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Abstract
There is an urgent and pressing need to optimize usage of Graphical

Processing Units (GPUs), which have arguably become one of the

most expensive and sought after IT resources. To help with this

goal, several of the current generation of GPUs support a parti-

tioning feature, called Multi-Instance GPU (MIG) to allow multiple

workloads to share a GPU, albeit with some constraints. In this

paper we investigate how to optimize the placement of Large Lan-

guage Model (LLM)-based AI Inferencing workloads on GPUs. We

first identify and present several use cases that are encountered

in practice that require workloads to be efficiently placed or mi-

grated to other GPUs to make room for incoming workloads. The

overarching goal is to use as few GPUs as possible and to further

minimize memory and compute wastage on GPUs that are utilized.

We have developed two approaches to address this problem: an

optimization method and a heuristic method. We benchmark these

with two workload scheduling heuristics for multiple use cases. Our

results show up to 2.85x improvement in the number of GPUs used

and up to 70% reduction in GPU wastage over baseline heuristics.

We plan to enable the SRE community to leverage our proposed

method in production environments.

1 Introduction
Generative AI powered by large language models (LLMs) marks the

beginning of a new era in improving human productivity. While

current applications range from email assistants and conversational

interfaces to systems that assist software engineers with code gen-

eration, significantly more sophisticated applications are rapidly

anticipated. More recently, LLM-based multi-agent systems have

achieved considerable progress in complex problem-solving [5].

GPUs are at the heart of LLM pretraining, fine-tuning, and infer-

encing. They have become one of the most prized and expensive

resources in computing with demand far exceeding availability.

Energy consumed by AI and GPUs in particular have become a

cause for concern as well. For example, the International Energy

Agency (IEA) estimated that data centers, cryptocurrencies, and

artificial intelligence (AI) consumed about 460 TWh of electricity

worldwide in 2022. This number is expected to grow to 1000 TWh

in 2026 [7]. GPU optimization has thus become critical for efficient

use of limited resources and energy.

The AI community is working on LLM optimizations at various

levels, including structuring and pipelining training computations,

leveraging speculative execution for inferencing using a mixture

of models, building smaller purpose-specific models and multi-

modal models, leveraging quantization to create lower precision

models, optimizing queue management for LLM serving, and so on.

Usage patterns and applications for LLMs are also rapidly evolving,

spanning even synthetic data generation and automated evaluation

of LLM inferencing. Every LLM developer—including OpenAI, Meta,

Microsoft, IBM, Anthropic, and Mistral—has released models whose

sizes currently range from roughly 3 billion parameters to 70+

billion parameters.

Simultaneously, GPU designers realized that these smaller mod-

els can fit into a partitioned GPU and have begun providing access

to fractional partitions of GPUs instead of just whole units. This

enables the hosting of multiple models or multiple instances of the

same model on a single GPU. We expect this trend to continue.

While Nvidia is the leading provider of GPUs today, competitors

like AMD, Intel, and others will apply similar approaches to GPU

partitioning.

Figure 1: Framework Overview

Smaller models coupled with the ability to use fractional par-

titions on GPUs have created an opportunity to better utilize the

GPUs available and maximize the availability of resources for fu-

ture workloads. With inferencing making up the vast majority of

these LLM-based AI workloads, we propose a framework depicted

in Figure 1 to achieve the optimal placement of such inferencing

workloads. This framework can be extended to support fine-tuning

of LLMs as well, and consists of the following main components:

(1) Placement Recommender: This component determines the

GPU and the partition on which new and existing LLM in-

ferencing workloads should be placed. It identifies a desired

final state from the current GPU cluster configuration.

(2) Migration planner : This component determines a migration

plan that includes the movement of existing workload from

their initial state, placement of new workload and any se-

quential aspects that are associated with these moves to

produce the final state.

(3) Executor/actuator : Implements the migrations to achieve the

desired final state.

This paper focuses on the design of intelligent placement recom-

menders. In Section 2, we identify multiple motivating use cases
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(initial deployment, compaction and reconfiguration) with associ-

ated examples and performance metrics to highlight the benefit of

efficient placement of models on MIGs on several key performance

metrics. In Section 3, we formally lay out the multiple objectives

and constraints towards the design of such an intelligent recom-

mender. We note that one of the goals of our recommender, besides

maximizing GPU utilization, is to minimize sequential migration,

i.e., dependence on other workloads to achieve desired state.

The main contribution of our work is in proposing two ap-

proaches to solve the different use cases where both consider the

same constraints and objectives (see Section 4). The first approach is

a novel multi-objective global optimization approach using mixed-

integer programming (MIP) that simultaneously handles all the

use cases. The second approach is a fast rule-based heuristic that

addresses the use cases separately. At the core, the approaches in-

herently have a bin-packing flavor to them and because this is a NP

hard problem, the computational overhead of the exact method can

become significant for large sized clusters. The main differences

from a traditional bin-packing problem to the placement problem

are that there is a notion of an index for a workload in a bin/GPU

and that workloads can occupy only contiguous GPU slices. More-

over, certain workloads in certain indices can result in unusable

parts of the GPU (wastage). The preferred method of choice besides

performance on the KPI metrics are the latency requirements and

the amount of sequential migration overhead that is needed. In

Section 5, we compare our proposed approaches with two other

baselines approaches with comprehensive evaluations, which also

include the need for sequential migration. The results show that

the MIP method when used to jointly perform initial placement,

compaction and reconfiguration, shows up to 6 - 11% improvement

in the number GPUs used, and reduces compute wastage (up to 41%)

and increases availability (up to 10%) than the other approaches. In

compaction, MIP has up to 11% improvement over heuristic-based

approaches in terms of GPUs used, and up to 40% reduction in

wastage. Both of our approaches also outperform (39 - 65% im-

provement in number of GPUs, and 40% reduction in wastage) over

other heuristics in the reconfiguration case. Our rule-based heuris-

tic approach has competitive performance with MIP approach and

requires less computational overhead for large-scale optimizations.

2 Background and Motivation
The Multi-Instance GPU (MIG) feature introduced by Nvidia al-

lows GPUs to be partitioned into smaller fractions (currently a

maximum of seven separate GPU instances). This feature is sup-

ported by Nvidia’s Ampere, Hopper, and—more recently—Blackwell

GPUs [12]. In this work, we focus on optimal placement of AI model

deployments, especially small LLM deployments for inference tasks.

These are commonly deployed in containerized environments de-

ployed andmanagedwith Kubernetes. In this section, we first define

MIG terminology used throughout the paper. Then, we explain the

current state of MIG deployment technologies. Finally, we con-

clude with identifying the practical use cases that motivate MIG

placement optimization.

2.1 Definitions
Workload: A deployment associated with an LLM-inferencing

service—a service serving a LLM model that can be hosted within

a MIG instance.[10] We consider every replica of a Kubernetes

deployment or new models to be equivalent in terms of placement

optimization and define each as a workload.

Slice: MIG offers dividing compute and memory resources of

a GPU into fractions, called as a slice. Figure 2 shows slicing for

A100 and later generation GPUs. These GPUs have 7 GPU slices,

which corresponds to 7 compute and 8 memory slices. GPU slice

0 (s0) represents the first slice and includes the first compute (c0)

and memory(m0) slices. The additional memory slice (m7) can be

used only with the last compute slice as part of GPU slice 6.

