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1. Introduction 
 

The Doppler analysis associated to the backscattered radar return from the sea surface is a 
very valuable tool in ocean remote sensing. The Doppler spectrum indeed carries much 
more information than a mere radar backscattering cross section under a given incidence 
and is easily interpretable in terms of wind and current conditions for HF radiowaves (e.g. [1] 
and references therein). In that case the dominant mechanism is resonant Bragg scattering 
and the mean Doppler shift is imposed by the so-called free Bragg frequency, namely the 
frequency associated to the wave with half the electromagnetic wavelength at grazing 
incidence. The experimental Doppler spectra are accurately modelled by the perturbative 
theory of Barrick and Weber [2], [3], which describes second-order interactions of both the 
electromagnetical and hydrodynamical processes. 
 
In the microwave regime, Doppler characteristics turn out to be more complex. A large 
number of field experiments have been conducted in the last thirty years, most of them at 
grazing incidence because of practical constraints (e.g. [4] for the Ku-band, [5], [6] for the X-
band and [7] for the L-band). The observed Doppler spectra are usually broader than in the 
HF regime, with a mean frequency sometimes much higher than the free Bragg frequency, 
depending of wind speed and radar incidence. This effect is more pronounced in horizontal 
polarization and at large incidences. Today, however, no asymptotic theory is capable of fully 
explaining and reproducing these experimental observations. The reason is twofold. First, the 
analytical scattering models [8] have limited range of validity, especially at larger incidences 
and, second, the hydrodynamical description of nonlinear short gravity waves is still an open 
issue. The aim of the present work is to go further in this direction by combining recent and 
efficient scattering and hydrodynamic analytical models. This task will be decomposed in a 
set of two companion papers. This first paper will put the emphasis on analytical scattering 
models, whose potential for the Doppler analysis has in our opinion not be fully exploited. To 
separate electromagnetical and hydrodynamical issues, the sea surface will be assumed 
linear in this first stage. In a second companion paper, weakly nonlinear analytical models 
will becombined with the scattering models to reach a complete realistic description of the 
Doppler spectrum. 
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The classical approach to tackle the problem relies on the Two-Scale Model (TSM) [9]. More recent

results [10], [11], [12], [13] have shown that modern analytical scattering models can account for some

characteristic features of microwave Doppler spectra such as the non-trivial dependence of the central

frequency upon the incidence angle and its sensitivity to polarization. However, in using such asymptotic

techniques a trade-off must be found between the accuracy and robustness of the model and its numerical

efficiency. The latter is intimately related to the existence of a statistical formulation for the main

Doppler characteristics (central frequency and width) which prevents from time-consuming Monte-Carlo

simulations. With this idea in mind we will revisit the classical models starting with the Kirchhoff

approximation and its Two-Scale formulation. We will show that extremely simple, yet non trivial formula

can be obtained for the central frequency and width of the Doppler spectrum. These models, however,

apply to a limited incidence range and are polarization insensitive. We will show that a more accurate

electromagnetic description can be reached with the Weighted Curvature Approximation [14], [15], whose

recently improved formulation [16] is adapted to a fully analytical derivations of the Doppler spectrum.

The theory will be developped for fully two-dimensional (2D) surfaces and, in most cases, analytical

formulas will be given for the central frequency and width of the Doppler spectrum, which can be easily

implemented. At this stage, however, our goal is not to produce realistic simulations to be compared with

experiments but rather to validate the technique. The numerical validation of this and the subsequent

studies will therefore be performed for one-dimensional surfaces. This makes the illustration easier and

renders a comparison possible with the reference work by Brown and Toporkov [17], who realized a set of

extensive simulations according to a rigorous electromagnetical model for one-dimensional (1D) surfaces.

Therefore, our numerical tests have been designed identical to those presented in [17], [18], namely 1D

surfaces with PM spectrum at L- and X-band for 5 and 7 m.s−1 wind speed (at 19.5 m above the sea

level). We are aware that more realistic spectra as PM could have been chosen and certainly will be

implemented in future steps. However, this choice is imposed for the moment by the necessity of a fair

comparison with the previously cited works.

