
Copyright © 2007 American Scientific Publishers

All rights reserved

Printed in the United States of America

Journal of
Low Power Electronics
Vol. 3, 234–253, 2007

Low Power and Energy Efficient Asynchronous Design

Peter A. Beerel1�∗ and Marly E. Roncken2�∗
1Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA

2Strategic CAD Labs, Intel Corporation, Hillsboro, OR, USA

(Received/Accepted: 15 October 2007)

This paper surveys the most promising low-power and energy-efficient asynchronous design tech-
niques that can lead to substantial advantages over synchronous counterparts. Our discussions
cover macro-architectural, micro-architectural, and circuit-level differences between asynchronous
and synchronous implementations in a wide range of designs, applications, and domains including
microprocessors, application specific designs, and networks on chip.
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1. INTRODUCTION

As integrated circuit (IC) manufacturing processes have

shrunk and chip design complexities have grown, the

requirements of long battery life, reliable chip opera-

tion, reasonable packaging costs, and manageable air-

conditioning and cooling have become increasingly

difficult to achieve, making low-power and energy-

efficiency dominant IC design constraints. Both dynamic

power, dictated by switched capacitance, and static power,

dictated by gate and channel leakage currents, have

become increasingly important.35

These issues can be addressed at the system, macro-

architectural, micro-architectural, and circuit level—with

the most advantages occurring at the highest levels of

abstraction. In synchronous design, once the original reg-

ister transfer level (RTL) specification is defined, the

techniques to manage dynamic power include clock gat-

ing, multiple voltage supplies, dynamic voltage scaling,

and low-swing signaling on long wires. To manage static

power, multi- and dynamic-threshold CMOS via power

gating and back-body biasing are both used. In addi-

tion, power-aware synthesis and place-and-route algo-

rithms addressing both static and dynamic power have

been integrated into commercial CAD tool suites.70

To appreciate the potential advantages of asynchronous

design, it is useful to describe some of the differ-

ences and similarities between synchronous and asyn-

chronous designs. At the system and macro-architectural

level, asynchronous designs are generally partitioned into
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channel-connected loosely-synchronized blocks that com-

municate explicitly via handshaking, when and where

needed.1 Synchronous blocks, on the other hand, are often

partitioned functionally or via clock domains; communi-

cation between blocks is often implicit in the clocking

strategy. Synchronous and asynchronous blocks inter-

act in globally-asynchronous locally-synchronous designs

(GALS), a strategy that is growing in interest as routing

a single global clock throughout the system is becoming

impractical. In fact, communication between blocks in a

system on chip (SoC) now often demands networks on

chip (NoCs). Asynchronous implementations of these net-

works promise several advantages, including low power.94

At the micro-architectural level, synchronous design is

typically flip-flop-based, although latch-based design is

beginning to gain interest, particularly because of its low-

power benefits.31�32 Asynchronous design styles geared

towards high performance tend to use data-driven channels
with latches that are integrated with the logic16 whereas

design styles geared towards low power tend to have more

control-oriented architectures with explicit latches.5

At the circuit level, most synchronous designs are gen-

erated with a standard-cell design flow using static CMOS

gates. Full-custom designs can use more advanced logic

families at the cost of increased design times. Some

asynchronous styles have adopted the same standard-

cell libraries (e.g., Ref. [2]) whereas others rely on cus-

tom libraries and cells, including domino logic (e.g.,

Refs. [17, 23]).

Some low-power techniques apply equally well to both

types of design, including the use of latches instead of

flip-flops, low-power logic synthesis and place-and-route,
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and techniques to manage leakage currents. However,

other techniques are better suited to the more flexible

asynchronous macro-architectural, micro-architectural, and

circuit structures. In this paper, we survey a variety of

different asynchronous designs that cover a range of com-

putation and communication domains from microproces-

sors to application specific networks on chip. We cover IC

designs with high-performance targets for which speed and

energy consumption are both critical, as well as designs

with relatively low performance targets for which low

energy consumption is the primary goal.

The remainder of this paper is organized accord-

ing to the asynchronous techniques employed and their

advantages. Sections 2 and 3 focus on the ability of

asynchronous macro- and micro-architectures to reduce

switching activity beyond that of their synchronous coun-

terparts, by consuming energy only when and where

needed. Section 2 starts by reviewing computational struc-

tures and Section 3 continues the analysis with buffering

and communication structures. Section 4 then discusses

how some asynchronous designs can reduce capacitive

loading by using latches instead of flip-flops and managing

glitch propagation. Section 5 describes how asynchronous

designs can make efficient use of reduced supply volt-

ages, covering both low-swing signaling techniques and

the application of multi- and dynamic-voltage supplies.

Section 6 discusses general techniques to address static

power, and their applicability to asynchronous designs.

Finally, Section 7 provides a summary and gives some

conclusions.

2. CONSUME ENERGY WHEN AND WHERE
NEEDED—COMPUTATION

This section focuses on how asynchronous computational

blocks can be designed to consume energy only when

and where needed. We focus on the inherent advantages

over synchronous clock gating, the ease of implementing

asynchronous bit-partitioned architectures, and the energy-

efficiency benefits of high-performance dual-rail or 1-of-

N -based pipelined implementations. In each case we first
explain the advantages qualitatively and then review quan-

titative examples from the literature.

2.1. Low-Power Asynchronous Systems

Asynchronous designs are characterized by their local

data- or control-driven flow of operations, which dif-

fers from the more global clock-driven flow of syn-

chronous designs. This enables the different portions of

an asynchronous design to operate at their individual ideal

“frequencies”—or rather to operate and idle as needed,

consuming energy only when and where needed. Clock

gating has a similar goal—enabling registers only when

needed—but does not address the power drawn by the cen-

tralized control and clock-tree buffers. To appreciate this

while ( <condition> ){

x= y
⊗

1 z;

z= y
⊗

2 x;

}

Fig. 1. Snippet of code used to illustrate differences between asyn-

chronous and synchronous architectural implementations.

difference, we explore the hardware implementation of a

trivial code fragment shown in Figure 1: a loop with two

subsequent assignments, first to register x then to register z.
A characteristically synchronous implementation is

illustrated in Figure 2. Registers for x and z are updated
once in each 2-step loop iteration, but the clock toggles

every single step. Consequently, for this simple example,

the clock must run at twice the frequency that x or z are
updated. Clock gating cells (labeled CG) down-sample the

clock to the appropriate frequency based on enable sig-

nals driven by a centralized control (CTRL). The energy

consumed by gated-clock cycles is essentially wasted. In

particular, the clock gating cells (CG), portions of the main

clock tree (Clk), and the clock buffer cells (labeled CB), as

well parts of the centralized control block (CTRL) waste

energy—as indicated by the grey shadings in Figure 2.

zz

y x

CGCG

CG

⊗1

⊗2

Clk

CTRL

CB

Fig. 2. Synchronous clock-gated architecture for code fragment in

Figure 1.

z

y x

C3C1

C2

⊗1

⊗2

Fig. 3. Asynchronous distributed control architecture for code fragment

in Figure 1.
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Energy and Power

Power is the rate of energy consumption. The common unit of power, the Watt, represents the consumption of one
Joule of energy per second. In the strictest sense, it is no more possible to save power than it is possible to save the
speed of an automobile. Rather, it is possible to reduce power just as it is possible to reduce speed. One can reduce
power either by using less energy per operation or by reducing the number of operations done per second. In this
article we attempt to be consistent with this view by using the word “energy” when considering individual operations
and reserving the word “power” for cases where both energy per operation and number of operations per second
matter.

This waste of energy becomes more significant as the

number of steps in the loop increases, because the ratio

of useful-to-gated clock cycles reduces. Register sharing

can improve this ratio but at the cost of additional power

for multiplexers and higher switching activity in the datap-

aths. Moreover, register sharing fails to address the wasted

energy associated with clock cycles in which the loop is

not used, such as in peripherals that are addressed only

periodically.89

Most asynchronous architectures avoid this energy

waste by using distributed control that operates at the

ideal rate dictated by the data dependencies in the code.

As example, we take an asynchronous implementation

for Figure 1 that uses single-rail datapaths—similar to

those used in synchronous design.1�25 The asynchronous

architecture is outlined in Figure 3. Instead of a centralized

control, it uses distributed controllers (C1, C2, C3)

that communicate via asynchronous channels to trigger

and update the registers (x� y� z) when necessary. Asyn-

chronous channels typically implement some type of

request-acknowledge handshake protocol, and enable the

controllers to operate in an event-based manner, at the data

update rate. The absence of global clock buffers and global

control logic saves energy because the entire block can

rest idle when no processing is required.

The cost of these advantages is a more complex control

structure, with embedded asynchronous memory elements

and matched delay lines per datapath. The area over-

head of these controllers can be negligible, but the non-

standard circuit structures make supporting these design

styles within predominantly synchronous design flows a

challenge. This challenge is tackled differently for differ-

ent asynchronous design styles and target applications, but

is usually solved with a separate asynchronous synthesis

sub-flow that feeds into an otherwise synchronous flow for

static timing analysis, test generation, and place-and-route

(e.g., Refs. [4, 89]).