Figure 2: GPU Slices

Partition and Profile: A partition is defined as a a partial GPU

that includes one or more GPU slices. However, partitions are not

fluid, and MIG requires using predefined set of partition profiles

for each GPU model. Nvidia supports 4 profiles for A30 and 7

profiles for A100 and later generation GPUs. Each profile has a

fixed number of compute and memory slices. In this work, for

illustrations and our experiments, we use GPUs with 7 profiles.

A100 and later generations use the same number of compute and

memory slices for each profile. Their corresponding memory size

and compute power differ depending on the total GPU memory and

the number of streaming multiprocessor (SM) blocks. For example,

Nvidia H100-96GB GPU model has 12 GB memory for the smallest

profile, while A100-80GB model has 10GB. A partition is denoted

by the compute slices and memory it is allocated: 2g.20gb refers to

using 2 compute slices on the GPU and 2 memory slices, which has

20gb of memory in total. To deploy a workload on a MIG-enabled

GPU, first a new partition needs to be created for the profile of

the workload. Then, workload can be deployed to the partition.

Table 1 shows the common profiles, the corresponding memory

and compute slice counts, the number of GPU slices required for

partitioning, and profiles for the Nvidia A100-80GB GPU. It also

lists the possible starting GPU slice index as allowed indexes, the

ordering of which will be further explained in Section 3.2.2.

Configuration: Configuration can be defined as the informa-

tion about existing partitions and their indexes on a GPU, along

with workload assignments to the partitions. Thus, it shows the

current state of a GPU in terms of partitions, their allocations, and

availability.

Migration: Due to optimization decisions, workloads can com-

monly be relocated to different GPUs or different partitions on the

same GPU.We define any workload-partition assignment change as

migration. Migrations may need a workload to be drained from the



Profile Instance Compute Memory # of GPU Allowed

Id Profile Slices Slices Slices Indexes

0 7g.80gb 7 8 7 [0]

5 4g.40gb 4 4 4 [0]

9 3g.40gb 3 4 4 [4,0]

14 2g.20gb 2 2 2 [4,0,2]

15 1g.20gb 1 2 2 [6,4,0,2]

19 1g.10gb 1 1 1 [6,4,5,0,1,2,3]

20 1g.10gb+me 1 1 1 [6,4,5,0,1,2,3]

Table 1: A100 MIG Instance Partition Profiles

current GPU partition to which it is allocated. There is also a model

loading and initialization time to be considered when the workload

needs to be redeployed on a different GPU partition. If a workload

has to be drained from the current GPU partition before it becomes

actively running on the target GPU partition, it causes downtime

which we call as disruptive-migration. On the other hand, non-

disruptive migration can be defined as the ability to create a replica

of the model to migrate in the new partition without dropping

user requests for this or any other model. If destination partition

is unoccupied, it can be achieved in one step. But if it is occupied,

then the migration has to be achieved sequentially in multiple steps.

To avoid any downtime and achieve non-disruptive migration, we

assume that a replica of the workload may be created and placed

optimally prior to the original workload being drained from the old

GPU partition. This assumption allows us to assume that the time

for which a migrated model is “unavailable” is negligible and can

be ignored.

2.2 Deployments with Multi-Instance GPUs
As a rule of thumb, the memory required for deploying a model

is at least 2 times the number of model parameters (3B parameter

model can fit in a MIG instance with 10gb, 7B parameter model in

20gb, 34B parameter model in 80gb, etc)[8]. The remaining memory

is used as KV-cache to store generated tokens and mainly decides

the number of concurrent inference requests to be handled. The

required cache size per token changes depends on the number

of layers, dimension, and precision of transformer model and can

roughly be calculated with Equation 1 [13]. In this regard, partitions

with same amount of memory (such as 1g.20gb and 2g.20gb) can

be considered to serve similar number of concurrent requests.

𝑐𝑎𝑐ℎ𝑒_𝑠𝑖𝑧𝑒 = 2 ∗ 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 ∗ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (1)

Section 2.2.1 and 2.2.2 summarizes the current state and developing

features of common MIG technologies, respectively.

2.2.1 Nvidia GPU Operation. MIG deployments commonly utilize

the Nvidia GPU operator to deploy LLMs on Kubernetes because of

its flexibility and scalability. The operator partitions GPUs within a

cluster based on a user-defined policy for each node. As a conse-

quence, this leads to all GPUs on a node being configured in the

exact same way. Any changes to this policy requires restarting the

already running workloads, which is very disruptive. For exam-

ple, trying to deploy a new workload with a 2g.20gb profile on a

node with a Hopper 100 80 GB GPUs partitioned into 4g.40gb and

3g.40gb slices will result in the new deployment being stuck in a

“pending” state since there is no available partition of the same size.

In order to meet the demands of serving many different models,

clusters will need to have diverse partitioning strategies. However,

these limitations can be resolved with dynamic resource allocation,

which we describe next.

2.2.2 Dynamic Resource Allocation. Dynamic Resource Allocation

(DRA) is a Kubernetes feature—currently under development—that

allows flexible resource scheduling [11]. DRA aims to provide full

flexibility in creating and deleting partitions, converting new GPUs

to MIG mode, and allowing differently configured MIG partitions

for each GPU on the same node. Importantly, it supports these

changes in a non-disruptive way, such that the currently running

workloads are not affected by the changes in other slices of the

same GPU or others on the same node.

Thework presented in this paper therefore focuses on developing

a workload placement framework to optimize GPU utilization and

cost efficiency using DRA.

2.3 Placement Optimization Use Cases
We consider three commonly encountered use cases for placement

optimization of MIG instances: initial deployment, compaction, and
reconfiguration. We describe each of them below.

2.3.1 Initial Deployment. Based on the incoming request load,

LLM-based inferencing workloads are scaled to add or remove

replicas. Initial deployment refers to partitioning a GPU to use one

or more GPU slices and then placing a new workload in it. Due to

the dynamic nature of task diversity and incoming request load,

deploying new workloads on the GPU is a frequent event. Thus,

efficient placement of these models will ensure better utilization,

fewer disruptions due to placement changes, and greater availabil-

ity of GPUs for future incoming deployments. Figure 3 shows a

simple first-fit placement based on device IDs and an optimal place-

ment with regards to minimizing resource wastage. It starts with

an initial state that has 2 GPUs and 1 existing workload running

on each GPU. Then, a new workload𝑤1 with 3g.40gb profile needs

to be placed. The first-fit algorithm (top of Figure 3) finds the first

GPU available and puts 𝑤1 on GPU1, which uses 4 GPU slices (4

compute and 4 memory slices) and wastes a compute slice. Once a

second workload 𝑤2 with 4g.40gb profile needs to be placed, the

algorithm is unable to find a partition to fit the new workload. Thus

the workload is stuck in the pending state. However, an optimal al-

gorithm (bottom of Figure 3) that considers GPU resource wastage

would place the 𝑤1 on GPU2 and uses 3 GPU slices (3 compute

and 4 memory slices) to avoid compute slice wastage. Then, it can

successfully place the 𝑤2 on GPU1 since it has availability for a

4g.40gb profile.

