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Zusammenfassung

Intrinsische Hardware-Evolution von Transistorschaltungen -

Diese Arbeit stellt einen neuartigen Ansatz zur automatisierten Synthese analoger Schaltungen vor.

Evolutionäre Algorithmen werden dazu benutzt, analoge Schaltungen zu generieren, die auf einem

eigens dafür entworfenem Mikrochip, der als analoges Substrat fungiert, getestet werden. Die Tat-

sache, dass die Güte der von dem evolutionären Algorithmus generierten Schaltungen durch einen

Test auf dem oben genannten Mikrochip erfolgt, hat zwei Vorteile. Einerseits kann es den kün-

stlichen Evolutionsprozeß beschleunigen, da der Test einer Schaltung oft schneller erfolgen kann als

seine Simulation. Andererseits garantiert diese Vorgehensweise, dass die evolutionierten Schaltun-

gen tatsächlich auf einem echten Chip funktionieren. Die oben beschriebene Methode wird durch

ein Hardware-Evolutionssystem realisiert, das aus den folgenden Komponenten besteht: Einem IBM

kompatiblen Computer, auf dem der evolutionäre Algorithmus abläuft, einer FPGA basierten gemischt

analogen-digitalen Messkarte und dem analogen Substrat. Dieses ist durch ein Field Programmable

Transistor Array (FPTA) realisiert, dessen programmierbare Transistorzellen fast beliebig miteinan-

der verschaltet werden können. Die Abmessungen des Transistorkanals können in jeder Transis-

torzelle aus 75 verschiedenen Kombinationen ausgewählt werden. Der Mikrochip ist in einem 0.6µm

CMOS Prozeß hergestellt worden und stellt vielfältige Möglichkeiten analoge Signale anzulegen und

auszulesen zur Verfügung. Die Konfiguration des FPTA wird in SRAM Zellen gespeichert, die

in die programmierbaren Transistorzellen eingebettet sind. In dieser Arbeit wird das Hardware-

Evolutionssystem für die künstliche Evolution einer Vielzahl verschiedener Schaltungstypen verwen-

det. Die Zielschaltungen sind: Logische Gatter, Schaltkreise mit einer Gauß’schen Ausgangscharak-

teristik, D/A Wandler, Tief- und Hochpaßfilter, Tondiskriminatoren und Komparatoren. Die Ergeb-

nisse der Experimente werden gründlich analysiert und mit anderen publizierten Arbeiten verglichen.

Abstract

Intrinsic Hardware Evolution on the Transistor Level -

This thesis presents a novel approach to the automated synthesis of analog circuits. Evolutionary algo-

rithms are used in conjunction with a fitness evaluation on a dedicated ASIC that serves as the analog

substrate for the newly bred candidate solutions. The advantage of evaluating the candidate circuits

directly in hardware is twofold. First, it may speed up the evolutionary algorithms, because hardware

tests can usually be performed faster than simulations. Second, the evolved circuits are guaranteed

to work on a real piece of silicon. The proposed approach is realized as a hardware evolution system

consisting of an IBM compatible general purpose computer that hosts the evolutionary algorithm, an

FPGA-based mixed signal test board, and the analog substrate. The latter one is designed as a Field

Programmable Transistor Array (FPTA) whose programmable transistor cells can be almost freely

connected. The transistor cells can be configured to adopt one out of 75 different channel geometries.

The chip was produced in a 0.6µm CMOS process and provides ample means for the input and output

of analog signals. The configuration is stored in SRAM cells embedded in the programmable transistor

cells. The hardware evolution system is used for numerous evolution experiments targeted at a wide

variety of different circuit functionalities. These comprise logic gates, Gaussian function circuits,

D/A converters, low- and highpass filters, tone discriminators, and comparators. The experimental

results are thoroughly analyzed and discussed with respect to related work.
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Introduction

I am turned into a sort of machine

for observing facts and grinding out

conclusions.

CHARLES DARWIN

The invention of the transistor in 1947 and the first successful integration of several transistors into

one monolithic circuit in 1958 paved the way for a breathtaking development that has largely influ-

enced and shaped today’s life. Highly integrated microelectronic circuits are the cornerstone for the

present era of information technology that brought radically new means of communications like cel-

lular phones, e-mail or the internet. At the beginning of the third millennium, the aid of electronic

devices like computers, microcontrollers or sensors seem to be indispensable for a vast variety of

tasks ranging from office organization to space exploration as well as from medical applications to

most of scientific research and design, control, and optimization in engineering.

As in recent years many signal processing tasks have been shifted from the analog to the digital

domain, the aforementioned technological progress is often ascribed to the advances in digital circuit

design. Yet, this is not the full truth: First, the nature of digital circuits is analog. On one hand,

performance critical parts still require full custom design to push the technological limits. Second,

prior to being used by digital synthesis tools, a library of logic primitives like gates, flipflops etc.

must be generated so as to meet a set of analog specifications, as e.g. setup and hold times as well

as acceptable input voltage ranges, noise immunities or gate delays. It is not until these devices are

designed and verified that abstraction from their analog behavior can be achieved. Second, although

nature exhibits quantized behavior according to last centuries ground breaking quantum theory, there

is hardly any access thereof without analog electronics. In other words, even if most of the signal

processing can indeed be done in digital hardware, any connection to the real word, be it to mass

storage devices, be it wireless communication, a sound or graphics device, or the readout of a light

intensity in an optical storage device, necessitates the conversion into an analog signal. Moreover,

in a variety of consumer, engineering, and scientific products, sensors – in which a physical quantity

is again first converted into an analog signal – play a crucial role. In summary, analog circuits will

persist to be of great importance in future microelectronic systems.

Although the first integrated circuits consisted of bipolar junction transistors (BJT), CMOS1 has

become the prevalent integrated circuit technology during the last two decades. Its high integration

density paired with low static currents have proven to be most appropriate for digital circuit. In case of

analog circuits, both, BJT and CMOS technology, as well as the combination thereof, that is BiCMOS2

technology are used. Yet, most often CMOS is also the choice for analog circuits. For one, this allows

to benefit from the rapid advances in process technology driven by the larger digital market. For the

other, analog subsystems are nowadays frequently integrated together with digital systems to form a

1Complementary Metal-Oxide Semiconductor
2Bipolar Complementary Metal-Oxide Semiconductor

1
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system on a chip (SoC). Here again the requirements of the digital part dictate the process technology

to be CMOS.

Unfortunately, the design of analog circuits is an intricate, tedious, time-consuming task, as it

requires the designer to think about any single transistor. At first, a suited topology has to be found. In

the next step the parameters of all the circuit components must be optimized, and finally, the resulting

circuit has to be laid out. Even worse, because of parasitic resistors and capacitances introduced by the

layout, it may be necessary to repeat the process of parameter optimization and layout several times.

Furthermore, as the behavior of an analog circuit is inextricably connected to the device physics of the

used circuit elements, great care must be taken to minimize an analog circuit’s sensitivity to variances

in the manufacturing process and its operating environment. Yet, even for a suited, fixed topology,

a design of moderate size can comprise difficult relationships between some tens of design variables

and a dozen performance goals.

Analog Design Automation

The efforts to automate the digital design process have led to sophisticated tools that greatly leverage

productivity. In the best case, the digital design can be defined in a hardware description language.

This abstract description is then automatically translated into a suited netlist, which is eventually

mapped onto the target technology at hand. Here, the success of digital synthesis tools is largely due

to the high level of abstraction achieved for the utilized digital building blocks in that they can be

characterized relatively uniformly by a few timing constants. In comparison to digital synthesis, the

field of analog design automation is still in its infancy, which is not surprising given the tight linkage

of analog circuit behavior and device physics mentioned above. In the context of SoC designs, the

vast difference in the current productivity in analog and digital design, which leads to situations in

which the analog part only occupies 10% of the whole chip, yet requires 90% of the design time, is

sometimes referred to as the analog dilemma [Tou02]. Accordingly, improved design methodologies

as well as advances in analog design automation are believed to be of utmost importance to eliminate

this bottleneck encountered in SoC designs [Gie00], [Sha02], [Phe00a].

Analog design, and therefore analog synthesis comprises to steps: First, an electrical design –

the schematic – of a circuit has to be generated. Second, this design has to be translated into an

appropriate layout that it used for the production of the circuit (physical synthesis). Here, the first

task, that is, finding an appropriate analog circuit for the problem at hand can be divided into four

levels of difficulty [Lia01]:

1. Local parameter optimization: Fine-tune the device sizes of a given circuit topology, starting

with a working set of circuit parameters.

2. Global parameter optimization: Find optimal circuit parameters for a given topology.

3. Topology selection: Choose the best out of a given set of predefined topologies and optimize

its parameters.

4. Circuit design: Invent a circuit that meets the desired specifications from scratch.

The majority of attempts to automatic synthesis of analog circuits attack at the second level, that is

they try to find the optimal design variables for a given topology. Thereby, the description of the opti-

mization problem will embody some principles of conventional analog circuit design, as for instance,

that matched transistor pairs ought to possess the same channel dimensions. The reported approaches

to this kind of parameter optimization can be classified in three groups [dMH02a], namely, knowledge
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based, simulation based [Phe00a], [Alp03], and equation based methods [dMH01]. During the last

couple of years, the latter two methods have been proven successful in optimizing high-performance

analog cells, as e.g. operational amplifiers [Lia01], [Hen02], or an equalizer/filter block [Phe00b].

In case of the equation based method, even more complex problems have been tackled, for instance,

the design of a pipeline analog-to-digital converter [dMH02a], or a phase locked loop [dMH02b].

Yet, it has only been very recently, that some of the attempts have matured into commercial products

[Cad04b], [Syn05]. The same is true for one physical synthesis tool that allows the user to capture

analog design constraints, which are then used to generate the layout [Cad04a].

Hardware Evolution

Although the tools described above are certainly an important help for the analog designer, they never-

theless fall short of finding new, more efficient circuit topologies. Yet, the incorporation of topological

synthesis adds two new opportunities to analog design automation: First, it can provide new circuit

topologies for problems for which a satisfactory design solution has not yet been found. It should be

noted that this situation can also arise when the migration to a new circuit technology renders for-

merly successful circuit topologies useless, e.g. due to a decrease in power supply voltage. Second,

analog synthesis including topology search may be able to exploit the actual transistor physics more

effectively than today’s conventional circuit topologies, because they are not restricted to the human

way of thinking about circuit design [Tho99]. Thus, the resulting circuits may yield better or equal

performance whilst consuming equal or less power and area.

Although the automatic invention of analog circuits is an intriguing idea, one must not forget

that the inclusion of topology selection in the synthesis process vastly increases the complexity of

the problem. In fact, to date, no heuristic algorithm is known that could deterministically solve the

problem of analog circuit invention, which is not surprising if one takes into account that it has only

been recently that a heuristic could be developed for analog synthesis on the parameter optimization

level [dMH01].

On the other hand, evolutionary algorithms, a class of model-free heuristics, are often successfully

used to solve hard optimization problems that cannot be solved deterministically. In analogy to natural

evolution, evolutionary algorithms process a whole population of feasible solutions. In the course of

an artificial evolution experiment, the members of the population are varied by genetic operators

like mutation and crossover. A selection mechanism ensures that the probability for a member of the

population to propagate its genetic information to the next generation depends on their ability to solve

the problem at hand. Hence, probabilistic sampling of the search space is combined with a selection

pressure towards better solutions.

The application of evolutionary algorithms to engineering design problems is one, if not the main

topic of a relatively young research field referred to as hardware evolution or evolvable hardware.

Generally speaking, the field comprises a wide variety of approaches including evolutionary algo-

rithms, modeling of ontogenetic processes, and the design of electronic systems that mimic the be-

havior of a biological immune system. However, in the context of this thesis, the first approach,

namely that to use evolutionary algorithms to solve synthesis problems, is most relevant. In principle,

the field of hardware evolution lends itself to the evolutionary development of any kind of hardware.

Practically, the target systems are almost exclusively restricted to be realizable as digital or analog cir-

cuits. Depending on the implementation process, hardware evolution is either referred to as extrinsic
or intrinsic. It is extrinsic if the behavior of the phenotype is simulated, and intrinsic if hardware is

used in the evolutionary loop to evaluate the fitness of candidate solutions produced by the algorithm.
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Scope of this Thesis

On one hand, extrinsic, that is, simulation based hardware evolution may be more flexible, and its

implementation requires less effort if existing circuit simulators can be used. On the other hand,

intrinsic hardware evolution offers other beneficial properties. First, in case of intrinsic evolution ex-

periments, the successfully evolved circuits are guaranteed to work at least on the particular substrate

they are evolved on. In contrast, in extrinsic approaches, the evolutionary algorithm may not always

find optimal circuit solutions but rather tend to exploit imperfections of the circuit simulator or the

test setup used for the fitness evaluation. Second, hardware tests can speedup artificial evolution in

that they are often faster than simulations. The potential speedup is most evident for time-consuming

transient analyses of large designs, since simulation times scale with the size of the circuit, whereas

a hardware test is independent of the circuit size for a given task. Moreover, intrinsic fitness evalu-

ations inherently capture the real conditions the prospective circuits are to work in, as e.g. noise and

the imperfections of the production process. The simulation of such effects dramatically increases

the time necessary for a fitness evaluation. In fact, the verification of circuits invented by extrinsic

hardware evolution will most probably have to be more elaborate than for circuits consisting of a well

known topology whose design variables are optimized, as the sensitivity to variations of the circuit

parameters or operating conditions are much more uncertain.

Yet, intrinsic hardware evolution also offers a completely new perspective conceivable as field

evolvable hardware. During the last decade, the success of programmable logic arrays, as e.g. FPTAs3,

has inspired similar developments for the analog domain. These FPAAs4 are general purpose analog

devices that offer a variety of different analog functions. Typically, they are composed of analog cells

like operational amplifiers [Zet99] and are targeted at filtering and signal conditioning applications

[Lat01], [AN203].

Although recent FPAAs usually can be conveniently configured through dedicated software tools,

field evolvable hardware can be advantageous in the following regards: First, here too hardware evo-

lution may simplify the design task at hand. Second, field evolvable hardware can adapt to electrical

and environmental conditions that cannot be known a priori. Such situations may arise e.g. in DSL5

applications, where the precise electrical properties of the copper telephone wire used for connect-

ing the subscriber to a broadband network are unknown, the calibration of intermediate frequency

filters necessitated by the fabrication tolerances [Mur03], or space missions, in which the electronic

circuitry has to cope with temperature variations of several hundred Kelvin [Sto04], [Zeb04].

The above considerations have motivated an intrinsic hardware evolution approach to analog syn-

thesis. In particular, an analog substrate has been sought that lends itself to both, the synthesis of new

transistor level circuits, and to field evolvable hardware applications. In order to support the search

for new transistor level circuits, however, the analog substrate must offer the configurability of single

transistors. As commercially available FPAAs are usually rather coarse-grained in that they only al-

low the configuration of high level building blocks, the quest for transistor level hardware evolution

necessitated the design of a new analog substrate. This ASIC6 provides an array of transistor cells

that are programmable in their channel geometry as well as in their connectivity. It is dedicated to

hardware evolution experiments and referred to as a field programmable transistor array (FPTA).

The goals of the Heidelberg FPTA project can be summarized as follows: First, the FPTA is de-

signed as a search tool to find new analog transistor level circuits. Accordingly, the cells of the FPTA

are used as a model for programmable CMOS transistors so that evolved circuits can be understood in

3field programmable transistor arrays
4Field Programmable Analog Arrays
5Digital Subscriber Line
6Application Specific Integrated Circuit
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terms of simulation and human design experience. The use of hardware-in-the-loop may accelerate

the evaluation of candidate solutions while avoiding the simplifications inherent to simulations. Sec-

ond, the FPTA is a first step towards field evolvable hardware. The device may be used to perform

analog tasks that cannot be a priori specified or need the analog circuit to adapt to changing environ-

ments. Third, the FPTA can be used as a research tool to learn how to use artificial evolution for the

invention of systems with higher complexity from an algorithmic point of view.

Within the scope of this thesis, the FPTA as a fine-grained analog substrate dedicated to the in-

trinsic hardware evolution of transistor level circuits has been designed, and has been embedded into

a suited hardware evolution system that consists of a host computer, a mixed-signal test environ-

ment, the FPTA itself, and a software front end that encapsulates the control and configuration of

the system and also implements the evolutionary algorithm. The feasibility of the proposed intrinsic

hardware evolution approach is tested on a variety of different circuit design problems. Most of these

experiments concentrate on establishing and verifying appropriate test methods for the evaluation of

candidate circuits rather than algorithmic sophistication. Nevertheless, the last chapter is dedicated to

enhancing artificial evolution’s success by providing small building blocks to the algorithm.

Outline

This thesis is divided into three main parts. As the central idea of this thesis is to apply evolutionary

algorithms to the design of analog circuits, the most relevant aspects from both fields are summarized

in part I: Chapter 1 reviews the characteristics of CMOS transistors as well as the analog design

process, whereas chapter 2 gives a short introduction to and an overview of evolutionary algorithms.

The realization of the hardware evolution system is covered in part II. The FPTA chip represents

the core of the evolution system. Since the FPTA is not only a product of this thesis, but also a subject

of research itself, its implementation is described in detail in chapter 3. The hardware evolution

system as a whole is surveyed in chapter 4. Although software as well as external hardware are of

equal importance as the FPTA itself and although their design eventually may have consumed more

effort than the chip, the discussion of these components is kept to a rather functional level for the

following three reasons: First, external software and hardware are not of as much scientific relevance

as the FPTA chip, at least not the details of their implementation. Second, as large parts of the

auxiliary components of the evolution system are described as C++ or VHDL7 code, a minimum of

documentation is already provided in the code. Third, some of the components used in the hardware

evolution system are shared with other projects of the Electronic Vision(s) group and are documented

elsewhere.

Finally, part III presents a wide range of experiments that utilize the hardware evolution system

presented in part II to evolve different types of analog circuits. The experiments are organized in

four separate chapters to account for the respective nature of the target circuits as well as for different

methodological approaches taken. Chapter 5 describes different attempts to evolve the analog dc

behavior of logic gates and Gaussian function circuits. Here, the key question is how to test the dc

behavior in a real measurement, that is in a finite amount of time. The experiments of chapter 6

are targeted at the artificial evolution of 6-bit digital to analog converters. Methodologically, these

experiments are similar to those of chapter 5. Yet they exploit an improvement of the hardware

evolution system to allow for real-time testing as well as for greater flexibility in the design of the

circuit test. Chapter 7 discusses different methods to evaluate the frequency behavior of the circuit

under test. The chapter contains a short review of LTI8 systems as well as a theoretical account of the

7Verilog Hardware Description Language
8Linear Time-Invariant
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noise contributions for the three test methods to be compared. The implemented test concepts are then

used to evolve low- and highpass filters. While chapter 5 to 7 reflect the extensions and refinements

achieved in the test of candidate circuits, chapter 8 proposes a new circuit representation scheme to

support the synthesis of analog circuits. The hardware evolution system is extended such, that user-

defined building blocks can be used as elementary cells instead of plain transistor cells. The concept is

tested for two different building block libraries that are applied to three target functionalities. These

are XOR/XNOR gates, tone discriminators that distinguish two frequencies of a square wave, and

comparators.

Most of the chapters in this thesis are highly self-contained. For instance, all chapters in the last

part are almost independent of each other9. In the rare cases in which a definition of a previous chapter

should indeed be required, the reader is referred to the according section. It goes without saying, that

the introductory chapters on CMOS technology and evolutionary algorithms are optional for readers

that are not familiar with the respective topic. However, chapter 1 also includes some details that are

used in the description of the FPTA chip in chapter 3. It also contains a brief discussion on possible

advantages of a real circuit test over simulations in the context of hardware evolution experiments.

