
1  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

 
Solar Energy 
April 2018, Volume 164 Pages 301-315  
http://dx.doi.org/10.1016/j.solener.2018.02.068 
http://archimer.ifremer.fr/doc/00431/54229/ 
© 2018 Elsevier Ltd. All rights reserved   

Archimer 
http://archimer.ifremer.fr 

Nowcasting solar irradiance using an analog method and 
geostationary satellite images 

Ayet Alex 
1, 2, *

, Tandeo P. 
3
 

 
1
 Elum Energy, Paris, France  

2
 Ifremer, CNRS, IRD, UBO/Laboratoire d’Océanographie Physique et Spatiale (LOPS), UMR 6523, 

IUEM, Plouzané, France  
3
 IMT Atlantique, LabSTICC, UBL, 29238 Brest, France 

* Corresponding author : Alex Ayet, email address : alex.ayet@ifremer.fr  
 

Abstract : 
 
Accurate forecasting of Global Horizontal Irradiance (GHI) is essential for the integration of the solar 
resource in an electrical grid. We present a novel data-driven method aimed at delivering up to 6 h 
hourly probabilistic forecasts of GHI on top of a localized solar energy source. The method does not 
require calibration to adapt to regional differences in cloud dynamics, and uses only one type of data, 
covering Europe and Africa. It is thus suited for applications that require a GHI forecast for solar energy 
sources at different locations with few ground measurements. Cloud dynamics are emulated using an 
analog method based on 5 years of hourly images of geostationary satellite-derived irradiance, without 
using any numerical prediction model. This database contains both the images to be compared to the 
current atmospheric observation and their successors at one or more hours of interval. The physics of 
the system is emulated statistically, and no numerical prediction model is used. The method is tested on 
one year of data and five locations in Europe with different climatic conditions. It is compared to 
persistence (keeping the last observation frozen), ensemble persistence (generating a probabilistic 
forecast using the last observations) and an adaptive first order vector autoregressive model. As an 
application, the model is downscaled using ground measurements. In both cases, the analog method 
outperforms the classical statistical approaches. Results demonstrate the skill of the method in 
emulating cloud dynamics, and its potential to be coupled with a forecasting algorithm using ground 
measurements for operational applications. 
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Highlights 

► An novel statistical method to forecast Global Horizontal Irradiance is presented. ► Only one source 
of data is used: hourly geostationary satellite images. ► A framework to assess the quality of the analog 
method is proposed. ► The method is downscaled on a solar panel using on site measurements. 
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The physics of the system is emulated statistically, and no numerical pre-

diction model is used. The method is tested on one year of data and five

locations in Europe with different climatic conditions. It is compared to

persistence (keeping the last observation frozen), ensemble persistence (gen-

erating a probabilistic forecast using the last observations) and an adaptive

first order vector auto-regressive model. As an application, the model is

downscaled using ground measurements. In both cases, the analog method

outperforms the classical statistical approaches. Results demonstrate the

skill of the method in emulating cloud dynamics, and its potential to be cou-

pled with a forecasting algorithm using ground measurements for operational

applications.

Keywords: Satellite-derived irradiance, Short term forecasting, Analog

method, Geostationary satellite, PV

1. Introduction

In the context of a growing need for sustainable energy, the solar resource

ranks among the most promising solutions to meet this upcoming demand.

However, the intermittent nature of its production makes its integration into

an electrical grid challenging. Accurate forecasting of solar production is

essential to ensure the stability of the grid and to optimize energy consump-

tion. The main input for most solar power generation systems is Global

Horizontal Irradiance (GHI), and its accurate probabilistic and determinis-

tic forecasting is essential. The main source of variability in GHI is clouds,

and thus most GHI forecasting algorithms aim at predicting cloud dynamics.

The best performing method for GHI forecasting depends on the forecast
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horizon (see the reviews Heinemann et al., 2006; Diagne et al., 2013). For

intra-hour forecasting, machine learning methods (Marquez et al., 2013) or

on site cloud tracking methods (Marquez and Coimbra, 2013) have been

developed, while for more than six hours ahead and day ahead forecasts,

Numerical Weather Prediction (NWP) forecasts are generally used as the

primary source of information (Mathiesen et al., 2013; Thorey et al., 2015).

Using satellite images provides information on horizontal cloud structures

and has proven to be efficient for the intra-day horizon (see the recent re-

view by Yang et al., 2018). The widely studied cloud motion vector methods

(Hammer et al., 1999; Lorenz et al., 2004; Escrig et al., 2013) estimate a

motion field from successive cloud satellite images and produce a forecast

by advecting the clouds. The main drawback of these methods is the need

for post-processing to take into account cloud dissipation and deformation.

Numerical weather prediction models are another option, but require a well

tuned regional atmospheric model (Mathiesen and Kleissl, 2011; Perez et al.,

2010). However, to satisfy a forecasting demand for a large number of sites

at different locations where ground observations are sparse, a robust and

easy-to-use method is still needed.

The analog method, first introduced by Lorenz (1969), has gained renewed

interest over the last few years, due to the availability of huge data sets

and its computational efficiency. In particular, atmospheric analogs using

ground radar data are used for precipitation nowcasting (Panziera et al., 2011;

Atencia and Zawadzki, 2015). For a given observation of the atmosphere,

analogs are past atmospheric states with an evolution which is assumed to

be similar to that of the observed state. The forecast is issued by first running
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a k-nearest neighbor algorithm on a historical data set of atmospheric states,

finding the nearest neighbors to the observed state vector (the analogs). The

past evolution of the analogs (called the successors) gives the prediction. The

physics of the system is thus contained in the analog-successor pair, which

is a real state of the atmosphere. Finding analogs with similar evolution to

that of the current atmospheric state implies using a large historical data set

(Van den Dool, 1994), and choosing an appropriate horizontal spatial domain

over which analogs are compared to the observation (Root et al., 2007). For

instance, a strong orographic forcing (as in Panziera et al. 2011), ensures a

link between different atmospheric variables over a reduced region and helps

identify good analogs by looking at cloud structures only in this domain.

In general, the choice of the domain is crucial to constrain the problem

such that only meaningful information is considered to identify analogs (see

Lguensat et al. 2017 for a detailed discussion on local versus global analogs).

Adding a temporal constraint to the analog selection, i.e. considering past

states that are at the same phase of a diurnal and/or seasonal cycle as the

observation (e.g. Atencia and Zawadzki 2015), is also an additional way

to improve the quality of the analogs. Finally, the method is sensitive to

the choice of the features on which the analogs are selected. Indeed, both for

computational efficiency and to avoid overfitting, it is convenient to compress

the state vectors in a space of reduced dimension (the feature space) before

running the k-nearest neighbor algorithm. Features represent the information

determining atmospheric evolution and are another way to constrain the

problem. However, as pointed out by Atencia and Zawadzki (2015), it is

difficult to evaluate the quality of a given choice of features other than by
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testing different configurations.

