k)(h

(k−1)
i ,

⊕
j∈N (i)

ϕ(k)(h
(k−1)
i ,h

(k−1)
j , eij)) (7)

where h
(k)
i ∈ RF ′

denotes the node features of node i at layer k, h(k−1)
i ∈ RF denotes the node

features of node i at layer k − 1, eij ∈ RD the edge features of the edge from node i to node j,
γ(k) and ϕ(k) are parameterized, differentiable functions, and

⊕
is an aggregation operator like,

e. g., the summation operator (Fey and Lenssen 2019). In our encoder architecture, we employed the
following edge-conditioned convolution operator, which was proposed both by Gilmer et al. (2017);
Simonovsky and Komodakis (2017):

h
(k)
i = Θh

(k−1)
i +

∑
j∈N (i)

h
(k−1)
j · ψΘ(eij) (8)

where Θ ∈ RF×F ′
denotes learnable weights and ψΘ(·) : RD → RF×F ′

denotes a neural network,
in our case an MLP with one hidden layer. These transformations map node features h into a latent
representation that combines pharmacophoric types with distance encodings.

A.4 Encoder implementation

The encoder was implemented as a GNN fΘ : G → RD
+ that maps a given graph G to the abstract

representation vector z ∈ RD
+ . The architecture is comprised of an initial embedding block, three

subsequent convolution blocks, followed by a pooling layer, and a projection block.
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Embedding block The embedding block receives the pharmacophore graph Gi as the tuple xi =
[hi, ei], with the OHE feature matrix hi and the edge attributes ei. Initial node feature embeddings
are created from the OHE features with a fully-connected (FC) dense layer with learnable weights W
and bias b:

hi ←Whi + b (9)

Convolution block The convolution block consists of a graph convolution layer, which is imple-
mented as edge-conditioned convolution operator (NNConv), the update rule is described in Section
A.3. The network further consists of batch normalization layers (BN), GELU activation functions,
and dropout layers. The hidden representation hl

i of graph Gi is updated at block l as follows:

[hl
i, ei]→ {NNConv→ BN→ GELU→ concat(hl′

i ,h
l
i)→ dropout} → hl+1

i (10)

where hl′

i represents the latent representation after activation. Updating the feature matrix l times
yields the final node representations of the pharmacophoric points.

Pooling layer We employed additive pooling for graph-level read-out ri, which aggregates the set
of |V | node representations {h1, ...,h|V |}i of a Graph Gi by element-wise summation:

qi =

|V |∑
k=1

hk (11)

Projection block The projection block maps the graph-level read-out to the positive real number
space and is implemented as a multi-layer perceptron MLP : Rd → RD

+ , where d is the dimension of
the vector representation before and D the dimension after the projection. The block consists of k
sequential layers of FC layers, BN, ReLU activation, and dropout:

qk
i → {FC→ BN→ ReLU→ Dropout} → qk+1

i (12)

The final layer is a FC layer without bias and with positive weights, only:

zi ← abs(W)qi (13)

Matrix multiplication of the positive learnable weights W and the output of the last ReLU activation
function produces the final representation zi ∈ RD

+ .

Figure A2: Architecture of the GNN encoder model.
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A.5 Model implementation and training

Implementation dependencies The GNN was implemented in Python 3.10 with PyTorch (v2.0.1)
and the PyTorch Geometric library (v2.3.1) (Fey and Lenssen 2019). Both, model and dataset,
were implemented within the PyTorch Lightning (Falcon and The PyTorch Lightning team 2019)
framework (v2.1.0). Model training was monitored with Tensorboard (v2.13.0). CDPKit (v1.1.1)
was employed for chemical data processing. Software was installed and executed on a Rocky Linux
(v9.4) system with x86-64 architecture.

Model training Training was performed on a single NVIDIA GeForce 3090 RTX graphics unit
with 24 GB GDDR6X. Training runs were performed for a maximum of 500 epochs with a batch size
of 256 pharmacophore graphs. Curriculum learning was applied by gradual enrichment of the dataset
with increasingly larger pharmacophore graphs. At training start, only pharmacophore graphs with 4
nodes were considered. After 10 subsequent epochs without considerable minimization of the loss
function, pharmacophore graphs with one additional node were added to the training data. The loss
function was minimized with the Adam optimizer, we further applied gradient clipping. A training
run on the full dataset took approximately 48 hours with the above hardware specifications.

Hyperparameter tuning & model selection Hyperparameters were optimized through random
parameter selection, the tested ranges are summarized in Table A2. Unlabeled data was split into
training and validation data with a 98:2 ratio. Training runs were compared using the AUROC value
on the validation data. This was calculated by treating the positive and negative pairs as binary labels,
and the predictions were based on their respective order embedding penalty, which was calculated
with Equation (3). Hyperparameter optimization was performed on a reduced dataset with 100,000
graphs, which took approximately 5 hours per run. The best performing models were retrained on
the full dataset. The hyperparameters of the final encoder model are summarized in Table A1. After
model selection, the final model performance was tested on virtual screening datasets.