The remainder of this section discusses several low-

power asynchronous designs that take advantage of this

basic—distributed versus global—architectural difference

to achieve significant energy savings over their syn-

chronous counterparts.

2.1.1. DCC Error Correction

The Philips designs for an error correction unit for a digital

compact cassette (DCC) player are classical examples of

asynchronous implementations that consume energy only

when and where needed.3�4 In the DCC player, parity sym-

bols are recorded on tape to protect the audio information

against tape errors. During play mode, a Reed-Solomon

error detector accepts code words of 24 or 32 symbols of

8 bits each, including 4 or 6 parity symbols. The application

requires the decoder to decode 3000 code words of 24 sym-

bols and 2300 code words of 32 symbols per second. This

implies an input rate of 145,600 symbols per second.

Philips developed 6 designs, two synchronous and four

asynchronous. The asynchronous versions were generated

using dual-rail and single-rail backend implementations for

their Tangram syntax-directed flow for compilation and

synthesis.a Table I shows a comparison of all 6 designs.

The lowest-power synchronous design (sync 2) is a

second-generation design where the clock frequency is

reduced to 3.1 Mhz. This is over 20 times the input symbol

rate of about 150,000 symbols per second. This implies

that a large fraction of the datapath registers may be gated

over 95% of all cycles—even with perfect clock gating.

And, as mentioned above in the discussion of Figure 2,

gated cycles waste energy in the shared clock tree and

gating logic. This residual energy consumption can be sub-

stantial, and is completely avoided in the asynchronous

versions with distributed control.

The best asynchronous circuit (single-rail 2) is the

second-generation single-rail design which is 20% larger

than the best synchronous version but operates at only

15% its power. This dramatic reduction in power can be

attributed largely to saving the energy wasted by even a

well-designed clock-gated synchronous circuit.

It is also noteworthy that compared to the best dual-

rail asynchronous version, the best single-rail version is

33% smaller, 25% faster, and requires 50% less power. The

speed improvement is somewhat counter-intuitive as dual-

rail designs are often implemented with domino logic that

generally yields higher performances. But Tangram does

aTangram is now part of the Handshake Solutions flow, and goes by the

name of “Haste” (language) and “TiDE” (flow).44
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Table I. Comparison of single-rail, dual-rail, and synchronous DCC error correctors.

Design

Quantity Single-rail 1 Single-rail 2 Dual-rail 1 Dual-rail 2 Sync 1 Sync 2

# of transistors (1,000 s) 21.8 20.3 44.0 30.8 N.A. N.A.

Core area (mm2) 4.5 3.9 7.0 5.9 3.4 3.3

Time (ms) 50 40 83 55 N.A. N.A.

Power (mW) 0.5 0.35 2.3 0.8 12 2.7

Note: The results for single-rail 1, dual-rail 1, sync 1, and sync 2 are obtained from measurements of working ICs. The results for single-rail 2

and dual-rail 2 are obtained from calibrated post-place-and-route simulations.

Source: Reprinted with permission from [4], K. van Berkel et al., A single-rail re-implementation of a DCC error detector using a generic

standard-cell library. Proceedings of the Second Working Conference on Asynchronous Design Methodologies, May (1995), pp. 72–79. © 1995.

not use domino logic. Its control-oriented design flow does

not easily hide the completion detection and reset delays

associated with dual-rail logic.

2.1.2. 80C51 Microcontrollers

Interestingly, the energy-only-when-and-where-needed,

low-power advantages of asynchronous design extend from

application-specific designs into micro-controllers, such as

the popular 80C51.13

The 80C51 has a complex instruction set architecture

which leads to synchronous implementations that use a

variable number of clock cycles per instruction. The syn-

chronous baseline design divides each instruction into one,

two, or four machine cycles and divides each machine

cycle into six slots, each taking one clock cycle.14 More-

over, in each slot there is communication across a cen-

tral bus. Using the central bus as a shared communication

resource implies that operations must be sequential rather

than pipelined. Consequently, for many flip-flops in the

design the ratio of useful-to-gated clock cycles in the core

can be below 10%, and even lower in the peripherals.

Compared to the synchronous baseline, the Philips asyn-

chronous single-rail implementation shows a factor of

4 reduction in power.13 In addition to avoiding wasted

energy in clock tree and clock-gating logic, the energy-

only-when-and-where-needed advantages are realized in

the following ways:

• Asynchronous peripherals are demand-driven rather

than clock-driven. For example, the interrupt controller in
the synchronous design must be clocked every cycle to

poll actively for external interrupts. In the asynchronous

design, the interrupt controller is idle until an external sig-

nal wakes it up.

• The asynchronous design has a distributed control block

with lower switching activity than the synchronous control

block, because on average only a few handshake compo-

nents are active, whereas the entire synchronous controller

is constantly clocked.

There are two other reported reasons why the asyn-

chronous design has lower power. The first is the use of

point-to-point connections which enable frequent transfers

to bypass the bus and lower the switching capacitance at

the cost of only a small increase in area. The paper does

not address how difficult this architectural change would

be in the synchronous design. Secondly, the asynchronous

design uses latches instead of flip-flops. This advantage

will be discussed in detail in Section 4. The combined cost

of these power advantages is an area increase of approxi-

mately 30% over the synchronous baseline design.13

There is, however, one caveat to this comparison: the

synchronous power numbers are based on the design run-

ning at a lower than maximum clock frequency, to match

the performance of the slower asynchronous design. This

observation is important because the synchronous design

could, in theory, work at this lower clock frequency using

a lower supply voltage, and this would substantially reduce

the synchronous power and hence reduce the asynchronous

power advantage.

The most recent asynchronous 80C51 designs, com-

mercialized by Handshake Solutions as HT80C51 and

HT80C51MX, report successful and ongoing performance,

area, and power improvements over the 1998 version. We

refer the reader to the Handshake Solutions web site for

more details.44 Handshake Solutions has also developed

an asynchronous alternative, ARM996HS, to the more

complex ARM968E-S microprocessor, reducing power by

a factor of 2.8.99

2.1.3. Fano Channel Decoders

The energy-only-when-and-where-needed benefits of asyn-

chronous design also extend to designs using dual-rail dat-

apath templates, such as the pre-charge half-buffer (PCHB)

templates developed by Andrew Lines.20 These templates

are used in the communication chip by Ozdag et al.17�18

which implements the Fano algorithm, a channel decod-

ing algorithm that is a low-power alternative to the gold-

standard Viterbi and Turbo algorithms. The Fano algorithm

searches the decoding space sequentially to find a good but
non-optimal solution, and has far lower average complex-
ity than the Viterbi and Turbo algorithms. The synchronous

baseline design has a regular datapath where the flip-flops

possibly change every clock cycle.19

The asynchronous alternative is designed to optimize

for the case when the received symbols have no errors.
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This leads to a two-part top-level chip partitioning, one

part focusing on the case with no errors and the other

designed to handle errors and transfer control back when

no further errors are observed for the duration of a small

fixed number of symbols. The two blocks work at differ-

ent data-dependent frequencies and synchronize only when

necessary. The no-error datapath requires only a fraction

of the resources of the original synchronous design, and

thus consumes far less energy.

Compared to the synchronous baseline, the asyn-

chronous version typically operates at one third the power

and runs over two times faster, assuming standard pro-

cess normalization. The cost of this advantage is a larger

area associated with the dual-rail datapath and the

integrated fine-grain pipelined control logic. The asyn-

chronous design occupies five times the area compared to

the synchronous design, although much of this could be

recovered if the asynchronous design used standard mem-

ories with asynchronous wrappers.

In architectural optimizations for the average case, it is

always important to ask if the synchronous design could

also be optimized for the average case to achieve simi-

lar power reductions. Indeed, some of the advantages may

be possible in the synchronous design by using multiple

clock domains and efficient clock gating. But the perfor-

mance of a synchronous standard-cell implementation of

the no-error part would be significantly slower than the

asynchronous high-speed domino-logic PCHB ring.

2.2. Bit-Partitioned and Width-Adaptive
Micro-Architectures

Distributed control can also facilitate the partitioning of

asynchronous datapaths into bit-partitioned architectures.

Once partitioned, components associated with the most

significant bits can remain idle and thus save substantial

energy, if these bits are known to remain unchanged. This

is, for instance, the case when the design operates mostly

on small numbers. In particular, in width-adaptive 1-of-N
(token-flow) architectures, blocks associated with unused

most significant bits do not receive requests (or tokens)

and thus remain idle.10 In single-rail datapaths, this feature

can be coupled with dynamic shortening of matched-delay

lines to increase performance.7

A similar set of techniques collectively known as

value compression (which includes size, zero, and sig-

nificance compression) has been explored in synchronous

design.38–40 The idea is similar in that extra bits are added

to the data words to identify which bytes have useful data.