Finally, chapters 3 and 4 are organized so that only the first sections are required to understand most

of the experiments and results presented in part III as well as to appreciate the concept of the proposed

hardware evolution system. In particular, these are sections 3.1 to 3.3, and 4.1 and 4.4.3.

9In particular, the numbering of experiments, series of experiments, and case studies is always limited to the scope of the

respective chapter.
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Chapter 1

CMOS Analog Circuit Design

God runs electromagnetics by wave

theory on Monday, Wednesday, and

Friday, and the Devil runs them by

quantum theory on Tuesday,

Thursday, and Saturday.

SIR WILLIAM BRAGG

This chapter offers a short review of those topics in CMOS analog circuit design
that are relevant to this thesis: The first part concentrates on the properties of the
devices available in CMOS technology, especially the characteristics of CMOS

transistors. As the array of programmable transistors proposed in chapter 3 does
not provide any passive components, the implementation of resistors and capaci-
tors by means of transistors is discussed. A short discussion of the intricacies of
MOS switches is included, as they are extensively used in the FPTA design. The
second part deals with the design process itself: This includes transistor models,
simulation types and the overall design flow for analog circuit design.

During the last 20 years, CMOS technology has become the prevalent integrated circuit technology.

It is the technology of choice in the digital domain, where its combination of integration density and

lack of static currents is still unrivaled, and also widely used in the analog world. Though offering

some nice features, as for instance zero gate currents, the success of CMOS technology in analog

designs is also partly owing to its popularity in the digital world, which renders CMOS technology the

most advanced and most widely available integration technology [All02a]. The advent of systems on

a chip (SoC) mixing analog and digital circuits on one chip has further increased the need for analog

CMOS designs: Here, the quest for high integration densities for the digital part imposes the choice

of CMOS technology.

As this thesis is focused on the automation of analog circuit design, a short introduction into the

subject of this endeavor shall be given. This comprises a short account of the devices available in

a CMOS process and some of their properties as well as brief sketch of the design process itself.

9
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However, this chapter is by no means exhaustive and cannot replace the study of the text books

relevant to the topic of analog circuit design in CMOS technology. As for this thesis, most of the

information is taken from the first chapters of Allen and Holberg [All02b], Geiger, Allen and Strader

[Gei90a] and Laker and Sansen [Lak94a].

1.1 CMOS Transistors

Electrically, MOS1 transistors are four terminal devices that are usually either used as voltage con-

trolled resistors or current sources. In CMOS technology, transistors come in two flavors, namely

NMOS2 and PMOS3 transistors, depending on the type of charges carrying the current through the

device. Transistors relying on electrons are denoted as NMOS and those using holes are called PMOS

transistors. Their respective symbols as well as some of the electrical properties used for their char-

acterization are defined in Fig. 1.1 For an NMOS transistor, gate voltage VG and to a much smaller

D

S

G

ID

VGS

VDSB

(a) NMOS

S

D

G

VGS

VDSB

ID

(b) PMOS

Figure 1.1: Terminal and terminal voltage definitions for an N- (a) and PMOS (b) transistor.

extent the bulk voltage VB control the current ID flowing from drain D to source S. The drain and

source terminals are physically equivalent; yet electrically their influence on the transistor behavior is

different. Thus, they are defined such that the terminal at the higher electrical potential is always the

drain terminal. The voltage at the bulk terminal must always be smaller or equal to the source poten-

tial. PMOS transistors work similar to their NMOS counterparts. Yet, some of the electrical properties

change their sign: The source potential by definition exceeds the drain potential and the gate-source

voltage VGS must be negative to allow for current ID to flow. Proper operation of the PMOS transistor

requires the potential at the bulk terminal to be at least as high as the source potential.

1.1.1 Physical Definition

The operation principle of MOS transistors is further explained by means of their physical implemen-

tation depicted in Fig. 1.2. The diagram applies to an n-well CMOS process and the layout of the n-

and p-channel assume that both transistors are operated in the linear region. In terms of the n-channel

transistor, the bulk, the source and drain terminals form pn junctions that are reverse biased according

to the abovementioned constraint for VB. Accordingly, if transistor gate and bulk are on the same

potential, no significant current can be flowing between the source and drain terminals, at least as

long as the break-down voltage of the pn junction is not exceeded. However, a positive gate voltage

1Metal-Oxide Semiconductor
2N-channel Metal-Oxide Semiconductor
3P-channel Metal-Oxide Semiconductor
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b)

n−channel p−channel

Figure 1.2: a) Cross section through an N- and PMOS transistor. b) Top view of the same N- and PMOS

transistor.

can dramatically change this situation in that the gate and the bulk beneath the gate now form two

plates of a capacitor with the gate oxide serving as the dielectric. Thus for a positive VGS, a depletion

region is generated in the bulk beneath the gate by means of electrostatic induction: Now source and

drain are connected through this depletion region also called n-channel. Qualitatively, a larger voltage

difference between source and gate, will cause a larger current to flow between source and drain for

a given VDS > 0. In an n-well process, the bulk terminal of a PMOS transistor is not connected to the

substrate but to the n-well. In contrast to NMOS transistors, which all have to share the same bulk

potential, one or a group of PMOS transistors can in principle have their own bulk potential. Yet, often

there is neither need nor great benefit in an individual control of the bulk voltage, such that often it

is simply connected to the highest possible voltage called vdd. In fact, all of the n-wells in the FPTA

chip proposed in chapter 3 are connected to vdd.

1.1.2 Simple Low Frequency Transistor Model

A quantitative analysis of the physics of the semiconductor devices depicted in Fig. 1.2 leads to a

quantitative model. A simple low frequency model, proposed similarly in [Lak94a], [Gei90a] and

[All02b], is summarized in Table 1.1. The model describes the dependence of the terminal currents

ID and IG on the respective voltage differences VGS and VDS, the channel geometry and the parameters

of the fabrication process. As the gate is isolated from all other terminals by means of the gate

oxide, there is no effective gate current, which is expressed by (1.1a) and (1.2a). The expressions

describing the drain current ID depend on the so called operation region, which is defined by VGS and

the relation of VDS to VGS. The different operation regions and the respective drain current dependence

are exemplified below for an NMOS transistor.

Degrees of Substrate Inversion. The gate source voltage VGS determines the amount of minority

carriers gathered below the gate. If their density exceeds that of the majority carriers, the substrate

underneath the gate will change its semiconductor type (e.g. from p-type to n-type in case of an

NMOS transistor), which is called inversion. Consequently, for VGS = 0, there is no inversion at all;
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NMOS transistor

IG = 0 (1.1a)

ID = 0 for VGS
∼= 0 , VDS ≥ 0 cutoff (1.1b)
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PMOS transistor

IG = 0 (1.2a)

ID = 0 for VGS
∼= 0 , VDS ≤ 0 cutoff (1.2b)
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√

2|φb|
)

(1.2f)

Typical Parameter Values

Type Parameter Description NMOS PMOS Units

design W channel width µm

L channel length µm

process K′ = µCox transconductance parameter 110 50
µA

V2

VT0 threshold voltage (VBS = 0) 0.7 −0.7 V

γ bulk threshold parameter 0.4 0.57 V1/2

2|φb| strong inversion surface potential 0.7 0.8 V

λ channel length modulation 0.04 (L = 1µm) 0.05 (L = 1µm) V−1

parameter 0.01 (L = 2µm) 0.01 (L = 2µm)
n subthreshold slope factor 1 < n < 3 –

ID0 ∝ K′ subthreshold equivalent for K′ 15−20 nA

ambient Vth = kT
q thermal voltage equivalent Vth ≈ 26mV for T = 27 ◦C V

Table 1.1: Low frequency MOSFET model usually proposed for hand calculations: Top and middle part de-

scribe the gate and drain currents for N- and PMOS transistors, respectively. The bottom part summarizes the

parameters employed in the above model equations. All values exemplified for the process parameters except

for n and ID0 are typical for a 0.8µm n-well CMOS process; they are taken from Allen and Holberg ([All02b],

section 3.1).
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the transistor is in the cutoff region and the resistance between source and drain is in the order of

1012 Ω. If, on the other hand, VGS ≥ VT + nVth, the substrate type is indeed inverted allowing for a

conductive channel between the drain and source terminal. This condition is called strong inversion.

For 0 < VGS < VT + nVth the transistor is in an intermediate state called weak inversion, where VT

denotes the threshold voltage defined by (1.1f) and n the subthreshold slope factor (see Table 1.1).

Saturation Region. In strong inversion, the drain current ID is expressed by (1.1d), which describes

a parabola, if VDS≤VGS−VT is satisfied. As ID = ID(VDS) is almost linear for small VDS, this operation

condition is denoted the linear or ohmic region. If, on the other, hand VDS exceeds VGS−VT , the

drain current becomes almost independent of the drain source voltage, manifesting in (1.1e) (λ ≪ 1).

The ID−VDS characteristic of an N- and a PMOS transistor is displayed in Fig. 1.3(a) and 1.3(b),

respectively for five different VGS linearly spaced between 1 and 5V. The characteristic family of ID−
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Figure 1.3: ID−VDS curves for two different transistor models: BSIM3.3 and MOS15. VS was tied to gnd and

vdd for the simulated N- and PMOS transistor, respectively, whereas the gate voltage was varied between 1 and

5V in equidistant steps. The nominal channel dimensions were set to W = L = 2µm. Note that the curve for

VGS = 1V almost coincides with the x-axis.

VDS curves of transistors operated in weak inversion looks qualitatively similar to those depicted in

Fig. 1.3. However, according to (1.1c), saturation occurs earlier at VDS > 3Vth≈ 80mV. Moreover, the

absolute drain currents are much smaller in weak inversion and their dependence on the gate source

voltage is exponential instead of the quadratic dependence found for saturation in strong inversion.

When operated in the linear region, the MOS transistor can be used as a voltage controlled resistor,

albeit an imperfect one for larger VDS. When operated in saturation, on the other hand, MOS transistors

resemble a voltage controlled current source which are deteriorated only by a large resistor connected

in parallel. This finite resistance is due the channel length modulation effect, which is caused by

the extension of the depletion region around the pn junction of the drain diffusion. Accordingly, the

parameter λ increases for shorter nominal channel lengths L.

Operation Regions. The influence of the different operation regions discussed above is not limited

to the dc large signal model presented above. Dynamic as well as higher order effects also depend

on the region the transistor is operated in. For instance, the different source, drain and gate capaci-

tances depend on the degree of channel inversion as will be quantified below. Similarly, most of the

important small signal properties as e.g. the transconductance gm = dID/dVDS largely depend on the

transistor’s region of operation. Even the device mismatch between equally designed transistors can
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differ significantly between operation in weak and strong inversion, as threshold voltage variations

will cause larger variations for smaller VGS.

Model Parameters. Apart from the terminal voltages, the transistor behavior is determined by sev-

eral parameters that are divided into three groups at the bottom of Table 1.1. The influence of the

designer is limited to the choice of channel dimensions: First, the aspect ration W/L is taken as a

multiplier for the transconductance at the respective operation point. Second, the length of the tran-

sistor channel influences the value of the channel length modulation parameter λ , such that the output

resistance RDS of a transistor in saturation can be varied. The different process parameters are defined

by the fabrication technology. In effect, they can be traced back to the properties of the semiconductor

materials, the doping profiles and the material and thickness of the gate oxide, as well as deviations

between the drawn layout and the fabricated die, which are due to the fabrication process itself. These

parameters are provided by the manufacturer. One of the characteristics of CMOS technology is the

difference in the respective transconductances of PMOS and NMOS transistors due to the different

mobilities of electrons and holes. Typically, the transconductance of NMOS devices exceeds that of

their PMOS counterparts by a factor between 2 and 3. Although the die temperature enters the pre-

sented model only through the thermal voltage equivalent Vth in the equations describing the transistor

in weak inversion, most if not all of the process parameters will exhibit a significant temperature de-

pendence. As a result, the performance of a CMOS circuit will in general be sensitive to temperature

variations.

1.1.3 Capacitances of CMOS Transistors

The model presented in the preceeding section concentrated on the transconductance properties of

the channel induced by the potential on the gate terminal. However, the large signal model of a MOS

transistor includes several other characteristics such as the diodes constituted by the source/drain bulk

junctions, the ohmic resistance of the source and drain diffusion and various capacitors. While the

leakage currents of the abovementioned pn junctions are considered in section 1.3, the capacitors

inherent to MOS transistors that are relevant to this thesis are examined below. They are depicted in

Fig. 1.4 for an NMOS transistor operated in the linear region.

The curve running below the source/drain diffusions and the channel marks the extension of the

depletion regions of the respective pn junctions; the larger the reverse bias voltage, the larger the

extension of the depletion regions. The boundaries of this depletion region form a capacitor. The

value of the capacitors formed by the source/drain bulk diodes can – according to [Aus97c] – be

calculated by

CSB =
WLdiff

(1+VS/φb)M j
·C j +

2(W + Ldiff)

(1+VS/φb)
Mjsw
·Cjsw , (1.3)

where W and Ldiff are the width and length of the terminal diffusion and VS denotes the actual terminal

potential. While the first addend of (1.3) accounts for the area junction at the surface of the terminal

diffusion, the second addend reflects the side wall junction at the circumference of the diffusion

area. Typical values for the process parameters φb, M j, Mjsw C j, Cjsw, Cox and CGSDO are reported

in [Lak94b] (section 1.8) and are presented in Table 1.2. For precise modeling, the channel bulk

capacitance CBC has to be added to CSB and CDB if the transistor is in strong inversion. It is split

between drain and source in the same way the gate channel capacitance is split for the two cases of

linear and saturation region, which is described below. However, as the effect is comparably small

for the short transistors equation (1.3) is applied to, it is omitted for the hand calculations in Chapter

3 and consequently not included in (1.3).
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Figure 1.4: Capacitances in an n-channel MOST according to [Lak94b] (Section 1.8, pp 43). The transistor is

assumed to be in the linear region.

Type φb M j Mjsw C j Cjsw Cox CGSDO

NMOS 0.6V 0.5 0.33 0.45 fF
µm2 0.6 fF

µm
0.68 fF

µm2 0.52 fF
µm

PMOS 0.6V 0.5 0.33 0.36 fF
µm2 0.6 fF

µm
0.68 fF

µm2 0.4 fF
µm

Table 1.2: Typical values for the process parameters used in (1.3) (taken from [Lak94b]).

The gate-source capacitance can be calculated from the width W and length L of the transistor by:

CGS =





WCGSDO for VGS ≈ 0 transistor off

WCGSDO + 1
2
WLCox for VDS ≤VGS−VT linear region

WCGSDO + 2
3
WLCox for VDS > VGS−VT saturation region

, (1.4)

whereas the gate-drain capacitance is described by

CGD =





WCGSDO for VGS ≈ 0 transistor off

WCGSDO + 1
2
WLCox for VDS ≤VGS−VT linear region

WCGSDO for VDS > VGS−VT saturation region

. (1.5)

Here, the capacitors caused by the gate source and gate drain overlap, denoted as COS and COD, re-

spectively are calculated from the one-dimensional capacitance density CGSDO specified by the manu-

facturer. In the linear region, the gate channel capacitance W LCox is split equally between the source

and the drain terminal. The difference between CGS and CDS in the saturation region is caused by the

fact that in this case, different from Fig. 1.4, the channel does not reach the drain terminal. Hence,
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drain and channel do not possess a direct connection and the gate-channel capacitance CGC is not

connected to the drain. Typical values for the process parameters Cox and CGSDO are again taken from

[Lak94b] and are included in Table 1.2.

1.2 Linear Devices in CMOS Technology

Many interesting analog circuits, as for example a large variety of operational amplifier circuits or

filters , rely on passive components featuring good linearity and matching properties. Unfortunately,

for some ranges of desired component parameter values, such linear devices are not readily available

in CMOS technology. In case of inductors, their performance is severely hampered by parasitic effects

and limited to frequencies in the GHz range, where planar spiral inductors have been successfully

used in filter applications (Abidi [Abi96] and Kuhn et al. [Kuh03]). As the frequencies of interest

to the circuits discussed in this thesis will not exceed 100MHz, inductors are not an issue here.

However, a brief sketch of possible implementations of capacitors and resistors will be given below

as a background information for the following design decision concerning the implementation of the

FPTA chip presented in chapter 3. The programmable transistor array serving as the substrate for

the test of candidate circuits bred by the evolutionary algorithm is deliberately restricted to CMOS

transistors, that is, it does not provide any passive components.

1.2.1 Resistors in CMOS technology

Passive Resistors. Passive monolithic resistors are usually implemented as strips of polysilicon or

diffusion. Usually, polysilicon is preferable to diffusion as the latter one exhibits undesired nonlin-

earities. Yet, the sheet resistance of polysilicon in standard CMOS processes is quite low and resistors

exceeding a few kΩ will become bulky if not infeasible. Fabrication technologies specialized for

analog circuitry or four-transistor SRAM4 cells ([Gei90a] section 9.10) offer an additional layer of

high-resistive polysilicon, with which resistances up to MΩ can be realized spending only moderate

amounts of silicon area. However, as these technologies are highly specialized, circuit designs that

can do without this additional layer are preferable, as they can be implemented in cheaper and/or

more advanced fabrication technologies.

Active Resistors. Since compact large passive resistors may be unavailable, they must be replaced

by active resistors. In order to attain the desired linear I−V curve from a CMOS transistor, it has

to be operated in the linear region. Thus, most active resistor implementations achieve linearity by

clever biasing of one or more transistors. The circuit examples presented e.g. in ([Gei90a] section

5.2) reveal that relatively good linearity over a large range of input voltages is easier to attain for

differential circuits. An example for active resistors capable of very high resistance values, albeit

a small range of differential voltages, is found in [Mea91]. For small differential voltages, CMOS

switches – discussed in section 1.3 – can also serve as resistors, as can be observed from Fig. 3.5(a).

Since large parts of the configurability of the FPTA are realized by means of switches, this may be

exploited by an evolutionary algorithm if the task necessitates the use of resistors.

Switched Capacitors. In a typical CMOS process, capacitors offer the best relative precision, pro-

vided that they are laid out with sufficient care. Thus, for low and moderate frequency signals, resis-

tors can be realized as switched capacitors, which offer a high degree of linearity as well as precise

matching with capacitors allowing to form precise RC constants. The principle is depicted in Fig. 1.5;

4Static Random Access Memory
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a detailed discussion can e.g. be found in ([All02b] chapter 9) or ([Gei90a] section 5.2). Supposed

V1 V2

φ1 φ2

C

(a) switched capacitor resistor

φ1

φ2

T/2 T 3T/2 2T 5T/2

(b) nonoverlapping clock

Figure 1.5: (a) switched capacitor realization of a resistor. (a) required nonoverlapping clock signals.

that V1 and V2 are varying much slower than the clock frequency fclk = 1/T , the resistance of the

switched capacitor circuit illustrated in 1.5(a) can be calculated as

RSC =
T

C
=

1

C fclk
. (1.6)

In order to avoid any direct connection between V1 and V2, the respective clock signals φ1 and φ2 are

not to overlap during their on phase. Such a nonoverlapping clocking scheme is shown in Fig. 1.5(b);

a possible realization is discussed in ([Gei90a], section 9.5). Switched capacitor circuits are widely

used in signal processing applications, for instance in temporal ([All02b], chapter 9) or spatial [Sch99]

filtering. However, without supplying an external pair of nonoverlapping clocks, switched capacitor

circuits are extremely unlikely to emerge from the kind of artificial evolution experiments discussed

in this thesis.