2.3.2 Compaction. Models are scaled in response to varying incom-

ing request loads. When they complete their tasks and are no longer

in use, they should ideally be removed to make room. Alternatively,

if there is more demand than allocated resources, more replicas

must be placed onto the GPU. These frequent adjustments can eas-

ily cause GPUs to become fragmented and underutilized. Therefore,

efficient placement of existingmodels requires periodic adjustments

to avoid under-utilizing the GPUs and allow for high availability

of GPU resources for future workloads. We define compaction as
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Figure 3: Initial deployment of new workloads

vacating underutilized GPUs by migrating existing workloads to

other GPUs in the cluster. The frequency of compaction can be

adjusted based on how dynamic the changes in the workloads are.

Figure 4 shows an initial state of a node with 3 GPUs with some

workloads. Initially, the compute and memory utilization of the 3

allocated GPUs is 61% (13 slices out of 21) and 63% (15 slices out

of 24), respectively, due to 6 unused compute, 9 unused memory

slices, and 2 wasted compute slices (𝑤2 and𝑤6 being the culprits).

GPU1 and GPU2 have availability for 3g.40gb and 1g.20gb, respec-

tively. Migrating workloads in GPU3 to GPU1 and GPU2 will free

the resources in GPU3. Thus, compaction decreased the number

of allocated GPUs by 1, and after compaction, the compute and

memory utilization of allocated GPUs became 94% (13 slices out of

14) and 93% (15 slices out of 16) with no unused slice and only 1

compute slice (𝑤2) and 1 memory slice (𝑤7) wasted. This process

requires moving workloads in size of 5 memory slices, which we

denote as migration size.
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Figure 4: Initial deployment or compaction

2.3.3 Reconfiguration/Redeployment. Canwe do better in the above
scenario and avoid the wastage of 1 compute slice (𝑤2) and 1 mem-

ory slice (𝑤7)? Indeed, we can do so by reconfiguration or rede-

ployment. In this process we migrate all workloads from existing

GPUs to new or unused GPUs, optimizing the placement of each

workload in the new space. While it has a higher cost compared

to the other cases due to the migration effort, it achieves ideal

placement of all existing workloads in a non-disruptive way. New

replicas are created on the GPUs and—once running—the existing

ones are removed. Reconfiguration is preferred mainly in two cases:

as part of maintenance cycles and node or provider change. During

a maintenance or upgrade cycle, if a cluster has enough free GPUs

to migrate all workloads, an optimal placement model can vacate

underutilized GPUs and minimize wastage at the same time. Fig-

ure 5 shows the same initial state as Figure 4. However, instead of

migrating only the workloads on GPU3, it migrates all workloads

to new GPUs. With reconfiguration, the GPU requirement is re-

duced by 1 GPU, while the wastage of compute or memory slices is

completely avoided. In addition to placing all workloads in 2 GPUs,

reconfiguration also provides an additional availability for another

workload with 1 slice requirement.
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GPU1, GPU2, GPU3 become free.

Figure 5: Reconfiguration

Discussion: Compaction and reconfiguration both target re-

ducing the number of GPUs. Compaction uses already allocated

GPUs, while reconfiguration leverages free GPUs to achieve non-

disruptive migration.

For example, consider achieving optimal state in Figure 5 using

GPU1 and GPU2. It requires multiple steps to complete migration,

as 𝑤2 must be migrated to GPU1. Then, 𝑤3 must be relocated at

GPU2 at index 0. Finally, 𝑤4,𝑤5,𝑤6, and 𝑤7 must be migrated to

GPU2. Having free GPUs lifts the need for sequential migration

steps and decreases the required time to achieve target state since it

allows all migrations to be run simultaneously in one step. Besides

sequential migration (which one may argue is non-disruptive), free

GPUs also allow the system to achieve an optimal desired state in a

non-disruptive fashion (i.e., without making the model unavailable).

Consider, for example, the case when we want to move from the

target state in Figure 4 and achieve optimal state in Figure 5 with

only GPU1 and GPU2 at hand and no other. This is not possible

without a disruption.



3 Efficient Placement with MIG under DRA
3.1 Objectives of MIG Placement
3.1.1 Objective 1: Minimizing number of GPUs. GPU compute re-

quirements for workloads or models are varied. For instance, host-

ing an LLM with more than 70B parameters require multiple GPUs

while a model with 7B parameter can easily be deployed on a small

MIG instance. Companies either have their private GPU clusters

where they have limited GPU resources or they use public cloud

and pay per their usage. For the private cluster case, minimizing

the number of GPUs used provides flexibility for future workloads

in two ways: (1) ability to use a GPU in a single GPU mode for

larger workloads and (2) enabling MIG when needed for all possible

partition profiles. For the public cloud case, minimizing number of

GPUs decreases the cost automatically.

3.1.2 Objective 2: Minimizing GPU compute or memory wastage.
Current MIG slicing allows seven compute and eight memory slices

for Ampere (A100), Hopper (H100, H200), and Blackwell GPU mod-

els. MIG supports vertical slicing where each compute slice uses a

memory slice. However, there are there profiles that use an addi-

tional memory slice, profile 0 (e.g., 7g.80gb for H100-80GB model),

profile 9 (e.g., 3g.40gb for H100-80GB model) and profile 15 (e.g.,

1g.20gb for H100-80GB model). For a MIG enabled GPU, if the last

slice is not partitioned for these profiles, a memory slice is wasted.

Similarly, profiles with uneven GPU and memory slices, 3g.40gb

or 1g.20gb, may lead to wasting a GPU slice if they are not placed

to include the last slice. An optimal placement model shall con-

sider which slices to be used for partitioning of a given profile to

minimize the waste or maximizing the allocation of slices.

Figure 6: Placement examples to show possible GPU waste.

Figure 6 shows 2 placement decisions for a given set of workloads

with profiles as follows: 4g.40gb (Profile 5), 2gb.20gb (Profile 14),

2g.20gb, 1g.10gb (Profile 19), 1g.20gb (Profile 15), 1g.20gb. Placement

1 and placement 2 both use the same number of GPUs. However,

placement 1 leads to wasting 1 GPU slice and 1 memory slice. Simi-

larly, it results in 2 available slices for futureworkloads. On the other

hand, placement 2 leads to no wastage and results in 3 available

slices for future placements. Placement 2 targets minimizing GPU

or memory waste and improves utilization of GPU/memory slices.

To achieve this, we can either target minimizing GPU/Memory

waste or maximize utilization (the total number of used memory

and GPU slices).

3.1.3 Objective 3: Maximizing GPU availability. MIG instances can

only be placed certain indexes based on their profiles as explained in

Section 3.2.2. Availability of a GPU for future workloads highly de-

pends on the underlying placement algorithm. Figure below shows

a placement on A100-80GB gpu for a workload (𝑤1) with 3g.40gb

requirement. This profile can be placed only at indexes 0 and 4.

When it is placed at index 0, it uses the first 4 slices and for the

remaining 3 slices can be used for another 3g.40gb, 2g.20gb, 1g.20gb

or 1g.10gb. However, scheduling a 4g.40gb workload to this GPU

after the initial placement would cause pending state and schedule

would wait until a proper slice becomes available. On the other

hand, placing the workload at index 4 prevents this issue and allows

many different combinations to be placed for the remaining of the

GPU. Therefore, a placement model shall target maximizing the

number of consecutive available slices during placement of a single

workload to increase the availability of GPU resources for future

workloads.