II. The ocean Doppler spectrum

As usual the sea surface is described by its Cartesian coordinates z = η(r, t), with mean horizontal

plane r = (x, y) and upwards directed vertical axis. From an electromagnetic point of view, the interface

separates the upper medium (air), assimilated to vacuum, from the lower medium (water), assumed to be

homogeneous and described by its complex permittivity. A fixed coherent radar illuminates the surface

at some given frequency and incidence. We assimilate the radar beam to a monochromatic plane wave

with wave vector K0, so that K̂0 will also denote the radar look direction (here and everywhere we use

the notation û = u/||u|| for the direction of a vector). Denoting S(t) the backscattered amplitude from

the frozen surface at time t (we refer to [8] for the exact definition), the time covariance function of the
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backscattered field is the limit of the statistical average:

C(t) =
4π

|A|
(
〈S(t)S∗(0)〉 − |〈S(0)〉|2

)
(II.1)

for an infinite illumination area |A|. Note that C(0) is the classical definition of the Normalized Radar

Cross Section (NRCS). The Doppler spectrum is the corresponding Fourier transform:

D(ω) =

∫
R

e−iωtC(t)dt (II.2)

and f = ω/(2π) is the Doppler frequency shift. Waves travelling away from the radar mainly contribute

to negative Doppler shifts while waves travelling towards the radar mainly create positive shifts. Thus

Doppler spectra usually contains two peaks with different amplitudes depending on the radar look direc-

tion. This is illustrated on Figure 1(a). For 1D surfaces, it is customary to consider one-sided sea spectra

corresponding to waves travelling to the left (or right) direction. In that case the Doppler spectrum is

centered around some positive (or negative) peak frequency and the Doppler centröıd fc and width γ can

be defined through the first two moments of the spectrum:

fc =
ωc
2π

=
1

2π

∫
R ωD(ω)dω∫
RD(ω)dω

and γ2 =
1

(2π)2

∫
R ω

2D(ω)dω∫
RD(ω)dω

− f2
c (II.3)

The notion of one-sided spectrum can be extended to the case of 2D surfaces by artificially restricting the

sea spectrum to waves travelling towards (or away from) the radar. This amounts to keep waves directions

in the same (or opposite) half-plane as the radar look direction K̂0 as shown on Figure 1(b). Positive

shift is arbitrary chosen and imply that the propagation half-plane is defined by sgn
(
K̂0 · k̂

)
< 0 where

k̂ is the considered wave direction and sgn is the sign function (sgn(x) = ±1 if x ≷ 0). Note that we

thereby ignore the contribution of waves travelling away from the radar to positive frequencies and vice

versa. In reality, the spectral density varies continuously as a function of the azimuth angle with respect

to the wind direction and the notion of half-sided spectrum is purely artificial. In the practical case of a

two-sided spectrum, there are two Doppler centroids along and against the wind direction. Under theses

circumstances the definition of a central peak through the first moment is irrelevant as sign cancellations

in the integral will produce some meaningless intermediate value. The solution is to calculate the center of

each peak for the two half-spectra separately. One should keep this in mind when using the main results

of this paper.

III. The time-evolving linear sea surface

Without loss of generality (waves propagate in all directions), we can represent a linear time-dependent

surfaces in the form:

η(r, t) =

∫
R2

dk
[
a(k)e−iωkt + a∗(−k)eiωkt

]
eik·r (III.4)

where a(k) is the complex amplitude of the wave, k the associated wave number and ωk =
√
g|k|(1 + |k|2/k2

M )

is the gravity-capillarity dispersion relationship (kM = 363.2 rad.m−1 is the wave number with minimum

April 29, 2011 DRAFT
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phase speed). In the linear assumption, the phases of the different complex amplitudes are supposed to

be uncorrelated. Denoting ρ(r, t) = 〈η(r, t)η(0, 0)〉 the spatio-temporal covariance function of the surface,

it follows that:

ρ(r, t) =

∫
R2

dk
[
Γa(k)e−iωkt + Γa(−k)eiωkt

]
eik·r (III.5)

where Γa(k) defined by 〈a(k)a∗(k′)〉 = Γa(k)δ(k − k′) is the square amplitude of waves travelling in

different azimutal directions. Assuming the waves to travel only towards (or away from) the radar is

equivalent to supposing that Γa(k) vanishes in the half-space of waves number pointing in the radar look

direction (k̂ · K̂0 > 0), i.e. Γa is half-sided. Using this assumption, equation (III.5) can be rewritten as:

ρ(r, t) =

∫
R2

dk Γ(k)ei(k·r+sgn(k̂·K̂0)ωkt) (III.6)

where Γ(k) = Γa(k) + Γa(−k) is the usual centro-symetric wave vector spectrum.

Figure 2 displays an example of the spatio-temporal covariance function ρ(x, t) for 1D surfaces whith

wind speed U19.5 = 7 m.s−1. Along this paper we use the omnidirectional PM spectrum, Γ(k) =

1
2ΓPM(|k|), where

ΓPM(k) =
α

2|k|3
exp

{
− βg2

k2U4
19.5

}
(III.7)

with α = 8.1 10−3 and β = 0.74. The extra factor 1
2 accounts for the fact that energy is equally spread

over both positive and negative axis. Note that this is different from [17]) who chosed the half-sided PM

spectrum (i.e. expression (III.7) for positive k only, zero otherwise). However in our basic assumption

that the negative wave numbers do not contribute to positive Doppler shifts this amounts to the same.

Again, we insist on the fact that the choice of the PM spectrum along this work is imposed by a first

stage of validation after the results of [17], even if it is less realistic than some more recent spectra.

In both cases, waves are travelling in the positive x direction only (K0 < 0). We note in passing that the

covariance function oscillates both in time and space and is localized around the diagonal kpx−ωkpt = 0,

where kp is the peak frequency. As a consequence, its spatial range varies with time. This makes the

computation of the field covariance function (see eq. (IV.9) further) more difficult than an ordinary NRCS.

IV. The Kirchhoff Approximation

The back-scattered amplitude in the Kirchhoff Approximation (KA, [19]) is given by:

SKA(t) =
K
Qz

∫
R2

dr

(2π)2
eiQH·reiQzη(r,t) (IV.8)

where we have introduced the so-called Ewald vector Q = −2K0, together with its horizontal and vertical

projections QH and Qz, respectively. Here K is the Kirchhoff kernel whose expression can be found in

e.g. [8]. If the surface is assumed to be a Gaussian random process, a classical calculation leads to the

following expression for the field time covariance function:

CKA(t) =
1

Q2
z

|K|2

π

∫
R2

dr eiQH·r
[
e−Q

2
z(ρ(0,0)−ρ(r,t)) − e−Q

2
zρ(0,0)

]
. (IV.9)

April 29, 2011 DRAFT
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The Doppler spectrum at every incidence angle can be computed in a three-step procedure through

successive evaluation of the spatio-temporal covariance function, the field covariance function CKA(t) and

its Fourier transform. The Doppler central frequency (fc) and width (γ) can then be obtained through

the moments (II.3). Numerical details are given in Appendix B. However, in the KA framework, a more

direct derivation of these quantities can be made by noting that:∫
R
ωD(ω)dω = −i

∂C
∂t

∣∣∣∣
t=0

(IV.10)∫
R
ω2D(ω)dω = − ∂2C

∂t2

∣∣∣∣
t=0

, (IV.11)

which leads to:

2πfc = −iQ2
zN
−1

∫
R2

dr eiQH·r∂tρ(r, 0)e−Q
2
z(ρ(0,0)−ρ(r,0)) (IV.12)

(2πγ)2 + ωc = −Q2
zN
−1

∫
R2

dr eiQH·r
[
∂t2ρ(r, 0) +Q2

z(∂tρ(r, 0))2
]

e−Q
2
z(ρ(0,0)−ρ(r,0)) (IV.13)

where

N =

∫
R2

dr eiQH·r
[
e−Q

2
z(ρ(0,0)−ρ(r,0)) − e−Q

2
zρ(0,0)

]
(IV.14)

∂tρ(r, 0) = i

∫
R2

dk sgn(K̂0 · k̂)ωk Γ(k)eik·r (IV.15)

∂t2ρ(r, 0) = −
∫
R2

dk ω2
kΓ(k)eik·r (IV.16)

Equations (IV.15) and (IV.16) are derived from equation (III.6) but their general forms can be derived

from the expression of ρ at equation (III.5). Hence, under the KA and the linear assumption for the sea

surface, the central Doppler frequency and its width can be calculated at the same cost as a classical

NRCS.