It has been shown to yield significant power reduction in

caches41–43 and can be used to clock-gate flip-flops asso-

ciated with unneeded bytes in the datapath.38�40 Taking

advantage of the higher average performance associated

with operating on fewer bits is, however, more challenging

in synchronous designs, due to the fixed clock cycle. Con-

sequently, value compression techniques can yield better

delays per operation in an asynchronous design context. If

dynamic voltage scaling is an option, this reduced delay

can be exchanged for a reduction in energy, as expressed

by the Et2 energy-delay metric discussed in Section 2.3.1.
The remainder of this section discusses a variety of

asynchronous architectures that use these techniques in

the context of application-specific and processor-based

designs, with either dual-rail or single-rail datapaths.

2.2.1. IFIR Filters

A representative example is the design of a seven-

band IFIR filter bank for a digital hearing aid.8 The

asynchronous implementation exploits the fact that typi-

cal real-life audio signals are dominated by numerically

small samples, and adapts the number range in its opera-

tions to the actual need. It does this by slicing the dual-rail

datapath and random access memories into two partitions

and by using a tagging and overflow detection scheme that

activates the most significant slice only when it is needed.

The synchronous baseline design draws 470 �W when

processing input data corresponding to a typical sound

pressure level less than 50 dB, while the asynchronous

alternative draws 85 �W. The largest single source of
power reduction, accounting for 30% of the reduction,

comes from the bit-partitioned architecture. The other 70%

is mainly due to the low-power distributed asynchronous

control, one-hot addressing logic, and an efficient add-

multiply-accumulate datapath. As in previously discussed

designs, the cost of these reductions in power is a larger

area. The synchronous design contains 48,000 transis-

tors whereas the asynchronous design contains 70,000

transistors.

An important observation associated with this applica-

tion is that although the improved average performance

due to the reduced-width datapath exceeds the required

performance, this excess cannot be translated into lower

energy by means of voltage scaling, because the supply

voltage for this hearing aid is already close to the mini-

mum voltage appropriate for the process. Comparing basic

power needs, as was done above, is therefore appropri-

ate. This is different for the designs discussed next, where

voltage scaling is part of the optimization spectrum and

for which energy-delay metrics such as Et2 are more

appropriate.12

2.2.2. DCT Matrix-Vector Multipliers

Optimizing for both zero and small-valued data also

makes sense in discrete-cosine-transform (DCT) applica-

tions that include matrix-vector multipliers. Tugsinavisut

et al. explored synchronous value compression tech-

niques as well asynchronous bundled-data (i.e., single-

rail) pipeline versions thereof.6 The key difference is that

the asynchronous version uses data-dependent delay lines

while the synchronous design has a global clock that can
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accommodate only worst-case delays. Though the energy

per operation is similar for both designs, the asynchronous

architecture is on average significantly faster, yielding a

49% improvement in the Et2 energy-delay metric.b Unlike
some of the dual-rail designs described earlier, this comes

at a marginal cost in area overhead.

2.2.3. Byte-Serial Sensor Network Processor

Width-adaptive data (WAD) representations use a special
integer representation consisting of the binary bits 0, 1

and delimiter bits 0, 1.10 Delimiter bits 0 and 1 termi-

nate a given binary word: any bit positions more signifi-

cant than the delimiter bit are assumed to have the same

(binary) value as the delimiter. In Ref. [11], Fang et al.

evaluate the use and energy advantages of WAD represen-

tations for register files. They conclude that WAD integer

compression saves a considerable amount of energy in the

average case, overcoming the (in their case 25%) energy

overhead of adding a delimiter bit per (4-bit) word. For

parallel architectures they propose using a hybrid approach

in which only a subset of the integers use a WAD repre-

sentation. This improves the energy efficiency but comes

at the cost of a more complicated datapath design. For

bit-serial architectures, the datapath can uniformly handle

WAD integers: instead of sending the entire word through

the datapath, only the bits up to and including the delimiter

bit need be sent, producing a length-adaptive data (LAD)
representation.9 This saves energy but comes at the cost of

reduced performance because of the bit-serial operation.

For the BitSNAP sensor network asynchronous pro-

cessor in Ref. [9], this LAD-based bit-serial approach

reduced the datapath energy consumption by 50% over

a comparable 16-bit parallel-word asynchronous proces-

sor, while still providing performance suited for powering

low-energy sensor network nodes. Unfortunately, a direct

comparison to an equivalent bit-serial or value-compressed

synchronous processor was not within the scope of

this work. However, compared to the Philips 80C51

asynchronous microcontroller discussed in Section 2.1.2,

BitSNAP consumes substantially less energy per instruc-

tion and energy per instruction per bit.9 This is particularly

exciting, once one realizes that WAD and LAD compres-

sion techniques are largely orthogonal to—and hence can

be used in addition to—the other low power asynchronous

techniques described above.

2.3. Energy-Efficient High-Performance Designs

Asynchronous high-performance designs share many of

the architectural low-power advantages discussed above in

that modules act only when necessary. Unlike in Figure 3,

however, many of the high-performance asynchronous

bThe use of Et2 for energy-delay comparisons is motivated in

Section 2.3.1.

design styles use temporary storage in the handshaking

channels between the modules rather than in dedicated

latch-based or flip-flop-based registers. Moreover, they

often use dual-rail or 1-of-N domino logic in the datapath

to encode data validity in the data wires themselves, as

opposed to sending a separate validity signal as is done

in bundled-data or single-rail datapaths. In addition, their

dedicated completion detection circuitry determines when

data are valid and when they are neutral (i.e., reset), which

is used to control sequencing and fine-grained parallel and

serial operations.

As an example, consider the asynchronous micro-

architecture illustrated in Figure 4. Here, the functional

module on the left directly transmits a 4-bit result to the

second functional module on the right, using two 1-of-4

encoded sets of wires labeled A[0..3] and A[4..7]. The

first two bits are transmitted by raising one of the A[0..3]

wires and the remaining two bits are transmitted by rais-

ing one of the A[4..7] wires. After the data are consumed,

the two raised wires are reset low in preparation for send-

ing the next 4-bit value. The completion detection circuitry

consists of two 4-input OR gates followed by a Muller

C-element whose output goes high when the 4-bit result

contains valid data and low when it returns to neutral.

The completion detection circuitry can operate con-

currently with the datapath and plays a central role in

helping the CTRL blocks control the precharging and eval-

uation of the domino logic in each datapath module. In

an optimally-balanced asynchronous pipeline, each datap-

ath module is precharged and re-enters evaluate mode just

as new data arrive at its inputs. In this way, the comple-

tion detection is hidden from the critical path and there

is no latency penalty to the computation—except for the

⊗1 ⊗2

C

CTRL CTRL

A[0..3]

A[4..7]

Fig. 4. High-performance asynchronous micro-architecture fragment

with two 1-of-4 data bundles and associated completion-sensing-based

CTRL.
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additional side-capacitance associated with the inputs to

the completion detection logic.

Consequently, a high-performance asynchronous pipe-

line can avoid the data-setup timing margins needed

for single-rail latch-based or synchronous flip-flop-based

designs. Moreover, in a well-balanced asynchronous

pipeline, time borrowing is implicit and fast signals pro-

ceed unhindered—free of clock periods set to accommo-

date the slowest signals. Together, these advantages offer

a potentially significant increase in system performance.

The cost for such performance is the extra area associated

with the 1-of-N data encoding and completion detection.

In addition, 1-of-N datapaths typically have higher switch-

ing activity than single-rail datapaths, because they require

between two to four transitions per log2N bits. Details of

the switching activity depend on whether a two-phase or

a four-phase handshake protocol is used and whether an

acknowledgement signal is shared among multiple 1-of-N
data bundles. Mitigating factors in favor of 1-of-N rail

designs (including dual-rail) are the lack of a global clock

and the lack of glitching. Glitching can waste significant

energy in synchronous and single-rail datapaths. We refer

the reader to Section 4 for a more detailed discussion

of glitching in implementations that use static logic and

single-rail datapaths.

Any increase in system performance can be translated

to lower power by using a lower supply voltage, less

parallelism, or smaller gates. Moreover, the advantages

of self-adapting completion-sensing micro-architectures

appear to grow with smaller nano-scale process geometries

as on-chip process, voltage and temperature variations

increase. The challenge for adopting these design styles

is somewhat complicated by the need to support non-

standard circuits such as domino logic within predomi-

nantly standard-cell-based design flows.

The remainder of this section discusses several asyn-

chronous microprocessors developed by Martin et al.16

and an asynchronous turbo decoder developed by Golani

et al.23 Both use self-adaptive high-speed completion

detection techniques to yield energy-efficient designs.

2.3.1. Martin’s Three Generations of Asynchronous
Microprocessors

Alain Martin’s research group at Caltech produced three

generations of asynchronous microprocessors based on

different pipelined asynchronous design styles.16 The

MiniMIPS and Lutonium 8051 microprocessors use

pipeline pre-charge half-buffer (PCHB) templates20 to

build 1-of-N domino-logic datapath pipelines in the style

of Figure 4. These quasi-delay-insensitive circuits offer

low latency and high throughput.