3.2 Constraints of MIG Placement
3.2.1 Constraint 1: MIG uses vertical slicing. A GPU partition can

be created by using different number of GPU slices. Figure 2 shows

how vertical slicing works and dependency between compute and

memory slices.

3.2.2 Constraint 2: Partition profiles can be created only on certain
indices. MIG instances requires partitioning GPUs using a fixed set

of profiles. Table 1 shows the list of profiles for A100 and later gen-

eration Nvidia GPUs and their corresponding number of compute

and memory slices. Nvidia drivers allow partitions to be created

only at the listed indices. Table 1 also shows the preference order for

the indexes to create a partition with the corresponding profile on a

MIG enabled GPU. For instance, a partition with profile 9 (3g.40gb)

can be created either at slice 0 or slice 4. Preference order shows

that creating it at slice 4 better than slice 0 for efficiency since when

created at slice 0, it causes a compute slice to be wasted. To find the

preference order for efficiency, we created every possible partition

configuration through Nvidia-smi and record the slice indices for

each partition. We empirically found the preference order in Table 1

which also targets maximizing efficiency.

3.2.3 Constraint 3: Additional memory slice can only be used with
last slice of a MIG enabled GPU. MIG enabled GPUs have one addi-

tional memory slice that can be used with a partition including the

last slice of the GPU as shown in Figure. In this regard, profile 0,

9, and 15 enable using additional memory slice when they include

the last slice in their partition. Other profiles are not able to utilize

the additional memory slice and cause memory waste.

3.2.4 Constraint 4: Changing allocated slices of a GPU instance
requires repartitioning. MIG drivers do not allow changing the num-

ber of compute or memory slices without deleting the partition

to be modified and repartitioning it with the requested resources.

Similarly, merging or splitting instances are not allowed without

repartitioning. Although time required for partitioning a GPU is

small, it may lead to interruptions if there are any running work-

loads on the partitioned slices.

4 Proposed Approaches for Efficient Placement
In this section, we present two approaches to solving the placement

and migration problem under DRA that spans the three use cases



described in Sec. 2.3. The first approach leverages mixed-integer

programming to identify a global optimal solution by jointly op-

timizing across the objectives and constraints discussed in Sec. 3.

The second approach is a rules-based heuristic that tackles each

of the use-cases separately which is unlike the former method. Be-

sides a decrease in computation overhead in the latter, the former

solution may require a sequential migration policy to achieve the

desired optimal state, while the latter is specifically designed so

that migration is executed in one shot (i.e., there is no dependency

of another workload migrating).

Assumption 1. As workloads can be matched with a fixed number
of discrete and finite profiles, we assume that every feasible combi-
nation of workloads for a GPU, i.e., one that satisfies bin packing
constraints across its resource dimensions, can be permuted to match
at least one feasible GPU partition profile.

This assumption allows us to view the optimal placement prob-

lem in general as a multi-dimensional bin packing problem across

GPU resource dimensions without explicitly considering GPU place-

ment indices (which are provided in Table 1 for the A100 GPU),

which can then be followed by an indexing step. We validate this

assumption for the Nvidia-smi across A100 and H100 GPU types

by exhaustively considering all permutations of workloads on a

GPU that satisfy the bin-packing constraints along resource dimen-

sions (i.e., memory limit of 80gb, compute limit of 7g and at most

one me). However, we observe that in the presence of pre-existing

workloads which are not movable, this assumption fails to hold

because the partition profiles can be created only on specific indices,

as discussed in constraint 3.2.2. These partition-index constraints

restrict the options available for ordering and partitioning of the

un-partitioned slice of a MIG into smaller slices. We illustrate this

with an example below.

Figure 7: GPU partitioning with DRA

Consider GPU 𝑔1 shown in Figure 7 where none of the placed

workloads are movable. It has 3 1g.10gb workloads in indices 0, 5

and 6 with a 4g.40gb slice empty in between. Per the alignment

feasibility constraints, only one of the following three combinations

of workloads may be placed in the empty slice: (1) 1 workload of

2g.20gb at index 2 and 2 workloads of 1g.10gb at indices 1 and 4,

(2) 1 workload of 1g.20gb at index 2 and 2 workloads of 1g.10gb

at indices 1 and 4, (3) 4 workloads of 1g.10gb. It is infeasible to

have a 4g.40gb or 3g.40gb in any free index, or 2g.20gb or 1g.20gb

workloads at index 1 or 3. This means that the feasible slices that

can be treated as a bin are: 1g.10gb slice at index 1 and 4, and a

2g.20gb slice at index 2. The 2g.20gb slice can accommodate either

a 2g.20gb workload (option 1), 1g.20gb workload (option 2), or two

1g.10gb workloads (option 3).

To address this above concern, we perform data preprocessing

over all the GPUs with pre-existing workloads that we denote by

set G′ (which in other words is the set of all GPUs that are partially

partitioned such as 𝑔1 in Figure 7). The preprocessing detailed in

Algorithm 1 outputs a set P𝑔 that represents the set of unallocated

largest feasible partitions available on GPU 𝑔 ∈ G′ that can be

re-partitioned. We define

P = P1 ∪ P2 ∪ P3 . . .P𝐺 , where 𝐺 = |G′ |
As per this definition, for 𝑔1 in Figure 7, Pg1 = {1𝑔.10𝑔𝑏, 2𝑔.20𝑔𝑏,
1𝑔.10𝑔𝑏}. Consider another GPU𝑔2 where we have a 1g.20gb placed

in last slice. Here pre-processing P would give Pg2 = {4𝑔.40𝑔𝑏,
2𝑔.20𝑔𝑏}. But in fact, we can just work with a “merged” set Pg2 =

{6𝑔.60𝑔𝑏}. A merged set is preferable since it reduces the number

of variables in the optimization problem. The only time we do not

work with a merged set if all of the large jobs cannot be placed

in some index of the slots. Algorithm 1 does not incorporate this

merging idea to keep the exposition of the pre-processing simple.

Algorithm 1: Determine P𝑔
Input: I: Sorted list of profile IDs by GPU slice size;

K : Ordered list of GPU slice indices;

𝑔: A partially partitioned GPU;

Parameter :𝑐𝑖 ,𝑚𝑖 , 𝑠𝑖 are the compute, memory and GPU slices

required ∀𝑖 ∈ I
1 P𝑔 ← ∅;
2 for 𝑘 ∈ K do
3 if index 𝑘 is not partitioned in 𝑔 then
4 for 𝑖 ∈ I do
5 if type 𝑖 workload can be placed in slice 𝑘 then
6 Place this hypothetical load in 𝑔;

7 Add {𝑐𝑖 ,𝑚𝑖 } to P𝑔
8 end
9 end

10 end
11 end

Output: Return P𝑔

4.1 Optimal Placement and Migration Using
Mixed-Integer Programming (MIP)

We model workload placement and migration on a heterogeneous

GPU cluster based on the two-dimensional bin packing problem,

wherein each GPU is considered a bin that is empty (completely

unpartitioned), or is partially partitioned with some workloads, or

fully partitioned with existing workloads. Here we only consider

the compute and memory dimensions. If there are other resource

dimensions (e.g., like media extensions -me), the formulation below

can be extended to a multi-dimensional bin-packing problem.