1.2.2 Capacitors in CMOS

In fabrication technologies specified for analog designs monolithic capacitors can be conveniently

realized as sandwiches of two polysilicon layers. Capacitor values up to few or even tens of pF can

be implemented with moderate area consumption. If an additional second polysilicon layer is not

available, there are two alternatives: Either sandwich capacitors using two metal and one polysilicon

layer or MOS capacitors. The former structures are linear and can be used for the entire voltage

range. Yet, they provide only a small fraction of the capacitance per square micrometer achieved

by poly-poly capacitors. MOS capacitors exploit the gate source/drain capacitance described by

(1.4) as illustrated in Fig. 1.6 for the case of an NMOS transistor. Their capacitance density usually

Figure 1.6: Capacitor symbol and its realization

as an NMOS transistor.

exceeds that of poly-poly capacitors, due to the extremely thin gate oxide necessary to obtain high

transconductance parameters. The major disadvantage of MOS capacitors is that the voltage drop

across the capacitor must be larger than VT (which also depends on VB) to attain the desired gate

channel capacitance. Depending on the signal level, this may not be too much of a problem if one

end of the capacitor can be connected to a fixed voltage like vdd or gnd. In case of floating capacitors

however, an appropriate biasing scheme must be able to ensure the required voltage drop across the

capacitor
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1.3 CMOS Switches

One, if not the salient feature of the FPTA chip proposed in chapter 3 is its ability to host a large

variety of circuits whose topology is almost freely selectable. This kind of configurability is achieved

by a large number of switches. In addition, the analog signals fed into the array of programmable

transistors as well as those signals read from the array are processed in sample and hold stages.

In this vein, CMOS switches are of utmost importance to the project proposed in this thesis. The

simplest implementation of a CMOS switch would be a simple pass transistor. In case of an NMOS

transistor, the switch is closed, if the gate is tied to vdd, and open, if the gate voltage is set to the

gnd potential. The major drawback of pass transistors is their limited common mode range, which is

due to the requirement VGS > VT . This limitation can be overcome by connecting an N- and a PMOS

transistor in parallel and using signals of opposite polarities to control their respective gate voltages.

The realization of a switch by means of a transmission gate is depicted in the upper part of Fig. 1.7.

equivalent circuit for T 

CDS CGS

Ron

CDB CSB

N1 N2N2 N2N1

N1 N2

equivalent circuit for T 

CDS CGSCDB CSB

N1 N2N2 N2N1

switch S transmission

gate T

switch closed

switch S transmission

gate T

switch open

N1 N2

Figure 1.7: Top: Realization of a closed and an open switch as a transmission gate. Bottom: Small signal

equivalent of the closed (left) and open (right) transmission gate.

1.3.1 Switch Parasitics

Though MOS switches are considered fairly good approximations of ideal switches, their nonidealities

do matter in the context of this thesis: For one, the transistor possesses a finite on-resistance Ron. For

the other, its two nodes N1 and N2 entail some parasitic capacitances. Both effects are included in the

small signal model shown in the bottom part of Fig. 1.7. Since for a transmission gate, |VGS| is either

zero, or equal to vdd, its transistors can be assumed to be in the off-state in the former case and to

operate in the linear region in the latter case. For an NMOS transistor, the on-resistance can thus be

calculated from (1.1d) to be:

Ron = RDS =

(
∂ ID

∂VDS

)−1

=

(
K′

W

L

(
vdd−VS−VT −VDS

))−1

, (1.7)
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if the channel length modulation term is omitted. The simulation results for the on-resistance of two

different transmission gates used in the FPTA implementation are shown in Fig. 3.5.

The parasitic capacitances entailed in the implementation of the transmission gate can be analyzed

in terms of the parasitic transistor capacitances discussed in section 1.1.3: According to (1.3), (1.4)

and (1.5) the capacitance at both nodes N1 and N2 depends solely on the respective node voltage VN1

and VN2
and can therefore be expressed by

CNx = CSB,P(WP)+CGS,P(WP)+CSB,N(WN)+CGS,N(WN) . (1.8)

Here, it is assumed that the length of the terminal diffusion Ldiff is equal for both transistors types.

The source-bulk and gate-source capacities CSB and CGS have to be calculated according to (1.3) and

(1.4). The additional subscripts ‘N’ and ‘P’ indicate whether the process parameters for P- or NMOS

transistors have to be chosen.

1.3.2 Dynamic Operation: Sample and Hold Circuits

So far, the discussion has concentrated on the static properties of CMOS switches in that the switch

was either open or closed during the actual operation of the circuit at hand. However, a large variety

of applications as e.g. switched current, switched capacitor or DRAM5 circuits require their dynamic
operation with respect to their state. Within this thesis, the paramount application that requires dy-

namic switching is the temporary storage of analog voltages on a sample and hold capacitor. This

situation is depicted in Fig. 1.8(a). Usually, voltage VSH is buffered by a suited operational amplifier

Vφ

CSH

VSHVS

(a) S/H pass transistor

Ron

CSH

VSHVS

(b) On-state model

CSH

VSHVS

Roff Inp

(c) Off-state model

Figure 1.8: (a) NMOS pass transistor used to sample voltage VS on CSH. (b) simple model used for the

calculation of the time necessary to charge CSH. (c) equivalent circuit if the NMOS transistor in (a) is turned

off.

for further processing, which is omitted here for simplicity. Though in general transmission gates are

often preferred for sample and hold units, the analysis can be simplified to an NMOS pass transistor

without loss of generality.

1.3.2.1 Sample Phase

During the sample period, the S/H circuit of Fig. 1.8(a) can be approximated by the equivalent circuit

shown in Fig. 1.8(b). The influence of any parasitic capacitances inherent to the switch as well as the

switching operation itself are omitted in the analysis for simplicity. After the switch is closed, the

capacitor CSH is charged and VSH converges exponentially towards the signal VS at the input, which is

described by

VSH = VS ·
(
1− e−t/RonCSH

)
. (1.9)

5Dynamic Random Access Memory
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This equation can be solved for the settling time necessary for VSH to reach VS with the desired

accuracy Acc or resolution Res

Tsettle =−RonCSH ln(Acc) = RonCSH ln(2)Res [bit] , (1.10)

where the resolution Res is measured in bit. If, for instance, VSH shall possess a resolution of 16 bit

over the full power supply range, the switch must be closed for at least Tsettle = 11.1RonCSH in the

worst case in which VSH and VS differ by the full power supply voltage.

1.3.2.2 Hold Phase

As CMOS switches feature a relatively high off-resistance Roff, the voltage stored on CSH will decay

slowly and can be utilized for some time. The exact time depends on design, fabrication technology

and the required precision for VSH. In principle, leakage can occur at the input gates of the subsequent

buffer and at the pn junction of the source/drain terminal of the switch transistor. Moreover, some

current may still flow through the switch transistor according to [All02c]. Yet, since the CMOS

process used for the proposed FPTA chip is not in the deep-submicron regime, the leakage through

the CMOS gates and the transistor in the off-state are neglected in the following analysis, although

they are included in the off-resistance Roff of the equivalent circuit depicted in Fig. 1.8(c). The leakage

current through the pn junction of the source/drain terminal of the pass transistor can be calculated

from

Inp = W ·L · JAN + 2(W + L) · JPN , (1.11)

where JAN describes the current density per drawn area and JPN describes the current density per

drawn perimeter of the reverse-biased pn junction in an NMOS source/drain terminal. In fact, the

current through a reverse-biased diode may also exhibit voltage dependence, which can be considered

by an adequate contribution to Roff and causes VSH to decay exponentially (cf. e.g. [Lan98], chapter

2). Yet, as one is only interested in a worst-case estimate for the maximum allowable hold time, the

pn junction leakage current can be approximated by its constant value at the maximum reverse bias

voltage. The maximum hold time for a given resolution Res can thus be evaluated by

Thold =
CSH

Inp
·vdd ·2−Res [bit] . (1.12)

In case of a transmission gate, the proposed model has to be extended by an additional current source

between vdd and node VSH that accounts for the reverse biased pn junction of the PMOS drain/source

transistor. The resulting leakage currents will partially cancel out.

1.3.2.3 Charge Injection

Unfortunately, the process of opening the transistor switch may severely deteriorate the voltage to be

stored on CSH due to capacitive feedthrough of the switched gate voltage Vφ and VSH. The capacitive

coupling between gate and drain/source through the gate-drain/source overlap capacitances CGS/DO

and the gate-channel capacitance Cch is depicted in Fig. 1.9(a). The latter capacitance is actually

spread over the whole length of the channel. However, Sheu and Hu [She84] show that the distributed

model can be replaced by the lumped model of Fig. 1.9(b) provided that
dVφ
dt ≪

dVSH

dt , which is certainly

fulfilled for the sampled voltage to be meaningful. It is worth noting that it is this lumped model on

which (1.4) and (1.5) are based on.

To open the switch, Vφ changes from VH to VL. Thereby, the channel capacitance breaks down,

when the transistor turns off, that is for

VGS < VHT ≡VH−VS−VT . (1.13)
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Figure 1.9: (a) Distributed switch model for a transistor switch. (b) Lumped model of (a). Figures are similar

to those presented in [All02c].

As long as Vφ is still larger than VHT during the switching period, the channel is still conducting,

such that a part of the charge injected onto node VSH can partly be equalized through the channel

resistance Rch. The exact amount of charge deposited on node VSH thus depends on the relation of

the RC-constant defined by Rch and Cch +CGDO and the time during which Vφ changes from VH to VL.

Again, assuming
dVφ
dt ≪

dVSH

dt Sheu and Hu [She84] have derived an analytical expression for the

error voltage Verr injected on node VSH for a linear transition of Vφ described by

Vφ = VH −αt . (1.14)

To simplify matters, they distinguish two extreme cases of a slow and a fast transition which are

determined by the critical slope

αcrit =
βV 2

HT

2CL
, (1.15)

where α≪ αcrit refers to the slow and α≫ αcrit to the fast transition. In these cases, the error voltage

Verr induced on node VSH can be calculated by

Verr =





WCGSDO+Cch/2
CSH

√
παCSH

2β + WCGSDO

CSH
(VS +VT −VL) if

βV 2
HT

2CL
≫ α

WCGSDO+Cch/2
CSH

(
VHT− βV 3

HT

6αCSH

)
+ WCGSDO

CSH
(VS +VT −VL) if

βV 2
HT

2CL
≪ α

. (1.16)

If the slew rate of the clock signal was infinitely large, or the switching time infinitely short, no

charge could be exchanged between the drain and source terminals of the pass transistor during the

switching phase. Therefore, (1.16) simplifies to

Verr,0 =
Cch

2CSH
·VHT +

WCGSDO

CSH
· (VH −VL) . (1.17)

1.4 Simulation and Verification

Optimization procedures in general and evolutionary algorithms in particular need a performance

criterion determining the quality of the solution being optimized. Thus, it seems instructive to sketch

the way in which the quality of analog CMOS designs is verified prior to their production. The

peculiarity of the approach to analog design automation pursued in this thesis is that the candidate

circuits are tested in hardware instead of being simulated. To fully appreciate the difference between

those two approaches and to develop a feeling for the quality of different test criteria used in related

work, a little insight in the simulation and verification of analog CMOS circuits may be beneficial.

Different simulators can be used for the simulation of a CMOS circuits. In principle, they should

all be able to deal with the typical transistor models and support the analysis types described below,



22 Chapter 1. CMOS Analog Circuit Design

but will probably differ in the actual implementation. This may manifest in different convergence

properties, numeric precision or computation speed, rather than produce largely differing results.

SPICE [Qua94] is the prototype of circuit simulators and probably the best known one. The informa-

tion provided below is based on the SPICE simulator as this is the simulator the treatments of Allen

and Holberg [All02b] and Geiger et al. [Gei90a] are based on. The simulations presented within

this thesis however, rely on a simulator called SPECTRE [Cadb]. Apart from the design itself, the

simulator needs models for all the device types present in the design and the process parameters char-

acterizing the target technology (which must comply with the format and requirements of the device

models).

1.4.1 MOSFET Modeling

In the course of improving fabrication technologies several transistor models of different levels of

accuracy and complexity have been developed. Especially the trend to decreasing transistor lengths

rendered new models accounting for the new short channel effects necessary. The dc model charac-

terizing the I-V curves of a MOS transistor that are summarized in Fig. 1.1 are only good for hand

calculations. For the exact simulation of submicron processes they are not sufficient. Except for the

equations modeling the weak inversion, the model is equivalent to the dc part of the SPICE level 1

model, which is also referred to as Shichman-Hodges model. In the SPICE level 1 model, the behavior

in weak inversion is dealt with as the cutoff region, that is by ID = 0.

More accurate simulation of MOS transistors can be achieved by SPICE level 2 and 3 models,

which ,for instance, provide more sophisticated means of calculating the transition between the linear

and the saturation region and a model for MOS transistors operated in weak inversion. Moreover, the

influence of short channel geometries is modeled more accurately. The high frequency model, which

adds the capacitors described in section 1.1.3 to the dc model, refines some of the equations presented

there. In particular, the calculation of capacitors connected to the channel are more elaborate, as

they are essentially distributed capacitances that require some type of integration or approximation

thereof. While the level 1 and level 2 models are derived from device physics, SPICE level 3 is a semi-

empirical model. In order to improve the modeling of transistors in the submicron regime, a series

of BSIM models have been developed. The BSIM3.3 has been the industry standard during recent

years [All02b]. It addresses several effects occurring in deep submicron operation of MOSFETs and

features 40 parameters just for the dc model. If not explicitely denoted otherwise, the simulations

presented in this thesis are based on the BSIM3.3 model. The challenges of modeling most recent

circuit technologies with feature sizes around 100nm are met by the latest BSIM4.2 model.

The ID−VDS characteristics depicted in Fig. 1.3 serve as an example for the deviations between

different transistor models: The dc characteristics of both transistor types are simulated once for the

BSIM3.3 model and once using the MOS15 model. In both cases, those process parameters are used

that belong to the fabrication technology in which the FPTA chip was produced in. The MOS15 model

is an improved version of the SPICE level 2 model adapted by the manufacturer. Although the chosen

channel length of L = 2µm is quite large, the resulting ID−VDS curves differ considerably for the two

device models.

1.4.2 Analysis Types

Typically, a circuit simulator offers different analysis types allowing the designer to test different

figures of merit for the design at hand. The most elementary types are dc, ac and transient analysis,

which will be summarized below:
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DC Analysis. For a dc analysis any potential time dependency of the circuit under simulation is

eliminated by shortening all inductors and opening all capacitors. The resulting circuit is then simu-

lated using the dc model chosen by the user. If successful, the simulation converges to an equilibrium

solution yielding a set of node voltages and currents. Usually, circuit simulators allow to sweep either

an input voltage, a design variable or the circuit temperature. To obtain a family of curves, the dc

sweep has to be re-run for the desired set of parameters.

AC Analysis. At the beginning of an ac analysis the dc operation points of all circuit devices must

be established by means of a dc analysis. Subsequently, the small signal model of the circuit is

calculated by linearizing all of its devices at their respective operating points. The resulting system of

linear equations is then typically solved for a set of different frequencies specified by the user. Strictly

speaking, the results of an ac analysis are only valid for arbitrarily small signals and at the operation

point defined in the respective simulation.

Transient Analysis. A transient analysis also starts by establishing a dc solution for the circuit

under simulation. The dc solution is used to define the initial conditions for time t = 0. Subsequently,

the analysis proceeds by numerically solving the system of differential equations for discrete time

steps. The size of the time steps is controlled by a default resolution specified by the user and a

mechanism that reduces the time steps if necessary. Here, necessary is defined by a threshold for the

size of the relative and absolute changes of the involved node voltages and currents. The respective

threshold values can also be changed by the user. In comparison, the transient analysis is the analysis

type that is most closely related to an actual hardware test, because it includes all aspects of the

device models and solves the full set of differential equations. On the other hand, solving the full set

of differential equations also requires the largest amount of computation time.

1.4.3 Influence of Temperature and Device Mismatch

Temperature. The electrical properties of semiconductors depend on temperature. Consequently,

the behavior of analog CMOS circuits is also subject to temperature variations. Therefore, the designer

must ensure that the circuit at hand meets the desired specifications over the temperature range of in-

terest. In simulations, this temperature dependency is modeled by defining a temperature dependence

for the affected process parameters.

Process Parameter Variations. Due to tolerances and imperfections in the production process, the

exact values of the process parameters cannot be guaranteed. Instead, the manufacturer usually de-

fines upper and lower bounds and typical mean values for each process parameter (or at least those the

device models are most sensitive to). To keep the subspace of allowed process parameters tractable,

the parameter variations are summarized in a small set of worst case parameters. For example, dif-

ferences in the relative doping densities may result in a change of the ratio of the transconductance

parameters of n- and p-channel transistors, which is accounted for by a worst case one or worst case
zero. This ratio of transconductances determines the set point of inverter-like circuits. To ensure

that the circuit will meet the specifications for the full subspace of allowed process parameters, the

designer usually verifies the design for the typical mean as well as for all worst case parameter sets,

which is referred to as a corner analysis.

Device Mismatch. The imperfections inherent to the fabrication process also cause equally de-

signed devices located on the same die to behave slightly different, which is referred to as device
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mismatch or device to device variations. As a consequence, the designer has to verify that the circuit

at hand still fulfills the specifications when the expected device variations are taken into account. This

can e.g. be done by a sensitivity analysis, which calculates the influence of all sorts of circuit parame-

ter variations on some output voltage or current [Qua94], or by means of a Monte Carlo analysis. The

latter one can model the distribution of circuit behaviors based on a statistical model of the device to

device and process parameter variations. As a consequence, a suited Monte Carlo analysis allows to

predict the yield of circuits meeting the desired specifications.

1.4.4 Comment on Circuit Simulations in Evolutionary Algorithms

The above discussion revealed that proper circuit verification is quite complex and involves a consid-

erable amount of computational effort. On top of that, the designer must ensure that the circuits are

verified to work under all possible conditions, which also requires to use the correct load impedances

at the output of the circuit under test. Despite all the effort and faith in the simulation, the authors of

text books on CMOS design advise the designer to develop a good understanding of the circuit and

to refrain from excessive simulations ([All02b], [Gei90a]). One of their possible reasons may be that

it is impossible to cover all operating conditions of the circuit at hand with arbitrary resolution. As

indicated in case of the ac analysis, the simulated results may only be valid in a very limited range of

parameters. In case of a human designer, the circuit usually relies on well known design principles

and its behavior can be roughly estimated by hand calculations and arguments. Therefore, the behav-

ior of human designed circuits tends to extend smoothly under changing operation conditions. For

circuits emerging from an evolutionary algorithm, this cannot be expected. The algorithm simply tries

to find a solution that fulfills exactly those goals specified in its target function. As a consequence,

the simulation of possibly unconventional circuits requires even more care than its human-designed

counterpart.

1.5 Design Flow

Unlike their digital counterparts, for the design of which sophisticated CAD6 tools exist7, analog

circuits and digital circuits whose analog behavior must be specified usually have to be designed

by hand8. That is, the designer has to decide upon the topological position as well as the channel

dimensions of each and every transistor belonging to the circuit. Even worse, subsequent to the

electrical design of the circuit, it must be transferred into a suitable layout, which again requires the

designer to place and route each single transistor. In between, the results of the electrical and later on

the physical implementation have to be verified by simulations.

A viable design flow for an analog or mixed signal system is illustrated in Fig. 1.10. The system

is assumed to comprise two levels of hierarchy in that the given target specification of the desired

system can be broken down into a system of analog subcircuits that are dealt with on the transistor

level. Faced with such a situation, the designer may choose to simulate the resulting architecture

on an abstract level after actually dividing the system into smaller building blocks. This can be e.g.

accomplished by using an AHDL9 description to model the subcircuits. As a product of this possibly

recurrent loop, the necessary specifications for all subcircuits emerge.