In the context of GHI forecasting, analog methods have been developed us-

ing a combination of ground measurements and NWP outputs. The aim of

the methods is not to emulate atmospheric dynamics, as for precipitation

nowcasting methods, but rather to apply a post-processing to NWP fore-

casts using a historical data set. The Pattern Sequence-based Forecasting

method, introduced by Alvarez et al. (2011) and further developed by Wang

et al. (2017) uses the aforementioned information as an input of a clustering

algorithm. A unique label is assigned to each day of the data set. The last

few observed labels define a temporal pattern, and similar past occurrences

of this pattern are retrieved from the historical data set, providing a forecast

for the next day. Hourly forecasts of GHI are performed in (Alessandrini

et al., 2015) using past NWP outputs as features to identify analogs to a

current NWP forecast. The concurrent past observations and successors are

then used as an ensemble, providing a probabilistic forecast of GHI in place of

the NWP forecast. Note that this method has been further combined with a

neural network (Cervone et al., 2017), also used in the context of nowcasting

by Aguiar et al. (2015).

Both GHI and precipitation prediction methods require cloud forecasting.

There are, however, two fundamental differences between the analog meth-

ods used for precipitation nowcasting (Panziera et al., 2011; Atencia and

Zawadzki, 2015) and for GHI forecasting (Alvarez et al., 2011; Alessandrini

et al., 2015). First, the type of data is different. Global Horizontal Irradi-

ance analog methods use NWP outputs to identify analogs, as opposed to

only measurements for precipitation nowcasting. Outputs from NWP have
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the advantage of providing different variables apart from GHI (e.g. ground

temperature, pressure, wind speed) that can be used as features to identify

analog situations. However, they require a well tuned regional atmospheric

model over the region of interest, i.e. which contains all the relevant physi-

cal processes governing GHI variability over a given region. Apart from the

computational cost of tuning and running such a model, a correct represen-

tation of the physics can be challenging in specific regions, for instance close

to a mountain range. Precipitation nowcasting methods, by using only mea-

surements to identify analogs, emulate the physics governing GHI variability

with a statistical model (the k-nearest neighbor algorithm), and do not rely

on any physical parametrization of the atmosphere. Using outputs from a

well tuned NWP model usually guarantees better performances at longer

lead times (beyond 6h).

The second difference is the type of information used to identify analog situ-

ations. The GHI forecasting methods presented above are based on temporal

patterns: temporal sequences of NWP outputs above a given site are used,

and additional information is added by using the different variables of the

NWP models. On the other hand, using ground radar data or satellite-

derived irradiance maps means using mainly spatial patterns to find similar

physical situations (even-though temporal information can also be included

by looking at sequences of images). Note that spatial information has been

used for GHI forecasting using a gridded output of an NWP model by Davò

et al. (2016).

In this paper, we present a methodology based on the analog method to

forecast GHI over a solar energy source. Analogs are identified by compar-
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ing spatial cloud patterns from hourly images of satellite-derived irradiance.

These are easily available over Europe and Africa, and no additional data are

used. The method needs no calibration of physical parameters to adapt to

different climates. It is inspired from precipitation nowcasting analog meth-

ods, while carefully addressing the points highlighted above: the choice of

the spatial domain is automatic and physical, and the choice of the features

is carefully tested within a novel framework. In Section 2, we present the

satellite and ground data. The analog algorithm is described in detail in

Section 3. Section 4 presents a novel framework to evaluate the validity of

the selected analogs, justifying some of the choices made in the methodology.

Three reference statistical methods are then presented in Section 5, to which

the analog method is compared in terms of standard forecasting scores in

Section 6. Finally, a short overview of a simple downscaling method using

additional ground measurements is presented in Section 7. Conclusions and

perspectives are presented in Section 8.

The outputs of the algorithm and the code used to generate the figures are

available freely on https://github.com/AAyet/analog-solar-forecasting.

2. Data pre-processing

In this Section, we present the satellite and ground data used in this study.

We then introduce the variable of interest, the cloud index, that is forecasted

by the analog method.
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Nomenclature

G global horizontal irradiance (W m−2)
Gclr clear sky irradiance (W m−2)
c cloud index
t time (one hour resolution)
d day of year
h hour of day
c cloud index
(x, y) latitude and longitude of satellite-image pixels
(xs, ys) latitude and longitude of a site satellite-image pixel
DVI daily variability index
DCI daily clearness index
Cm daily temporal correlation map of cloud index
Cp

n spatial correlation between n-th analog and observation
C∗n optimal spatial correlation for the n-th analog
wn analog weights
co observed cloud index
ĉ forecasted cloud index
A analog design matrix
S successor feature matrix
W analog weights matrix
B linear regression coefficients
rn linear regression residuals
σ standard deviation of the forecast
p̄(s,d)(l) average probability of the most probable cluster transitions
X VAR(1) method design matrix
y VAR(1) method endogenous variable
Bar VAR(1) method linear regression coefficients

2.1. Satellite and ground data

The Ocean and Sea Ice Satellite Application Facility (OSI SAF), almost in

real time, develops, processes and distributes products related to key param-

eters of the ocean-atmosphere interface, that can be accessed free of charge
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(http://www.osi-saf.org). To demonstrate the algorithm, we used an archive

of 18, 521 images of satellite-derived GHI obtained from the Meteosat Sec-

ond Generation geostationary satellites covering Europe and Africa (Brisson

et al., 1999; Le Borgne et al., 2004, 2011). The images were remapped on a

regular grid of 0.05◦ and interpolated to produce hourly maps. The archive

extended from Sept. 6th, 2011 to Dec. 31st, 2016. We used the year 2016 as a

test year and the rest of the archive as the training set. Aerosols are the main

source of errors in satellite observations. This is corrected by OSI SAF with

a deterministic global correction varying in latitude and period of the year,

without accounting for Saharan dusts. There is no site adaptation and the

correction is not parameterized by the soil albedo, which varies mainly with

orography. Moreover, systematic errors occur in the mid-latitudes. Although

satellite information has good spatio-temporal sampling, ground measure-

ments are needed to avoid specific atmospheric contamination.

The method was tested at the location of five stations of the Baseline Sur-

face Radiation Network (BSRN, Ohmura et al., 1998) where pyrgeometer

measurements are available. The stations are shown in Fig. 1 (a) and are

described in detail in Table 1. They cover the wide range of climates required

to test the robustness of the method to local variations in cloud dynamics.

The climatic difference between the sites is investigated further in Sec. 2.3.

The algorithm is tested considering the observed satellite value of GHI to

be the reference truth. In Section 7 the ground measurements are also used

to present a simple downscaling method as a simple extension. Note that

in the following, the Payerne ground data will not be used, due to a lack of

historical measurements.
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Station Latitude Longitude Altitude (m) Climate

Palaiseau (France) 48.713 2.208 156 Continental

Carpentras (France) 44.083 5.059 100 Mediterranean

Camborne (England) 50.217 -5.317 88 Oceanic

Payerne (Switzerland) 46.815 6.944 491 Semi-continental

Cener (Spain) 42.816 -1.601 471 Oceanic

Table 1: Selected BSRN stations with corresponding latitude, longitude, altitude and

climate.