Table A1: Hyperparameters of the best performing encoder model

Hyperparameter

batch size 256
dropout convolution block 0.2
dropout projection block 0.2
max. epochs 500
hidden dimension convolution block 64
hidden dimension projection block 1024
output dimension convolution block 1024
output dimension projection block 512
learning rate optimizer 0.001
margin for negative pairs 100.0
number of convolution blocks 3
depth of the projector MLP 3
edge attributes dimension 5
sampling sphere radius positive pairs 1.5
sampling surface radius negative pairs 1.5

Table A2: Tested hyperparameter ranges for model training.

Hyperparameter

dropout [0.2, 0.3, 0.4, 0.5]
margin for negative pairs [0.1, 0.5, 1, 2, 5, 10, 100, 1000]
output dimension projection block [64, 128, 256, 512, 1024]
displacement sphere radius rT of positive pairs [0.25, 0.5, 1.0, 1.5]
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A.6 Virtual screening

DUD-E dataset details General information about the DUD-E targets is summarized in Table A3.
For each target we downloaded the receptor structure from the PDB and created the corresponding
interaction pharmacophore with the CDPKit. Vector features were converted into undirected pharma-
cophoric points with LigandScout (Wolber and Langer 2005). The resulting pharmacophore queries
(Figure A3) were used in our virtual screening experiments.

Table A3: DUD-E targets that were selected for bechmarking experiments in this study.

Target PDB code Ligand ID Active
Ligands

Active
Conformations

Decoy
Ligands

Decoy
Conformations

Query
Points

ACES 1e66 HUX 451 10048 26198 567122 6
ADA 2e1w FR6 90 2166 5448 125035 7

ANDR 2am9 TES 269 3039 14333 211968 6
EGFR 2rgp HYZ 541 12468 35001 755017 7
FA10 3kl6 443 537 13343 28149 638831 5
KIT 3g0e B49 166 3703 10438 224364 5

PLK1 2owb 626 107 2531 6794 152999 6
SRC 3el8 PD5 523 11868 34407 737864 6

THRB 1ype UIP 461 11494 26894 626722 7
UROK 1sqt UI3 162 3450 9837 199204 6

Figure A3: Structure-based pharmacophore queries of ten targets of the DUD-E benchmark dataset.

CDPKit alignment scoring function The CDPKit implements alignment as a clique-detection
algorithm and computes a rigid-body transformation via Kabsch’s algorithm to align the pharma-
cophore query PQ to the pharmacophore target PT . The goodness of fit is evaluated with a geometric
scoring function S : P × P → R+:

S(PQ, PT ) = SMFP (PQ, PT ) + SGeom(PQ, PT ) (14)

where SMFP : P×P → Z+ counts the number of matched feature pairs and SGeom : P×P → [0, 1)
evaluates their geometric fit.

Runtime measurement We measured alignment runtimes using the psdscreen tool from the
CDPKit with 128 threads on an AMD EPYC 7713 64-Core Processor, while embedding and matching
runtimes with PharmacoMatch were recorded using an NVIDIA GeForce RTX 3090 GPU with 24 GB
GDDR6X. Runtime per pharmacophore was estimated by dividing the total runtime by the number
of pharmacophores in each dataset, with the final estimate taken as the mean of ten runs. The results
report the mean and standard deviation of these estimates across all ten datasets.
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ROC curves The performance metrics of our virtual screening experiments are derived from the
ROC curves presented in Figures A4 and Figure A5.

Figure A4: Performance comparison of PharmacoMatch and the alignment algorithm. The ROC-
curves display the agreement of the hitlist ranking of the two algorithms for ten targets of the DUD-E
benchmark dataset.

Figure A5: Absolute screening performance of PharmacoMatch and the alignment algorithm perfor-
mance for ten targets of the DUD-E benchmark dataset. The pharmacophore queries were generated
from the respective PDB ligand-receptor structures.

A.7 Embedding space visualization

UMAP visualization UMAP embeddings for visualization plots were calculated with the UMAP
Python library. The ‘metric‘ parameter was set to Manhattan distance, all other parameters are the
default settings of the implementation. We tested a range of hyperparameters to ensure that the
visualization results are not sensitive to parameter selection.

20



PREPRINT

Figure A6: UMAP visualization of the vector embeddings of the ACES target.

Figure A7: UMAP visualization of the vector embeddings of the ANDR target.

Figure A8: UMAP visualization of the vector embeddings of the EGFR target.
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Figure A9: UMAP visualization of the vector embeddings of the FA10 target.

Figure A10: UMAP visualization of the vector embeddings of the KIT target.

Figure A11: UMAP visualization of the vector embeddings of the PLK1 target.
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Figure A12: UMAP visualization of the vector embeddings of the SRC target.

Figure A13: UMAP visualization of the vector embeddings of the THRB target.

Figure A14: UMAP visualization of the vector embeddings of the UROK target.
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