To compare and optimize the energy-efficiency of

designs across a large range of supply voltages, they

adopted the energy-delay metric Et2, where E is the

energy per operation, and t the execution time of the oper-
ation. This metric is stable over a large range of supply

voltages: scaling the voltage by a factor N , scales E by a

factor of N 2 and t by 1/N , thus keeping Et2 constant. In
particular, if design A has a lower Et2 value than design
B at one voltage level, A will also have a lower Et2 value
than B at any other voltage level within normal operating

conditions. Moreover, power supply voltage scaling can

make circuit A, with the lower Et2, run faster than B for

the same energy per operation, or alternatively, can make

A run at the same speed as B but with lower power. The

lower Et2, the better and more energy-efficient the design.
The Lutonium 8051 is particularly interesting because

of the macro-architectural and micro-architectural differ-

ences with respect to the Philips 80C51 designs discussed

in Section 2.1.2. For one, Lutonium uses point-to-point

channels instead of a shared bus, and this enables a

far more concurrent implementation.22 Also, unlike the

control-oriented design style used by Philips, the 1-of-N
PCHB templates used by Lutonium effectively hide the

completion detection delays from the critical path, enhanc-

ing performance. Finally, Lutonium optimizes its design

choices and transistor sizes to minimize Et2 rather than to
minimize power as is done in the Philips approach.

The high performance design of Lutonium gives a

remarkably good Et2. It outperforms its closest competitor,
a fast synchronous design, with 25 times lower Et2. Com-
pared to the best Philips 80C51 implementation (single-

rail 2 in Table I), Lutonium is 25 times faster but draws

only 19 times more power. Therefore it consumes only

nineteen twentyfifths of the energy per operation of the

Philips design and completes each operation in one twen-

tyfifth of the time required by the Philips design. Overall,

therefore, the Et2 rating of the Lutonium is approximately

800 times lower than that of the Philips design.22

One noted caveat, however, is that continued reduc-

tions in feature size and attendant reductions in supply

voltage may limit the freedom to exchange throughput

against energy, which is at the core of the Et2 approach.22

Designs may end up having excess throughput that cannot

be converted into energy savings. Consequently, for low-

performance applications, low-power design approaches

such as the Philips control-oriented single-rail techniques

may actually yield lower power.

2.3.2. Turbo Decoders

Block processing is characterized by the need to com-

plete one block of data before a second block can be

processed, and is common to many types of algorithms

including turbo decoders. Pipelining block processing can

improve throughput, but the latency associated with fill-

ing and draining the pipeline adds to the block processing

delay and limits overall performance. In addition, paral-

lel pipelines can further improve performance; however,
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the impact of the pipeline latency grows as the number of

bits processed per pipeline per block decreases. The max-

imum performance is achieved when there are as many

pipelines as data words, and is characterized by the pro-

cessing latency of one word.

Dual-rail domino asynchronous datapaths have lower

pipeline latency than equivalent synchronous pipelines.

Consequently, they offer higher maximum performance, or

alternatively, they can achieve the same performance with

fewer parallel pipelines.

Golani et al. quantified such improvements using ultra-

high-speed static single-track full-buffer (SSTFB) tem-

plates for a tree-based turbo decoder architecture with

different block sizes.23 They compared the throughput per

area and the energy per block of an SSTFB-based single-

pipeline design to an equivalent synchronous design that

requires multiple parallel pipelines to achieve the same

overall throughput. Their comparisons show that the asyn-

chronous turbo decoder can offer more than twice the

throughput per area for block sizes of 1 K bits or fewer,

and can offer lower energy per block for block sizes of

768 bits or fewer. This is particularly useful in low-latency

wireless applications that require small block sizes.

3. CONSUME ENERGY WHEN AND WHERE
NEEDED—BUFFERING AND
COMMUNICATION

Communication fabrics for a system on chip (SoC)—

including SoC interconnection blocks (e.g., FIFOs, busses,

and crossbars) and more recently proposed networks on

chips (NoC)—introduce new constraints and objective

functions that must be addressed in both synchronous and

asynchronous implementations. The first constraint is that

these communication fabrics are geographically distributed

across a chip, increasing the difficulty of managing the

skew of a global clock. Second, they often require both

low latency and high throughput to support the various

traffic patterns between chip modules. Third, they often

require support for flow control and a latency-insensitive

design approach in which pipeline stages can be added or

removed even late in the design cycle. Fourth, as the traf-

fic patterns may be random it is desirable to draw power

proportional to the traffic density.

Asynchronous macro-architectures and micro-

architectures exhibit energy-efficient data buffering and

communication in which energy is consumed only when

and where needed. Integrated handshaking circumvents

the issues of global clock skew, provides a built-in mecha-

nism for flow control, creates a latency-insensitive design

approach, and generally draws power that is proportional

to the data transfer rate. Moreover, many asynchronous

communication fabrics exhibit better latency and through-

put than is possible with synchronous alternatives.

This section first describes the basic advantages that

asynchronous architectures can exhibit in simple first-in-

first-out (FIFO) buffers, then discusses SoC and NoC

interfaces, and ends with SoC and NoC communication

fabrics.

3.1. Low-Power FIFOs

FIFOs are often needed at the boundaries of SoC or NoC

network fabrics and within network routers—e.g., of store-

and-forward network architectures. In synchronous design,

FIFOs are typically implemented with either shift-registers

or register files. Shift-registers are effective for small num-

bers of cells but the transfer of data between cells is energy

inefficient. Register files avoid unnecessary data movement

at the cost of large electrical capacitance on bit- and word-

lines as well as at the cost of managing read- and write-

pointers, both of which limit throughput.

The flexibility of asynchronous design offers a wide

range of FIFO alternatives that trade off latency, through-

put, and power.95–98 For instance, an asynchronous linear
FIFO has the same linear configuration as a shift-register,

offers high throughput, and has the same amount of

data movement (and latency). In an asynchronous parallel
FIFO, data are distributed over a number of FIFOs using a
demultiplexer, and then re-assembled into a single stream

by multiplexing the FIFO outputs. The input side dis-

tributes the data elements in a fixed round-robin order over

the parallel set of FIFOs, and the output side collects data

elements from those FIFOs in exactly the same order. The

extra circuitry for demultiplexing and multiplexing costs

both area and energy, but for large FIFOs the additional

energy consumption is relatively small in comparison to

the energy saved in data movement due to the reduced

number of FIFO stages each data element moves through.

A tree FIFO is an extension of the parallel FIFO where

the data elements are recursively distributed over a binary

tree structure of (linear) FIFOs, and then re-assembled via

a mirror-image binary tree into a single output stream.95�97

Tree FIFOs have even lower latency than parallel FIFOs,

but they also have a higher design complexity and area

overhead. The optimal energy configuration depends on

the relative costs in energy for demultiplexers, multiplex-

ers, and FIFO stages. An alternative to the tree FIFO is

the square FIFO which is organized as a square array of

FIFOs rather than as a tree.95�98

Non-linear FIFO structures are also feasible in syn-

chronous design, but they are far less practical there

because the demultiplexers and multiplexers run at much

higher frequencies than the individual FIFO stages, and

so synchronous implementations must employ significant

clock gating to approximate the reduced data movement.

Moreover, the self-timed flow-through nature of asyn-

chronous FIFOs typically yields substantially better laten-

cies than can be achieved in clock-driven synchronous

designs.
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3.2. SoC and NoC Interfaces—Crossing
Clock Boundaries

Systems and networks on chip often include cores with

multiple clock domains. Consequently, crossing clock

boundaries efficiently becomes a critical issue. When the

clock domains are not synchronized, the possibility of

metastability appears. Metastability can occur when a stor-

age element, e.g., a latch, captures a changing signal, caus-

ing the latch output to stay at an indeterminate value for

a prolonged period of time; this effectively propagates an

indeterminate signal, “X”, through the circuit.
A traditional synchronous solution involves using syn-

chronizers at the boundary of two clock domains. These

consist of two latches or flip-flops in series controlled by

the destination clock. The potentially indeterminate value

at the output of the first latch or flip-flop is assumed to

resolve to a stable binary value by the time it is sampled

by the second latch or flip-flop. The data are often accom-

panied by an additional validity signal. Only the validity

signal needs to go through the synchronizer and the data

sampling is controlled by the synchronized validity sig-

nal. Alternatively, a dual-ported memory based on regis-

ter files or FIFOs with writes and reads controlled by the

two disparate clocks can be used (e.g., Ref. [81]). These

synchronization structures are well-supported by current

automated design flows but can yield significant latency

overhead, particularly when the SoC or NoC fabric has

its own synchronous clock domain because then two syn-

chronizations are needed per core-to-core communication.

This is illustrated in Figure 5(a) for an abstract SoC where

the synchronous cores and the synchronous network each

have their own clock domain. Data transmitted between

two synchronous cores suffer the latency penalty twice:

once to get on the network and once more to get into the

destination core.