2.2. Cloud index and clear sky irradiance

Satellite-derived GHI, noted as G (see Fig. 1 (a) for an example), can be

decomposed into two contributions: clear sky irradiance Gclr, the radiation

received by the ground in the absence of clouds, with a deterministic diurnal

and seasonal cycle, and cloud cover, a negative contribution which is the

main source of unpredictability of GHI. Cloud cover is represented by the

cloud index c varying between zero and one such that

G = (1− c)Gclr. (1)

Clear sky irradiance Gclr is usually computed using a clear sky model (e.g.

the Ineichen and Perez model (Perez et al., 2002), the Heliosat method

(Cano et al., 1986; Hammer et al., 2003), or the Frouin and Chertock (1992)

parametrization, used by OSI SAF). It uses a deterministic formula account-

ing for the diurnal and seasonal variations in the solar zenith angle together

with an aerosol climatology. In this paper, for simplicity, we do not use such

deterministic formulations for Gclr. Instead, for a given day and hour (d, h),
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Gclr is computed by taking the maximum GHI in the satellite database for

data within a 3-month interval S(d, h) around (d, h) such that

Gclr(d, h, x, y) = max
t∈S(d,h)

G(t, x, y). (2)

An example of a cloud index map obtained with this clear sky model is

presented in Fig. 1 (b).

This simplistic model omits some features of the real atmospheric irradiance,

such as cloud enhancement events (Inman et al., 2016), where GHI is en-

hanced as compared to a cloud-free situation due to the presence of clouds.

These events induce an overestimation of the clear sky irradiance in Eq. (2).

An evaluation of the quality of the simplistic clear sky model was done by

comparing it to the Ineichen and Perez model, implemented with a monthly

climatology of Linke turbidity (describing the optical thickness of the atmo-

sphere due to both the absorption by water vapor and the absorption and

scattering by aerosol particles relative to a dry and clean atmosphere). The

clear sky model (2) was trained over the historical data set of satellite-derived

irradiance as defined in the previous subsection (from 2011 to 2015), and it

was compared to the prediction of the Ineichen and Perez model over the

year 2016 (the test data set). We used the Mean Bias Error and the Root

Mean Squared Error, defined in Sec. 6.2. Results are presented in Table 2.

The simplistic clear sky model has a negative bias, which is low with respect

to the RMSE as a result of the cloud enhancement events.

Such a simplistic model was used since the main goal of the paper is to

assess the skill of the analogs to emulate cloud dynamics, i.e. at forecasting

the cloud index. The scores presented in Section 6 have been computed
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Station MBE RMSE

Palaiseau -72 124

Carpentras - 78 121

Camborne - 70 124

Payerne - 35 98

Cener - 76 117

Table 2: Mean Bias Error (MBE) and Root Mean Squared Error (RMSE) in W m−2

between the estimated clear sky value from Eq. (2) and the Perez and Ineichen model.

in terms of GHI, but similar results have been observed when computed in

terms of cloud index, revealing that their interpretation is not biased by the

clear sky model errors. This model thus provides a sufficiently good data set

of cloud index maps to test the validity of the proposed method.

2.3. Climatic description of the sites

One of the main goals of the present work is to assess the robustness of

the analog method to different climatic situations. To further investigate the

difference in climate between the different BSRN sites, we used the simplified

framework presented in Huang et al. (2014) and originally introduced in Stein

et al. (2012).

Two daily indices are computed over the whole data set, the Daily Variability

Index (DVI)

DVI =

∑n
i=2 |G(ti, xs, ys)−G(ti−1, xs, ys)|∑n

i=2 |Gclr(ti, xs, ys)−Gclr(ti−1, xs, ys)|
(3)
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Figure 1: (a) OSI SAF Eumetsat satellite-derived GHI image with selected BSRN stations;

(b) cloud index obtained after applying Eq. (1) to (a), on July 2nd, 2016.

and the Daily Clearness Index (DCI)

DCI =

∑n
i=1G(ti, xs, ys)∑n

i=1Gclr(ti, xs, ys)
, (4)

where (ti)i∈{1,...,n} is the set of times in a given day (with an hourly temporal

resolution). Note that one DVI and one DCI value are computed per day in

the data set, as opposed to one per day of one year in the case of clear sky

irradiance.

Daily Clearness Index measures the average GHI relative to clear sky for a

given day, and is between zero and one, while the DVI measures its variability,

and is positive. The combination of both indices allows us to distinguish

between three types of days: overcast days, with a DCI close to zero and a
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DVI lower than one, intermittent days, with a higher DCI and a DVI higher

than one, and clear days, with a DCI and a DVI close to one (see Fig. 2 of

Huang et al. (2014) for more details).

The Probability Density Function (PDF) of both indices is then estimated

using a Gaussian kernel density estimation method, where the bandwidth

is estimated using Scott’s rule (Scott, 2015). The resulting PDFs are pre-

sented in Fig. 2, using ground measurements or satellite-derived irradiance

to compute the indices.

There is a clear difference between the different sites, that is visible both

from satellite-derived irradiance (Figs. 2 (a) and (b)) and ground measure-

ments (Figs. 2 (c) and (d)). Palaiseau and Camborne exhibit similar PDFs,

indicating a high proportion of variable and overcast days. Carpentras and

Cener show an opposite behavior, with a higher proportion of clear days,

even-though the DCI of those sites is different, showing that Cener has a

higher proportion of overcast days than Carpentras. The Payerne site (for

which ground measurements are unavailable), shows in-between characteris-

tics. Overall, the five different sites have a different proportion of overcast,

intermittent and clear days, indicating different climates.

3. The analog method

3.1. Overview of the method

In this section we present the analog method as implemented in this work..

To forecast the cloud index over a given site (a pixel of a satellite-derived
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Figure 2: Estimated probability distribution function (PDF) of [(a), (c)] DVI and [(b), (d)]

DCI for the selected BSRN sites; (a) and (b) are from one pixel satellite-derived irradiance

while (c) and (d) are from ground pyrogeometer measurements.

irradiance map), the method requires a current observation of the cloud

structures from which the forecast is made (a cloud index map around the

pixel of interest) and a historical or training data set (a set of past cloud

index maps around the pixel of interest). The method is divided into three

steps.

The first step is the selection of the closest analogs to the current observation,

through a k-nearest neighbor algorithm. This implies two sub-steps. Given

a site over which the forecast is made, a set of neighboring pixels is first
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constructed. These pixels are those with maximal information explaining the

variability in the cloud index of the considered site. They define a correlation

mask around the considered site, the size and shape of which depend on the

day of the year under consideration (due to the seasonal variation of the

cloud structures). To forecast the cloud index over a site for a given day of

a year, only the pixels within the mask are considered, both for observation

and for the training data set.

The resulting reduced images are then compressed into four features, that

represent physical attributes of the cloud structures. The k-nearest neighbors

(the analogs) to the observation are then retrieved: in the four-dimensional

feature space, they are the closest images to the observation in terms of

Euclidean distance. The compression into four features aims at both avoiding

the ”curse of dimensionality” due to the high number of pixels contained in

the masks, and at including physical reasoning in the algorithm. The choice

of the features can seem arbitrary, and is thus further investigated in Section

4.