6Computer-Aided Design
7A sketch of a viable design flow used in digital design is given in section 4.3.
8It has only been very recently that some of the attempts to automate the analog design process did mature into available

products that support the designer.
9Analog Hardware Description Language



1.5. Design Flow 25

Repeat for all 

subcircuits

System architecture:

Divide problem into building blocks

Invent/find a circuit solution

For each subproblem:

Generate target specifications

Size the topology

Circuit layout

Backannotate the parasitic devices extrated 

from the layout

Circuit simulation

System target specifications

Backannotated simulation

System Simulation with

backannoted circuits

System simulation with

backannoted circuits

System level simulation

Last subcircuit ?

Tape out

meets specs

specs not met

meets specs

meets specs

meets specs

meets specs

specs not met

specs not met

specs not met

specs not met

Figure 1.10: Design flow for an analog system featuring two levels of hierarchy.



26 Chapter 1. CMOS Analog Circuit Design

Now, each of these subcircuits has to be designed according to the specifications determined

above. Typically, the designer starts with picking a suited topology from a circuit library or from a

text book. If no existing topology is available, a new one must either be invented or an existing must

be adapted to the task. In the second step, the transistor dimensions of the chosen topology must be

determined so that all of the target specifications can be met. This again recurrent procedure involves

the different kinds of transistor level simulations described in the previous section. If the designer

cannot satisfy the target specifications, he must either resort to a different topology and run through

the same sizing procedure, or try to rearrange the set of specifications on the system level (this is

omitted in Fig. 1.10 for clarity).

If the target specifications are eventually met, the designer has to do the layout of the circuit.

As the layout adds parasitic devices, that is, capacitors formed by adjacent metal, polysilicon or

diffusion strips, capacitors formed by layers that are in vertical proximity or resistors caused by

finite sheet resistances, these devices must be extracted from the layout and added to the electrical

circuit. The resulting circuit must again be verified. If it fails to meet the specifications the different

methods of redesign described above apply. Finally, if all subcircuits have been designed up to their

specifications, an overall transistor level simulation including all of the parasitics extracted from the

top level layout must verify that the entire system satisfies the required specifications.



Chapter 2

Evolutionary Algorithms in a Nutshell

Birth, Copulation, and Death.

That’s all the facts when you come

to brass tacks.

Sweeney Agonistes
T. S. ELLIOT

Most of the work in the field of hardware evolution as well as the evolution system
described in this thesis rely on evolutionary algorithms (EAs) as an optimization
engine or even as a source of invention. This chapter explains the general idea
behind these algorithms based on its natural inspiration. The description contin-
ues with the main constituents of an EA and provides an overview over its different
incarnations. The application of EAs is motivated by briefly discussing their po-
sition in the field of optimization as well as their abilities and limitations. The
chapter concludes with a small selection of possible extension and refinements of
EAs that may further enhance their performance in the proposed project.

Evolutionary algorithms (EAs) are widely used as general purpose automated problem solvers in sci-

ence as well as in industry [Bug03] and are an active area of research1 [Lan02],[Deb04]. The list of

EA applications is quite long and diverse. It comprises different problem types, such as optimization

of engineering designs, scheduling problems, timetabling problems, search, control, system identifi-

cation or training of neural networks. Apart from the fascinating analogy to natural evolution, EC

draws much of its popularity from its generality, in the sense that it can achieve good results without

an exact understanding of the problem at hand. Although the roots of EC actually date back to the

late 1950s [Fog98], [Bäc97], and although three of today’s four founding dialects emerged separately

in the 1960s, the field has received most attention during the last 15 years.

1The research area dealing with EA is actually referred to as evolutionary computation (EC).

27
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2.1 Biological Inspiration

In 1859, Charles Darwin explained the enormous biological diversity found on our planet by a theory

based on the principles of mutation and natural selection [Dar59]. To date, the core of this theory

is still considered the scientific explanation for the evolution of different life forms, backed up by

more evidence than ever [Got94]. The inventiveness of the natural evolution process is astounding,

in the generated quantity of an estimated 2 million different species known to currently exist (not to

mention those that have vanished again already) [Sto01e], as well as in the quality of the produced

solutions. Accordingly, it comes as no surprise, that engineers attempt to imitate the principles of

natural evolution to find new solutions to their problems. As such, it seems only natural to start with a

brief description of the original, biological evolution process. More detailed information concerning

the subject matter can e.g. be found in [Eib03a], [Got94], [Wei02], [Hes], [Czi92].

2.1.1 Darwinian Evolution

From a macroscopic point of view, the theory of evolutions can be summarized as follows: Typically,

the members of a given species reproduce at a rate that causes their number to grow exponentially

with time. Yet, at some point a population of such individuals will experience the limited resources

provided by their environment. In this situation those individuals that are better adapted to their envi-

ronment will be more likely to survive than the less adapted ones. This mechanism is termed natural

selection or – in the words of Darwin himself – the survival of the fittest. The fitness of an individual

is determined by its physiological, physical and behavioral features, in short: its phenotype. The

phenotypical traits as well as the plan how they are developed is provided by the genetic information

– the genotype – inherited from progenitors to their progeny. Since those individuals that are better

adapted to the given environment will also be more likely to produce offspring, they are more likely

to pass their genes to the next generation. A change that increases the fitness to survive and reproduce

will be stored in the genetic code of of that fitter individual’s offspring . The necessary changes are

induced by small variations of the genetic information that occur during the reproduction process,

which are denoted as mutations. They counterbalance the converging force created by the combina-

tion of selection and recombination. In summary, the fitness evaluation performed by the environment

favors to propagate those changes in the genetic code to future generations that are either beneficial

or neutral with respect to the rest of the population.

So far, the discussion referred to a population of competing individuals. Biologically, such a

population is limited to members of one species, that is, creatures that members of the population can

reproduce with. It is further limited by the geographical region, the members of one population have

to coexist and therefore have to compete in. A new species can emerge if some successful mutation

provides an advantage over the rest of an, for example, geographically isolated population. Given

enough time, this population can be evolved to the point, where it cannot reproduce with members

of its original species. It may be the case, that the new species adapted to one particular ecological

niche, which makes it impossible for members of its old species to compete and hence dominate

them. Another important aspect is the fact that the environment evaluating the respective fitness of a

species is defined to a large extent by other evolving organisms that may, for example, be predators

or serve as food. Hence, the environment is also constantly changing requiring an endless process of

adaptations. The fact, that many species evolve together influencing the development of each other is

described as coevolution.
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2.1.2 Genetic Principles

The genetic information is typically2 stored in the DNA3. DNA, in principle, consists of a long chain of

base pairs (approximately 3 billions in case of the human genome [Got94]). The genetic information

is stored by means of the alphabet comprised by the four base pairs G-C, T-A, C-G and A-T, where

A denotes adenine, C cytosine, G guanine and T thymine. The entire genetic information is stored as

DNA in the nucleus of each cell of one organism. It is called the genome, which is usually divided

into several chromosomes (23 for human beings). Each chromosome comprises a large number of

genes (e.g. in the order of 4,000 for E-coli bacteria [Got94] and between 20,000 and 30,000 for human

beings [Nat04]). Opposite to chromosomes, which are (also) physical entities encoding part of the

genetic information, genes are rather defined by the phenotypical trait they determine. That is, a gene

can be one continuous part of a chromosome, but can also be distributed across the chromosome; it

can occupy a larger or smaller fraction of the chromosome. The actual bit of information coded by

the gene is referred to as an allele, while its position on the chromosome is called the locus. A cell can

reproduce itself either by mitosis or meiosis. In mitosis, the cell first copies its nucleus (and thereby

its genome) and then divides itself into two – genetically – identical halves. For organisms with sexual

reproduction meiosis plays a crucial role in mixing the genetic information of two parents.

Meiosis. From an information processing point of view, meiosis can be simplified to the sequence

depicted in Fig. 2.1: The diploid cell contains one paternal and one maternal genome. At the begin-

ning, the paternal and maternal chromosomes are aligned in a way that the homologous chromosomes,

i.e. those that contain the same genes, form pairs. Subsequently, the chromosomes are split into iden-

tical halves called chromatids, which is possible owing to the redundant structure of the DNA. The

aligned pairs of homologous chromosomes thus become a tetrad. Pairs of the chromatids join now at

several crossing points called chiasmata, typically between 1 and 8. The location of the chiasmata is

chosen randomly. The exchange of parts of the chromosome between the chiasmata is called crossing

over. It mixes maternal and paternal information on the intra chromosome level. At the end of the

first stage called meiosis I, the mixed chromatids join to become chromosomes again, which are then

aggregated to two complete genomes. As each chromosome is chosen at random from the two alter-

native chromatid pairs, recombination on an inter chromosome level is achieved here. Finally, in the

second stage of meiosis, the chromosomes of the two genomes are divided separately into chromatids

that are then completed to form four different sets of chromosomes in four separate cells. As each of

these cells contains only one (mixed) genome, they are called haploid.

Haploidy and Diploidy. Although there are not only haploid and diploid, but also polyploid or-

ganisms and even those that switch between haploid and diploid with each generation, the discussion

shall be limited to haploid and diploid organisms. In diploid creatures, as e.g. in human beings, all

cells, except for the gametes, contain a maternal and a paternal genome. In the meiosis, gametes,

that is haploid cells, are produced from diploid cells. In the mating process of two gametes, the two

single genomes merge into a new diploid cell from which the new child organism grows. This latter

development is called ontogenesis. In haploid organism, this scheme is reversed in that all body cells

contain only one copy of the genome, but a meiosis is necessary to reduce the number of genomes

subsequent to the mating of two gametes from two to one. Often, evolutionary algorithms implement

the recombination in a rather haploid manner, that is, the genome that is responsible for the ontogene-

sis is passed to all of the children. Diploid inheritance differs from this scheme, in that the phenotype

is determined by the way the information is read off from the pair of maternal and paternal genomes,

2At least in the case of eucaryotes, to which the description shall be limited.
3DesoxyriboNucleic Acid
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whereas the gametes contain a mixture of the paternal and maternal genetic code that is completely

uncorrelated with this former genome the ontogenesis is based on.

Mutations. In the previous section, the variations induced by mutations have been identified as

being the driving force for evolution. The different types of mutations observed in living creatures

can be classified by their scope: The smallest mutations are point mutations occurring at the gene

level. Here, a base pair of the nucleotide sequence of the DNA is replaced by another base pair, which

may or may not change the phenotypical trait related to the gene. On the chromosome level, four

different types of mutation are known [Got94]. First, a part of the genome comprising one or more

genes may simply be deleted. Second, such a part may be cut out of the genome and be inserted in

the inverse order after being rotated by 180◦. While the above two types of mutation are restricted

to one single chromosome, the following two types require the presence of two chromosomes. These

are duplication and translocation, where the pair of chromosomes must be homologous in the former

and non-homologous in the latter case. In a duplication, a snippet of one chromosome is inserted into
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Figure 2.1: Schematic illustration of the Meiosis

process for a genome featuring three chromosomes:

(a) Cell contains two different genomes, one paternal

(P1 – P3) and one maternal (M1 – M3). (b) The chro-

mosomes split and the resulting homolog chromatids

align each other to form tetrads. (c) Crossover: The

four chromatids exchange parts that lie between sev-

eral crossover points. (d) The four strands of homol-

ogous chromatids form 2 chromosomes again. The

assignment of chromosomes to future genomes hap-

pens randomly. (e) The two chromosomes contain-

ing four different chromatids are doubled resulting in

four different chromosomes encapsulated in haploid

cells.
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the other one, shortening the first and duplicating part of the second chromosome. An exchange of

genetic material similar to crossing over that occurs between non-homologous chromosomes leads

to a translocation of genetic material. Finally, there are also mutations on the genome level, which

are either changing the number of one particular chromosome of one cell (e.g. trisomy 21 in case of

humans) or changes the ploidy of the genome, that is the number or complete sets of chromosomes.

2.1.3 Ontogenesis

So far, only the storage on the DNA and the means of their variation and proliferation have been con-

sidered. However, as it is the phenotype that is evaluated by its environment, the interpretation of the

genetic code, that is the ontogenesis from the genome to the final phenotype, is of utmost importance

to natural evolution. Unfortunately, this highly complex process is far from being understood. The

discussion below sheds a bit of light onto the complexity of the genotype phenotype mapping:

Depending on the type of organism, the genome contains large fractions of unused information.

In fact, for humans it is estimated that only a few percent of the DNA are actually used to encode

information. First, a process called transcription extracts the coding bits of information stored on the

DNA, that is, it converts the DNA to messenger RNA4, which contains only the coding snippets called

exons, but none of the non-coding parts called introns. In the second phase referred to as translation,

sequences of three base pairs called codons are translated into one of 20 different amino acids. A

sequence of these codons makes up for one chain of amino acids forming a polypeptide (also called

protein). These proteins may subsequently be further modified and usually change their structure,

that is e.g. the chain morphs itself into a spherical shape.

A cell cannot at one time transcribe and translate the full genome. The mechanism that de-

scribes which quantities of which gene are expressed in what kind of environment is considered a

self-organizing process referred to as gene regulation. Gene regulatory networks are believed to be

responsible for the differentiation occurring during ontogenesis, that is the mechanism by which cells

carrying the identical genetic information as the first zygote develops into very different cell types

as, for instance, liver, skin or neural cells. In summary, the genotype phenotype mapping found in

biological systems is highly complex, indirect and requires some sort of self-organization.

2.2 Overview of Evolutionary Algorithms

Evolutionary algorithms are a class of algorithms that imitate some of the features of natural evolution

to solve optimization problems. Thereby, the environment providing the fitness evaluation in case of

natural evolution is replaced by a cost function that describes the optimization task at hand. In contrast

to many other optimization procedures, evolutionary algorithms usually employ not one, but a whole

population of candidate solutions. Here, the population can be conceived as one species that is to adapt

to the given problem specified by the user. An evolutionary algorithms may be used to constantly

adapt a solution to a varying cost function. However, the genuine variants of evolutionary algorithms

concentrate on one species and thereby discard the dynamics of coevolving species found in natural

evolution. Another important difference between biological and artificial evolution is the complexity

of the genotype phenotype mapping. Though the representation of the candidate solutions is indeed

crucial to the success of evolutionary algorithms, it is usually kept much simpler than the – admittedly

not yet understood – ontogenesis of living organisms. Yet, some researchers believe developmental

processes linking genotype and phenotype to be the key in structural design optimization [Had01],

[Dev03].

4RiboNucleic Acid
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2.2.1 Operation Principle

The generic scheme of an evolutionary algorithm is depicted in Fig. 2.2 (cf. [Wei02]). At first, a pop-

ulation of candidate solutions must be created. Viable alternatives would be to start with individuals

that are randomly generated, individuals that stem from a prior evolution experiment, or individu-

als obtained by guessing an approximate solution to the problem. Independent of the quality of the

members of this first generation, they must comply with the syntax inherent to the fitness evaluation.

Before entering the evolutionary loop, the individuals of the initial population must be evaluated. The

next four operations in the evolutionary loop describe the generation of a new population: At first,

this requires the selection of suited parent individuals that are allowed to inherit their genes to the next

generation. Selection favors the fitter individuals as they attain a larger probability to be chosen for

producing new offspring. In the next step, the selected genetic material is changed by the variation

operators that realize the artificial analogies to natural recombination and/or mutation. At this point,

the fitness of all of the child individuals is evaluated. The new generation can then be obtained by a

second selection procedure that is based on the results of the previous two fitness evaluations. Here,

a better fitness increases the probability to be part of the new generation, that is, to survive. The

sequence described above is repeated until a termination criterion specified by the user is met. This

could either be a (sufficiently) optimal solution, a fixed number of iterations, or a given amount of

wall-clock or computation time.
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Figure 2.2: Generic scheme of an evolutionary algorithm. Its different constituents are discussed in the text.

The graphical presentation is inspired by Hohmann [Hoh05].

2.2.2 Components of an Evolutionary Algorithm

In order to solve a concrete problem, the following components of an evolutionary algorithm must be

specified for the algorithm to be applicable to the problem:

• representation

• variation operators
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• fitness function

• selection scheme

The term representation accounts for the encoding of the candidate solutions, or more precisely,

the encoding of their genotypes, to which the variation operators are applied. While the first three

components are closely related to the actual problem to be solved, the selection scheme is a more

general feature. Its discussion is therefore deferred to the next section.

The description of the different components will be clarified by means of a toy5 problem, namely

a least square fit. The optimization problem shall be stated as follows: For a given set of N = 100

data points D[i] = (Dx[i],Dy[i]) , 0 < i < N, find the seven coefficients α j , 0 < j < 6 of a polynomial

of order 6, that minimize the mean square error

MSE≡ 1

N

N−1

∑
i=0

(
fpol(i)−D[i]

)2
with fpol(x) =

6

∑
j=0

α jx
j . (2.1)

between the data points and the curve defined by the polynomial.

2.2.2.1 Representation

Analog to natural evolution, any individual of the populations possesses – in general – a genotypical

and a phenotypical manifestation. The sought solution to the problem is defined in the phenotypical

problem space. This could be, for instance, an electric circuit, a neural network, or the shape of an

airfoil. In the case of the curve fitting example, the phenotype would be the mathematical function

described by the polynomial. The variation operators, on the other hand, are bound to act in the

genotype space – usually a subspace of data structure realizable with a digital computer. Prior to

the fitness evaluation the genotype must be mapped to the phenotype, which is referred to as the

decoding. The reverse mapping, the encoding is called representation in the context of evolutionary

computation. It describes the data structure that encodes the phenotypical candidate solution. The

terminology with which the genotype and its constituents are denoted is borrowed from the biological

model, that is the whole genotype would be also the genome that may or may not be divided into

chromosomes. Each chromosome in term possesses a set of genes, which are usually realized as

variables or again defined data structures. Yet the gene would be the smallest entity whose value can

be varied.

In case of the curve fitting example, a straightforward representation of the genotype could be

as simple as a vector of the seven coefficients ~α = (α0, . . . ,α6) encoded as 32-bit floating point

variables. Another popular encoding uses bit strings. Independent of the actual mapping of bits

and floating point variables, the choice will probably be disadvantageous. Although it looks like an

unnecessary complication, a bit string representation can, however, also be beneficial and is much

more natural to discrete, combinatorial problems. Both encodings are illustrated in Fig. 2.3. In case

c0 c1 c5

0 1 30 31 0 1 30 31 0 1 30 31

floating point

binary

Figure 2.3: Floating point (top) and bit string (bottom) representation for the curve fitting example.

5First it should be noted that curve fitting in general is not a toy problem at all. Second, good mathematical curve fitting

procedures do exist (e.g. the method of Levenberg and Marquardt); an evolutionary algorithm is by no means expected to

beat these dedicated algorithms.
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of the floating point representation, each α j is considered one gene, whereas in the bit string it may

be useful to separate the bits belonging to one floating point into chromosomes. Yet, this depends on

the definition of the variation operators.

2.2.2.2 Variation Operators

The variation operators act on the genotypes and thus allows individuals to traverse the genotype

space. Their implementation is closely linked to the chosen representation and the combination

thereof decides upon the possible steps in the genotype space. In particular, the variation operators

determine whether all points in the search space can be accessed, or, if not, which subset of them can

be sampled. Analog to the biological model, variation operators are classified according to their arity,

that is the number of input objects they act on. Unary operations are referred to as mutations, whereas

binary operators are subsumed as recombination or crossover operators. Recombination operators

acting on more than two genotypes are used rather infrequently, maybe due to the lack of biological

precedence [Eib03a]. It is mainly the variation operators that are responsible for the stochastic nature

of evolutionary algorithms. Hence, they must include some probabilistic element.