Sync-to-Async interface

Sync-to-Sync interface

Async router

Sync routerSync core/domain

Async core/domain

(a) (b)

Pipelined repeaters

Fig. 5. Tree-based network on chip (a) synchronous (b) asynchronous.

With an asynchronous network, as illustrated in Fig-

ure 5(b), this latency penalty occurs only once, at the desti-

nation core. Data can enter the asynchronous network with

very little latency because it is unnecessary to wait for a

clock edge.71 Figure 5 illustrates this reduced latency by

using a symbol for synchronous-to-asynchronous interfaces

that is approximately half the size of the synchronous-to-

synchronous symbol. By omitting the interface symbol,

Figure 5 also illustrates the fact that asynchronous-to-

asynchronous communication is completely free of syn-

chronization overhead.

The larger size of the synchronous-to-synchronous sym-

bol in Figure 5 is especially appropriate for bidirectional

interfaces. A bidirectional synchronous-to-synchronous

interface is effectively a pair of synchronous-to-

asynchronous and asynchronous-to-synchronous interfaces

back-to-back, one for each direction.71

Low-latency high-throughput asynchronous-to-syn-

chronous and synchronous-to-synchronous interfaces have

been developed by several researchers (e.g., Refs. [71,

72]). These combine efficient asynchronous FIFOs with

single-point metastability resolution detectors. Chelsea and

Nowick developed high-throughput low-latency interfaces

using single-rail data and special metastability detectors

to handle the full and empty FIFO cases.72 Lines devel-

oped high-throughput interfaces that arbitrate between

the clock and signals for data-ready or space-available,

using dual-rail data and pipelined completion detection.71

Low-latency synchronizers have also been proposed by

Chakraborty and Greenstreet but are applicable only when

both domains are synchronous.74 The circuits are based

on the insight that the regularity of synchronous clocks

permits prediction in advance of safe sampling times.

Their results are impressive. A proposed single-stage

ripple FIFO can provide nearly two clock periods of skew
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tolerance. More complicated designs support clocks of

arbitrary frequencies and achieve latencies that are at most

slightly more than one clock period and often less.

An alternative approach to synchronizing globally-

asynchronous locally-synchronous (GALS) systems is to

use locally generated clocks that stretch when required;

these are known as “pausible clocks.”73�75�76 In particular,

the clock can pause until expected input data have arrived

or until the environment is able to consume output data. To

accommodate clock-tree delays, inputs and outputs may

require FIFOs whose lengths correspond to the maximum

number of clock edges in flight through the clock tree.

The latency overhead of these FIFOs may be negligi-

ble if inputs or outputs occur less frequently than every

cycle. The pausible clock has been applied effectively

in a variety of areas, including cryptographic security,77

wireless baseband processing78 and multi-core DSP

processors.79

Note that the power and energy consumption of the

interfaces between clock domains and the power and

energy consumption of the pausible clocks themselves

is less important than their impact on low-power and

low-energy system design. Compared to clock-gating,

locally-generated clocks can conserve energy that would

otherwise be wasted in clock generation and clock-tree

buffers. More significantly, these locally-generated-clock

approaches make designing with many clock domains,

including asynchronous domains, practical and efficient.

System designs that use multiple clock domains offer sig-

nificant benefits, because such designs permit each syn-

chronous block to operate at the lowest possible frequency

and energy level. By removing roadblocks to combining

synchronous and asynchronous designs, these approaches

provide the necessary foundation for asynchronous SoC

and NoC communication fabrics.

The increasing variability in today’s ICs is making tra-

ditional fully synchronous solutions less practical, from

both a complexity and power stand-point. Macro-cells for

crossing clock boundaries are appearing not only in design

libraries but also in static timing analysis and formal veri-

fication tools (e.g., see Ref. [80]). Industry adoption of at

least some of these more advanced GALS interface tech-

niques appears inevitable (e.g., see Ref. [89]).

3.3. SoC and NoC Communication Fabrics

Networks on chip (NoC) are viewed by many as a strate-

gic technology for addressing the increasing communi-

cation needs in large-scale multi-core systems on chip

(SoC). They offer a scalable communication infrastruc-

ture, with better modularity, versatility and predictability

than traditional bus systems.82�83�94 Additionally, globally-

asynchronous locally-synchronous (GALS) technologies

can offer a strategic and versatile solution to the global

clock and synchronization problems between the multi-

clock core domains of a large SoC.

The communication architecture of an NoC can be

general-purpose or application-specific, depending on

whether the cores play a homogeneous or heterogeneous

role in the target application. Application-specific net-

works require a more advanced design flow to analyze and

tune the network topology and placement to given energy,

throughput and latency targets, within reasonable design

time and effort.84 As an example, Figure 5 illustrates an

abstract heterogeneous system with 7 cores and a tree-

based NoC with 5 routers. To achieve high throughput and

avoid long and hence slow wire connections, the ingoing

and outgoing channels of the NoC routers can be pipelined

using what is referred to as relay stations72 or pipelined
repeaters.71

Below, we discuss four GALS-based NoC styles:

Nexus71�85 and FAUST86 use a general-purpose NoC

design, CHAIN88 and pSELF91�92 target application-

specific NoCs.

3.3.1. Nexus

Nexus by Fulcrum Microsystems71�85 has a 16-port, 36-bit

asynchronous crossbar interconnect, with routing and arbi-

tration to resolve contention. It handles one-way burst

transactions between locally clocked modules. A burst has

a variable number of data words terminated by a tail bit,

and is routed atomically when the following three condi-

tions hold: sender has data, the receiver has space, and

the arbitration is won. In that case, crossbar links are cre-

ated from the sender channel to the receiver channel. The

links are disassembled automatically when the last word

of the burst leaves the crossbar, to free the crossbar for

the next transaction. Round trips are implemented as split

transactions.

All cross-chip communication and routing are imple-

mented using a low-latency, high-throughput quasi-delay-

insensitive (QDI) custom design style with four-phase

handshaking, low-power 1-of-4 data encoding, and high-

speed precharge domino logic (see Section 2.3). QDI

designs are particularly attractive for NoC applications

because they work robustly over large delay variations,

due, for example, to voltage supply droop, temperature

changes or crosstalk. As with all asynchronous schemes,

the resulting network consumes energy only for transac-

tions actually done.

3.3.2. FAUST

FAUST (Flexible Architecture of Unified System for Tele-

com) is a NoC-based SoC that supports complex telecom

applications that use orthogonal frequency-division multi-

plexing (OFDM).86 OFDM is a popular modulation scheme

for wideband digital communication and a candidate for

4 G mobile communication. Like Nexus, the asynchronous

on-chip network (NoC) in FAUST uses a low-latency (but
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standard-cell) QDI design style87—in this case to imple-

ment a high-throughput 2D-mesh topology with packet

switching and wormhole routing. Wormhole routing is sim-

ilar to the atomic crossbar routing in Nexus in that it keeps

the data words, called “flits,” in a packet together, possi-

bly spanning multiple NoC routers. This reduces the buffer

sizes per router and avoids the need for reordering.

But unlike Nexus, FAUST also handles real-time con-

straints. The real-time constraints can be derived from the

embedded application, and are partitioned into (1) high-

priority real-time or low-latency packets, which are

mapped to a high-priority virtual router channel, and

(2) low-priority best-effort packets, which are mapped to

a low-priority virtual router channel. Packets in the high-

priority virtual channel have routing priority over those in

the low-priority virtual channel. A credit-based flow con-

trol technique avoids deadlock and contention at the trans-

port layer.

The asynchronous NoC in FAUST has 20 routers and

takes about 15% of the overall SoC chip area, which is

comparable to that of a bus-based solution. The NoC’s typ-

ical power is about 6% of the overall 23-core SoC power

required by the application. The major power reduction

comes from dynamic voltage scaling in the cores: the clock

frequency of each core is set to reach the best trade-off

in required performance versus power. Dynamic voltage

scaling is discussed in more detail in Section 5.

3.3.3. CHAIN

CHAIN (CHip Area INterconnect)88 targets heterogeneous

low-power systems in which the network is system spe-

cific. It uses four-phase handshaking and a QDI data

encoding for better timing closure and robustness against

crosstalk—as do Nexus and FAUST. The QDI data encod-

ing is typically 1-of-4 with an extra signal to indicate End-

Of-Packet and a reverse acknowledgement, making 6 wires

per link. Links can be ganged to increase the bandwidth.
This creates the flexibility to use links with different data

widths along different paths, and to trade lower-frequency

but higher-bandwidth parallel operations against higher-

frequency but lower-bandwidth serial ones. The variable-

length packets remain intact by using best-effort wormhole

routing (with potential extensions to prioritized routing90).

The network topology can be set up as a ring, mesh, bus

or a tree structure.

