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Abstract

In this note, we give a short information-theoretic proof of the consistency of the Gaussian

maximum likelihood estimator in linear auto-regressive models. Our proof yields nearly optimal

non-asymptotic rates for parameter recovery and works without any invocation of stability in

the case of finite hypothesis classes.

1 Introduction

Learning the dynamics of a linear dynamical system is a classical problem in for instance signal
processing, system identification and econometrics. It is also arguably one of the simplest examples
of an auto-regressive learning problem, thereby rendering it an instance of self-supervised learning.
Understanding the sample complexity—and which quantities are of relevance for it—of such learning
problems is key in the current era of large language models.

The traditional approach for analyzing sequential (self-) supervised learning problems operates
via comparison of the empirical and population excess risk functionals. Recently, Jeon and Van Roy
[2024] provided an information-theoretic proof approach for learning from dependent data eschewing
any such direct comparison. However, their results only apply to the Bayesian setting. Nevertheless,
this eschewing of reasoning of the lower tail of the empirical risk is highly desirable as directly
proving (anti-)concentration inequalities relating these quantities typically comes with significant
technical overhead even in the linear setting [Simchowitz et al., 2018]. The situation is even worse
in the nonlinear setting, where most known extensions require various mixing (stochastic stability)
notions that seem excessive [Ziemann et al., 2024]. Moreover, there is no reason to believe that
many relevant time-series applications, such as natural language, are mixing stochastic processes.

Inspired by the recent information-theoretic Bayesian analysis of Jeon and Van Roy [2024] we
point out that tools from information theory can also be used in the frequentist setting to establish
parameter recovery bounds for linear system identification. Moreover, the advantages of these ideas,
notably sidestepping control of the lower tail, also extend. We present our illustration of this below.

Theorem 1.1. Fix W1:n ∼ N(0, I) and let PA⋆
be such that the Z1:n satisfy Zk = A⋆Zk−1 + Wk

for k = 2, . . . n and Z1 = W1. The maximum likelihood estimator Â (defined in Section 3) over any
hypothesis class of the form P = {PA : A varies} containing P⋆ = PA⋆

achieves:

E tr

((
A⋆ − Â

)T (
A⋆ − Â

) 1

n

n∑

i=1

i∑

k=1

Ak−1
⋆ AT,k−1

⋆

)
≤ (2× 104)×

I(P̂ ‖ Z1:n)

n
(1.1)
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We remark that 1) I(P̂ ‖ Z1:n) ≤ log |P| for any finite hypothesis class P and so the right
hand side of (1.1) admits control decaying with n—the estimator Â is consistent and converges at
a so-called fast rate; 2) whenever A⋆ is sufficiently stable, the result can be extended to parametric
hypothesis classes isometric to compact subsets of Euclidean space via a standard discretization argu-
ment; 3) the rather large constant (2×104) is a consequence of instantiating a result of Devroye et al.
[2018, Theorem 1.1] and there has been no attempt in the literature to optimize the corresponding
constant in their result; and 4) while we have side-stepped control of the lower tail of the empirical
risk functional, we have instead relied on the approximately closed form of the Gaussian total varia-
tion distance—a luxury we do not have for general learning problems. However, one might instead
hope to exploit the fact that f -divergences in parametric families are locally a quadratic.

2 Information-Theoretic Preliminaries

For two probability measures P,Q defined on the same probability space we denote their KL-
divergence dKL(P ‖ Q) ,

∫
log dP

dQdP, their total variation distance by dTV(P ‖ Q) , 1
2

∫ ∣∣dP
dλ − dQ

dλ

∣∣ dλ

and their squared Hellinger distance by d2H(P ‖ Q) , 1
2

∫ (√
dP
dλ −

√
dQ
dλ

)2

dλ where λ is a joint dom-

inating measure. If (X,Y ) ∼ PX,Y we denote their mutual information by I(X ‖ Y ) , dKL(PX,Y ‖
PX ⊗ PY ).

Lemma 2.1 (Donsker and Varadhan [1975]). Fix two probability measures P and Q on a common
measure space (Ω,F) with P ≪ Q. Then:

dKL(P ‖ Q) = sup
F

{∫

Ω
F (ω)dP(ω)− log

∫

Ω
eF (ω)dQ(ω)

}
(2.1)

where the supremum is taken over F-measurable and P-exponentially-integrable F : Ω → R.