Mutation. A mutation is to apply a small random change to the chosen genotype it acts on. As

mutations offer the smallest steps that can be taken, they sample the close vicinity of one point in the

search space. The most fundamental mutation operations for bit strings and floating point variables

can be explained in terms of the least square fit example: In case of a bit string, each bit is flipped with

a probability 1/p. This probability is referred to as the mutation rate; the default recommendation

is to flip one bit per mutation on average, that is for a bit string of length L, choose p = 1/L [Weg].

Apart from this point mutation other mutation involving two or more bits, such as swapping two bits,

inserting a bit, inversion or randomization of the order of a group of bits are reported in [Eib03a].

For a vector of floating point variables, or integers taken from a virtually unlimited range, mutations

are typically realized by adding a random vector, whose entries are randomly chosen from a normal

distribution with mean µ . Hence, a mutation of the set of coefficients used for the least square fit

example can be described by ~α → ~α +~r. The variance σ of the normal distribution is the equivalent

to the bit flip probability p.

Recombination. The crossover operator re-combines the information contained in two genotypes

to generate new offspring. Often, two parents are used to create two children. The recombination

of genetic material is again usually probabilistic in choosing which parts of the new child genome

are taken from which parent. Yet, for the arithmetic crossover described below this is not the case.

Referring back to the least square fit example, Fig. 2.4 illustrates possible crossover operations for

the floating point vectors ~a and~b denoting members of the respective population.

In single point crossover, the two vectors are split at one randomly drawn position; the resulting

four parts are then joined with the complementary parts from the other parent, respectively. N-point

crossover, depicted for n = 2 works similarly, albeit breaks the genome into n contiguous segments

that are exchanged between the two original genotypes. In uniform crossover, the allele for each gene

locus is chosen randomly from either of the two parents. While each of these three crossover variants

results in a complementary pair of child genomes, that is, only the combination of genes is altered,

uniform arithmetic crossover (also denoted as Gaussian perturbation) produces linear combinations

of the parental genomes that do not contain the original genes any more. In general, arithmetic

crossover can be described by~c = s~a+(1− s)~b for the first and ~d = (1− s)~a+ s~b for the second child

genome. In Fig. 2.4 s = 1/2 is used, which yields only one new genome. One and n-point crossover
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Figure 2.4: Different crossover operators applied to the genotype of the least fit square optimization example.

as well as uniform crossover are equally defined for bitstrings, but arithmetic crossover is limited to

floating point representations.

2.2.2.3 Fitness evaluation

The evaluation or fitness function is the artificial analogon to the environment in biological evolution.

It must capture the optimization task at hand in that individuals that are closer to the sought optimum

attain a higher fitness. This is nontrivial. On the contrary, it is easy to construct problems that exhibit

the opposite behavior. Consider for example the ONEMAX problem: For a bit string of given length,

the fitness is defined as the sum of all zeroes. If one reformulates the goal such as to assign the

highest fitness to the bit pattern containing all zeroes, the problem becomes a deceptive problem

and does not satisfy the above requirement. Admittedly though, the problem is sort of pathological.

Mathematically, the fitness evaluation is defined as a function that maps the genotype space to a

scalar6, that is f : G →R. In case of the least square fit example, the fitness function could be simply

defined by (2.1): f : R
7→ R, f = MSE, although other mappings may be conceivable.

Traditionally, evolution problems are set up as maximization problems. However, the above curve

fitting example as well as all artificial evolution experiments presented within this thesis try to mini-

mize fitness. This owes to the fact, that all of these performance criteria measure the deviation from

a specific desired behavior. In such a context it is more convenient to state the task as a minimization

problem in which some error function like the MSE is minimized. Nevertheless, a minimization prob-

lem can, in principle, be easily reformulated to a maximization problem and vice versa. Care must

only be taken if absolute values of the objective function are of importance, which would be the case

in the fitness proportional selection scheme described below. It is not within this thesis, as fitness

proportional selection is not used for any of the presented experiments.

6The subject of multiobjective optimization will be addressed in section 2.5.2. For the rest of the thesis, fitness is understood

to be a scalar.
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It can be instructive to think about the optimization task in terms of the so-called fitness landscape,

which is defined as the hyperplane formed by all genotype fitness value pairs in G ×R. To foster

imagination, consider the case f : R
2→ R: Here, the fitness landscape features peaks and valleys,

whose altitude is defined by the respective fitness values. In this picture, the landscape is defined

by the combination of the representation and the fitness function; the variation operators enable the

algorithm to move the population of points through this search space. The goal it then to find either a

maximum or a minimum in this landscape. Accordingly, the nature of this fitness landscape is tightly

coupled to the complexity of solving the task at hand. If the fitness landscape is smooth featuring one

single global optimum, say a smooth valley, the task is trivial in that a simple hill climbing algorithm

is bound to find the optimum. Other scenarios are not: Imagine for example a rugged landscape

featuring many local minima. Simple hill climbing algorithms will be trapped in the very next local

optimum. Another very difficult task is given by the needle in a haystack problem, in which the

entire fitness landscape is perfectly flat except for one single peak. A search algorithm can only find

the optimum by a lucky choice, or exhaustive search, since none of the sampled points in the search

space provides any information about the optimum, except the optimal point itself.

In summary, this leads to the following interpretation. The shape of the fitness landscape deter-

mines the level of difficulty in finding optimal or near optimal solutions. The fitness landscape in turn

is determined by the fitness function and the chosen representation. Hence, the design of these two

EA components provide the most freedom for improvements. If fitness function and representation

can be chosen such that the resulting fitness landscape features one global minimum that smoothly

ascends in all directions, the problem is, in principle, solved. The design of suited fitness functions

and representations, however, does not only possess the highest potential for increasing the chances

for success, it is also the most difficult part. As the fitness criterion is to a good extent determined by

the sought optimization goal, it is the representation that is believed to be the most prospective candi-

date for improving an evolutionary algorithm’s performance. This probably can only be achieved by

including problem-specific knowledge, which in turn puts into perspective the claim that evolutionary

algorithms are general purpose problem solvers.

2.2.3 Selection Schemes

In contrast to the components discussed in the previous section, the selection mechanism is a more

general feature of evolutionary algorithms that can be applied relatively independent of the problem at

hand. In particular, the selection scheme governs the population dynamics in the following sense: It is

commonly perceived (see e.g. [Eib03a], [Wei02], [Mic99]) that the course of evolutionary algorithms

can be divided into two phases, that of exploration and that of exploitation. At first, the members of

the population are sampling distant points in the search space. While mutation helps the individuals to

explore their local neighborhood, recombination and selection move the individuals on a larger scale.

Finally, the population will converge to small mutational variations of one single individual due to the

selection procedure. In other words, optimization occurs only locally, as the population is restricted

to a small region of the search space. The selection scheme is liable for the extension of the two

different phases of exploration and exploitation and as such influences the chances for the algorithm

to succeed in solving a particular type of problem. The case, in which the population converges to a

significantly suboptimal region in the search space is referred to as premature convergence.

2.2.3.1 Population Models

The generic evolutionary algorithm scheme depicted in Fig. 2.2 distinguishes between parent and

survivor selection, which are also referred to as selection and replacement [Eib03a], which again
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bears some resemblance to the natural evolution process of higher life forms: First, new offspring

has to prove successful in surviving. Later on, fitter individuals are often accredited higher chances in

being selected as a mate to create the children of the next generation. The scheme of Fig. 2.2 however,

rather models the situation in which parents and offspring have to compete for resources and mates

for some time.

In artificial evolution, the treatment of parental and survivor selection manifests itself in differ-

ent replacement strategies. First, two different population models, namely the generational and the

steady-state model are discerned [Eib03a]: In the former one underlying the above description of

the generic evolutionary algorithm scheme illustrated in Fig. 2.2, an entire generation is renewed

within each iteration. On the other hand, in the steady-state model only a fraction of the population

is replaced. If µ defines the size of the population at the starting point denoted as new generation
in Fig. 2.2 and λ the number of offspring generated from the µ parents, then λ < µ individuals are

replaced in each iteration. The second option concerns the pool of possible survivors: They may be

selected exclusively from the λ ≥ µ children or take also the µ parents into account. In the latter

case, the selection can either be based on the fitness of the intermediate µ + λ individuals or on their

respective age.

2.2.3.2 Selection Schemes

A variety of different selection schemes have been reported. Usually, they can be used for both,

parent and survivor selection. Yet, not all combinations thereof make sense [Wei02]. Moreover, one

selection may even be omitted. The most popular selection schemes are briefly discussed below. They

mainly differ in their selection pressure, which can be quantified either by the expectation value for

takeover time needed for the best individual to replace all other individuals in the absence of genetical

variation, or by means of the selection intensity defined as

Isel =
fsel− f

σ f
.

Here, fsel denotes the mean fitness subsequent to the selection and σ f the standard deviation of the

fitness values prior to selection. A large value of selection intensity entails a strong preference for

better individuals. Yet, both measures are strongly dependent on the actual fitness distribution and,

according to Wegener, difficult to interprete [Weg]. Hence, it is not attempted to quantify the selection

pressure of the respective scheme, but the different schemes are rather presented in descending order

of selection pressure [dJ04].

Truncation Selection. The offspring/survivors are selected from the best Ptrunc percent of individ-

uals. Often, truncation selection is meant to be deterministic, that is that indeed all of the best Ptrunc

individuals are selected [Rud97]. This is the case for the standard selection schemes used in evolution
strategies, which are abbreviated by (µ ,λ ) and (µ + λ ). The former scheme selects the best µ indi-

viduals exclusively from the λ (> µ) offspring, whereas the latter one extends the selection to include

the µ parents, too. However, the hardware evolution experiments presented within this thesis refer

to truncation selection as a probabilistic scheme in that as many individuals are drawn from the best

Ptrunc percent of individuals as required to fill the population, even though Wegener [Weg] denotes

this as threshold selection.

Rank Based Selection. Let 0≤ r < µ denote the rank of an individual in the population, so that the

fittest individual possesses the highest rank. The probability of being selected can now be calculated
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as a function of this rank. In principle, a large variety of functional dependencies are conceivable; the

most popular ones are [Eib03a] [Weg]:

Plr =
2− s

µ
+

2r(s−1)

µ(µ−1)
for 1≤ s≤ 2 linear (2.2a)

Pqr =
1

C
(α + β r2) quadratic (2.2b)

Per =
1

C

(
1− er/γ

)
exponential , (2.2c)

with C =
µ−1

∑
r=0

Pxr .

Equ. (2.2a) is already normalized. The selection pressure can be adjusted from zero (s=1) to a linear

scheme in which the worst individual cannot be selected, whereas the probability for the best one

amounts to 2/µ (s=2). The probability Plr is defined such as to assign a medium probability 1/µ to

an individual with rank (µ−1)/2. To achieve a higher selection pressure, a quadratic or exponential

rank based selection must be used as described by (2.2b) and (2.2c), respectively. The constants α , β
and γ can be used to further adjust the rank based probability distribution.

Tournament Selection. In a q-ary tournament selection q randomly drawn individuals have to com-

pete against each other. Only the best of those q individuals is selected and the process repeated

until the desired number of individuals is determined. The selection intensity can be adjusted by the

number of competitors q participating in the tournament: More competitors cause a larger selection

pressure. As the result of each competition does only depend on the rank of the participating individ-

uals, tournament selection can be interpreted as a variant of rank based selection [Weg]. In contrast to

truncation and rank based selection, tournament selection does not require the population to be sorted

prior to selection.

Fitness Proportional Selection. The selection probability Pfp(x) is defined to be proportional to the

fitness f (x) of each individual x. Owing to the necessary normalization, this yields:

Pfp(x) =
f (x)

∑
µ−1
y=0 f (y)

. (2.3)

In the traditional form of (2.3) fitness proportional selection can only be applied to problems where the

fitness has to be maximized. Hence, for minimization problems, an appropriate transformation must

be used. Weicker [Wei02] identifies two additional drawbacks of the fitness proportional selection

scheme: First, Pfp(x) depends on the offset of the fitness value distribution: If the offset is large

compared to the difference between highest and lowest fitness values, fitness proportional selection

will treat the whole population almost uniformly. This can be mitigated by rescaling the fitness

values so that only the range of fitness values of the last w generations is taken into account. A more

advanced method referred to as sigma scaling [Eib03a] uses mean and variance of the fitness value

distribution to achieve a more appropriate selection. However, the second disadvantage, namely that

individuals with an outstanding fitness will take over the whole population within a few generations,

remains. In other words, if large changes in the fitness occur, evolutionary algorithms using fitness

proportional selection are prone to premature convergence. As large changes (drops in the case of

problems where fitness is minimized) are found to be the rule rather than the exception for the kind

of structural design optimization tasks presented in this thesis, fitness proportional selection has not

been used for the proposed hardware evolution experiments.
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Elitism. Of the four schemes described above, only the (µ ,α) and (µ + α) strategies are deter-

ministic, whereas all others randomly choose the individuals according to the underlying probability

distribution. Moreover, only if the (µ + α) strategy is used for survivor selection, it ensures that the

best individual is propagated to the next generation. Accordingly, if it is desired to keep the best in-

dividual, this must be done independently of the selection process defined by all other schemes. The

unconditional propagation of the best individual is referred to as elitism.

2.3 Dialects of Evolutionary Algorithms

Evolutionary computation can be divided into four different approaches. Three of them, namely

evolutionary programming, evolution strategies and genetic algorithms, have been developed inde-

pendently in the second half of the 1960’s. A survey of their historical development is presented e.g.

in [Fog94] and [Bäc97]. The fourth dialect, genetic programming, was founded around 1990 by Koza

[Koz90], [Koz99a]. It was only at this time, that the field of evolutionary computation emerged as one

research field that encompasses all four different research avenues. A summary of the entire research

area as well as summaries of the particular dialects can be found in [Eib03a], [Wei02]. In the fol-

lowing, the main features of genetic algorithms, evolution strategies and genetic programming shall

be briefly summarized. The approach defined by evolutionary programming is foregone, because

its original version was devised to the evolution of finite state machines, and modern evolutionary

programming bears strong resemblance to evolution strategies [Wei02].

2.3.1 Genetic Algorithms

Simple Genetic Algorithm. Genetic algorithms are not only the most popular evolutionary algo-

rithm, they are also the least concisely defined concept in that they comprise the largest variety of

different representations, operators and selection schemes. In fact, almost any of the features of evo-

lutionary computation that have been discussed so far can be part of an contemporary evolutionary

algorithm. Nevertheless, in a narrower and more historical sense, genetic algorithms (GAs) are vari-

ations of the simple GA that is defined by the following instantiations of the respective components

of an EA: The genotype is encoded as a bit string in exactly the way suggested as an alternative

representation for the curve fitting example introduced in section 2.2.2. The simple GA is restricted

to 1-point crossover and point mutations realized as bit flips. It uses a generational population model

and a fitness proportional scheme for parent selection, yet foregoes an extra survivor selection.

Viable Representations. In a more general perception, GAs are amenable to wide variety of repre-

sentations. Popular alternatives to the bit string and floating point number representations discussed

in section 2.2.2.1 are integer and permutation representations. The former ones account for ordinal

attributes, that is subsets of Z that encode an order and cardinal attributes as, for example, the four

cardinal points North, East, South and West. The latter ones are used to model a set of possible orders

in which different events are occur. Permutation representations are usually supported by a set of

special variation operators adapted to their needs [Eib03a]. Again, the representation is to be cho-

sen so that it reflects the nature of the problem. Accordingly, it may deem necessary to use a mixed

representation featuring for instance a binary section as well as a vector of real-valued numbers.

Variation Operators. Different variation operators applicable to bit string and floating point repre-

sentations have already been discussed in section 2.2.2.2. In case of integer variables, mutations can

be either similar to a bit flip or add a relatively small, integer random number resembling the muta-

tion used for a real-valued representation. The former alternative is referred to as random resetting,
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whereas the latter one is denoted as creep mutation and may be more beneficial in case of ordinal inte-

ger variables [Eib03a]. Crossover operators of integer representations can take any of the four forms

described in section 2.2.2.2. However, an arithmetic (also referred to as intermediate) crossover will

only make sense for a set of ordinal integer values.

Selection Schemes and Population Models. Both, generational as well as steady-state population

models are encountered in modern GAs. In principle, the whole variety of selection schemes presented

in 2.2.3 lends itself to being used in GAs. However, the deterministic replacement strategies denoted

as (µ ,λ and (µ + λ ) have originally been developed within the context of evolution strategies and

are therefore found less frequently in GAs.

2.3.2 Evolution Strategies

In contrast to genetic algorithms evolution strategies (ES) are much more confined to one specific

type of algorithm. Their distinct features can be summarized as follows: First, their representation

is restricted to vectors of real values or quasi-continuous integers, that is a relatively large set of

or ordinal attributes [Bäc04]. Second, ES use a uniform parent selection, usually creating λ > µ
offspring and select the survivors deterministically according to the (µ +λ ) or preferably to the (µ ,λ )
scheme. In comparison to GAs, where in general both variation operators are considered equally

important, put a stress on the mutation operation, which is realized as a Gaussian perturbation. The

knack of modern ES however, is their implicit self-adaptation mechanism that will be briefly discussed

below for one kind of ES implementation.

Self-Adaptation. In its most sophisticated form, the individual is represented not only by a vector

~x of object variables that are evaluated by the fitness function at hand, but also comprises two types

of strategy parameters that describe the mutation step size:

(x1, . . . ,xn︸ ︷︷ ︸
~x

,σ1, . . . ,σnσ︸ ︷︷ ︸
~σ

,α1, . . . ,αnα︸ ︷︷ ︸
~α

) with nα =
(

n− nσ

2

)
(nσ −1) . (2.4)

To fully appreciate the above representation it is necessary to recall the principle of Gaussian pertur-

bation. Given an object vector ~x, the current components xi are altered by adding a relatively small

value ∆xi, which is drawn from a normal distribution. Hence, the probability for adding the specific

value ∆xi is given as:

p(∆xi) =
1

σ
√

2π
exp

(
(∆xi−ξ )2

2σ 2

)
. (2.5)

While ξ , the mean of the distribution, is usually set to zero, the standard deviation σ defines the

probable step sizes for a given mutation. Optimal step sizes depend on the problem, as this defines

the range of useful values xi. Even worse, the optimal step sizes depend on the shape of the fitness

landscape and the respective position therein. Therefore, either one step size for all n directions (nσ =
1), for some directions (1 < nσ < n), or each direction (nσ = n) can be included in the representation

of each individual.

The impact of the strategy parameters ~σ and ~α is elucidated in Fig. 2.5: The point in the ellipses

denotes the location of the individual at hand within the two-dimensional fitness landscape. The

ellipse itself describes step sizes of equal probability according to the normal distributions for both

directions. In (a) the step size is identical for all directions, because it is defined by one single

parameter σ . Although the introduction of one step size per direction can increase the step sizes

towards the local optimum, it is still sub-optimal, as depicted in (b). Finally, (c) illustrates the situation
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in which the rotation angles ~α are also taken into account7 : The largest step sizes point into the

direction of the local maximum which can thus be reached in less steps. In summary, the strategy

parameters ~σ and ~α can be conceived as an internal model of the local topology [Bäc04].

local 

maximum

(a) n = 2, nσ = 0, nα = 0

local 

maximum

(b) n = 2, nσ = 1, nα = 0

local 

maximum

(c) n = 2, nσ = 2, nα = 1

Figure 2.5: Two-dimensional fitness landscape featuring one local maximum. The points within the ellipses

represent a single individual. The ellipse itself contains all step sizes that possess the same probability. While

(a) depicts the situation in which only one self-adapting step size σ is used for both, x- and y-direction, (b) and

(c) correspond to two independent step sizes. In (c), the rotation angle α is liable for granting a step towards

the local maximum a higher step size as a step orthogonal to the gradient.