Let us consider a set of model instances or workloadsW along

with their optimal profiles (e.g., 1g.20GB), that is, compute instance

requirement 𝑐𝑖 andmemory requirement𝑚𝑖 for eachmodel𝑤 ∈ W.

We are also provided a set of unused GPUs G each of which can be

partitioned in a pre-specified number of ways such that the total

size across the partitions does not exceed the maximum allowed

number of compute instances 𝐶𝑔 and the total memory does not

exceed the GPU memory size𝑀𝑔 for GPU 𝑔 ∈ G. We assume that

the GPU operator used enables heterogeneous partitioning of GPUs

in G and provides the ability to place a workload on a specific GPU

𝑔 ∈ G as per the optimization solution.



Next, we present a mixed integer programming (MIP) model,

WPM, that jointly handles initial placement of new workloads, mi-

grating workloads that have already been placed on GPU slices and

GPU reconfiguration. If free GPUs are not available, for modeling

purposes, we consider adding imaginary GPUs, G𝑖 , such that every

GPU 𝑔′ ∈ G′ has a corresponding imaginary GPU 𝑔𝑖 ∈ G𝑖 , and
only one of them appear in the final solution. In our model, if we

use an imaginary GPU, it is equivalent to repartitioning the original

GPU 𝑔′. For ease of notation, going forward we assume the set G𝑖
is included in the set of unused GPUs G.

The workload placement and migration problem (WPM) is for-

mulated as a profit maximization problem and associates various

actions with a revenue and a cost. These include the reward 𝑝𝑤 for

placing workload𝑤 , the costs 𝑞𝑔, 𝛾
𝑅
𝑔 , 𝛾

𝑊
𝑔 representing the cost of us-

ing GPU 𝑔, repartitioning GPU 𝑔 and wasting memory or compute

slices in GPU 𝑔 respectively. Lastly, cost 𝛾𝑀𝑤 is the cost of migrating

working across GPUs.

Assumption 2. As the MIP is predominantly a bin-packing formu-
lation that ignores placement indexing, the MIP approach inherently
assumes that the migration cost within a GPU 𝑔 is 0.

Although in practice this assumptionmay not be the case, migrat-

ing within a GPU is less expensive than across GPUs since model

weights and cache can be transferred using the GPU memory. As-

sumption 2 also implies that the cost due to migrating a workload

from its current GPU to its imaginary counterpart is also 0 as only

one of the GPUs appears in the final solution. This is because using

an imaginary GPU is representative of the GPU being repartitioned,

a repartitioning cost is associated with such an action.

We present the WPM formulation next. This leverages the nota-

tion described in Table 2.

WPM :

max

𝑥,𝑦,𝑧,𝛿∈{0,1}
𝑢,𝑣,𝑈 ,𝑉 ≥0

∑︁
𝑔∈G∪P,𝑤∈W

𝑝𝑤𝑥𝑤𝑔 −
∑︁

𝑔∈G∪G′
𝑞𝑔𝑦𝑔 −

∑︁
𝑔∈G𝑖

𝛾𝑅𝑔 𝑦𝑔

−
∑︁

(𝑤,𝑔′ ) ∈A,

(𝑔′,𝑔) ∈B

𝛾𝑀𝑤 (1 − 𝑥𝑤𝑔′ − 𝑥𝑤𝑔) −
∑︁

𝑔∈G∪P
𝛾𝑊𝑔 (𝑈𝑔 +𝑉𝑔)

(2a)

s.t.

∑︁
𝑤∈W

𝑥𝑤𝑔 ≤ 𝐶𝑔𝑦𝑔 ∀𝑔 ∈ G (2b)∑︁
𝑤∈W

𝑥𝑤𝑔′ ≤ 𝐶𝑔′𝑧𝑔′ ∀𝑔′ ∈ P (2c)∑︁
𝑔′∈P𝑔

𝑧𝑔′ ≤ 𝐶𝑔𝑦𝑔 ∀𝑔 ∈ G′ (2d)

∑︁
𝑔∈G∪P

𝑥𝑤𝑔 ≤ 1 ∀𝑤 ∈ W (2e)

∑︁
𝑤∈W

𝑥𝑤𝑔𝑐𝑤 + 𝑢𝑔 = 𝐶𝑔 ∀𝑔 ∈ G ∪ P (2f)∑︁
𝑤∈W

𝑥𝑤𝑔𝑚𝑤 + 𝑆𝑔𝑣𝑔 = 𝑀𝑔 ∀𝑔 ∈ G ∪ P (2g)

𝑦𝑔′ + 𝑦𝑔 ≤ 1 ∀(𝑔′, 𝑔) ∈ B (2h)

Table 2: Notation for WPM

Indices
𝑤 , model instance

𝑔,𝑔′, GPU index

Sets
W, set of placed models that can be migrated and to-be

placed models

G, set of free and imaginary GPUs.

G′, set of GPUs with preexisting workload

G𝑖 , set of imaginary GPUs, G𝑖 ⊂ G, introduced for every

𝑔′ ∈ G′ where all workloads on 𝑔′ can be migrated

P, set of free partitions in G′, P = P1 ∪ P2 ∪ P3 . . .P| G′ |
A, set of current model-GPU assignments, (𝑤,𝑔′) ∈ A for

placed models𝑤 ∈ W on 𝑔′ ∈ G′
B, set of pairs of GPU and its imaginary counterpart (𝑔′, 𝑔)

where 𝑔′ ∈ G′, 𝑔 ∈ G𝑖 .
Parameters

𝑝𝑤 , reward associated with placing workload𝑤

𝑞𝑔 , cost of using GPU 𝑔

𝑐𝑤 , compute slice needed for model𝑤

𝑚𝑤 , memory needed for model𝑤

𝐶𝑔 , total compute slices on GPU 𝑔 (𝐶𝑔 = 7 in A100)

𝑀𝑔 , total memory size for GPU 𝑔 (𝑀𝑔 = 80gb in A100, )

𝑆𝑔 , common memory factor across GPU 𝑔 slices (10gb in A100)

𝛾𝑀𝑤 , penalty factor associated with migrating workload𝑤

𝛾𝑅𝑔 , penalty factor associated with reconfiguring GPU 𝑔

𝛾𝑊𝑔 , penalty associated with wasted resources on GPU 𝑔

Decision Variables
𝑥𝑤𝑔 , is 1 if model𝑤 is assigned to GPU 𝑔, and 0 otherwise

𝑦𝑔 , is 1 if GPU 𝑔 is used, and 0 otherwise

𝑧𝑔 , auxiliary variable for partition 𝑔 ∈ P that is 1 when

a model is assigned to it, and 0 otherwise

𝑢𝑔, 𝑣𝑔 , slack in compute and memory resource constraints

𝑈𝑔,𝑉𝑔 , auxiliary variable corresponding to excess compute over

memory and when compute is full, the vice-versa

𝛿𝑔 , auxiliary binary variable denoting if compute is full

𝑢𝑔 − 𝑣𝑔 ≤ 𝑈𝑔 ∀𝑔 ∈ G ∪ P (2i)

𝛿𝑔 ≤ 𝑢𝑔 ≤ 𝐶𝑔𝛿𝑔 ∀𝑔 ∈ G ∪ P (2j)

𝑣𝑔 −𝑀𝑔𝛿𝑔 ≤ 𝑉𝑔 ∀𝑔 ∈ G ∪ P (2k)

The objective function (2a) is a profit maximization function

that maximizes the gain from the workloads placed (term 1) while

minimizing the costs related to GPUs that are used (term 2), the

GPUs that need to be repartitioned (term 3), the workloads that are

migrated (term 4) and lastly the wastage from unusable compute

and memory slices (term 5). The reason behind the structure of

some of these terms (e.g., term 4 and 5) will be explained below as

we describe the remaining constraints and corresponding parame-

ters and variables. By de-prioritizing migrations over saved GPUs

through the choice of penalty, we ensure that workload migrations

occur only if GPUs can be saved. Similarly by tuning other model

weights, we can prioritize one action over another, for example,

placement over saving a GPU, and the latter over other costs.