V. Doppler spectrum in the TSM approximation

In order to derive fully analytical expressions for the Doppler centröıd and width in the framework of

the KA, we use a Two-Scale argument in a way very similar to [9]. We decompose the spectrum into small

and large scales components, Γa = ΓaL + Γas. We call the ρL and ρs, respectively, the corresponding

covariance functions:

ρs/L(r, t) =

∫
R2

dk
[
Γas/aL(k)e−iωkt + Γas/aL(−k)eiωkt

]
eik·r (V.17)

For sea spectra, a separation frequency around Bragg wavenumber ensures that Q2
zρs(0, 0) << 1, so we

may treat the small scales perturbatively in the exponential:

C(t) ' |K|
2

πQ2
z

(∫
R2

dr eiQH·r
[
e−Q

2
z(ρL(0,0)−ρL(r,t)) − e−Q

2
zρL(0,0)

]
+Q2

z

∫
R2

drρs(r, t)e
iQH·re−Q

2
z(ρL(0,0)−ρL(r,t))

)
(V.18)
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The first integral is the field covariance function of a smooth surface (large scale only) and thus has

negligible effect in backscattering direction away from nadir. The second integral is mainly controlled by

the behavior of the large-scale correlation function ρL at small space and time lags. Therefore we may

operate a “geometrical-optics like” expansion about the origin:

ρL(0, 0)− ρL(r, t) ' 1

2
[x, y, t] · ΣL · [x, y, t]T, (V.19)

where the subscript T indicates the transposed vector and

ΣL =


σ2

200 σ2
110 σ2

101

σ2
110 σ2

020 σ2
011

σ2
101 σ2

011 σ2
002

 (V.20)

is the spatio-temporal covariance matrix of large-scale slopes. Its elements,

σ2
αβν = − ∂2ρL

∂xα∂yβ∂tν

∣∣∣∣
r=0,t=0

(V.21)

are the cross mean square slopes with respect to the space and time variables. After Fourier transform

we obtain the Doppler spectrum:

D(ω) ∝
∫
R3

dt dr eiQH·re−iωtρs(r, t) exp

(
−1

2
Q2
z[r, t]

T · ΣL · [r, t]
)

(V.22)

which can conveniently be rewritten as a convolution integral:

D(ω) ∝
∫
R3

dk′dω′ ρ̂s(k
′, ω′)PQ2

zΣL
(QH − k′, ω − ω′). (V.23)

Here we have introduced PQ2
zΣL

the three-dimensional Gaussian centered probability density with sub-

scripted covariance matrix:

PQ2
zΣL

(u, v) =
1

(2π|Q2
zΣL|)3/2

exp

(
− 1

2Q2
z

[u, v]T · Σ−1
L · [u, v]

)
(V.24)

and ρ̂s the three-dimensional Fourier transform of the surface covariance function:

ρ̂s(k, ω) =
1

(2π)3

∫
R3

dt dr e−ik·re−iωtρs(r, t). (V.25)

This leads to a reduction of the Doppler spectrum :

D(ω) ∝
∫
R2

dk′ Γas(k
′)PQ2

zΣL
(QH − k′, ω − ωk′) +

∫
R2

dk′ Γas(−k′)PQ2
zΣL

(QH − k′, ω + ωk′) (V.26)

where ωk′ =
√
g|k′|(1 + |k′|2/k2

M ). In the case of half-sided spectra we may restrict the waves numbers k

to the half-plane k ·K̂0 < 0, that is we may assume that Γas vanishes over the half-space k ·K̂0 > 0. Hence

we can rewrite the Doppler spectrum in terms of centro-symmetric spectrum Γs(k) = Γas(k) + Γas(−k):