Variation Operation. Typically, a new generation is created by attaining λ > µ offspring from the

µ parent individuals, which subsequently undergo mutation and (µ ,λ ) selection. Although object

variables ~x and strategy parameters ~σ and ~α are evolved together, they are treated differently with

respect to the used variation operations: While uniform crossover is used for the object variables, the

strategy parameters are mixed by an intermediate recombination [Bäc04]. Both,~x and ~α are mutated

by ∆’s drawn from a normal distribution. However, the mutation on ~σ is based on a lognormal

distribution [Bäc04], [Eib03a].

Benefits. First, ES with self-adaptation have been demonstrated to outperform ES without self-

adaptation, experimentally. This observation is also backed up by theoretical results [Eib03a]. Sec-

ond, ES have been proven to be successful for some problems with changing fitness landscapes

[Bäc04]. Finally, the approach of ES seems to be promising in the context of parameter optimization

problems with real-valued or quasi-continuous parameters. However, for applications that rely on

high fitness evaluation rates and involve a large number of parameters, the computational complexity

inherent to the self-adaptation process may become an issue.

2.3.3 Genetic Programming

The paramount feature that distinguishes genetic programmings ( GPs) from the other variants of

evolutionary computation is the representation of the genotype. In contrast to the direct encodings

presented so far, GP considers the genotype as a program that has to be executed to attain the desired

phenotype, which can only subsequently be evaluated. In principle, any structure that allows an ex-

ecution could be used to host the evolving program. While traditional GP uses a tree representation

7Mathematically, these correlated mutations require an adaptation of the probability distribution in (2.5), which involves

the calculation of the covariance matrix from the angles αi.
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[Koz90], [Koz99a], [Eib03a], linear representations are also reported [Wei02]. Genetic program-

ming is closely related to genetic algorithms. Accordingly, apart from the constraints imposed by the

genotype representation onto the variation operators, there are no strict limitations to the implemen-

tation of the remaining EA components. However, the variation operations are typically dominated

by crossover, which is counterbalanced by large population sizes to ensure a sufficient amount of

diversity within the population.

Tree Representation. The difference between standard GA implementations and genetic program-

ming can be illustrated by returning to the curve fitting example introduced in section 2.2.2. In the

previous GA like formulation, the genotype was encoded as a vector of coefficients of a polynomial

described by fpol in (2.1). In the context of genetic programming, the genotype must be specified by

defining the syntax of the symbolic expressions (s-expressions). Following the tree representations in-

troduced by Koza [Koz90], [Koz99a], the syntax is defined by requiring that the tree has to be parsed

in a depth-first manner and by defining a function set and a terminal set. While the elements of the

terminal set describe the possible entries chosen for the leaves at the bottom of the tree, the function

set contains all entries allowed in the internal nodes. An example tree is illustrated in Fig. 2.6. If

parsed, the tree results in the following candidate function for the curve fitting task:

fpol(x) = sin2(x)+ x4 +(x−2)3 . (2.6)

As the resulting candidate solutions are to approximate a one-dimensional function f : R→ R, the

terminal set must comprise the variable x and real numbers as constants, that is R∪{x}. The function

set provides the standard binary operators as well as power and the trigonometric functions sine

and cosine: {+,−, ·,/,∧,sin,cos}. Although the latter two may mislead the algorithm to find non-

polynomial solutions, they demonstrate the potential of the approach: Depending on the function set,

the GP implementation can model virtually any function and therefore offers a solution to a much

wider variety of problems than the previously discussed GA implementation. As the data points are

to be fitted by an arbitrary instead of a parameterized function, the problem is also referred to as a

symbolic regression.

+

^ +

sin 2 ^ ^

x x 4 − 3

x 2

Figure 2.6: Tree representation as commonly

used in genetic programming. The associated phe-

notype is stated in 2.6.

Variation Operators. To further elucidate the parse tree representation introduced above, possible

mutation and recombination operations are exemplified in Fig. 2.7 and 2.8, respectively. Typically,

a mutation can change one node value, that is a member of the function or terminal set, or replace

a whole subtree by a new randomly grown subtree. However, a variety of further alterations are

conceivable, as e.g. duplication, deletion or swapping of subtrees. The default crossover operation

usually swaps two subtrees of the two parent individuals. That is, in each parental tree, one node

is randomly chosen; the subtrees below these two nodes are then swapped. The variation operators
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+

^ +

sin 2 ^ ^

x x 4 − 3

x 2

+

^ +

cos 2 ^ 2.5

x x 4

Figure 2.7: Two possible mutations in one GP parse tree: In the first mutation, the gray node containing the

sin function is mutated in that its symbol is changed to cos. The second mutation exchanges the whole subtree

starting at the gray node containing an ∧ by a single terminal node containing the value 2.5.

mentioned above will probably have to be refined in a nontrivial application: First, it must be ensured

that all resulting trees can be parsed. For instance, in the examples detailed in Fig. 2.7 and 2.8 there

are function nodes taking one and others that take two input arguments. Second, careful design of

variation operators may also consider the effect of different kind of alterations on the phenotype.

Some effects may be undesired and should thus be avoided.

Final Remarks. There is much more to genetic programming than could be included in this short

summary. However, a few additional remarks seem to be in place: First, the concept can nicely be

extended, for example by automatically defined functions (ADFs) [Koz04a]. In this case, the algorithm

evolves one result producing branch and a predefined number of branches that host functions that can

be called from the result producing branch. In effect, this introduces the concept of modularity known

from several programming languages to GP. Second, the GP representations differ fundamentally from

the GA representations considered thus far in that the length of the genotype is variable and therefore

under the control of the algorithm. This, as was indicated above, allows for a much larger degree

of freedom in the genotypical description of the candidate solutions. At its downside, this freedom

causes a phenomenon denoted as bloat, which describes the fact that, in the course of evolution,

program representations tend to steadily increase in size. Apart from wasting computation power and

possibly breeding inefficient phenotypical solutions, bloat may cause large parts of the genome to

become irrelevant to the parsed solution. This, in turn, alters the impact of the variation operators,

which may frequently change, what could be viewed as the artificial equivalent of introns in a natural

chromosome. Though possibly useful, bloat usually necessitates the introduction of countermeasures

as, for instance, penalty terms that provide the necessary parsimony pressure. Nevertheless, GP

provides a scheme for developmental growth that may be used as a starting point for implementing

an artificial analogon to biological ontogenesis. At any rate, the developmental process seems to be

a good candidate for structural optimization that involves the invention of topologies rather than a

mere parameter optimization. Hence, GP is believed to be a prospective candidate for enhancing the

performance of the evolution system proposed within this thesis, even though its implementation has

been beyond the scope of this thesis.

2.3.4 A Note on EA Parameters

Evolutionary algorithms are highly flexible: They allow for a large variety of choices for their com-

ponents and also offer several parameter that may be tweaked to enhance their performance. While

representation, variation operators, and fitness function are – to a large extent – prescribed by the
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Figure 2.8: Crossover between two GP parse trees: The gray-shaded subtrees of the two parents are swapped

to generate two new child trees.

task at hand, other choices have to be made independently. Those comprise several parameters like

the population size, the crossover and mutation rates as well as the selection scheme, which possi-

bly entail further parameters as, for example, the tournament size. Clearly, these parameters referred

to as strategy parameters will affect the performance and efficiency of the evolutionary algorithm.

Whether their impact is "crucial for good performance" [Eib03a] and will "greatly determine whether

the algorithm will find an optimal solution or near-optimal solution" [Eib03a], however, is arguable

and will depend on the problem at hand. In fact, in many of the applications contained in this the-

sis, the performance of the algorithm was found to depend significantly, but weakly on the strategy

parameters. In this vein, EAs are robust, in that their reaction to modest parameter changes is well

behaved. This observation, which has not been quantified for lack of time, is supported by the pa-

rameter sweeps presented in [Hoh02a], where the task has been to train the weights of a hardware

neural network.

Apart from some general rules of thumb, the optimal choice of strategy parameters cannot be

predicted independently of the problem at hand [Eib03a]. Some of these general recommendations

would be to use approximately one effective point mutation per individual and generation, or to use a

(µ ,λ ) = (15,100) selection scheme in self-adaptive evolution strategies. While the former insight is

rather plausible, the latter choice is motivated by empirically [Bäc04]. While typical population sizes

for GAs usually range between 10 and 1000, larger populations are often used in GP; population sizes

exceeding half a million are indeed reported [Koz99a].
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Two general approaches in finding an optimal set of strategy parameters can be discerned [Eib03a]:

parameter tuning and parameter control. The former term refers to procedures in which the optimal

parameters are determined prior to the actual EA run. Unfortunately, this may require a large number

of suboptimal EA runs prior to doing the optimal run, in which the parameters are to be found em-

pirically. On the other hand, parameter control denotes procedures that adjust the strategy parameters

during the run itself, which can be either done deterministically according to a prescribed schedule

time, e.g. by the number of generation, or adaptive in that the performance of the algorithm is used

as a feedback information. Here, one can further distinguish between adaptive methods, in which

the feedback mechanism is determined by the algorithm designer, and self-adaptive approaches, in

which the adaptation itself is subject to an optimization procedure. The latter situation is achieved in

the self-adaptive evolutionary strategy presented above. As for this thesis, most of the experiments

presented are preceded by some preliminary tests allowing for a reasonable amount of parameter tun-

ing. However, due to the limited nature of these pre-studies, the chosen parameters are likely to be

sub-optimal, not to speak of other algorithmic design decisions as selection or representation. An

adaptive parameter control is used in the experiments presented in section 8.5, where the mutation

rate is adjusted to the current fitness to sustain larger changes during the exploration and smaller

changes in the exploitation phase.

2.4 Evolutionary Algorithms as Global Optimizers

Thus far, evolutionary algorithms have been advertised as robust problem solvers applicable to a

multitude of different tasks. This section attempts to put EAs into the context of the admittedly wide

and complex field of optimization. Naturally, this attempt allows only for a small glimpse on the

subject matter and can only scratch at the surface. Yet, it may provide an idea in which situations

evolutionary algorithms may prove useful and what they can be expected to achieve (and what not).

2.4.1 Global Optimization

Even though evolutionary algorithms are often referred to as problem solvers, these problems can usu-

ally be stated as an optimization problem of the following form: Find the set of parameters (x1, . . . ,xn)
that minimize the cost function f (x1, . . . ,xn), where (x1, . . . ,xn) ∈P , where P denotes the space of

all feasible parameters. This is actually the motivation for the metaphor of the fitness landscape ,

which is the n-dimensional hyperplane defined by f (x1, . . . ,xn) in P ×R. Though in some special

cases, the problem can be solved exactly, that is the global optimum can be found deterministically in

a reasonable amount of time, this often turns out to be infeasible. Global optimization in the general

case can only be guaranteed in the linear case in which the cost function depends linearly on the input

parameters (x1, . . . ,xn), e.g. using the simplex method, or by a virtually exhaustive search (exhaustive

search or branch and bound, dynamic programming for discrete problems) [Hes]. The remaining ma-

jority of problems may be solved exactly by specialized algorithms that are tailored for this particular

kind of problem. Yet, according to complexity theory, some of these problems will scale badly, that

is, non-polynomial with the size of the search space; they are NP-hard.

If the computational intensity involved in finding the global optimum is prohibitively high, either

due to lack of a suited algorithm, or because of the product of search space size and computational

complexity, one has to resort to finding a good local optimum. In this case, often a heuristic is used,

where, according to Hromkovic̆ [Hro04], heuristic can be defined as an optimization method, "for

which one is not able to guarantee at once the efficiency and the quality of the computed feasible so-

lutions, even not with any bounded constant probability p > 0". In this sense, evolutionary algorithms

are heuristics.
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2.4.2 Model-Free Heuristics

However, often heuristics refer to algorithms that apply task specific knowledge to solve the problem.

In other words they are based on an underlying model of the actual problem at hand. Evolutionary

algorithms differ from those heuristics, in that they a priori do not rely on such a model, which ren-

ders them applicable to a wider variety of problems. There are several other model-free heuristics, as,

for example, random search, local search, tabu search and simulated annealing. While local search

algorithms can only find local optima, since they follow the steepest ascent in their direct neighbor-

hood, random search does not utilize any information present in the respective fitness landscape. The

idea behind simulated annealing as well as behind evolutionary algorithms is to combine probabilistic

elements with a deterministic local search component. Thereby, the stochastic element shall prevent

the found solution(s) from getting stuck in local optima (too early) [Hro04].

On one hand, simulated annealing can be conceived as a special evolutionary algorithm that fea-

tures only one individual and whose survivor selection is based on the metropolis criterion. The

according cooling schedule can then be interpreted as a deterministically varied change in selection

pressure [Eib03a]. On the other hand, the implicit parallelism of most evolutionary algorithms allows

to sample points that are more evenly spaced in the search space at hand and the crossover operator

adds a unique way of exploiting the information gathered at these distributed points. However, the

actual efficiency of the respective two types of algorithms will depend on the actual shape of the fit-

ness landscape. As simulated annealing and evolutionary algorithms are the most popular model-free

heuristics, and evolutionary algorithms can, in principle, mimic the behavior of simulated annealing,

evolutionary algorithms appear to be the most important model-free heuristic available to date.

Additionally, evolutionary algorithms possess two further beneficial properties: First they can

easily be parallelized, which suits their computational intensity well. They are amenable to a rela-

tive convenient implementation on computer clusters [Koz99a]. Second, evolutionary algorithms are

modular, in that their main components, that is representation, fitness function and selection scheme,

are independent of each other. Therefore, some of the components may be reused, while other can be

exchanged to test different setups.

2.4.3 No Free Lunch Theorem

For a relatively long time, evolutionary algorithms were perceived as general problem solvers that

perform relatively good on all possible problems, whereas problem specific methods would only

perform well for the narrow subrange of problems they are tailored for, where they were assumed to

clearly outperform evolutionary algorithms [Weg], [Mic99], [Gol89], [Eib03a], [Wei02]. However,

in 1995 and 1997 Wolpert and MacReady [Wol97] proved them wrong by what became known as the

No Free Lunch theorem. Put informally, the theorem states that all non-revisiting algorithms perform

equally well, when one averages over the space of all possible problems. Here, non-revisiting means

that none of the points in the search space is sampled twice, which can – at least theoretically – be

ensured by combining the algorithm at hand with a tabu search.

Even though the No Free Lunch theorem contradicts the assumption that evolutionary algorithms

are general purpose problem solvers for all possible problems, they may still perform comparably

well on all problems one is usually interested in. Put more general, the No Free Lunch theorem

raises the question, which classes of problems can be solved effective- and efficiently by which kind

of (evolutionary) algorithms. Unfortunately, at least to the limited sight of the author’s practitioner

perspective, the field of evolutionary computing has not yet provided an answer to this question.

Typically, the theoretical results are too general, or can only be derived for too simple problems or

algorithms, as to be useful, whereas the scope of empirical evidence is limited to the concrete situation

it emerged of.
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2.4.4 Implications of the Stochastic Nature of Evolutionary Algorithms

Evolutionary algorithms are stochastic Heuristics. Therefore, they are bound to yield different results

for each run. As a consequence, performance can only be determined statistically. Moreover, EAs

cannot be expected to find the global optimum. Eiben [Eib03a] suggests the following performance

measures: (1) Success rate, (2) mean best fitness, and (3) average number of evaluations to a solution.

While the former two measures capture the performance achieved given a fixed amount of fitness

evaluations, that is, measure the effectiveness of the algorithm, the latter measure account for the

efficiency of the algorithm, that is, the speed with which it converges to a solution. Since the evolved

circuits presented in chapters 5 to 8 are often not perfectly matching the ambitious target behavior

(and due to the unavoidable noise inherent to the measurements cannot achieve perfect matching

anyway), only measures (1) and (2) are used. In addition to the success rate and the mean best fitness,

the distribution of fitness values is usually also presented by means of histograms, which can be

conceived as a differential success rate. Histograms allow to illustrate the actual distribution, which

in many cases is found to be far from any normal distribution. This in turn renders the concept of

mean values and standard deviations rather problematic and hence motivates the illustration by means

of histograms.

2.5 Extensions and Refinements

The above introduction to evolutionary computing covers only its core concepts. In fact, there are

numerous extensions and refinements to these concepts as, for example, cooperative and competitive

coevolution, linkage learning, or constraint handling. However, this last section shall address those

two possible extensions to the basic concept, that are believed to be most relevant to the work pre-

sented in this thesis and that are considered to be the most prospective candidates for improving the

performance of the proposed evolution system.

2.5.1 Distributed Populations

As has been mentioned in section 2.2.3, evolutionary algorithms may fail to find good local op-

tima due to premature convergence. On one hand, maintaining a high level of diversity can only be

achieved by lowering the selection pressure. On the other hand, it is the selection pressure that drives

the population towards successful solutions. To escape this dilemma, different methods have been

proposed to limit the recombination between subgroups of individuals. These mating restrictions can

either be realized by introducing a spatial distribution (island model, distrubuted EAs) or by automatic

speciation [Eib03a]. As the latter approach requires a metric to decide whether geno- or phenotype

of two individuals are similar enough to be allowed to mate, the former two alternatives seem to be

easier to realize in the general case. In the island model several sub-populations are evolved in par-

allel. These remain isolated for most of the time, albeit exchange individuals after a fixed number of

generations or if some prescribed behavior is observed (e.g. stagnating fitness). On the other hand,

distributed EAs place the individual on a grid and prescribe the neighborhood from which a mate

can be acquired. Another interesting alternative is proposed by Hu et al. [Hu02a], [Hu03a], [Hu03b],

namely that of hierarchical fair competition. The key idea is to have separate populations that differ

in their fitness level. However, the individuals exceeding a certain fitness threshold can migrate to

the population with the next higher fitness level. Thereby, good solutions can be fine-tuned in the

high level populations while new genetic raw material can be bred in the lower levels without getting

extinct due to better individuals. As the fitness thresholds segregating the different sub-populations
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are crucial to the success, Hu et al. also suggest a version that includes automatic threshold adaptation

[Hu02b].

2.5.2 Multi Objective Evolution

So far, the discussion has been limited to optimization problems with only one single objective. In

fact, most problems encountered in the real world involve multiple, partially conflicting target speci-

fications [Bug03], and analog circuits are no exception here: In general, microelectronic circuits are

sought to exhibit as good a performance as possible consuming as little power and area as necessary.

A more concrete example would be the specifications of operational amplifiers that entail several

conflicting objectives as e.g. high gain bandwidth product and large phase margin or low quiescent

currents and low distortion.

Within the framework of EAs, there are two possibilities to deal with this situation: First, the

fitness contributions of all single objectives can be aggregated into one single fitness value by means

of a weighted sum. This is advantageous in that the evolutionary algorithm must not be changed,

but requires a careful choice of the respective weighting factors. Moreover, the particular choice of

weighting factors may cause the population to get stuck in local optima, so that the weighting factors

may have to be adapted in the course of the evolution run. Nevertheless, this aggregating scheme

referred to as scalarization [Eib03a] is used to cope with different objectives in chapters 7 and 8 for

two reasons. First, the different test modes used there can also be seen as covering different test

cases for one desired behavior rather than describing conflicting objectives and second, for a lack

of implementation and test of viable alternatives described below; this would have been beyond the

scope of this thesis, yet currently entering the project [Tre05].