The second step is the generation of a prediction ensemble from the selected

analogs. It consists of a set of possible forecasts, weighted according to

their reliability. Since the aim of the method is to forecast the cloud index

over a precise pixel, the analogs are first spatially translated to match the

observation as closely as possible. The resulting translated images are then

weighted as a function of their correlation with the observation: a higher

correlation is interpreted as a more reliable analog and thus has a higher

weight. The ensemble of predictions is thus the ensemble of successors (the

images that were observed l hours after the analogs, l being the lead time of
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the forecast), translated and weighted in the same way as the corresponding

analogs.

The last step is to aggregate the ensemble in order to estimate a PDF of the

forecast. Under the assumption that the PDF is Gaussian, the estimation

is made through a weighted linear regression between the analogs and the

successors. The aggregation method, called local linear regression in the

context of analog methods, is known for its robustness to small data sets and

for handling non-linearities.

The method has one critical parameter, which is the number k of analogs

selected in the first step. The determination of the optimal number of analogs

is presented in Sec. 6.1. In the rest of the section, each of the steps of the

method is explained in more detail.

3.2. Correlation mask

For a given site of coordinates (xs, ys), it is crucial to automatically select the

zone in which the analogs are sought. In the case of precipitation forecasts

(Atencia and Zawadzki, 2015; Panziera et al., 2011), a rectangular window

is selected manually according to the scale of the structures to be forecasted

and the bottom boundary forcing (mainly orographic). It is, however, es-

sential for the method to have an automatic zone selection. In Dambreville

et al. (2014), inter-correlation maps between the pixel of interest and the

surrounding region are computed. It is shown that using them to select the

pixels to be used in a spatio-temporal auto-regressive model improved the

forecasting skills as compared to a simple squared zone selection. Here, we

17



proceed similarly, computing a daily temporal correlation map Cm (for a day

d) between the pixel of interest (xs, ys) and the surrounding region using a

metric inspired by Zawadzki (1973)

Cm(d, x, y) =
c(t, xs, ys)c(t, x, y)

d[
c(t, xs, ys)2

d
c(t, x, y)2

d
]1/2 , (5)

where the averages · d are temporal within a 3-month interval around d. An

example of such a map is shown in Fig. 3 (a).

Figure 3: (a) Example of a correlation map for the Palaiseau site (white dot); (b) corre-

lation masks for the different BSRN sites (red dots) for Jan. 1st (full line) and Jul. 1st

(dashed lines).

The Cm metric is more suited to cloud forecasting than a standard Pearson

18



correlation (where the mean cloud index is subtracted in each of the factors),

since it accounts for only the cloud structures (i.e. pixels where the cloud

index is non zero) in the correlation. It gives a measurement of the mean

geographical extension of the structures around the site pixel. For a given

map, the region where the correlation is higher than 0.9 is selected. However,

this can lead to unrealistic masks, where geographically distant regions can

be artificially selected together. A segmentation algorithm (based on the

watershed algorithm, e.g. Soille and Ansoult, 1990) is applied to select a

connected component containing the site. Overall, we also set a minimal

number of pixels that must be contained in the mask. Fig. 3 (b) presents

the masks for the different BSRN stations, for two different days of the year.

The summer masks tend to be smaller than the winter masks, reflecting a

change in synoptic regimes. Note also the link between the mask contour

and the orography for the Cener, Carpentras and Payerne sites.

3.3. Analog selection

Selecting correct analogs means identifying past atmospheric situations where

cloud structures are similar to the current observation, and the evolution of

which in the past (the successors) is representative of the future evolution

of the hindcast. The aim is thus to find similar cloud regimes, i.e. cloud

structures that evolve in a similar way. Since the identification of similar

cloud regimes does not rely on the details of the cloud structure at a given

time, the analog selection is performed considering images compressed in a

four dimensional space (feature space). This also has the advantage of avoid-

ing overfitting and being computationally efficient. We thus first describe
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how the features are defined, and then give details on the k-nearest neighbor

algorithm used to select the analogs.

3.3.1. Feature extraction

For a given cloud index image in a given daily mask, its cloud index histogram

contains crucial information on the structure of the clouds. It is often bi-

modal, with its lower peak corresponding to ”clear sky” pixels, and its higher

peak to ”cloud” pixels. Here, we make the assumption that histograms dis-

criminate between different cloud regimes. This assumption requires that

the dynamics of the clouds observed in the correlation mask are constrained

enough, hence the importance of having a correct mask that selects only

meaningful information. The validity of the assumption also depends on

how constrained the weather for a given site is, for instance by orographic

forcing and/or predictable synoptic weather patterns.

The four features described below are thus meant to differentiate images with

different cloud histograms. The first step in the definition of the features for

a given cloud index image is to separate the clear sky from the cloud pixels by

finding a cloud index threshold separating the two modes (e.g. Fig. 4). This

is done by using Otsu’s method (Otsu 1979, similar to a bimodal Fisher’s

discriminant analysis of a histogram of cloud index). The image is then

compressed into four features the values of which range from 0 to 1:

1. the cloud fraction, or number of cloud pixels over the total number of

pixels in the mask

2. the cloud spread, or number of cloud pixels over the number of pixels in
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the convex hull of the clouds (one when only one cloud and zero when

many separate clouds)

3. the clear sky intensity, or mean cloud index of the clear sky pixels

4. the cloud intensity, or mean cloud index of the cloud pixels.

Note that a principal component analysis has been performed on the his-

torical data set, resulting in the cloud fraction feature being correlated with

the first principal component. This consolidates a fact already mentioned in

Panziera et al. (2011).

3.4. k-nearest neighbor algorithm

Given an observation for which analog situations are found, the full histor-

ical data set of potential analogs is first reduced by imposing a temporal

constraint. Following the method used by Atencia and Zawadzki (2015),

only analogs within a time of the year (3-month window) and time of the

day (±3h) interval are considered. A minimal 24h lag between two cho-

sen analogs is also imposed. This increases the likelihood of finding similar

convective and advective patterns. It also increases the robustness of the

method to different geographical locations. Then, the k-nearest neighbors

are selected, based on a Euclidean distance in the four dimensional feature

space, in which the images are mapped. As described in Section 6, for the

BSRN sites of this study, the optimal number of neighbors is close to 80.
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Figure 4: (a) Histogram of cloud index from image (b) on the 2nd of July 2016 at Payerne.

The cloud threshold in full black line in (b) corresponds to the dashed line in (a).

3.5. Ensemble generation

Given a set of analog-successor pairs corresponding to an observed cloud

index image, the next step is to create a forecast ensemble, i.e. a set of

possible outcomes, weighted by their reliability.