D(ω) ∝
∫
R2

dk Γs(k)PQ2
zΣL

(
QH − k, ω + sgn

(
k̂ · K̂0

)
ωk

)
(V.27)
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and same for the elements of the covariance matrix:

σ2
αβν =

∫
R2

(
sgn

(
k̂ · K̂0

)
ωk

)ν
kαx k

β
y ΓL(k) dkx dky. (V.28)

After some algebraic manipulations, the first two moments of the Doppler spectrum can be easily extracted.

Altogether we obtain (we have dropped the K0 variable using the replacement Q̂H = −K̂0):

ωc = A−1

∫
R2

dk Γs(k)P (QH − k)
(

sgn
(
k̂ · Q̂H

)
ωk + (MT) · (QH − k)

)
(V.29)

(2πγ)2 + ω2
c = A−1

∫
R2

dk Γs(k)P (QH − k)

(
χQ2

z +
[
sgn

(
k̂ · Q̂H

)
ωk + (MT) · (QH − k)

]2)
(V.30)

with

A =

∫
dk Γs(k)P (QH − k). (V.31)

Here we have written P for the two-dimensional Gaussian with covariance symetric matrix Q−2
z M, where

M =

 σ2
200 σ2

110

σ2
110 σ2

020

−1

, χ = |ΣL||M| = σ2
002 −TTMT and T = [σ2

101 σ2
011]T. (V.32)

These expressions for the position and width of the Doppler spectrum are much simpler to evaluated

numerically than the formulas (IV.12) and (IV.13) derived in the framework of KA, as they do not require

the computation of the spatiotemporal covariance function. They merely involve the small-scale spectrum

(Γs) and some moments of the large-scale spectrum (ΓL). For 1D surfaces the quantities M,T and χ

reduce to 1/σ2
20, σ2

11 and (σ2
20σ

2
02 − σ4

11)/σ2
20, respectively, with the notation:

σ2
αν =

∫
R
kα (sgn(k)ωk)

ν
ΓL(k) dk (V.33)

for the signed moments of the spectrum. The expressions (V.29) and (V.30) can be further simplified

whenever the components of M−1 are very small compared to unity, which is usually the case since they

have the order of magnitude of mean square slopes. In that case the Gaussian term P is a sharp peak about

the Bragg frequency, over which the spectrum can be supposed to be slowly varying. Mathematically, this

mean that the Gaussian integrand and its polynomial factor can be replaced by a combination of delta

functions and their derivative about the Bragg wave number QH . Tedious but straightforward calculations

lead to:

ωc = ωQH
−Q2

z

[∇kΓs](QH)

Γs(QH)
·T (V.34)

(2πγ)2 = Q2
z

(
σ2

002 − Q̂H ·T
(
g(1 + 3|QH |2/k2

M )

ωQH

)
+Q2

zT
T · ∇k

[
∇kΓs

Γs

]
k=QH

·T

)
(V.35)

where ωQH
=
√
g|QH |(1 + |QH |2/k2

M ) is the free Bragg wave pulsation and ∇k the gradient operator

relative to the wavenumber variable. These simple formulas show that under the TSM starting from the

KA the main Doppler characteristics only depend on the level and shape of the wave number spectrum

April 29, 2011 DRAFT
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at the Bragg vector. To distinguish them from the previous TSM approximation (V.29) and (V.30), we

will refer to this new set of equations as the D-TSM approximation, as a further Dirac approximation is

employed to reduce the integral.