Constraint (2b) ensures that if at least one workload is assigned

to an unpartitioned GPU, then the corresponding 𝑦𝑔 = 1 to indicate

that the GPU is being used. In the scenario where a GPU has been

partially partitioned (that is, it is in G′), the feasible partition sizes,



determined as per the aforementioned alignment constraints, will

need to be respected while placing workloads on it. For this, we

introduce a new auxiliary variable 𝑧𝑔 for each partition 𝑔 ∈ P
that takes the value of 1 when a model 𝑤 is assigned to it, and 0

otherwise. This aspect is handled jointly by constraints (2c) and

(2d). Constraint (2c) ensures that the number of workloads placed in

a feasible partition can be as many as the available compute,𝐶𝑔′ , on

that partition. This means that in Figure 7 the 2g.20gb partition can

either accommodate a single 2g.20gb workload or a single 1g.20gb

workload or two 1g.10gb workloads. Constraint (2d) ensures that

the number of partitions on a GPU does not exceed the number of

compute instances available on the GPU. For example, on a A100

containing 7 compute instances, there can be a maximum of 7

partitions each with 1g compute instances. Conversely, constraint

(2d) ensures that if a GPU contains at least one partition with

at least one workload placed in it, then the 𝑦𝑔 corresponding to

such a partitioned GPU is set to 1. Constraint (2e) ensures that a

workload may be placed on at most one unpartitioned GPU or on

a feasible partition in an unpartitioned slice of a GPU. Constraint

(2f) enforces the bin packing constraint on the compute instances

dimension for each GPU 𝑔, that is, the total number of instances

needed by the workloads assigned to a GPU should not exceed

𝐶𝑔 , with 𝑢𝑔 corresponding to the non-negative compute slice slack.

Similarly, constraint (2g) enforces the bin packing constraint on

the memory dimension for each GPU 𝑔, that is, the total memory

required by the models assigned to a GPU should not exceed𝑀𝑔 ,

with 𝑣𝑔 corresponding to the non-negative memory slice slack.

Constraint (2h) ensures that if an imaginary GPU is used, as part of

reconfiguration, then the original GPU is not active. This enforces

that the maximum number of truly available GPUs for placement is

always |G′ ∪ G \ G𝑖 |. If an imaginary GPU 𝑔 is part of the feasible

solution, it means that the corresponding original GPU 𝑔′ ∈ G′
where (𝑔′, 𝑔) ∈ B has been reconfigured and the new loads on it

are as per 𝑔. The migration term (4th term in the objective) can

now be elaborated. A workload 𝑤 that was originally placed on

𝑔′ is viewed as migrated if it is neither on 𝑔′ nor on its imaginary

counterpart 𝑔 (i.e., both 𝑥𝑤𝑔′ and 𝑥𝑤𝑔 are both zero).

The last set of constraints aim to identify the wasted compute

𝑈𝑔 and memory 𝑉𝑔 slices to penalize a placement of that nature

(see Fig. 6). Constraint (2i) together with the minimization objective

over 𝑈𝑔 ensures that 𝑈𝑔 is precisely the excess compute slices over

memory slices, as 𝑢𝑔 and 𝑣𝑔 represent the slack in the respective

resource constraints (in terms of slices). On the contrary, wastage

in memory slices happen only when compute is full. To model

the latter this, we introduce a binary variable, 𝛿𝑔 in constraint (2j)

which ensures that 𝛿𝑔 is 1 if the compute is full and 0 otherwise.

Constraint (2k) together with objective ensures the wasted memory

slices 𝑉𝑔 are computed exactly.

4.2 Rule-based / Heuristic Placement Model
Placement optimization for MIG workloads has three main use

cases as explained in Section 2.3. The MIP model described in the

previous section solves all use cases jointly and finds the optimal

placement for the defined objectives under the listed constraints.

However, as bin-packing is an NP-hard problem, there maybe a

significant computational overhead for large-sized problems. More-

over, its optimal solution may lead to sequential migration, which

can further increase the execution time and possibly delay achiev-

ing the optimal state. To overcome these challenges, we propose

to solve each use case separately by considering only the use case

specific goals and constraints. Furthermore, we restrict our pro-

posed solution to minimize sequential migration. This design by

functional component for each use-case can thus be leveraged at

different time horizons or cycles.

Initial deployment recommendations aim to place new work-

loads to minimize the compute and memory wastage while maxi-

mizing utilization.

Step 1: Sort the new workloads in desending order of their size. We

use profile id as a proxy for size since sorting by profile id

also provides the sorted list for the size as shown in Table 1.

Step 2: Sort the GPUs according to the sum of their joint memory

and compute slice utilization. Mathematically, we define this

joint slice utilization as (𝑠𝑚 + 𝑠𝑐 )/(𝑆𝑚 +𝑆𝑐 ), where 𝑠𝑚, 𝑠𝑐 are

the used memory and compute slices and 𝑆𝑚, 𝑆𝑐 are the total

slices on the GPU.

Step 3: Assign each workload to the GPU partition which provides

maximum utilization after assignment. To decide the place-

ment index, use the preference order in Table 1. If there is

no available partition for the workload, allocate a new GPU

to place the workload.

The sorting of workloads also guarantees minimizing the mem-

ory wastage, since we prioritize profiles that use an extra memory

slot (e.g. 3g.40gb, 1g.20gb in GPU slice 6, see Fig. 6).

Compaction recommendations target vacating an underuti-

lized GPU by migrating workloads to other GPUs with existing

workloads. It shares the same goals and constraint with initial de-

ployment component, i.e., to minimize the wastage and maximize

utilization.

Step 1: Sort the GPUs per the sum of their memory and compute

slice utilization.

Step 2: For each GPU starting from the least utilized, retrieve the

existing workloads.

Step 3: Check the number of available slices on other allocated GPUs.

If the available slices are enough to place the retrieved work-

loads, assign them to other GPUs by the process used in

initial deployment which targets maximizing utilization.

In some conditions, although the available GPUs have enough

number of available slices for the workloads, they may not have

availability for the right partitions for the workload. Sequential

migration can solve this issue but in this heuristic approach we

avoid sequential migration. Instead, we add a free GPU to the list

of allocated GPUs and rerun Step 3. If Step 3 allows saving more

than one GPU, it leads to a feasible compaction solution.