The analogs have been found on the basis of features that do not depend

on the details of the observed cloud structures. To improve the accuracy

of the single-pixel forecast, the first step is to match the cloud structures

of the analog cloud irradiance maps with those observed. The k analogs

are thus spatially translated to match the observation. This translation is

performed by maximizing a correlation metric between the analogs and the

current observation. For a translation (∆x,∆y) of the analog image, the

spatial correlation Cpn between the n-th translated analog and the observation

is

Cpn(∆x,∆y) =
< co(x, y)can(x+ ∆x, y + ∆y) >

[< co(x, y)2 >< can(x+ ∆x, y + ∆y)2 >]1/2
, (6)

where co and {can}n∈{1,..,k} are respectively the observed and analog cloud

index images (in the mask) and < · > is a spatial average over the mask.

We use an optimization procedure to find the translation that maximizes
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Cpn defined in Eq. 6. The optimal translation is then used to compute the

maximum correlation noted as C∗n. Note that the procedure does not allow

information that was initially outside the mask to be translated to the site

pixel (xs, ys).

Since the translation is performed within the correlation mask, we can as-

sume that the translated cloud structures will evolve similarly to the original

structures. The successors are thus translated with the same optimal dis-

placement as their corresponding analogs. The forecast ensemble is then

created by considering the translated successors as a set of possible out-

comes, their reliability being measured by C∗n. The more a translated analog

is correlated with the truth, the higher the weight of the analog-successor

pair in the forecast ensemble. A simple exponential kernel (e.g. Lguensat

et al. 2017) is chosen for the weights

wn ∝ exp

(
C∗n
λ

)
, (7)

where λ is the median of the C∗n. In Fig. 5, we compute the mean over the

test year of the correlation given in Eq. (6) between the observed field and

the successors at different lead times of: the best analog after the k-nearest

neighbor selection, after translation, and after reordering the analogs with

the weights defined in Eq. (7). It shows that each of the steps increases the

correlation of the analogs with the truth.

3.6. Aggregation of the ensemble

The previous step provides a weighted ensemble of forecasts with weights

wn. The ensemble is then aggregated to estimate the PDF of the forecast.
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Figure 5: Mean correlation over the test data set between current observations and best

analog-successor for different lead times. Three strategies are studied: the best analog

without translation (dotted-dashed), the best analog with translation (dotted) and the

best translated analog with respect to the weights given in Eq. (7) (full line).

We use a local linear aggregation operator (Cleveland, 1979) to estimate the

mean and the standard deviation of the forecasted PDF, assuming that it is

Gaussian. This operator makes an efficient use of small data sets and reduces

biases. Fig. 6 presents a schematic of the forecasting operation:

1. a weighted least square regression B is fitted between the analogs can

and the successors csn. The dimension of the analogs is first reduced

by using a Principal Component Analysis (PCA) on the set of analog

images, as prescribed by Lguensat et al. (2017), to avoid overfitting.

Principal Component Analysis finds a set of orthogonal vectors (set
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to five in the present study) that explains most of the variance in the

considered images, on which the data is projected.

2. the regression operator is then applied to the current observation co

(compressed in the same space as the analogs) to obtain the mean of

the estimated PDF ĉ

ĉ = Bco (8)

3. the standard deviation of the PDF is given considering the weighted

standard deviation of the residuals rn = csn −Bcan

σ2 =
1

1−
∑k

n=1w
2
n

k∑
n=1

wn (rn − r)2 (9)

where r is the weighted mean of the residuals.

Figure 6: Schematic of the aggregation procedure: probabilistic forecast using a local

linear regression B on selected analogs and successors.

25



For comparison, we have also used (not shown) a locally constant opera-

tor, a special case of the local linear operator where the weighted mean and

standard deviation of the successors is considered, without any linear regres-

sion. This simple procedure is described in detail in Lguensat et al. (2017).

The local linear operator has proven to be the most efficient, based on the

performance criteria described in Section 6.

4. Evaluation of the quality of the analogs

The choice of the features and distance used to select the analogs is crucial

for the performances of the algorithm. In this work, the constraint of using

only one source of data with sufficient history in many geographical locations

(maps of satellite-derived irradiance), has led to the heuristic choice of fea-

tures presented in Section 3. An automated selection of the features could

also have been performed, using for instance principal component analysis on

maps of satellite-derived irradiance as in Davò et al. (2016) or Foresti et al.

(2015). In the present method, a physics-based choice of features has been

preferred over a data-based choice.

Using a time-lagged embedded state vector (i.e. considering images at pre-

vious time steps in addition to the current observation) to determine cloud

regimes is another classic choice. Embedded vectors have been recently used

in the frame of the Nonlinear Laplacian Spectral Analysis (NLSA) to forecast

the Madden Julian Oscillation index by means of analogs (Alexander et al.,

2017). However, since GHI images are available only for daylight hours,

constructing embedded states is not optimal. In addition, the low temporal

26



resolution of the images decreases the precision of any method estimating

a temporal change in cloud structures. Still, the algorithm has been tested

considering an estimation on the mean displacement of clouds from two suc-

cessive images as additional features. The average score of the algorithm

decreased on different sites with respect to the algorithm presented above

(not shown). These additional features made the method less robust to dif-

ferent sites, since the estimation of cloud motion is also difficult due to cloud

deformation, especially in the presence of a strong orographic forcing.

As mentioned in the introduction, it is difficult to assess the quality of a

given set of features and distance used to select the analogs. A simple test,

suggested in Van den Dool (1994), considers analogs as valid if they are

closer to the observation than a climatology (in the four dimensional features

space). This was done (not shown), with an hourly climatology, yielding

positive results. Another quality test is proposed herein, by providing some

insight into the physical meaning of the features. It aims at quantifying if

temporal patterns of cloud structures can be easily discriminated in the four-

dimensional feature space. If the features and the distance are well chosen,

initial images of similar temporal patterns should be grouped in well defined

clusters in feature space (with respect to the chosen distance). Cloud regimes

(similar-evolving cloud index fields) can then be identified in relation to the

clusters.

The methodology used to define clusters is similar to that used in Wang et al.

(2017) in the context of the Pattern Sequence-based Forecasting method. We

first define a finite set of clusters using a k-mean algorithm (Lloyd 1982) on

the historical data set of features for a given site. It is defined for each day
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of the year, which corresponds to a different mask, and thus different values

of the features. The optimal number of clusters is obtained by maximizing

the silhouette score (Rousseeuw, 1987). It is defined as the average of (b −

a)/max(a, b) over all the points in the feature space, with a the mean distance

between a point and all other points in the same cluster, and b the mean

distance between a point and all other points in the next nearest cluster.

The score is bounded between -1 for incorrect clustering and +1 for highly

dense clustering. Scores around zero indicate overlapping clusters.

An example of clustering for the Palaiseau site is given in Fig. 7, for Jan. 1st.

The optimal number of clusters for this particular day is five. We can inter-

pret the different clusters by their cloud structures: red for small and isolated

clouds, cyan for large and dense clouds, green and blue for intermediary sit-

uations, yellow when the whole mask is covered by dense clouds. Table 3

presents the mean (over all the days of the year) optimal number of clusters

and the associated mean silhouette score for the different sites. Palaiseau and

Camborne display similar characteristics, with a low mean silhouette score

and a high number of clusters.