To ease the interpretation, let us focus again on 1D surfaces, and suppose that the sea surface wave

number spectrum can be locally approximated by a power-law in the region of Bragg’s wavenumber:

Γ(k) ∼ k−µ (V.36)

Then the approximate Doppler central frequency and width reduce to:

fc =
1

2π

(
ωQH

+ µ
Q2
zσ

2
11

QH

)
(V.37)

γ =
1

2π

√
Q2
z

(
σ2

02 − gσ2
11

(
1 + 3Q2

H/k
2
M

ωQH

)
+ µσ4

11

Q2
z

Q2
H

)
. (V.38)

Formula (V.37) means that the free Bragg frequency is increased by the contribution of large scales

through the moment σ2
11. To understand the occurence of the latter, it is illuminating to consider the

case of a single sinusoidal large wave, say ΓL(k) = H2δ(k − kp). Then σ2
11 = H2kpωp = H2k2

pcp, where

cp is the phase speed of the large wave. Thus the Doppler shift with respect to the free Bragg frequency

is proportional to the phase speed of the large wave, weighted by an angular factor cos2(θ)/ sin θ. Note

that this factor blows up at normal incidence. This is, however, not problematic as the formula is not

applicable at small incidence where the conditions of reduction of the integrals (V.29) and (V.30) are not

met.

Figures 3 and 4 show the Doppler centröıd and width for the three levels of approximation: 1D versions

of equations (IV.12) and (IV.13) for the KA, the simplified formulas (V.29) and (V.30) arising from the

TSM and the ultimate approximations (V.37) and (V.38) obtained in assimilating the Gaussian integrand

to a Dirac function in the TSM (D-TSM) with µ = 3. The wave number cut-off between short and long

wave is taken to be kc = QH/5 for both TSM and D-TSM, a value which we have numerically checked to

validate the TSM (V.18).

The KA and TSM approximation are in good agreement and reveal a non-monotonic behaviour for both

the central frequency and width of the Doppler spectrum. At 5 m.s−1 wind speed, these quantities reach

a maximum about 25 degrees, as already noticed by [17] and [11] and recover the free Bragg frequency

position
(
fB = (2π)−1

√
gQH(1 +Q2

H/k
2
M )
)

and width (γB = 0) at higher incidence angles. The D-TSM

approximation is found to be accurate for incidence angles greater than 45 deg in X band as in L Band

(not shown here). This makes the latter approximation valuable in view of its simplicity. Note that TSM

shows a correct behavior even at small incidence angles. This is to be expected as the TSM is expected

to be a good approximation to the KA from which it is derived. In this respect, an angle-dependent value

of the separation frequency between large and small scales is crucial (namely kc = QH/5), as it allows to

take into account larger scales for the KA term in the nadiral region.
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We note that the Kirchhoff kernel K does not appear in the expressions of either fc or γ. Consequently

any approximate scattering model with the same roughness dependence as the KA NRCS (IV.8) will yield

identical expressions. This is the case in particular for the first-order Small-Slope Approximation (SSA1,

[20])

SSSA(t) =
B
Qz

∫
R2

dr

(2π)2
eiQH·reiQzη(r,t), (V.39)

which is identical to KA with the Kirchhoff kernel (K) replaced by the Bragg’s kernel (B, see [8]). Moreover,

KA and thus SSA1 are unsensitive to polarization, which means that they predict the same Normalized

Doppler spectrum for both vertical (VV) and horizontal (HH) polarization, an important limitation of

the methods.

VI. The Weighted Curvature Approximation

The KA is known to be accurate at small angles and to be unsensitive to polarization effects. In order

to extend our methodology to larger angles and to estimate the polarization dependence of the Doppler

spectrum we use the so-called Weighted Curvature Approximation (WCA). Recently revisited by [16] this

approximation introduced in [14] was shown capable to predict reasonably the NRCS from rough surfaces

for both polarizations to about 80 degrees incidence angle. The scattering amplitude in the WCA [16]

writes as a correction to the tangent plane approximation in the form of a Kirchhoff integral involving

second-order spatial derivatives of the surface (that is essentially its curvatures):

SWCA(t) = SKA(t) + i
T
Q2
H

∫
R2

dr

(2π)2
∆η(r, t) eiQH·r eiQzη(r,t), (VI.40)

where the kernel T = B − K is the difference between the Bragg and Kirchhoff kernel and ∆η is the

spatial Laplacian of the surface. For 2D surfaces, the second-order differential operator involved in the