Lemma 2.2. Fix two probability measures P and Q and let λ be a joint dominating measure. We
have that:

d2H(P ‖ Q) = 1−

∫
exp

(
1

2
log

dQ

dλ
−

1

2
log

dP

dλ

)
dP. (2.2)

Proof. Elementary algebraic manipulations give us that:

d2H(P ‖ Q) =
1

2

∫ (√
dP

dλ
−

√
dQ

dλ

)2

dλ = 1−

∫ √
dP

dλ

dQ

dλ
dλ

= 1−

∫ √ dQ
dλ
dP
dλ

dP = 1−

∫
exp

(
1

2
log

dQ

dλ
−

1

2
log

dP

dλ

)
dP

(2.3)

where we note that the integral is 0 if dP
dλ = 0 justifying the fraction following the third equality. �

3 Learning Generative Models in Hellinger Distance

Let Z1:n be a sequence drawn according to P⋆ and let P̂ be the maximum likelihood estimator (MLE)
over a class P with joint dominating measure λ. Recall that a distribution P̂ is a MLE over P if

− log dP̂
dλ (Z1:n) + log dP

dλ (Z1:n) ≤ 0,∀P ∈ P. We begin by a variation of the information-theoretic
analysis of Zhang [2006] inspired by the mutual-information decoupling of Xu and Raginsky [2017].

2



Theorem 3.1. Let P̂ be the maximum likelihood estimator over P. If P⋆ ∈ P we have that:

E

[
d2H(P̂ ‖ P⋆)

]
≤ −2 log

(
1−

1

2
E

P̂
d2H(P̂ ‖ P⋆)

)
≤ 2I(P̂ ‖ Z1:n). (3.1)

The key observation is that the right hand side of (3.1) does not necessarily grow with n, whereas
the left measures the distance between distributions of an increasing number of variables.

Proof. Let λ be a joint dominating measure for P⋆ and P̂ (e.g. their mixture). We have that

− logE
Z⊗P̂

exp

(
1

2
log

dP̂

dλ
−

1

2
log

dP⋆

dλ

)

= − logE
P̂
EZ exp

(
1

2
log

dP̂

dλ
−

1

2
log

dP⋆

dλ

)
(Fubini)

= − log

(
1−

1

2
E

P̂
d2H(P̂ ‖ P⋆)

)
(Z ∼ P⋆ and Lemma 2.2)

≥
1

2
E

P̂
d2H(P̂ ‖ P⋆). (x ∈ [0, 1)] ⇒ x ≤ − log(1− x))

(3.2)

To finish we instantiate Donsker-Varadhan with Q = PZ ⊗ P
P̂

and P = P
Z,P̂

:

− logE
Z⊗P̂

exp

(
1

2
log

dP̂

dλ
−

1

2
log

dP⋆

dλ

)
≤ −

1

2
E

Z,P̂
log

dP̂

dP⋆

+ I(P̂ ‖ Z1:n) (Donsker-Varadhan)

≤ I(P̂ ‖ Z1:n). (Optimality of MLE)
(3.3)

By combining (3.2) with (3.3) the result follows. �

4 Proof of the Main Result

Let us write that PA for the distribution under which Z1:n = LAW1:n where

LA =




I 0 0 · · · 0
A I 0 · · · 0

A2 A I
. . .

...
...

. . .
. . .

. . .
...

An−1 An−2 · · · · · · I




and L
−1
A =




I 0 0 · · · 0
−A I 0 · · · 0

0 −A I
. . .

...
...

. . .
. . .

. . .
...

0 0 · · · −A I



. (4.1)

Let ΣA = LAL
T
A be the covariance matrix of the joint distribution under PA. We define LA⋆

and ΣA⋆

analogously. By Devroye et al. [2018, Theorem 1.1] is suffices to control tr
(
ΣA⋆

Σ−1
A − I

)
. Namely,

we have that (where the second inequality follows by Cauchy-Schwarz):

tr
(
ΣA⋆

Σ−1
A − I

)
≤ 104d2TV(PA ‖ P⋆) ≤ 104d2H(PA ‖ P⋆). (4.2)

and use the trace cyclic property to observe that

tr ΣA⋆
Σ−1
A = trLA⋆

L
T
A⋆

(LAL
T
A)

−1 = trL−1
A LA⋆

L
T
A⋆

L
T,−1
A . (4.3)
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Straightforward calculation now yields that

L
−1
A LA⋆

=




I 0 0 0 · · · 0
A⋆ −A I 0 0 · · · 0

A2
⋆ −AA⋆ A⋆ −A I 0 · · · 0

...
. . .

. . .
. . .

. . .
...

An−1
⋆ −AAn−2

⋆ An−2
⋆ −AAn−3

⋆ · · · · · · A⋆ −A I



. (4.4)

And hence we may write for the diagonal elements

[LA⋆
L
−1
A (LA⋆

L
−1
A )T]ii = I +

i∑

k=1

(Ak
⋆ −AAk−1

⋆ )((Ak
⋆ −AAk−1

⋆ ))T. (4.5)

In other words, by repeated use of the trace cyclic property:

tr
(
Σ−1
A ΣA⋆

− I
)
= tr

(
L
−1
A LA⋆

(L−1
A LA⋆

)T − I
)

= tr

n∑

i=1

i∑

k=1

(Ak
⋆ −AAk−1

⋆ )(Ak
⋆ −AAk−1

⋆ )T

= tr

(
(A⋆ −A)T(A⋆ −A)

n∑

i=1

i∑

k=1

Ak−1
⋆ AT,k−1

⋆

)
.

(4.6)

The result follows by instantiating the above with PA = P
Â
. �
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