CHAIN is now an integrated part of the Silistix design

flow CHAINworks™.47 Intel and Silistix jointly evalu-

ated an early version of CHAINworks™ on the bus-based

Intel® PXA27x processor family for cellular and handheld

applications,89 and concluded that the asynchronous NoC

design style is well suited for low-power on-chip commu-

nication and can greatly reduce the total number of global

wires and global timing constraints. They also concluded

that the design approach could fit seamlessly into their

standard SoC flow, and that it offers a cleaner partition-

ing and interfacing of bus and peripheral operations for

design as well as for validation purposes. They emphasize

the importance of asynchronous-to-synchronous interfac-

ing, which turned out to be their biggest design automation

tool challenge and their biggest effort in reducing commu-

nication latency.

3.3.4. pSELF

Researchers at the University of Utah came to a simi-

lar conclusion as reported by Intel and Silistix: the NoC

latency bottleneck is in the traditional synchronization

interfaces, not in the routing.92 Their pSELF (phase SELF)

network protocol91�92 is a variation on the SELF (Syn-

chronous ELastic Flow) protocol.36�93 Both protocols use

the valid and stall signals typical for latency-insensitive or
elastic pipelines that can hold a variable number of data
elements,37 and they can both be implemented as a strictly

asynchronous circuit or as a clocked version.

The latency-insensitive design approach makes it easy

to add or remove pipeline stages even late in the design

cycle to accommodate delay changes in the computation

and communication modules. Traditional clocked systems

make such additions much more difficult. SELF supports

this flexibility by sending the global clock into a control

block for each pipeline stage. This control block enables

or disables the latches on the basis of the valid-stall-clock

protocol. This reduces the global clock load and provides

local clock gating on a stage-by-stage basis. Asynchronous

and GALS implementations of pSELF—and likewise of

SELF—have no global clock, and so these completely

eliminate the global clock distribution network and load.

This is particularly beneficial at lower network activities

such as are typical for cell phones and PDAs (see, e.g.,

Refs. [89, 15]).

The asynchronous-to-synchronous synchronization

interface for pSELF enjoys over four times lower latency

than traditional synchronous-to-synchronous synchroniza-

tion interfaces, due to both its more efficient synchroniza-

tion and the flow-through nature of its buffers. This carries

over to the total network latency for the core-to-core

asynchronous communication in pSELF, which exhibit

over four times lower latency than the clocked version

in their examples. Thus, pSELF achieves substantial low

latency, and provides elasticity and flexibility to reduce

energy in the cores as is done in FAUST.

4. REDUCING CAPACITIVE
LOAD—LATCHES VERSUS FLIP-FLOPS

Standard-cell synchronous circuits use either latches or

flip-flops as their basic storage elements. A typical

standard-cell latch is shown in Figure 6(a) and a typical
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Fig. 6. Typical standard-cell designs for (a) latch and (b) flip-flop.

(Courtesy of D. Harris, Harvey Mudd College.)

flip-flop, composed of two back-to-back latches, is shown

in Figure 6(b).34 As is evident from the drawing, latches

are often half the size and have half the clock input capac-

itance of their flip-flop counterparts. Compared to flip-flop

based storage, latch-based storage thus has the potential
for significantly lower area as well as lower energy con-

sumption associated with both the reduced capacitance on

the clock as well as the reduced datapath energy consump-

tion associated with the lower complexity of the latches.

This is particularly true in high-performance designs in

which clocks and latches can consume 70% of the overall

energy (e.g., Ref. [33]).

Moreover, latches can permit time borrowing across

pipeline stages which can yield smaller, low-power gates

along otherwise critical paths.34 These same time-borrow-

ing properties, however, can also enable latches to propa-

gate glitches across pipeline stages, thus wasting energy.

For low-performance applications with many levels of

logic per pipeline stage, glitch energy can be a significant

concern. Thus, for these applications a careful analysis of

the costs and advantages of latches from a low-power per-

spective is important.

Latches are used extensively in full-custom syn-

chronous designs and more recently in synchronous NoC

Open and Closed Latches

Unfortunately, hydraulic and electrical engineers fail to agree on the meaning of “open” and “closed.” An open
valve permits water to flow whereas an open switch prevents the flow of electricity. Some authors prefer, therefore, to
apply the terms “transparent” and “opaque” to the two states of a latch. In this paper, however, we have used the
hydraulic convention. An “open” latch is transparent and permits data to flow through, whereas a “closed” latch is
opaque and preserves the last value that passed through it.

designs.36�37�93 However, latches have not gained wide-

spread acceptance in application-specific integrated circuit

(ASIC) designs, where flip-flop-based standard-cell flows

still dominate the marketplace. This lack of wide-spread

adoption is likely due to the fact that ASIC design flows

are highly automated. Supporting latches in the design

requires supporting them at all levels of the design flow,

from synthesis to place and route, from clock generation

and timing analysis to module- and system-level valida-

tion. This is a substantial development effort that requires

strong demand from ASIC designers. A positive example

of this is the support of pulse-based latches instead of flip-

flops, to save area and energy. This advanced technique is

used in the IBM Cell processor32 and explored by Cadence

Design Systems.31 It has many of the advantages of using

regular latches but allows designers to use traditional flip-

flop-oriented register-transfer level (RTL) specifications,

thus easing adoption.

As mentioned in Section 2.3, asynchronous designs

come in two flavors, one based on dual-rail or 1-of-N data-

paths in which the storage elements are integrated into the

logic. The other based on single-rail datapaths with sepa-

rate latches or flip-flops for storage. This section focuses

on single-rail approaches that use latches.

4.1. Asynchronous Flows with Normally Open Latches

Micropipelines, originally introduced by Ivan Sutherland,25

is a broad class of asynchronous pipelines that generally

includes single-rail datapaths, delay lines, and pipeline

control. As with all asynchronous pipelines, the pipeline

is elastic in the sense that it can hold a variable number
of data elements depending on the rate of data being sent

in from and consumed by its environment. The minimum

number of data elements it can hold is zero and we say

the pipeline is empty. The maximum, also called capac-
ity, varies depending on the concurrency in the distributed
pipeline control logic. With half-buffers the capacity of
a linear pipeline is half the number of stages; with full-
buffers its capacity equals the number of stages. A vari-

ety of different control schemes have been proposed that

use two-phase request-acknowledge handshaking,25 four-

phase request-acknowledge handshaking,24 pulse-mode

valid-ack interlocked handshaking,33 or single-track

handshaking,28�100 most of which use latches for datapath
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storage.c Overall, the energy consumption in asynchronous

pipelines is dominated by the logic and latches in the data-

path rather than by the control.

In most of these schemes, the latches are open in the

initial, pipeline-empty, state. The latches associated with a

particular pipeline stage close only after all logic glitches

in the corresponding datapath have resolved and the latch

inputs are known to be stable. Meanwhile, glitches can

propagate through the entire empty pipeline. The latches

for a particular pipeline stage re-open once their data are

no longer needed by the subsequent stage. With this in

mind, consider the propagation of glitches in a pipeline

when it is full, i.e., when it is holding the maximum

number of data elements possible. Once the output envi-

ronment consumes data, a bubble ripples back through

the pipeline, subsequently enabling each stage to first

open and then close its latches to capture new data. The

amount of glitch propagation in this case is significantly

limited by the number of closed latches in the nearly-

full pipeline. This implies that, unlike in synchronous

latch-based design, glitch propagation is a function of

the average number of data elements in the pipeline. If

more pipeline stages are empty, the pipeline may exhibit

more glitches than when the majority of the stages are

full. Generally speaking, the fuller the pipeline, the lower

the glitch power. Interestingly, the optimal throughput

occurs when the forward and backward propagation of

data and bubbles in the pipeline balance each other.20�21

Thus there is also a tradeoff between optimal throughput

and glitch power that to our knowledge has not yet been

analyzed.

Compared to traditional synchronous designs, these

latch-based micropipeline styles generally guarantee a sig-

nificant gap between one stage closing and the previous

stage opening,33 making it easier to satisfy hold times.

In ultra-high-speed pipelines, however, this gap can be

small27 and additional min-delay buffers may still be nec-

essary to satisfy the hold-time-related constraints. These

buffers do consume additional energy but also balance the

propagation delays through the logic, and thus in turn also

reduce the amount of glitch energy. Though this is not dis-

cussed in Ref. [27] glitch energy is thus to some degree

related to the pipeline granularity of the design. In partic-

ular, for finer-grain pipelines (e.g., “gate-level pipelines”

where the logic in each stage is only a single gate deep),

the propagation delays for different bits are quite bal-

anced, thereby causing much less glitching activity. This

is an interesting, but perhaps secondary, effect in high-

speed single-rail pipelines where the energy consumption

is dominated by the latches rather than by the datapath and

control logic.

cNotably, one proposed technique uses low-power double-edge-

triggered flip-flops.26

4.2. Asynchronous Flows with
Normally Closed Latches

To limit glitch propagation, several flows have been devel-

oped with latches that are normally closed. One proposed

approach by Chelcea et al. uses self-resetting latches in

a micropipeline style datapath.29 In this case, the latch

opens only after data is guaranteed to be stable and closes

automatically after some controller delay. Compared to

normally-open latch schemes, this comes at a 14.3% per-

formance penalty but the reduced glitching yields a 41.4%

average improvement in the combined energy-delay metric

Et. The delayed closing of the latch increases the chal-
lenges in satisfying hold times but this was not observed

to be an issue in Ref. [29]. Another interesting micro-

pipeline-based approach is to use latches that can be

re-configured on the fly to be either normally open or

normally closed, enabling high performance when needed

and low energy consumption otherwise.30

Ad Peeters explored the relationship between data-

validity schemes and handshaking protocols as well as

their impact on energy consumption.5 Based on this analy-

sis, he proposed the low-power design flow used to design

the single-rail DCC and 80C51 microcontroller described

in Section 2.1. This design flow is not micro-pipelined

based but still uses single-rail datapaths with normally

closed latches and a four-phase handshaking protocol with

a matched-delay line per datapath. The matched delay is

typically half that of the worst-case datapath delay, and is

exercised twice during the four-phase handshake cycle that

controls the datapath operation. The destination latches are

opened after one pass through the delay line, well after

the source latches have closed. The destination latches

are closed at the end of the second pass. Consequently

glitching is limited to the logic surrounding the destination

latches.