The second approach to multiobjective optimization extends the concept of fitness values to an

n-dimensional vector accounting for the n conflicting objectives. Instead of seeking one (near-) global

optimum, one is rather interested in a set of feasible tradeoffs located within the n-dimensional fitness

space. The set of optimal tradeoffs is referred to as Pareto set, or nondominated front. It is defined

as the set of all nondominated solutions, where the condition that solution A dominates solution B is

expressed as [Eib03a]

A dominates B ⇐⇒ ∀i ∈ {1, . . . ,n} ai ≥ bi, and ∃ i ∈ {1, . . . ,n}, ai > bi . (2.7)

Here, ~a and~b denote the fitness vectors belonging to solution A and B, respectively. The Pareto front

describes an (n-1)-dimensional hyperplane in the n-dimensional fitness space. From the viewpoint of

an analog circuit designer, a tool that provides a set of solutions describing different tradeoffs between

conflicting objectives is extremely attractive, as it allows the designer to choose a suitable tradeoff.

This is particularly useful in the situation described in section 1.5, where a system consists of different

building blocks whose target specifications may have to be adjusted several times to reach the overall

goal. In addition, tradeoff curves that closely approximate the theoretical limit also characterize the

nature of the underlying problem. A large variety of different approaches to multiobjective optimiza-

tion have been proposed that, for example, address how to populate the tradeoff curves evenly. A

comprehensive overview thereof can be found in [CC02].
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Chapter 3

Implementation of the FPTA

To invent, you need a good

imagination and a pile of junk.

THOMAS ALVA EDISON

This chapter presents the concept and implementation of the analog substrate
that is used for the evaluation of candidate circuits within the hardware evolution
system proposed in this thesis. This analog substrate is realized as an ASIC that
provides 256 programmable transistor cells and is hence referred to as a field
programmable transistor array (FPTA). After a brief specification of the require-
ments for the FPTA chip, the principle idea as well as its realization are pre-
sented, which includes the implementation of the programmable transistor cells
themselves. In particular, the deviations between the electrical properties of the
programmable transistor cell and a plain transistor is addressed. Subsequently,
the circuitry necessary to realize this programmable transistor array is discussed.
These more technical sections include the storage of the configuration in SRAM

cells together with the according interface circuitry as well as a thorough discus-
sion of the analog circuitry necessary to apply input voltages to and read out the
output voltages from the transistor cell array. Further features and some con-
siderations on layout, power management, and yield complete the description of
the FPTA implementation. The chapter concludes with a short comparison of the
FPTA developed in Heidelberg and a family of similar FPTA devices designed by
a different group at the Jet Propulsion Laboratory (JPL).
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3.1 Rationale

3.1.1 The Very Idea of the Programmable Transistor Array

A close look at the work published on hardware evolution of analog circuits and on the work published

on analog design automation reveals the following situation1: Research work from the analog design

automation community has been focused on parameter optimization of hand-designed topologies.

Within the field of evolvable hardware, artificial evolution of transistor level circuits is limited to

extrinsic approaches. Intrinsic approaches on the other hand, usually employ devices of a coarse

granularity that are based on high-level subsystems as for instance operational amplifiers or rely on

discrete devices connected via multiplexers. This is in particular due to the lack of fine-grained

configurable analog devices. Historically, two attempts to close this gap have independently emerged

in two research groups, namely the group of Adrian Stoica at the JPL and the project presented within

this thesis. While the former work, whose idea was first published in [Sto96] and [Sto98], has led

to three FPTA implementations of increasing complexity, the FPTA chip that was developed at the

University of Heidelberg shall be described below. A comparison of the two FPTA concepts will be

given at the end of this chapter.

3.1.1.1 Motivation for Intrinsic Hardware Evolution

The development of a fine-grained analog array that is dedicated to the evolution of analog circuits was

particularly inspired by the success of the tone discriminator experiments conducted by Thompson

[Tho97], [Tho98b]. Thompson used a relatively simple genetic algorithm to evolve circuits that

distinguish between square waves of two different frequencies on a digital FPGA2. As Thompson’s

first evolved tone discriminator apparently worked in an analog fashion exploiting parasitic effects

of the FPGA. Thus, even better results were expected to arise from experiments with an inherently

analog substrate. Moreover, artificial evolution experiments that rely on a hardware-in-the-loop setup

offer several advantages compared to their extrinsic counterparts:

Intrinsic Realism. Every circuit that is successfully evolved on a real chip is bound to work in

reality at least on that particular substrate it is evolved on. Although trivial at first sight, this statement

possesses some deeper truth: First, although quite elaborate, the transistor and device models used in

simulations are not necessarily perfect. Even if the weaknesses in describing the transistor in the weak

and moderate inversion region attributed to earlier models by Allen and Holberg ([All02b], pp. 99) as

well as by Geiger Allen and Strader ([Gei90a], pp. 177) do not persist in state of the art simulators,

they are still models of real transistors. As new physical effects come up due to changes in process

technology that enable further shrinking of devices sizes, the according models are bound to track

these novelties and thus may fall short of correctly describing all of the properties of the most recent

transistors. Moreover, simulators and transistor models are developed for human-designed circuits

that follow some generic conventions in how they are designed. In case of unconventional designs

found by means of EAs that tend to ruthlessly exploit any loopholes [Ben03] of a given simulation

setup, this may lead to circuits that fail to work in reality, which was also found by Stoica et al.

[Sto01b]. Second, the algorithms are also prone to exploiting/abusing artefacts in the task description

as e.g. unlimited resources in terms of device dimensions, the precision in controlling those device

1For a short summary of the attempts in both research fields, the reader is referred to either the introduction or to [Lan03].

A more comprehensive overview of the field of analog design automation is given in [Gie00]. Further information on

hardware evolution of analog circuits and inparticular on possibly suited configurable devices is available in [Zeb00b] and

[Gor02].
2Field Programmable Gate Array
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dimensions and the absence of adequate parasitics and loads as well as limited output impedances of

the signal sources. However, this type of realism can, in principle, be described by the simulation

setup defined by the respective user, yet requires a thorough design of the experiments and may

require more complex test cases and therefore lead to increased evaluation times. Third, a hardware

substrate naturally introduces the imperfections inherent to fabricated circuits as for example noise or

device-to-device variations. Although these kind of effects can also be simulated, this usually requires

Monte Carlo simulations that can easily increase the necessary simulation time by a factor of 100.

Evaluation Speed. As evolutionary algorithms usually rely on a large number of fitness evaluations,

a fast test of the circuit behavior of interest is crucial to successful hardware evolution experiments.

Accordingly, testing the candidate circuits in hardware may be advantageous in that it is often faster

than a circuit simulation. Moreover, while simulation time scales badly with circuit size, the hard-

ware tests are independent of the circuit size as long as the circuit can be realized on the hardware

substrate. Finally, the simulation of the aforementioned imperfections of real circuits can be achieved

more easily and may be parallelized in a hardware-in-the-loop system, which greatly accelerates the

evaluation procedure.

Field Evolvable Hardware Applications. While the previous arguments motivated the usage of a

fine-grained analog device as a replacement for time-consuming circuit simulations that can enhance

the automatic synthesis of analog circuits, the successful evolution of analog circuits in the field has

some benefits in its own right: Evolvable hardware can adapt to the environment, either once for one

given environment as e.g. the particular electrical properties of a digital subscriber line, or continously

to optimize the system’s performance in a changing environment. This may be as extreme as some

conditions encountered in space missions requiring reliable operations for temperature variations of

several hundred Kelvin together with considerable amounts of radiation (cf. e.g. [Sto04], [Zeb04].

Moreover, reconfigurable devices allow for self-repair that can be exploited by the fault-tolerance

inherent to population-based synthesis algorithms as was suggested by Layzell [Lay01].

3.1.2 Target Specifications

The architecture and implementation of the actual FPTA3 chip is inspired by the arguments of the

discussion above. Ideally, the prospective FPTA chip provided a freely configurable array of virtual
transistors, that allows for full flexibility in their connectivity and channel dimensions. As it is de-

sired to transfer the evolved circuits or design principles to future circuits, the substrate must allow

for an understanding of the hosted circuits. Therefore, the electrical properties of the circuits imple-

mented on this analog substrate are to be dominated by the chosen transistors, that is, any influence

of the circuitry realizing the configurability should be negligible. This is opposed to a different sea-

of-transistor like FPTA scheme that does not distinguish between configuration switches and active

transistors. In addition, the FPTA implementation is to avoid any bias towards traditional design con-

ventions. The desired features of the FPTA as well as the desired specifications and constraints its

design has to meet are summarized below:

Protection against self-destruction The transistor array is to be be safe against self-destruction for

all possible configuration. In case of analog transistors, the most probable hazards are metal

lines affected by electro-migration and overheating.

3Unless denoted otherwise, the term FPTA refers to the chip designed within the proposed thesis and not to the transistor

arrays designed by the group of Adrian Stoica et al. at the JPL.
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Fast reliable static reconfiguration The analog substrate must endure a virtually endless number

of reconfigurations. In order to avoid any interference of the configuration process and the

analog functionality of the respective circuit the chip is to store its configuration statically.

As a high rate of circuit evaluations is crucial for hardware evolution experiments, the time

for the test of each individual and thus the time for the reconfiguration of the FPTA must be

kept to a minimum. Since the actual measurements are expected to take between 100µs and

10ms, the time for each configuration is not to exceed 100µs. A means to read out the actual

configuration is required for two reasons: First, to facilitate the procedure of debugging and

testing the fabricated tests and second, to provide a means of detecting bit flips caused by an

unforeseen behavior of the circuit configuration under test.

Analog interface to signals at array boundaries The circuit tests require analog test signals that

can be applied at the boundaries of the transistor cell array. Conversely, it must be possible to

record the circuit response at yet another set of transistor cells beloning to the array boundary.

In order to handle more than one in- and output signal with only one DAC4 and one ADC5, these

signals must be stored in sample and hold units, which must meet the following specifications:

rail-to-rail in- and outputs, high analog precision and high large-signal bandwidth ≥ 1MHz.

Temperature measurement A device for determining the die temperature is sought for two reasons:

First, to allow for a shut down of the chip to prevent it from overheating. Second, the exper-

iments of Thompson [Tho97], [Tho98b], [Tho00] revealed that it may be necessary to take

temperature into account as a design variable to evolve circuits working throughout a practical

temperature range. Accordingly, the ability to precisely measure the die temperature is help-

ful in generating the necessary selection pressure towards circuits insensitive to temperature

variations.

Inner cell probing The solutions discovered by EAs are often fairly difficult to understand (cf. e.g.

[Tho97], [Tho99], [Tho00]). A method to read out the node voltages inside the transistor

array and to estimate the according currents can alleviate the circuit analysis subsequent to the

artificial evolution.

Inter die connectivity All signals available at the array boundaries shall be accessible via bond pads.

On one hand, this allows for a direct test of the transistor array and thereby for a characterization

thereof. On the other hand, the probepads can be used to connect different FPTAs to form a

larger substrate.

Power management The power consumed by the non-transistor array circuitry should be kept to a

minimum to avoid unnecessary heat generation, which would be counterproductive to possible

substrate cooling. In additon, separate power nets should be provided for the transistor array

to allow for monitoring and control of the current consumption of the circuit under test. This

allows for the artificial evolution of low-power and low-voltage circuits.

Number of digital in-/outputs The number of digital signals is limited to 33 by the PCI6-interface

card to be used.

Target technology The FPTA chip is fabricated in a double poly, triple metal 0.6µm CMOS process

qualified for analog circuits. Although the concept could benefit from a more advanced circuit

4Digital-to-Analog Converter
5Analog-to-Digital Converter
6Peripheral Component Interconnect
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technology, the chosen technology was considered to be sufficient for this first proof-of-concept

FPTA and yet less costly compared to fabrication technologies offering smaller feature sizes.

3.2 Architecture of the FPTA

At its core, the chip provides an array of 16×16 programmable transistor cells. As MOS transistors

come in two flavors, half of the cells provide P- and the other half NMOS transistors. P- and NMOS

cells interchange in a checkerboard pattern. On one hand, this pattern ensures an equal and fair

distribution of P- and NMOS cells. On the other hand, the division into two cell types avoids that

half of an aggregated P/NMOS cell remains unused. The chip features one analog in- and output,

respectively. In order to drive the resistive and capacitive loads present outside of the chip, the analog

output signal is buffered by an extra unity gain buffer depicted in the upper left corner of Fig. 3.1.
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Figure 3.1: Simplified architecture of the FPTA chip.

The above list of specifications and constraints lead to the implementation of the FPTA chip

discussed throughout the remainder of this chapter. The overall architecture of the chip is depicted in

Fig. 3.1:

The application and readout of analog signals is encapsulated in 64 IO-cells that are positioned

next to the edges of the transistor cell array. They are enumerated counterclockwise starting at the
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upper left corner of the array. The paramount functionality of the IO-cells is to sample and hold the

input signals for and output signal of their respective boundary transistor cell.

Four vertical pnp transistors located next to the corners of the transistor array serve as temperature

sensors. Discrete chips that can read out the die temperature from measuring the collector and base

currents through these bipolar transistors exist. The fourfold placement can be either used to get a

more precise temperature measurement by means of averaging, or can be used to test for gradients

across the transistor array.

The configuration of the transistor array is stored in SRAM cells embedded in the transistor cells

themselves. The necessary circuitry for writing the information to these SRAM cells as well as for the

readout thereof is located left to the IO-cells on the left hand side of the transistor array (IO-cells 0 to

15).

3.3 Programmable Transistor Cell Array

The programmable transistor array itself, depicted in the center of Fig. 3.1 is organized as follows:

The complete functionality that includes the programmable transistor, all means of signal routing as

well as the necessary auxiliary circuitry to realize these functionalities are encapsulated in the tran-

sistor cells themselves. The transistor cells provide four border terminals connected to their nearest

neighbors in the array, which are labeled N,W,S and E after the four cardinal points (Throughout the

schematic drawings of this chapter, the terminals will be marked by circles around their respective

labels.) Note, that the terminals that are connected by a line in Fig. 3.1 are indeed directly connected

without any further switches. Those terminals of the cells located at the array boundary that point

outward of the array are connected to the adjacent IO-cells via several switches.

3.3.1 Transistor Cell Architecture

The architecture of an NMOS transistor cell is illustrated in Fig. 3.2. Yet, N- and PMOS cells merely

differ in the programmable transistor located at the center of Fig. 3.2, which happens to emulate

a PMOS-transistor for the latter type. Again, note that all border terminals of the same cardinal

directions are connected, even though these connections are omitted in the schematic. The same is

true for the three generalized transistor terminals TD, TG and TS which indicate the drain, gate and

source terminals of the programmable transistor and, of course, for the power supply voltages vdd

and gnd of the programmable transistor array (PTA).

Each of the generalized terminals of the programmable transistor can be connected to either of the

four border terminals, vdd or gnd, which is realized by three 3-bit analog multiplexers located next

to the programmable transistor. The channel width and length of the programmable transistor itself

can be adjusted to W = 1, . . . ,15µm and L = 0.6,1,2,4,8µm, respectively. Six independent routing

switches implemented as transmission gates allow to connect each pair of border terminals with one

another. A unity gain buffer included in the transistor cell can be used to probe some of the inner-cell

node voltages as well as to attain an estimate for some of the according currents through these nodes.

The concept of inner-cell probing will be detailed in section 3.6. The configuration information of

the cell is stored in 4 SRAM blocks providing 6 bits each. As can be seen from Table 3.1, only 22 of

the 24 bits are actually used.

A more detailed description of the assignment of configuration bits is enclosed in Table A.1 on

page 306. Architecture and implementation of the SRAM and the necessary auxiliary IO-circuitry are

presented in section 3.4.
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Figure 3.2: Simplified architecture of the complete NMOS transistor cell.

Property Bit

gate connection 0–2

drain connection 6–8

source connection 9–11

Property Bit

transistor length 3–5

transistor width 15, 21–23

routing 12–14, 18–20

Table 3.1: Allocation of the 22 configuration bits.

3.3.2 Routing Concept

Owing to the combination of analog multiplexers and routing switches any possible one-transistor

circuit can be realized: While circuits a) to c) in Fig. 3.3 capture all of the conventional ways in

which transistors are used, circuits d) and e) can also be realized by means of a transistor cell, even

though they lack any practical usefulness. This freedom in configuring each of the transistor cells

leaves room for an unbiased search for novel circuits beyond conventional human design knowledge.

Due to the distinction between P- and NMOS transistor cells, the implementation of practical

circuits on the PTA substrate will often necessitate allocating some of the available cells exclusively

to signal routing. While the chosen checkerboard pattern supports the implementation of subcircuits

composed of adjacent P- and NMOS transistors like inverters, it lends itself less easily to forming

subcircuits requiring transistor pairs of the same type, as e.g. differential pairs or current mirrors.

Although this problem could be mitigated by providing additional routing channels, of which

some may even serve as medium distance or global connections, this extension was foregone in

the described FPTA implementation for three reasons: First, additional routing switches inevitably
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a) NMOS−T e) shortedb) diode c) capacitor d) open

Figure 3.3: Different configurations of a single transistor.

involve further parasitic capacitances. Thus, a tradeoff between the variety of routing capabilities and

the unwanted parasitic effects has to be found. Second, additional routing channels also increase the

die area necessary to implement the PTA in7. Apart from the increase in production costs, this also

deteriorates the analog properties of any circuit implemented by means of the PTA. Finally, being

the first prototype of its kind, the chip was to provide a concept of moderate complexity facilitating

not only its design, but also its usage in the evolution system as well as the understanding of any of

circuits evolved on it.

3.3.3 Programmable Transistor

The ideal programmable transistor is to provide a quasi-continuous variety of transistor gate dimen-

sions typically used in analog designs without affecting the integrity of the analog signals by any

parasitic effects whilst occupying as little die area as possible. In reality, the first and the latter two

objectives must be traded off against each other. In the proposed implementation, the selectable gate

lengths are (almost) logarithmically spaced and can take on the values 0.6,1,2,4,8µm while the gate

widths can be chosen from 15 linearly spaced values between 1 and 15µm. While most analog circuits

can indeed be designed from a limited set of few different transistor lengths covered by the selection

offered by the programmable transistor (see e.g. the op amp described in section 3.5, the restriction

to transistor widths W ≤ 15µm precludes output stages capable of driving large output impedances.

However, as the outputs of the transistor array will typically be sampled by unity-gain buffers, this

shortcoming does restrict the possible design space, yet does not limit the set of signal processing

applications that can be implemented on the PTA.

The above concept is realized by a matrix of 20 single transistors depicted in Fig. 3.4 for the case

of an NMOS transistor cell. Each of the five rows contains four transistors with the same gate length,

but varying gate widths. Owing to a 3-bit decoder, exactly one row corresponding to one transistor

length can thus be chosen by means of a three bit code. Any combination of the four transistors of one

row can be selected in parallel. Since the transistor widths correspond to the first four powers of 2,

this allows to choose any integer transistor width between 0 and 15µm. Although this concept greatly

reduces the number of necessary transistors for the proposed variety of selectable transistor widths,

a combined transistor will behave slightly different than a single transistor with the same nominal

length. This is due to the fact, that the difference between the nominal (drawn) and the effective

(fabricated) transistor widths do not scale linearly. Yet, compared to the deterioration caused by the

configuration overhead discussed in section 3.3.5, this effect is assumed to be of negligible impact.