The remaining question is to link the clusters to cloud regimes. More pre-

cisely, we look at how the states in a given cluster evolve in time looking at

the transitions between the different clusters. For a given site s and day d

to which corresponds an optimal set of clusters, we compute the transition

matrix between the clusters, i.e. the set of probabilities of an image being

in a cluster j knowing that it was in a cluster i, l hours before, denoted
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Figure 7: Scatter plots of the different features, with colors corresponding to five clusters

obtained with a k-mean algorithm, for the Palaiseau site, on Jan. 1st. All the axes range

between zero and one.

p(s,d)(j|i, l). We then obtain the mode of this distribution by

p∗(s,d)(i, l) = max
j
p(s,d)(j|i, l) (10)

and compute the weighted average of the modes defined in Eq. (10) over all

the clusters and for a given lead time l as

p̄(s,d)(l) =
∑
i

p(s,d)(i)p
∗
(s,d)(i, l). (11)

where p(s,d)(i) is the probability of being in cluster i. Table 4 presents the

averages of p̄(s,d)(l) over all the days of the year d, along with its standard
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Station Number of clusters Score

Palaiseau 5.0 (0.9) 0.38 (0.02)

Carpentras 3.5 (0.5) 0.46 (0.02)

Camborne 4.2 (1.0) 0.37 (0.03)

Payerne 3.8 (1.1) 0.44 (0.03)

Cener 3.1 (0.4) 0.41 (0.03)

Table 3: Mean optimal number of clusters and mean silhouette score for the BSRN sites.

The standard deviation is between brackets.

deviations, for the different sites. We see again that the Palaiseau and Cam-

borne sites have the worse scores, meaning that there is no clear most prob-

able transition between clusters. On the contrary, the mean probabilities for

the Cener site are higher with a low confidence interval. Thus, we can expect

better performances for this site.

Station +1h +2h +3h +4h +5h +6h

Palaiseau 0.78 (0.07) 0.67 (0.08) 0.59 (0.08) 0.55 (0.07) 0.52 (0.08) 0.48 (0.16)

Carpentras 0.82 (0.04) 0.74 (0.06) 0.69 (0.07) 0.65 (0.08) 0.55 (0.13) 0.58 (0.16)

Camborne 0.81 (0.05) 0.70 (0.07) 0.63 (0.08) 0.58 (0.08) 0.55 (0.13) 0.49 (0.17)

Payerne 0.85 (0.04) 0.77 (0.06) 0.71 (0.07) 0.66 (0.08) 0.62 (0.09) 0.57 (0.16)

Cener 0.84 (0.03) 0.76 (0.04) 0.70 (0.05) 0.66 (0.05) 0.63 (0.05) 0.61 (0.06)

Table 4: Mean probabilities and associated standard deviation (between brackets) of states

that follow the most probable path between clusters in the training data set.
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5. Reference methods

The analog method is compared to three reference statistical methods, pre-

sented in this section.

5.1. Persistence

The first method is a clear-sky adjusted persistence. The last observed cloud

index is used as a forecast. It is converted back to GHI using the clear

sky irradiance predicted at the time of the forecast. This method provides

a deterministic forecast and is used as the reference method to evaluate

deterministic forecasts.

5.2. Persistence ensemble (PeEn)

The second method is an extension of the persistence method which is com-

monly used (e.g. Alessandrini et al., 2015) to generate probabilistic forecasts:

the persistence ensemble (PeEn) method. The last 20 observations for each

site from the past 20 days at the same diurnal hour are considered as an

ensemble of forecasts. A cumulative distribution function of the forecast ĉ

can then be estimated from the ensemble cei

P (ĉ < c) =
1

n

n∑
i=1

1(cei < c) (12)

with n = 20 the size of the ensemble and 1 the indicator function.
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5.3. Adaptive vector-autoregressive model (VAR(1))

The third method is an “adaptive” order-one vector auto-regressive model,

denoted as VAR(1). Non adaptive VAR models (Box et al., 1970) are com-

monly used in the literature for GHI forecasting (e.g. Dambreville et al. 2014;

Alessandrini et al. 2015). The version presented here is more sophisticated

and is a special case of the analog method, in which the local linear regres-

sion is performed considering the whole reduced historical database (without

analog selection or weighting).

The VAR method predicts a given time series by means of a linear regression.

For a given day d, the exogenous variables are the values of GHI in the pixels

contained in the day d mask. To build the design matrix X(d), only the

images in the training data set within a ± 45 day window around d are

considered

Xi,j(d) = c(ti, xj, yj) (13)

with (xj, yj) the set of coordinates in the day d mask, and ti the set of times

in the ± 45 day window.

The endogenous variable y is the cloud index value observed at the pixel con-

taining the site of interest (xs, ys), l hours after the initial observation

yi(d, l) = c(ti + l, xs, ys) (14)

The model is an ensemble of 2, 190 linear regressions Bar(d, l): one per day

and per lead time, such that

‖y(d, l)−X(d)Bar(d, l)‖ (15)
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is minimized, where ‖·‖ is the Frobenious norm. A “global” Auto-Regressive

model has also been tested, fitting a unique model for each location and for

each lead time, totaling 6 linear regressions per site (as in the literature).

Results are worse than for the adaptive VAR(1) model, especially at low

lead times. These are not shown here for clarity.

The VAR(1) model also provides a probabilistic forecast, by computing a

variance in the forecasted index using the residuals, as presented in Eq. (9)

for the local linear operator. This method will thus be used as a reference

for the evaluation of probabilistic forecasts in the following.

6. Numerical experiment

In this section, we evaluate the performance of the analog nowcasting method

using different classic scores, and comparing it to statistical methods. We

also discuss the optimal number of analogs for each site. The method is also

improved by a simple bias correction of the forecast.

6.1. Experiment set-up

As mentioned in Section 2.1, a data set of 18, 521 hourly images of satellite-

derived GHI (from Sept. 6th, 2011 to Dec. 31st, 2016) is split into two parts.

The training set extends from Sept. 6th, 2011 to Dec. 31st 2015. The year

2016 is the test set, over which the performances of the algorithms presented

below are evaluated.

A key parameter in the analog algorithm is the number of analogs k. Its

optimization is done by cross-validation on the training data set. The Root
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Mean Squared Error (presented below) is then computed as a function of

the number of analogs. Results (not shown) indicate an optimal value close

to k = 80 analogs for the five sites. The performance of the algorithm is

robust to slight changes in RMSE, and one can safely choose the number of

analogs to be 80 for different sites. Note that also in other papers on analog

methods (Panziera et al., 2011; Atencia and Zawadzki, 2015; Alessandrini

et al., 2015), the number of analogs is empirically chosen depending on the

situation of interest.