This way, read and write access to a latch are guaran-

teed to be mutually exclusive. In some cases when multi-

ple writes occur without an intervening read, unnecessary

switching activity occurs in the downstream logic attached

to the latch output. For cases where such glitching is sub-

stantial, Peeters developed a more complex latch imple-

mentation with a read port that propagates the data only

when it receives a read request.5

5. REDUCING THE SUPPLY VOLTAGE

CMOS circuits, both synchronous and asynchronous, can

operate over a very large range of supply voltages. At a

lower supply voltage, the circuits run slower and use less

energy per operation than at a higher supply voltage. This

relationship is exploited in dynamic voltage scaling: at low
circuit activity or workload, the supply voltage is lowered

such that the operation finishes “just in time,” and likewise,

at a high workload the supply voltage is raised to meet the

operation deadline—again, preferably “just in time.”
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For nominal to threshold supply voltage levels, the oper-

ating speed or frequency of the circuit changes approx-

imately linearly with the supply voltage and the energy

per operation changes quadratically. Thus, the power has

a cubic dependency on the supply voltage.49 The region

where the circuits operate at voltage levels ranging from

slightly above the nominal supply voltage to slightly below

threshold is striped in Figure 7. This region is an excel-

lent match for asynchronous circuits and the energy-delay

optimization metric Et2 discussed in Section 2.3.1.
The quadratic relationship between energy and sup-

ply voltage no longer holds as the supply voltage scales

down into the subthreshold region. In the subthreshold

region, the circuits operate using leakage currents, and as a

result the operating speed of the circuit changes exponen-

tially with the supply voltage. Leakage currents integrate

over the longer operating delay until the leakage energy

per operation exceeds the active energy, as is shown in

Figure 7. The voltage level at which this happens defines

the (global) minimum energy point of operation. The fact

that this minimum lies in the subthreshold region makes

subthreshold operation a worthwhile challenge to pursue

when designing ultra-low energy circuits.52 Asynchronous

design techniques can offer additional support, for instance

by minimizing the idle time per operation to avoid unnec-

essary leakage energy.55

Note that in both regions—i.e., the “Et2 operation”

region and the subthreshold region—the reduction in

energy per operation stems from a lower swing in the

(global) supply voltage. It is also possible to generate and

use low-swing signals on a more local basis, and gain

energy efficiency where it is most effective.48 The grey-

colored “low swing operation” region in Figure 7 gives

an indication of the significant gain in energy that can

be obtained this way—as example, we show a 10% (of

Vnominal) swing around a near-threshold reference voltage.
Low-swing signaling has been studied and applied, usu-

ally in the context of full-custom synchronous design. It

is a popular technique for energy-efficient communication

over long wires, but the combination with asynchronous

design techniques is far less studied.

Below, we outline several representative asynchronous

techniques that are used in the Et2 and subthreshold region
as well some that relate to the combination of low-swing

signaling and asynchronous design.

5.1. Using Dynamic Voltage Scaling and Multiple
Supply Voltages in the “Et2 Operation” Region

Scaling the operating voltage in the “Et2 operation” region
(see Fig. 7) is easier for asynchronous circuits, because

they adapt automatically to the increased or decreased

delay caused by the reduced or elevated voltage. This

comes with the caveat that tight timing relations, not

covered by the delay-insensitive part of the design, must

Fig. 7. Scaling of energy per operation versus supply voltage, for the

Et2 operation region from Vnominal to sub-Vthreshold (striped), low voltage

swing (grey overlay), and subthreshold region (white). Note: The graphs

in Figure 7 are based on Figure 3 in Ref. [49] and reflect an oper-

ation with an activity factor of 2%, simulated for a 0.18 �m CMOS

process.

still be validated by characterizing the design for the vari-

ous process, temperature and voltage corners that the cir-

cuit will use—just as is done for the setup and hold timing

relations in synchronous circuits. But once these timing

relations are validated, there is a great run-time benefit

over synchronous circuits of not having to coordinate sup-
ply voltage with clock speed.

Philips and the Technical University of Denmark

explored a system-level solution to adapt the supply volt-

age for asynchronous circuits to the smallest possible

value that still meets the performance requirements, while

accounting for process and data dependent variations.60

Their solution is to insert a first-in-first-out (FIFO) buffer

at a performance-critical system interface, and monitor its

occupancy to detect if—and to what extent—the system

fills or drains the buffer faster or slower than needed. This

information is then used to drive a DC–DC converter to

down-scale or up-scale the supply voltage.d The DCC error

corrector discussed in Section 2.1.1 is an example of an

application where this solution works particularly well,

because the processing time for a code word depends on its

error content. Given that 95% of the code words are cor-

rect, only a sequence of incorrect code words would tem-

porarily raise the supply voltage above the lowest level.60

dAn alternative to using an adjustable DC–DC converter is to use power

switches to select from among a number of power supplies. This alterna-

tive solution was proposed in Ref. [52] to overcome the delay and limited

efficiency of DC–DC converters for broad voltage ranges, and enable the

use of dynamic voltage scaling into the subthreshold region.
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As an alternative to—or even in addition to—using

dynamic voltage scaling, asynchronous systems can take

advantage of multiple supply voltages. This works partic-

ularly well in the context of asynchronous networks in

multi-core systems on chip.

Researchers at CMU use FIFO buffers in the context of

multi-core system on chip (SoC) design, where the buffers

act as interfaces between multiple voltage and frequency

domains.62 The cores are synchronous, and can be homo-

geneous or heterogeneous. Communication between the

cores is asynchronous and supported by a network on chip

(NoC) communication architecture. CMU developed an

optimization strategy that assigns cores to joint or disjoint

voltage-frequency islands (VFI) and then assigns static

supply and threshold voltage levels to each island to min-

imize the energy consumption subject to the performance

constraints of the target application. This also accommo-

dates dynamic voltage scaling: for applications with large

workload variability, the operating voltage and frequency

for each island can further be controlled dynamically

around the statically assigned values. The team simultane-

ously partitions the NoC over the set of VFIs, so that the

contributions in energy and performance account for both

computation and communication. Their partitioning results

in 40% (simulated) energy savings for an MPEG2/MP3

video application. Their globally-asynchronous locally-

synchronous (GALS) design style works well with multi-

ple voltage-frequency domains, and likely supports a larger

configuration space for energy optimization than a clocked

NoC would.

The CMU GALS techniques discussed in Refs. [61, 62]

can be combined with the other asynchronous buffering

and communication techniques described in Section 3.

5.2. Energy Efficient Asynchronous Techniques for
Subthreshold Operation

The subthreshold region is where the point of minimum

energy per operation lies (see Fig. 7)—which makes it

a desirable region of operation for energy-constrained

applications such as wireless sensor nodes and medical

implants. For a circuit to operate in the subthreshold

region means (1) operating with aggravated process vari-

ations, because NMOS and PMOS transistor currents are

no longer balanced, and (2) operating with reduced robust-

ness, because of a reduction in the transistor on-off current

ratio. This is also the region where minor variations in

supply voltage give large variations in delay and hence

leakage energy. We will next discuss two asynchronous

techniques that reduce the fraction of leakage energy by

minimizing the idle time per operation.

Jayakumar et al.54�53 operate on a linear network of

programmable logic array (PLA) modules, with strictly

forward data dependencies between the modules. The

dynamic NOR-NOR PLAs are of medium size and have

constant output delays across all possible data inputs. The

predictable delay behavior and the regularity of the PLA

modules significantly improve the yield in the presence

of process, voltage and temperature variations and make

this design style suitable for operation in the subthreshold

region. The design predictability and regularity also enable

design automation. The network of PLAs in Ref. [54] is

clocked and operates as a single combinational unit: all

PLAs are precharged simultaneously, and then start eval-

uating in a domino fashion until all PLAs have evaluated,

and only then can the next precharge-evaluate operation

begin. As a result, each PLA spends a substantial amount

of idle time in either a fully precharged mode (awaiting

input data from its predecessors) or a fully evaluated mode

(waiting for its successor PLAs to finish their evaluation).