Kirchhoff integral can actually take a more general form than a mere Laplacian. However, for sea surfaces,

all admissible operators have been shown in [16] to yield equivalent values for the NRCS (the so-called

universal WCA), so that we will adopt the Laplacian kernel for simplicity. For 1D surfaces, there is

no such ambiguity as all admissible second-order differential operators reduce to a second-order spatial

derivative (η′′) of the surface:

SWCA(t) = SKA(t) + i
T
Q2
H

∫
R

dx

2π
η′′(x, t) eiQHx eiQzη(x,t). (VI.41)

An alternative equivalent expression of the WCA scattering amplitude can be obtained through an inte-

gration by part, which transforms the second derivative into a square slope (η′)2:

SWCA(t) = SSSA(t)− QzT
Q2
H

∫
R

dx

2π
(η′(x, t))2 eiQHx eiQzη(x,t). (VI.42)

This formulation was found advantageous for the statistical calculation of NRCS and for the numerical

evaluation of the scattering amplitude on deterministic surfaces (because it is difficult to compute accu-

rately the second-order derivative, especially in the case of sharp crests). For simplicity we will present the
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statistical calculations pertaining to the WCA approximation for 1D linear surfaces. We actually could

derive a general analytical formulation for 2D surfaces, but its technical complexity makes it too heavy

to present in the context of this paper and is left for specific subsequent applications.

Starting from the alternative representation (VI.42) and using standard properties of Gaussian processes

recalled in Appendix A, we obtain the following expression for the field covariance function:

CWCA(t) = CSSA(t) +
2<e(BT∗)

Q2
H

∫
R
dx eiQHx

[(
Q2
zρ
′2 − σ20

2
)

e−Q
2
zS0/2 + σ20

2e−Q
2
zρ(0,0)

]
(VI.43)

+
Q2
z|T|2

Q4
H

∫
R
dx eiQHx

{[
2ρ′′(ρ′′ + 2Q2

zρ
′2) + (Q2

zρ
′2 − σ20

2)2
]

e−Q
2
zS0/2 − σ20

4 e−Q
2
zρ(0,0)

}
The first term on the right-hand side is the field covariance function arising from SSA1 (that is (IV.9)

with K replaced by B). The functions ρ′ and ρ′′ are the first two space derivatives of the covariance

function, respectively, σ20
2 = −ρ′′(0, 0) is the mean square slope and S0 = 2(ρ(0, 0) − ρ(x, t)) is the

structure function of elevations. We did not derive direct analytical solutions of fc and γ as in the KA

framework (equations (IV.12) and (IV.13)) as this was found too complicate. Instead, we computed

the time-dependent functions arising under the integral (VI.43) and evaluated the associated Doppler

spectrum through a Fourier transform, as well as its first two moments (equations II.3). See Appendix

B for numerical details. When evaluating the Doppler spectrum through a numerical time-integration

it is crucial to ensure that the time interval is large enough, in order to avoid artificial broadening of

the central peak. This might be an issue in working in experimental datasets since the coherence time

is limited. However, we ignore this effect in this theoretical study, which does not claim to simulate a

realistic field experiment. Figure 5 and 6 show the central frequency and width obtained with a Pierson-

Moskowitz (PM) sea spectrum at U19.5 = 7 m.s−1 wind speed in L band (electromagnetic wavelength

λe = 0.23 m). Superimposed are Toporkov and Brown [17] results obtained in the same conditions,

with the exact electromagnetic Method of Order Multiple Interactions (MOMI) and Monte-Carlo average

on deterministic time-evolving surfaces. (The datasets from [17] have been kindly provided to us by J.

Toporkov, with an increased number of incidence angles and statisticaly more robust computations. We

can observe an excellent agreement for both polarizations on the whole range of incidence. Again, the

central Doppler frequency is well above the free Bragg frequency, the latter being recovered at grazing

incidences. A marked polarization sensibility is apparent, with higher mean Doppler shifts in horizontal

polarization, as it is classically observed. The shift in horizontal polarization can be understood by some

qualitative arguments. The mean Doppler speed can be seen as an average of the phase speed of the

different rough facets on the sea surface, weighted by their scattering cross-section. The WCA recovers

a Bragg mechanism at large incidence, where the horizontal polarization is much lower than the vertical

one. The relative contribution of the ripples (small speed) is therefore weaker in horizontal polarization,

so that more weight is given to larger (and faster) waves in the mean Doppler speed, thus increasing the
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latter.