6.2. Reference scores

Hereinafter, ĉ corresponds to the statistical forecast (for instance, from the

analog method) and co is the observed cloud index from a satellite image at

the location of the considered site, considered to be the reference truth. We

evaluate the performance of the deterministic forecast of our methodology

over a set of validation observations S of cardinality |S|, using the Mean

Biased Error (MBE)

MBE =
1

|S|
∑
i∈S

ĉi − coi (16)

the Root Mean Square Error (RMSE)

RMSE =

√
1

|S|
∑
i∈S

(coi − ĉi)2 (17)

and the Mean Absolute Error (MAE)

MAE =
1

|S|
∑
i∈S

|coi − ĉi|. (18)
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We also compute the forecast skill (FS) in terms of RMSE, to measure the im-

provement of the forecast model with respect to the persistence model

FS = 1− RMSE

RMSEp

. (19)

The RMSE is more severe in the evaluation of the performances of the algo-

rithm since it is a quadratic score, but, as advocated by Alessandrini et al.

(2015), we also present the MAE here, since penalties paid by the solar

energy producers are usually proportional to the imbalances in their produc-

tion.

The evaluation of the probabilistic forecast is carried out by computing the

Brier Skill Score (BSS), defined from the Brier Score (BS) as the improvement

over the VAR(1) model

BSS = 1− BS

BSVAR

. (20)

The BS is the equivalent of mean square error for probabilistic forecasts and

is defined as

BS =
1

|S|
∑
i∈S

∑
j∈T

(p̂i,j − Ti,j)2 (21)

where T is an ensemble of possible categories in which the observation can

fall, in the present case intervals of 10 W.m−2 starting from 0 up to 1000

W.m−2. We define Ti,j = 1 if the observation c0i falls within the interval j

and Ti,j = 0 otherwise. The predicted probability for the j-th interval p̂i,j is

computed from the cumulative distribution function (CDF) predicted by the

model P (ĉi ≤ c).

The Continuous Ranked Probability Score (CRPS) (Hersbach, 2000), an

equivalent of MAE for a probabilistic forecast is also computed. It is given
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by

CRPS =
1

|S|
∑
i∈S

∫
[P (ĉi ≤ c)− P (coi ≤ c)]2dc (22)

where P (ĉoi ≤ c) is the CDF of the observation, considered here to be a

step function. We recall here that both the analog and the VAR(1) methods

produce Gaussian forecasts, so that the computation of the CDF is straight-

forward.

All together, these five scores provide a standard evaluation of the various

aspects of the proposed method. The comparison with standard methods is

given in Section 6.3.

6.3. Comparison with reference methods and bias correction

Our main concern in this section is to assess the robustness of the methods

to different geographical locations, i.e. their capacity to forecast the cloud

index for different climatic situations.

The first evaluation score is the MBE, presented in Fig. 8 as a function of

lead time. The analog method shows a bias peaking for lead times of 3 to

4 hours. The bias is not present in the VAR(1) method. Fig. 9 presents

a scatter plot of the forecasted value versus the observation for the analog

methods. It shows that a linear relation between the bias and the forecasted

intensity can be clearly inferred.

This bias is thus corrected by applying a simple post-processing method to

the forecast. We fit 6 linear regressions per site (one per lead time) be-

tween the observed bias and the forecasted value from the analog prediction.
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These linear regressions are then applied to the forecasted GHI value to ob-

tain a ”post-processed” analog method (called p-analog in the following).

Fig. 8 shows that the p-analog method is globally less biased than the analog

method, except for the Payerne and Cener sites. This is a very simplis-

tic post-processing method, and more sophisticated model output statistics

could be used, such as Kalman filtering (Diagne et al. 2014).

Figure 8: MBE as a function of lead time for the analog method (blue), the post-processed

analog method (red), the persistence method (black), and the adaptive VAR(1) model

(green).

Figs. 10 and 11 show respectively the MAE and the RMSE for the different

methods. A quantitative evaluation of the methods in terms of RMSE skill

score is presented in Table 5. Table 6 and Fig. 12 present respectively the

BSS and the CRPS as a function of lead time for the different methods. We
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Figure 9: Scatter plot between the observed and predicted GHI values. The red line

corresponds to the centered and indentity slope line.

can first note that even-though the p-analog method is more biased than

the analog method for certain sites, both its probabilistic and deterministic

performances are similar or better than the analog method. Note also the

consistency of the results with the climatic analysis of the different sites in

Fig. 2: on sites with a higher proportion of intermittent days (Palaiseau

and Camborne) the analog and p-analog methods have a worse score as

compared to the persistence method, since those days are more difficult to

forecast.

When comparing the analog method between sites, results are coherent with

the probabilities given in Table 4: a small error corresponds to a large
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percentage of images following the most probable transition paths in the

database, i.e. where the selected analogs exhibit the same cloud regimes as

the truth. Additional evidence of this statement is found by looking at the

improvement in RMSE and MAE of the analog method with respect to the

VAR(1) model only, which shows the improvement of the forecasting skill

due to the analog selection step. The largest improvement also occurs in the

sites where the probability defined in Table 4 is high. Comparing the per-

formances of the analog method with the p-analog method, we see that the

bias correction dramatically increases the performances on the sites where

the analog method does not beat the VAR(1) method. We can thus infer

that the inappropriate choice of analogs on the sites where cloud regimes are

not well defined is the source of the bias of the method.

Bootstrap confidence intervals have also been computed for each of the scores.

Overall, they indicate statistically significant difference scores between the

persistence (or PeEn) method and the three other methods. However, the

distinction between the analog and p-analog forecast skill is more unclear,

and has been further investigated using the Diebold-Mariano (DM) test,

introduced in econometry by Diebold and Mariano (1995) and then used in

meteorology by Gilleland and Roux (2015). The DM test evaluates whether

the difference between two forecasts, quantified by a given forecast score,

is statistically significant. The test (not shown) was performed based on

the mean squared error score. Results indicate that most of the time the

difference between the analog and p-analog methods is significant.
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Figure 10: Mean MAE and corresponding 95% bootstrap confidence interval as a function

of lead time for the analog method (blue), the post-processed analog method (red), the

persistence method (black), and the adaptive VAR(1) model (green).

7. Statistical downscaling

In the previous Section, GHI has been forecasted using only geostationary

satellite images. Here, we extend this procedure by showing a simple exam-

ple of statistical downscaling between satellite and ground data on different

BSRN sites. This application shows the potential of the method for opera-

tional forecasting.
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Figure 11: Mean RMSE and corresponding 95% bootstrap confidence interval as a function

of lead time for the analog method (blue), the post-processed analog method (red), the

persistence method (black), and the adaptive VAR(1) model (green).

7.1. Description of the method

The aim of the present extension is to forecast the cloud index over a local

site corresponding to the location of a solar energy source, where a historical

database of ground GHI measurements is available.