The consequence is a shift in the minimum energy point:

from around the threshold voltage for shallow networks

to 2.5 times the threshold voltage for deep networks. The

asynchronous micropipelined version in Ref. [53] differs

in two significant ways from the clocked version. For one,

it uses handshake signaling, but more importantly it uses

latches to store the PLA input data—thus releasing prede-

cessor PLAs from having to hold the data. As a result, the

PLA spends just enough idle time in a fully precharged

or a fully evaluated mode as is needed to complete the

handshake protocol and to latch its data inputs or hand

over its data outputs. Simulated examples show a factor of

4 lower energy and a factor of 7 higher throughput over

the clocked counterparts, at the cost of 47% more area.

The main caveat in this comparison is that the clocked

version might also be pipelined and become more energy-

efficient by simply adding flip-flops or latches between

the PLA stages. The real advantages of an asynchronous

micropipelined network of PLAs come from the use of

latches, the local latch control, and the ability to overlap

precharge-evaluate operations with asymmetric precharge

and evaluate times. Some of these have been discussed in

Section 4.

Akgun et al.55 designed a current-sensing completion

detection system that replaces the worst-case delay line in

an asynchronous bundled-data or single-rail circuit by a

computation-dependent delay line. This work continues in

the footsteps of Dean56 and Lampinen,57 who pioneered

current-sensing completion detection to replace dual-rail

circuits by lower-area and lower-latency single-rail cir-

cuits. The completion detection system by Akgun et al.

can sense currents in the pA to nA range, which makes

it suitable for completion sensing of subthreshold oper-

ations. It consists of three analog components: a sensor
transistor senses the current drawn by the computation and
converts this to a low-swing voltage signal, which is ampli-

fied by an AC-coupled sense amplifier, and then translated
by a monostable multivibrator to a (high) voltage signal
with a pulse width proportional to the completion time of

the computation. This pulse is used as the matched-delay
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bundled-data control signal. The goal of this technique

by Akgun et al. is to minimize the idle time per opera-

tion so as to avoid unnecessary leakage energy. This tends

to be more difficult to achieve in synchronous circuits,

especially for data-dependent operations in the subthresh-

old domain. Simulation results for a 16-bit ripple-carry

adder in a standard 0.18 �m process show a high cor-

relation between the generated completion pulse and the

actual computation time, and average delay improvements

of 16% over the worst-case delay without sensing—which

translates to shorter idle times and hence lower energy per

operation.

5.3. Low Swing Signaling Techniques

Low-swing on-chip signaling techniques have been used

effectively in synchronous design. In particular, they are

used for long communication wires in combination with

source-synchronous signaling.50 However, the (always-

sensing) clock-restore circuit that recovers the clock sig-

nal from the low-swing signaling scheme in Ref. [50] can

be used equally well to recover the request signal in an

asynchronous single-rail low-swing transaction. The full-

swing restored clock or request signal subsequently causes

the simple clock-enabled sense amplifiers to sample and

amplify the low-swing data signals. This scheme needs

an extra reduced power supply at the transmitter end of

the wire.

Recent developments in the asynchronous group at Sun

Microsystems show that low voltage swings can also be

generated via capacitive coupling without the need for an

extra power supply.51 This approach works equally well

for synchronous and asynchronous designs. It is less clear

how to improve the receiver end of the wire. The key ques-

tion here is: how low can the voltage swing go and still be

reliably detected in the presence of noise and delay varia-

tions on the communication wires. In particular: how low

a swing can reliably deliver an un-clocked signal, like the

clock or request signal in the above example, is still an

open question.

Lastly, asynchronous completion detection coupled with

low-swing techniques may also be used to reduce the leak-

age energy in variable delay computations. The general

idea is to turn off the voltage or current source and prevent

a further increase in swing as soon as the output data have

been latched.58

6. LEAKAGE REDUCTION

As mentioned in Section 5, leakage power is increasing to

such an extent that static power and energy consumption

are becoming a significant factor that must be minimized.

The voltage scaling techniques discussed in Section 5

reduce both the dynamic and the static power, but other

techniques to reduce static power have also been devel-

oped, including power gating, dual and multiple thresh-

old voltages, and back-body biasing. This section reviews

these techniques and briefly touches on their potential

applicability in asynchronous design.

Power gating involves using additional large high-

threshold transistors that act as switches to turn off

the power supply when the associated module imple-

mented with low-threshold transistors is idle.63 This

multi-threshold CMOS (MTCMOS) style requires special

state-holding registers implemented with high-threshold

transistors that remain on to save key state when the power
to the rest of the logic is switched off.70 In addition, spe-

cial isolation buffers are necessary to avoid floating inputs

at the boundary between voltage islands. The transistors

in these special switches and sleep-mode circuits must be

sized to account for both IR drop and ground bounce.

Lastly, sleep protocols are needed to turn these sleep-mode

mechanisms on and off. Power gating is becoming well

supported in commercial synchronous design flows and

can reduce leakage currents by many orders of magnitude

at the cost of significant area and some performance. The

techniques can be applied at a fine-grain scale within a

module or at a coarse-grain scale within a multi-core SoC

or NoC system such as described in Sections 3 and 5.1.

How easy it will be to adopt these techniques for asyn-

chronous domains is still an open question.

Dual-threshold techniques have also been very useful in

developing low-leakage memory cells for SRAMs (e.g.,

Refs. [67, 69]). In addition, cell libraries have been devel-

oped which include multiple cells of the same function-

ality with different power supply thresholds, enabling a

tradeoff between delay and leakage power. New synthesis

and place-and-route tools use multiple objective functions

across multiple process corners, to select a proper mix

of cell types. Asynchronous circuits that use traditional

SRAM structures with asynchronous wrappers can imme-

diately take advantage of these advanced cell designs.

Moreover, asynchronous flows that adopt standard-cell

libraries and standard synthesis and place-and-route tools

can also immediately benefit from these newer libraries.

Progress has also been made in the full-custom domain,

for instance with the development of low-leakage tech-

niques for domino logic (e.g., Refs. [64, 65]). Interestingly,

the performance and area costs of these techniques can

be reduced using a mixture of low-threshold and high-

threshold transistors within the logic structure. This can

be done such that the high-threshold transistors affect

only the non-critical pre-charge delay. The extension of

these techniques to asynchronous design styles is an open

area of research. New issues associated with asynchronous

domino logic include the development of asynchronous

sleep protocols and state isolation and preservation with

integrated storage.

An alternative to dual- and multiple-threshold cells

is back-body biasing via dynamic-threshold CMOS
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(DTCMOS) which involves dynamically adjusting the

threshold voltage by changing the substrate voltage.66

This technique has been used effectively in both silicon-

on-insulator and bulk CMOS technologies, particularly

in SRAM memories (e.g., Refs. [69, 68]). It requires

a dynamically-adjustable threshold power supply and

associated threshold power grid that distributes this supply

to the substrate wells of all targeted transistors. DTCMOS

has also been proposed as a solution for reducing delay

variations of operations in the subthreshold region.59 It can

also serve to implement or augment the just-in-time com-

puting techniques discussed in Section 5.

7. SUMMARY AND CONCLUSIONS

In summary, many of the power and energy benefits of

asynchronous design come from its natural ability to con-

sume energy only when and where needed. This applies

for instance to computational blocks that can be readily

bit-partitioned to save energy by activating only bits with

significant data but it applies also to buffering and com-

munication structures, such as FIFOs, busses, crossbars,

and networks of routers. In some applications, the high

performance achieved by data-driven asynchronous design

yields impressive energy-delay results that are difficult to

achieve in synchronous designs.

SoC and NoC communication structures can also take

advantage of the low latency, integrated flow control,

and reduced idle energy of asynchronous designs. In

lower performance domains, the use of power-efficient

normally-closed latches leads to low total energy con-

sumption. In the subthreshold region, asynchronous com-

pletion detection techniques can help reduce idle times,

mitigate increased process variations and limit voltage

swings, thereby minimizing leakage currents, increasing

yield and facilitating energy-efficient just-in-time comput-

ing. The lack of a global clock also facilitates the use of

dynamic voltage scaling by removing the need to coor-

dinate adjustments in supply voltage with clock speed.

Lastly, many of the techniques for addressing static power

should transfer over to asynchronous designs, but this

remains an open area of research.

A perceived stumbling block for wide-spread adop-

tion of asynchronous techniques has been the availability

of commercially-supported design flows that accommo-

date asynchronous and GALS approaches and libraries

that include advanced circuits used by higher performance

asynchronous designs. However, there are many university

research projects and a few companies that have already

addressed this need or are actively addressing it, largely

by adapting synchronous design tools and flows. Their

solutions enable the seamless integration of asynchronous

design techniques into otherwise synchronous design flows

and facilitate the expanded use of asynchronous design in

industry (e.g., Refs. [44–47]).
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