Figure 8 demonstrates such a case that moving all workloads

in any of the GPUs is not possible without sequential migration.

To avoid sequential migration, we propose adding a new GPU and

migrating all workloads in GPU1 and GPU2 to GPU3 and newly

added GPU4. Moving workloads considering maximizing utilization

allowed saving compute slice wastage in initial state due to𝑊1 and

𝑊2. Eventually, it vacates 2 GPUs as opposed to allocating a new

GPU and allows saving a GPU.



Figure 8: Compaction by using a free GPU.

Reconfiguration / Redeployment refers to achieving an op-

timal placement of all existing workloads when there are enough

free GPUs to serve them. We consider this component is useful

as part of maintenance cycles and assigned node changes such as

node replacement or provider change. Reconfiguration targets us-

ing minimum number of GPUs for the given set of workloads by

minimizing compute or memory wastage, maximizing utilization,

and maximizing the availability of used GPUs for future workloads.

Step 1: Calculate the minimum number of GPUs needed for plac-

ing all workloads using Equation 3 whereW is the set of

all workloads, 𝑐𝑤 ,𝑚𝑤 are the compute and memory slices

needed for workload for𝑤 ∈ W and lastly 𝐶 and𝑀 are the

maximum number of compute slices and total memory size

in a GPU respectively.

𝑚𝑖𝑛_𝐺𝑃𝑈𝑠 = max

{ ∑︁
𝑤∈W

𝑐𝑤/𝐶,
∑︁

𝑤∈W
𝑚𝑤/𝑀

}
(3)

Step 2: Sort the GPUs by the sum of their compute and memory slice

utilization and take the minimum number of GPUs from the

least utilized GPUs.

Step 3: Assign workloads with additional memory profiles (first pro-

file 9 and then profile 15) first until either all workloads are

assigned or there is one for each GPU. This ensures mini-

mizing memory wastage on GPUs.

Step 4: Sort all remaining workloads by their profile ids which gives

the sorted order of workloads by their GPU slices need.

Step 5: Place workloads in GPUs found in Step 2 by using first-fit bin

packing algorithm. Before each placement decision, check

the feasibility of the assignment by using allowed indexes

listed in Table 1.

If there are enough free GPUs to place all workloads, Step 2

ensures using only free GPUs. If not, it uses least utilized GPUs to

minimize sequential migration need. At Step 3, we first place all

workloads with Profile 9 since it requires more GPU slices than

Profile 15. Sorting workloads by their size at Step 4 converts GPU

placement optimization to a one-dimensional bin-packing problem

since it considers GPU slices needed for each workload. At Step

5, we use first-fit bin backing algorithm for decreasing workload

sizes. At each workload-GPU assignment, we check the feasibility

by checking the current placement state of the assigned GPU and

the availability of the allowed indexes and consecutive slices of

GPU for the workload size using Table 1. To achieve the maximum

availability and decide the right index of a workload, we employ

the preference order of GPU slices listed in the table.

We want to point that in Table 1 the allowed indices are not given

in increasing order. We empirically identified the preference order

with our experiments using nvidia-smi package. For instance, for

an empty GPU if a workload with profile 15 comes, since all slices

are available it will be located at index 6. However, if slice 6 was not

available, it would be placed at slice 4 and utilize both slice 4 and 5

due to 2 memory slices requirement. It could also be placed at slice 0

or 2 and still use 2 slices. However, it would decrease the availability

of the GPU for other workloads with profile 5 or 9 as also explained

in Section 3.1.3. Finally, if a feasible bin-packing solution is not

found for the given set of workloads and GPUs, minimum GPU

count is increased by one and Step 2-5 are re-executed for the new

set of GPUs.

5 Evaluation
We now describe the experimental setup, metrics and methodology

and present the results. All approaches are implemented in Python

and we use IBM CPLEX 22.1.1 [6] to solve the MIP.

5.1 Experimental Setup
We use a simulation framework that mimics a cluster with one or

more GPU nodes where each node has eight GPUs. We consider a

homogeneous cluster for clarity but the proposed approaches can

address placement in clusters with heterogeneous GPU types. For

our experiments, we considered two different cluster sizes: a single

node (8 GPUs) and ten nodes (80 GPUs). For each cluster size, we

generated 100 test cases, that is 200 test cases totally, on which we

evaluated all our approaches and use cases.

The MIP models were solved to optimality on test-cases with

8 GPUs. For test-cases with 80 GPUs, the optimizer quickly con-

verges to within 0.2% of optimality in 1-2 seconds, but takes longer

to converge to the global optimal (as is the case always, generating

a certificate of optimality takes time compared to solution con-

vergence). Hence we run experiments for the 80 GPUs by setting

CPLEX time limit to 30 seconds.

Test cases: For each test case, we allocated about 60% of GPUs

and left the remaining GPUs free. For each GPU, utilization (up to

100%) is randomly assigned. Next, workloads and their profiles to

achieve the assigned GPU utilization are both randomly generated

from the profiles listed in Table 1. This way, we provide a random

initial state for a GPU cluster with some GPUs free and others

allocated with a diverse set of workloads. In addition, for the initial

deployment case, we also generated random workloads. The total

size of the generated workloads corresponds to the 60% of the total

capacity of the cluster to ensure that the cluster would be highly

allocated after initial deployment.

Approaches:We benchmark the performance of our rule-based

and MIP approaches with two other commonly used workload

scheduling algorithms: first-fit and resource-based dynamic load-

balancing algorithm. The first-fit algorithm initially sorts GPUs and

workloads by their respective IDs, and then assigns each workload

to the available partitions on the ordered set of GPUs by starting at

index 0 for each GPU. The resource-based dynamic load-balancing

algorithm sorts the GPUs by their total compute and memory slice

utilization in the ascending order. Then, it processes each workload

in the order of which they are received and assigns them to the

available partitions on the ordered set of GPUs, starting from index

0. We check the feasibility of the placement decisions at each step,

similar to our rule-based approach, to ensure that only feasible

placements are allowed.



Metric Definition

# GPUs Total number of GPUs with at least one work-

load in the final placement

Memory Wastage Total number of memory slices wasted in the

final placement (here due to placing a workload

at index 6 with profile 19 )

Compute Wastage Total unusable compute slices in the final place-

ment (here due to placing profile 9 workload at

index 0, or profile 15 at any index other than 6)

Availability Number of available GPU slices remaining on

the cluster after all workloads are placed. If all

workloads are not placed, availability is calcu-

lated by subtracting the total pending workload

size from the number of available GPU slices

Migration Size Total memory size of existing workloads moved

to new GPUs in the final placement

Pending Model Size Total number of memory slices needed to place

workloads that remain in a pending state in the

final placement

Sequential Migration Number of existing workloads that need sequen-

tial migration to be placed as per the final place-

ment solution. Sequential migration is needed

when a workload is moved to another GPU in

the final state, and a suitable partition is not

available at that index in the initial state.

Memory Utilization Percentage of total memory slices used for final

placement (ratio of used memory slices to the

total available memory slices in the used GPUs)

Compute Utilization Percentage of total compute slices used for final

placement (ratio of the used compute slices to

the total available compute slices in used GPUs.)