The principle of the method, first introduced in Zorita and Von Storch (1999),

is to use cloud index maps as a measure of the weather regime in which the

solar energy source is. Each historical cloud index image is paired with

its concurrent (at the same date) ground measurement of GHI. Given an

observed cloud index image from which the forecast is made, an estimation
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Station Method +1h +2h +3h +4h +5h +6h

Palaiseau VAR(1) 0.154 0.183 0.174 0.174 0.169 0.17

analog 0.157 0.16 0.148 0.158 0.154 0.155

p-analog 0.168 0.184 0.176 0.182 0.176 0.167

Carpentras VAR(1) 0.102 0.162 0.186 0.19 0.193 0.183

analog 0.139 0.188 0.207 0.203 0.208 0.194

p-analog 0.125 0.172 0.214 0.22 0.223 0.208

Camborne VAR(1) -0.016 0.134 0.175 0.186 0.205 0.206

analog -0.074 0.054 0.118 0.143 0.179 0.202

p-analog 0.016 0.145 0.198 0.209 0.225 0.229

Payerne VAR(1) 0.093 0.178 0.196 0.207 0.201 0.188

analog 0.103 0.193 0.221 0.232 0.224 0.193

p-analog 0.093 0.185 0.225 0.239 0.234 0.205

Cener VAR(1) 0.024 0.121 0.161 0.19 0.21 0.22

analog 0.087 0.168 0.213 0.238 0.246 0.237

p-analog 0.084 0.164 0.203 0.239 0.256 0.257

Table 5: Skill RMSE relative to the persistence method.

of the weather regime is performed by selecting analogs, and weighting them

as a function of their reliability. The concurrent ground measurements are

then used as a forecast ensemble, with the same weights as the corresponding

satellite-derived image.

A similar methodology has been developed in Alessandrini et al. (2015) un-

der the name of the analog ensemble method. In this article, the weather

regime is estimated using NWP forecasts: past forecasts, analog to the cur-
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Figure 12: Mean CRPS and corresponding 95% bootstrap confidence interval as a function

of lead time for the analog method (blue), the post-processed analog method (red), the

PeEn (black), and the adaptive VAR(1) model (green).

rent one are found, and the concurrent past observations are then used as a

forecast ensemble. Apart from the fact that it uses a different type of data,

there is a fundamental difference in the assumption made by both methods.

The analog ensemble method finds similar past NWP forecasts to the current

forecast. The underlying assumption is thus that ”if similar past forecasts

are found, their errors will likely be similar to the errors of the current fore-

cast, which can be inferred from theirs”. In the present case, the hypothesis

underlying the statistical downscaling method is that similar weather struc-

tures as defined by satellite-derived maps yield a similar local evolution in the

cloud index. The analog ensemble method thus aims at forecasting an NWP
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Station Method +1h +2h +3h + 4h + 5h + 6h

Palaiseau analog 0.059 0.024 0.008 0.005 0.006 0.002

p-analog 0.062 0.028 0.009 0.003 0.002 0.001

Carpentras analog 0.181 0.123 0.093 0.069 0.049 0.032

p-analog 0.151 0.093 0.093 0.074 0.055 0.045

Camborne analog 0.014 -0.012 -0.014 -0.01 -0.009 -0.007

p-analog 0.029 0.015 0.012 0.005 0.008 0.008

Payerne analog 0.093 0.062 0.046 0.033 0.019 0.012

p-analog 0.065 0.047 0.053 0.033 0.026 0.016

Cener analog 0.086 0.056 0.041 0.033 0.026 0.016

p-analog 0.081 0.051 0.033 0.034 0.03 0.021

Table 6: BSS relative to the adaptive VAR(1) method.

model error, while in the present case the aim is to forecast the evolution of

measured GHI from a global observation.

The algorithm consists in the following steps:

1. given an observed satellite cloud index image, find k analogs, using the

Euclidean distance in the previously defined four dimensional feature

space

2. select the k concurrent ground measurements, corresponding to the

times of the k satellite analogs. These are called ”local” analogs. The

corresponding ”local” successors are the values that have been mea-

sured l hours after the ”local” analogs, l being the lead time of the

forecast
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3. weight the ”local” analog-successor pairs with the exponential kernel

given in Eq. (7) where C∗n is now the correlation between the analog

satellite image and the current observation without any translation

4. use a local-linear operator between the ”local” analogs and ”local”

successors to obtain a probabilistic forecast

7.2. Numerical experiment

We now evaluate the proposed downscaling method on the BSRN sites. The

experiment set-up is the same as in Sec. 6. A local clear sky model is first

defined using ground measured values of GHI, which defines ground values

of cloud index. The optimal number of analogs is 80 for all the sites. It has

been calculated by cross-validation on the training dataset.

For the sake of clarity, we present here only the ground RMSE, as defined

in Eq. (17), but using the ground measurements of cloud index as the truth.

The analog method is compared to ground clear-sky adjusted persistence,

defined in the same way as in Section 6. An adaptive VAR(1) is also built,

fitting linear regressions between the ground GHI measurements and their

successors. Results are presented in Fig. 13 and show an improvement of

+1.4%, +3.1% in RMSE with respect to the adaptive VAR(1) and the per-

sistence method. The results of this downscaling method are also consistent

with Table 4, and the VAR(1) method has worse scores than previously as

compared to the analog method. The results of a post-processed analog

method are also presented, using the same methodology as in the previous

section. On the sites where the cloud regimes are not well defined, the post-
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processing again brings an improvement. This shows that the bias corrected

by the post-processing model is due to a bad evaluation of local cloud con-

ditions, and is not linked to the type of data that is used. It gives additional

evidence of the validity of the analysis presented in Section 4.

Figure 13: Normalized ”ground” RMSE and corresponding 95% bootstrap confidence

interval as a function of lead time for the analog method (blue), the post-processed analog

method (red), the persistence method (black), and the adaptive VAR(1) model (green).
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8. Conclusion

We have presented a computationally efficient method for GHI nowcasting on

a given solar energy source, tested on sites representing different climatic con-

ditions in Europe. The method uses a k-nearest neighbor algorithm on a four-

dimensional feature space obtained from cloud index images to then apply a

linear regression between selected analogs and successors. The methodology

has proven to be robust to different geographical locations, and requires little

tuning, no ground measurements nor a numerical weather model. We have

also presented a framework to assess the performance of a given metric and

set of features to choose the analogs, based on the analysis of their clustering

performances. It provides a tool for evaluating the potential performance of

the method on a location without having to run extensive numerical tests,

and can be used when building an analog method.

The method has also been extended with a simple downscaling algorithm,

when ground GHI measurements are also available. In both cases, the ana-

log method shows a bias, which could be interpreted within the clustering-

performance framework. A simple post-processing bias correction has been

suggested, effectively improving the performances of the algorithm.

The method has proven to have potential for operational applications and

future works will go in three directions. We first plan to use recent devel-

opments in information geometry for the analog-successor selection (as an

alternative to the heuristic features). This would allow us to improve the

identification of large scale cloud conditions, and thus reduce the intrinsic

bias of the method.
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The analog algorithm is a flexible method, designed to be easily combined

with other algorithms in the context of operational forecasting. The combina-

tion of different forecast methods has been recently identified as an essential

trend in solar forecasting (Yang et al., 2018). The downscaling procedure

presented herein is a simple example of such a combination. It will be im-

proved by nesting a statistical model forecasting local GHI values with a

hidden Markov chain, defined with the satellite image analogs. Other ma-

chine learning methods (e.g., random forests, neural networks) will be tested

with the same setup to better assess the analog method strengths.
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