VII. Conclusion

This paper has investigated the characteristics of the microwave sea Doppler spectrum in the framework

of analytical electromagnetic and hydrodynamic models. Processing these models in increasing order of

complexity, we have derived the first two moments of the Doppler spectrum in the framework of the KA,

its TSM formulation and finally the WCA for linear surfaces. The most accurate model is the WCA

which is sensitive to polarization and still enjoys a statistical, numerically efficient, formulation. It is

robust to incidence and remains reasonably accurate until about 80 degrees. Doppler spectra in the

microwave regime are quite different from those observed with HF radio waves. Their central frequency is

higher than the free Bragg frequency, is polarization-dependent and has a non-monotonic behavior with

incidence. The assumption of linear seas, however, misses an important well-known characteristic of the

observed Doppler spectra, namely their broadening at large incidence angles. This will be corrected in a

companion paper, where nonlinear hydrodynamic effects will be included.
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Appendix

I. Characteristic functions and related correlators

In order to calculate statistical expressions of the Weighted Curvature Approximation and his equivalent

nonlinear one we need to evaluate complex functions of Gaussian processes. The following intermediate

results are given to help the reader who would like additional calculation steps. The braket symbols 〈.〉

means the statistical average over realisations. We suppose the surface elevation η defined by:

η(x, t) =

∫
R

√
Γ(k)eiφkeikx−i sgn(k)ωktdk (A.44)

where Γ is the well known wave number sea spectrum and where the φk are random phases. The prime

superscript means the space derivation and the “0” subscript means that quatities are taken at space and

time origins. As example, D′0 means the space derivative of the displacement D taken at t = 0 and x = 0.

η, η′, D and D′ are thus centered Gaussian processes and tedious but straightforward calculations lead to〈
eiQz(η−η0)

〉
= e−Q

2
zS0/2, (A.45)〈

η
′2eiQz(η−η0)

〉
= (Q2

zρ
′2 − σ2

2)e−Q
2
zS0/2, (A.46)〈

η
′2η

′2
0 eiQz(η−η0)

〉
=

[
2ρ′′(ρ′′ + 2Q2

zρ
′2) + (Q2

zρ
′2 − σ2

2)2
]

e−Q
2
zS0/2 (A.47)

useful for WCA statistic calculations
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II. Numerical recipees

In order to help the reader for numerical purposes, we report here some recipees that could help the

calculations of the integrals in the paper. Here, we call ”functions” all covariance functions that are

Fourier Transforms of the sea spectrum coupled with a kernel. (eg : ρ (III.6), ∂tρ (IV.15), ρ′, ρ′′, ...).

The sea surface spectrum (in wavenumber) used for these calculations is sampled over a logarithmic grid

with 28 points between 0 and five times the electromagnetic wavenumber. All spatio-temporal functions

are evaluated over a logarithmic spatial grid depending on the electromagnetic wavelength. In most of

the calculations we used 213 points between 0 and 600 times the electromagnetic wavelength (for which

the integrand of the Kirchhoff integral is vanished).

The temporal sampling of the functions is linear since we then use a Fast Fourier Transform to evaluate

the Doppler spectrum. Spatio-temporal symetries of the functions are also used in order to minimize

time calculations. The spatial integration of spatio-temporal Kirchhof integral (equations (IV.9), (VI.43),

...) is done without any tricks while the time integration is realized through the Fast Fourier Transform.

For Doppler evaluation at close nadir angles, only functions’ values at close zero lags are needed and

the processing time is very short (a time zero padding completion of C(t) in equation (II.2) is used

for numerical purpose). For higher incidence angles, larger lag values of the functions are needed for

accurate calculations. All calculations done in this paper (except MOMI results which were provided by

Dr. Toporkov) takes less than few minutes on a ordinary laptop.
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