Table 3: Metrics observed and reported

Metrics: The final placement solution for each use-case from

each approach is evaluated for number of GPUs used, memory

wastage, compute wastage, availability, migration size, pending ap-

proach size, memory utilization, compute utilization, and whether

or not the final placement requires sequential migration. Table 3

defines each metric used for our evaluations.

5.2 Evaluation Results
All evaluations use the average results of 100 test cases for each

cluster and use case and provided with a normalized value against

the highest value for each metric over all tested approaches. There-

fore, it shows the relative performance of each approach for the

listed metrics.

5.2.1 Initial Deployment Experiments. All experiments were run

using both existing and new workloads, and partitioned and new

(unused) GPUs. For rule-based, MIP, first-fit and load balanced, we
fix the placement of existing workloads as provided by their initial

state, and allow the approach to place new workloads on all GPUs.

For joint-MIP, we relax this restriction and allow the MIP to find

the optimal placement for both existing and new workloads. That

is, joint-MIP effectively handles initial deployment of new work-

loads, and compaction and reconfiguration in terms of optimally

placing the existing workloads. As a result, joint-MIP is expected

to outperform the others on the number of GPUs used, wastage,

availability and utilization metrics. This causes it to have higher

migrations and sequential steps w.r.t. the other approaches.

Figure 9 shows the evaluation results for initial deployment

use case. For initial deployment of new workloads, the number of

GPUs used in the final placement solution and the size of pending

workloads are the critical metrics to track. Memory and compute

utilization show how efficiently the new workloads were placed.

For the number of GPUs used, we observed a 6% improvement in

joint-MIP w.r.t. load-balanced and a 5% improvement in MIP and

rule-based w.r.t. load-balanced for cluster with 8 GPUs while avoid-

ing any pending workloads. The performance improvement of these

models become more significant for cluster with 80 GPUs. Joint-
MIP,MIP, and rule-based all achieves 11% improvement compared

to load-balanced. Additionally, in spite of using higher number of

GPUs, load-balanced has pending workloads in every test-case for

both cluster sizes, whereas MIP and rule-based have one pending

workload in a single test-case with 8 GPUs. First-fit produces pend-
ing workloads in 7 test-cases with 8 GPUs. The performance of

joint-MIP is in line with our expectations stated above. Rule-based
and MIP achieve 99% of joint-MIP performance for memory and

compute utilization for both cluster sizes, while they achieve at least

90% of joint-MIP performance for availability. In terms of wastage,

we note that memory wastage is lower for load-balanced compared

to rule-based. However, its performance on this metric is undercut

by the fact that it has pending workloads for every test-case.

5.2.2 Compaction Experiments. For compaction, we consider only

existing workloads. As a result, pending workloads are null for all

methods. The key metrics here are number of GPUs used, wastage

and migration size. Both of our methods outperform the others in

terms of number of GPUs used, withMIP having a 2% improvement

over rule-based. Also, MIP improves the number of GPUs by 7% for

8 GPUs and 10% for 80 GPUs compared to load-balanced while Rule-
based achieves 5% and 8% improvements respectively. We observe

that MIP has a higher number of migrations that need sequential

steps. MIP outperforms in terms of memory and compute wastage

as well. Importantly, we observed that load-balanced has lower

memory wastage than rule-based. This is because slice at index 6 is
used less frequently by load-balanced in the test-cases.

5.2.3 Reconfiguration Experiments. In reconfiguration, we con-

sider both used and new GPUs but only existing workloads. The

intent is to place as many existing workloads on new GPUs and, in

the process, determine the best set of partition indices for the new

GPUs so that we minimize the number of GPUs used and wastage.

If all existing workloads cannot be placed on new GPUs, then we

allow placing workloads on used GPUs, and repartition them if

necessary. Ultimately, the number of migrations to achieve the final

placement needs to be minimized.

Both MIP and rule-based achieve similar performance, with the

MIP doing slightly better on memory wastage and migration size.

Once again, the MIP placement solution needs higher number of

sequential steps. MIP and rule-based achieve 39% improvement

in number of GPUs compared to load-balanced for 8 GPUs and



(a) Average results for a cluster with 8 GPUs.

(b) Average results for a cluster with 80 GPUs.

Figure 9: Comparison of placement approaches for initial deployment use case for two cluster sizes.

(a) Average results for a cluster with 8 GPUs.

(b) Average results for a cluster with 80 GPUs.

Figure 10: Comparison of placement approaches for compaction use case for two cluster sizes.



(a) Average results for a cluster with 8 GPUs.

(b) Average results for a cluster with 80 GPUs.

Figure 11: Comparison of placement approaches for reconfiguration use case for two cluster sizes.

up to 65% improvement for 80 GPUs. Additionally, our methods

are able to place all workloads and achieving better compute and

memory wastage. Load-balanced assigns workloads one by one for

the available GPUs starting from index 0, which leads to having

some workloads with profile 5 to stay in pending state since they

can only be placed at index 0.

6 Related Work
GPU resources are scarce considering the increasing demand in

generative models. Similarly, the cost of using GPUs is considerably

higher than other compute and memory resources. Using a GPU for

a single job commonly results in under-utilization of GPU resources.

In this regard, existing works propose sharing GPU resources for

multiple tasks.

Espenshade et al. [4] present measurements highlighting how

to tune a large modern GPU to run workloads that may not need

an entire GPU. They improve the aggregate throughput and ef-

ficiency of the GPU by placing smaller workloads onto spatially

partitioned GPUs using MIG. MISO [9] proposes predicting the

best MIG partition for different workloads by leveraging the Multi-

Process Service (MPS) capability to predict the best MIG partition.

Similarly, Adufu et al. [2] combine MPS (Multi-Process Service) and

MIG capabilities from Nvidia to address the issues pertaining to

mitigate resource under-utilization. Finally, Choi et al.[3] propose

a new abstraction for GPUs called gpu-lets, which leverages the

spatial partitioning feature—MPS capability on Nvidia GPUs. Then

they leverage gpu-lets to allocate GPU resources to jobs with the

goal of increasing resource utilization.Despite the interest in GPU

resource optimization, none of these works target optimizing MIG

partition placement.

7 Conclusion and Future Work
Our results show up to 2.85x improvement in the number of GPUs

used and up to 70% reduction in GPU wastage over baseline heuris-

tics. Encouraged by these improvements, we plan to deploy our

work on production systems and enable SREs to consume recom-

mendations from our framework via a command-line tool. The

framework in Figure 1 takes into account the existing configuration

of GPUs in the IT environment. We also plan to make reconfigu-

ration recommendations to the SREs for their environments every

two weeks—aligning with their maintenance windows. This would

then allow us to request explicit feedback and improve on the rec-

ommendations made. While at this time we expect the SREs to

manually act on these recommendations, in the near future we

plan to leverage InstaSlice[1] as an actuation mechanism. InstaSlice

facilitates the allocation of MIG slices on Nvidia GPUs. It acts on

queued AI workloads to slice GPUs with the help of DRA and places

them with no changes needed to the queued workloads or to the

Kubernetes schedulers.

We intend to undertake the following extensions: (1) Draw-up

sequential migration plans (when applicable) (2) Develop a method

to estimate the real costs ofmigrations and re-partitioning (3) Create

an approach for MIG allocation of fine-tuning workloads.
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