While all of the source and drain terminals of the 20 single transistors are directly connected to

form the generic terminals TD and TS, respectively, the selection of the desired transistors is restricted

7The question by how much additional routing resources add to the required die area depends on the chosen fabrication

process. The effect will be less severe for more advanced technologies that provide more metal layers and allow stacking

of the via connections between these metal layers. The design rules of the chosen production process are documented in

[Aus97b].
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Figure 3.4: Gate selection for a programmable NMOS transistor. The transistor terminals D and S of all

20 transistors are connected to one generic drain TD and source TS terminal, respectively. The generic gate

terminal TG is only connected to the gates of the selected transistors. The circuit shown at the bottom of the

figure depicts the circuitry contained in the lower right sub-cell of the array of selectable transistors displayed

in the upper part of the figure.

to connecting the respective gates to the generic gate terminal TG. The required selection circuitry

is depicted in the cut-out in the lower fourth of Fig. 3.4: If the transistor in question is selected, the

transmission gate T1 connects its gate to TG and transistor M1 is turned off. If, on the other hand,

the transistor is not selected, the transmission gate is opened and transistor M1 ties the gate of the

actual transistor to gnd, thus effectively shutting it off. In case of a PMOS transistor cell, the matrix

contains 20 PMOS transistors. Transistor M1 is then also realized as a PMOS transistor and ties the

transistor gate to vdd if the transistor is not selected, which again shuts it off. Although the gain

factor for the NMOS transistors K′N is three times larger than its PMOS counterpart K′P [Aus97c], the

arguments for symmetric N- and PMOS cells outweighed those for a set of channel dimensions that
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counterbalance this discrepancy in gain factors. The necessary adaptation of the aspect ratios of P-

and NMOS transistors has to be accomplished by the optimization process. In conventional design

this would imply that the largest aspect ratios of NMOS transistor cells may remain unused in some

of the circuit at hand.

The proposed selection mechanism is superior to its straight-forward alternative of switching

all three transistor terminals D, G, and S in several ways: First, all of the inactive transistors are

forced into a well-defined condition instead of being left floating. Second, the number of necessary

transmission gates is greatly reduced. In particular, the transmission gates that would be required to

switch the drain and source terminals would not only insert parasitic on-resistances into the current

paths, but also – due to their required size – considerably increase the amount of parasitic capacitances

added to the generic terminals TD and TS. The transmission gates T1 connecting the gate terminals

can be of relatively small dimensions, since they only need to pass the currents required to charge the

transistor gates; apart from negligible leakage currents, no static current is drawn.

3.3.4 Switch Dimensions

Apart from the topology of the programmable transistor cell, the chosen channel dimensions of the

transistors constituting the transmission gates used as switches have to be determined. As to-date, no

perfect switch was invented for highly integrated production processes (cf. [Edw01], [Kim03]8) that

combine negligible on-resistance with low capacity and small area consumption, any chosen set of

transistor dimensions has to trade off these conflicting goals against each other. The set of transistor

dimensions chosen for the proposed FPTA implementation are summarized in Table 3.2.

Task WP[µm] WN[µm] LP[µm] LN[µm]

routing 30 10 0.6 0.6

TD, TS multiplexer 30 10 0.6 0.6

TG multiplexer 1.4 1.4 0.6 0.6

programmable transistor selection 1.4 1.4 0.6 0.6

Table 3.2: Transistor dimensions of the different transmission gates used as switches to configure the pro-

grammable transistor cell. The subscripts ‘P’ and ‘N’ denote the P- and NMOS devices, respectively.

Since the six switches used for connecting the four border terminals with each other as well as

those used in the analog multiplexers that connect the generic transistor terminals TD and TS to the

border terminals are possibly located within the current conducting path of the prospective circuits,

they employ fairly large transistors whose channel widths amount to 30 and 10µm for the N- and

PMOS transistors, respectively. The ratio of WP and WN is set to the inverse of the ratios of the respec-

tive gain factors K′P and K′N documented in [Aus97c] in order to counterbalance the different current

gains of P- and NMOS transistors. As a result, the resistance of these switches is almost indepen-

dent of the common mode voltage, which is depicted in Fig. 3.5(a). On one hand, this flat response

makes the on-resistance more amenable to understanding and modeling, thus facilitating the analysis

of evolved circuits. On the other hand, one may object, that the PMOS transistors of the switches are

designed too large with respect to the programmable PMOS transistors, whose channel dimensions

are identical to their NMOS counterparts. However, the design follows the former argument.

Although the switch dimensions are fairly large in terms of the occupied silicon area (5×10µm2)

and their parasitic capacitances (see section 3.3.5 below), their channel width is exceeded by the

8The mercury droplet microswitches proposed here are too bulky (diameter of 200µm), too slow (switching times of

approximately 1ms) and require excessive programming voltages (80V and beyond).
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Figure 3.5: Simulation results for the resistance of the large (a) and small (b) transmission gate as a function

of the common mode voltage defined by V1. The testbench used for the dc simulations are shown in the inset of

(a). The simulation is performed using a SpectreS simulator [Cadb] in conjunction with the BSIM3.3 transistor

model [Lak94b]. For each value of ∆V voltage V1 is swept from 0 to 5V while voltage V2 is forced to V1 +∆V .

The resistance is then calculated by R = ∆V
IT

.

largest programmable transistors for the NMOS type. In effect, the on-resistance of these switches

will have a considerable influence on the circuit behavior, if the largest possible aspect ratios are

used in conjunction with large gate-source voltages VGS, which again defers the evolution of output

stages suited for large output loads. Nevertheless, the voltage drop across a closed switch with an

average on-resistance of approximately 300Ω (inferred from Fig. 3.5(a)) remains below 0.1V for up

to 300µA.

As the switches used for the gate selection in the programmable transistor as well as those used

for multiplexing the generic gate terminal TG are to switch signals onto CMOS gates, they do not

have to conduct any static current. Therefore, the width of both, N- and PMOS transistors of these

transmission gates, are chosen to minimize the occupied silicon area9. Since the on-resistance of

those switches only affects the time in which the gate capacity of the programmable transistor can be

charged, an on-resistance independent of the common mode voltage is not required in this case. The

limitation of the signal bandwidth caused by the on-resistance can be estimated by

f-3 dB =
1

2πRon,maxCgate,max
=

1

2π ·7.2kΩ ·331fF
= 66.7MHz (3.1)

3.3.5 Parasitic Devices

While the finite on-resistance of the switches has already been discussed in the previous section,

this section shall discuss their parasitic capacitances as well as the capacitances introduced by the

metal lines carrying the electrical signals. The resistance of these metal lines can be omitted as it

is orders of magnitude smaller than the on-resistance of the configuration switches. The parasitic

capacities of the transmission gates are calculated according to the discussion of sections 1.1.3 and

1.3.1. The parasitic capacitances of the metal lines are attained by extracting the layout of the NMOS

transistor cell using the capall option (see [Cada], [Aus97d]). Although this extraction process yields

capacities between all pairs of neighboring layers, all these capacities are lumped into one overall

9According to the design rules [Aus97b] of the FPTA’s fabrication process the diffusion width of the gate and source

terminals must not be less than 1.4µm. A smaller gate width will narrow the area occupied by the necessary overlap of the

gate’s silicon area, albeit increases the overall length of the transistor.
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capacitance between the respective signal and ground. The parasitic capacitances encountered in the

programmable transistor cell are discussed first, followed by an analysis of those parasitic devices

formed by the rest of the transistor cell excluding the programmable transistor itself. Finally, the

results are merged to develop one small signal equivalent circuit for the complete transistor cell.

3.3.5.1 Programmable Transistor

The most important parasitic devices entailed in the auxiliary circuitry providing the configurability

of the programmable transistor are depicted in Fig. 3.6. The small signal equivalent circuit is based

on the following scenario: Exactly one – 0 to 4 are conceivable – of the array of 20 selectable tran-

sistors MS is selected. The closed transmission gate connecting the generic drain terminal TD and the

particular gate G of the selected transistor is replaced by its equivalent circuit as described in section

1.3.1 (the assignment of source and drain is not a priori clear and therefore defined arbitrarily). In

addition, the node TD experiences the parasitic capacitances CSB and CGS of the 19 open switches T1.

To the right hand side of the closed transmission gate T1 only the gate node of the selected transistor

is shown. Accordingly, only the open transistor M1 connected to this particular gate is included in

Fig. 3.6 by its equivalent circuit, which follows the description of section 1.7. In contrast, the generic

drain and source terminals TD and TS are shared among the selected transistor MS and the 19 unse-

lected transistors MS which are in the off-state; the latter ones are displayed to the right of the selected

transistor. As the capacitances inherent to the selected transistor are not contributed by the auxiliary

circuitry, they must not be considered here. Therefore, drain and source terminals can be treated in the

same way: Their capacitances differ only due to the bulk-source/drain dependency on the respective

terminal voltages.

1 closed (selected)

transmission gate T1

19 open trans−

mission gates T1

1 open

transistor M1

TD

TG

TS

19 unselected

transistors

CSB CGS CDS CGS CGS

RT1

CDB CSB

CGSCSB

CGDCDB

CSB

MS

Figure 3.6: Small signal circuit equivalent of one programmable transistor regarding all parasitic devices

introduced by the configuration circuitry. The capacitance values are calculated in Table 3.3.

Table 3.3 provides the necessary equations used to calculate all the parasitic capacitances illus-

trated in Fig. 3.6 and summarizes their numerical values. Its four meta-rows if read from top to

bottom correspond to the four gray-shaded boxes of Fig. 3.6 when read from left to right. The for-

mulas for CGS are based on (1.4) and (1.5), respectively; the term describing the operation region

at hand is already selected. To account for the source-bulk capacitance’s dependency on the actual

terminal voltages the minimum and maximum values for CSB are calculated according to (1.3). Thus,

the actual value of CSB is bound by these minimum and maximum values. Since it is not a priori clear,

which transistors are to be shut down and which are going to be selected, the parasitic capacitances
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Capa- W CSB
c, CGS separately CSB

c +CGS

Device
citor

Formulaa,b

[µm] Min [fF] Max [fF] Min [fF] Max [fF]

19 T1 CSB 19(CSB,P +CSB,N)
∣∣
off

1.4 42.59 95.39

off CGS 19WT1CGSDO 1.4 18.09 18.09
60.68 113.48

CSB (CSB,P +CSB,N)
∣∣
sat

1.4 2.24 5.02

T1 on
CGS 2 ·1/2CoxWT1LT1

d 1.4 2.70 2.70
4.95 7.73

CSB CSB,N|off
e 1.4 1.00 2.42

M1 off
CGS WM1

CGSDO 1.4 0.48 0.48
1.48 2.90

20 MS CSB CSB,N|off
e 75g 36.63 87.59

off f CGS WMSCGSDO 75g 25.50 25.50
62.13 113.09

aCSB is calculated from (1.3).
bThe additional subscripts ‘N’ and ‘P’ indicate whether the process parameters for P- or NMOS transistors have to be chosen.
cMinimum and maximum values account for CSB’s dependency on the transistor’s gate and drain potential described by

(1.3).
dWidths and lengths for the P- and NMOS transistors of transmission gate T1 are identical (see Table 3.2).
eIn case of M1 and MS the values for CSB are calculated for the NMOS case only. The capacitance values are slightly higher

for PMOS transistors.
fSince in case of the array of programmable transistors itself it is not a priori clear which transistors will be open, all 20

transistors are considered here to overestimate the worst case.
gThe widths of the 20 transistors of MS are summarized to one width by 5 · 15 = 75µm. Yet, the computation of CSB

includes the correct circumference of the diffusion area of the source and drain terminals.

Table 3.3: Table of parasitic capacitors introduced by the auxiliary circuitry providing the configurability of

the programmable transistor. The location of the capacitors listed here are depicted in Fig. 3.6. The diffusion

lengths of the source and drain terminals of all transistors are assumed to be minimal, i.e. Ldiff = 1.4µm ac-

cording to the design rules [Aus97b]. All capacitor values are calculated from [Aus97c] for the typical mean

case.

at the generic drain and source terminals TD and TS are calculated for all 20 selectable transistors

being shut off. As CSB and CGS of the selected transistor are inherent to any transistor and not caused

by the configurability, these capacitances are thus overestimated. The last two columns of Table 3.3

aggregate the respective CSB and CGS values of the according nodes.

A closer look at the data compiled in Table 3.3 yields the following insights. First, CSB exceeds

CGS by a factor of 1.5 to 5 for those transistors that are turned off. Thus, the parasitic capacitances

introduced by switches in the off-state can be reduced by choosing layout structures that minimize

the source and drain diffusion areas as, for instance, achieved by finger structures. Second, the total

capacitances present at each of the three generic transistor terminals TD, TG and TS are almost

identical. Again, this is achieved by the turning of the selectable transistors MS themselves. If the

drain and source terminals of all 20 transistors were also switched by transmission gates, these had

to be larger than those for the gate terminals for at least some of those 20 transistors. Hence, the

resulting parasitic capacitances would exceed those introduced at the generic gate terminal TD. Third,

the parasitic capacitances at the gate terminal of the selected transistor, which are introduced by M1
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and the right hand side of the closed transmission gate T1 are orders of magnitude smaller than those

at the generic gate terminal and can thus be neglected.

3.3.5.2 Transistor Cell without the Programmable Transistor

In this subsection, only those parasitic devices shall be discussed that are entailed in those parts of

the transistor cell that do not belong to the programmable transistor. The scenario is illustrated in

Fig. 3.7, where the programmable transistor itself is included as a black box without any parasitic

properties. According to Fig. 3.2, the configuration of the transistor cell is achieved exclusively

by using transmission gates as analog switches. In order to attain an insight into the effects of the

configuration circuitry, these transmission gates are replaced by their small signal circuit equivalents

proposed in section 1.3.1. Since the illustration of Fig. 3.7 takes on the perspective of the nodes

themselves, the equivalent circuits cover only half of the transmission gate relevant to the respective

node. They are a split version of Fig. 1.7; the difference between the on- and off-state is indicated

by an ideal switch. As summarized in Table 3.2, only two types of transmission gates are employed,

large ones featuring WP = 30µm and WN = 10µm and small ones used for multiplexing the generic

gate terminal TG featuring only one single gate width WP = WN = 1.4µm.
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Figure 3.7: Small signal equivalent of the nodes W, TD, TG and TS in the programmable transistor cell due to

its transmission gates. The switches are ideal; the on-resistance of the transmission gates is divided in to equal

halves. The parasitics of the programmable transistor are omitted.

The right part of Fig. 3.7 accounts for the three analog multiplexers responsible for connecting the

generic transistor terminals TD, TS and TG to the array power or either of the four cell borders N,W,S

or E (cf. Fig. 3.2). The transistor cell’s border terminals, on the other hand, are connected to 3 routing

switches, and 3 transmission gates belonging to the analog multiplexers. Of the latter ones, two are

large transmission gates and the third one, possibly connecting to the generic gate terminal TG of the

programmable transistor, is kept smaller. The situation at the border cell terminals is exemplified on

the left hand side of Fig. 3.7 for the West terminal.

The node capacitances of the two types of transmission gates – henceforth denoted as large and

small – are compiled in Table 3.4. The calculation is based on (1.8), that is the contribution of CSB

and CGS are already lumped together for both transistor types. Thereby, the transistors constituting

the transmission gates are assumed to be either in the off-state or to be operated in the linear region.
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Transmission open closed

gate
WP[µm] WN [µm]

Min[ fF] Max[ fF] Min[ fF] Max[ fF]

TG multiplexer 1.4 1.4 3.19 5.97 4.56 7.34

TS/TD multiplexer

routing switches
30 10 30.55 52.02 50.07 71.54

Table 3.4: Minimum and maximum parasitic capacitances for the different types of transmission gates used in

the programmable transistor cell. The respective values are calculated according to (1.8) for both, the open and

the closed configuration of the switch. For all transistors the length of the source/drain diffusion is assumed to

be of minimum size, i.e. Ldiff = 1.4µm.

In fact, for closed switches, the transistors will only reach the saturation region in two cases: Either

for the pathological case of very large voltage drops across the switch, in which the transistor cell

will be far from acting like a single transistor anyway, or for one of the two transistors, whenever

the switch is operated close to either of the power supply rails. Apart from these exceptions, both

nodes of the switch N1, N2 can be treated in the same way. In Table 3.4 the node capacitances CNx

are reported in Table 3.4 for open and closed switches. The influence of the actual terminal voltages

on CSB are again covered by calculating the range of possible capacitance values. The capacitance

values for the large transmission gates already take into account that their PMOS transistors are laid

out using a finger structure, which slightly reduces their source-bulk capacitance.

The results of Table 3.4 are used to calculate the parasitic capacitances of the four cell border

terminals N, W, S, E and the three generic transistor terminals TD, TG, TS except for those caused

by the programmable transistor cell which were discussed in the last subsection. The results are sum-

marized in Table 3.5. The number of small and large switches that have to be considered correspond

to the situation depicted in Fig. 3.7 and are repeated in the third and fourth column of Table 3.5. The

last four columns are calculated by adding the capacitances introduced by the respective switches

CML[ fF] for # small # large open closeda

Node
metal lines switches switches Min[ fF] Max[ fF] Min[ fF] Max[ fF]

TG 188.2 6 0 207.36 224.03 208.73 225.40

TD 419.9 0 6 603.18 732.04 622.70 751.56

TS 360.2 0 6 543.48 672.34 563.00 691.86

N 439.1 1 5 595.03 705.19 693.99 804.16

W 531.8 1 5 687.73 797.89 786.69 896.86

S 417.7 1 5 573.63 683.79 672.59 782.76

E 425.1 1 5 581.03 691.19 679.99 790.16

aIn case of the programmable transistor terminals TG, TD and TS that are connected to the switches of the analog multiplexer,

only one switch can be closed at a time. For the border terminals N, W, S and E all shared switches are assumed to be

closed (which is probably not advisable for useful circuits).

Table 3.5: Parasitic capacitances inherent to the border terminals as well as for the generic transistor terminals

of the transistor cell. For the generic terminals of the programmable transistor only those switches contained in

Fig. 3.2 are considered, that is, not the internal parasitic capacitances of the programmable transistor that are

presented in Table 3.3.
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counted in columns three and four to the capacitances of the according metal lines CML. The CML are

attained from the aforementioned extraction procedure that lumps all of the capacitances between the

node at hand to all other layers into one grounded capacitor. In case of the three generic transistor

terminals, the complete CML is exclusively considered in Table 3.5 although it also belongs to the pro-

grammable transistor cell. The last two columns account for the situation in which as many switches

are closed as possible. In case of the three generic transistor terminals TD, TG, TS this is only one

of the six switches belonging to the analog multiplexers. In case of the cell border terminals N, W,

S, E all switches are assumed to be closed, because it is theoretically possible, even though improb-

able to find in practical circuits. Nevertheless, a connection to all three remaining border terminals

and two generic transistor terminals – e.g. to form a capacitor or diode connected configuration – is

conceivable.

The data compiled in Table 3.5 lends itself to a couple of observations: First, a comparison with

the results in Table 3.3 yields that the capacitances inherent to the configuration switches of the pro-

grammable transistor are smaller by roughly a factor of four for all current conducting nodes. They

are also smaller than the capacitances caused by the metal wires by a factor of 4 (2 in case of TD). Sec-

ond, the capacitance of the physical realization CML dominates the overall capacitance of each of the

six current conducting nodes considered here in that it exceeds the sum of capacitances introduced by

the according switches by a factor between 1.1 and 3.5 depending on configuration, terminal voltage

and node. In case of the generic gate TD, CML’s contribution is even more dominating. A comparison

of the maximum values, on the other hand, together with the inclusion of the capacitances attained

for the programmable transistor listed in Table 3.3, reveals that metal line and switch capacitances

are nicely balanced in this case: On one hand, reducing the switch size to the absolute minimum

could reduce the total capacitance by a factor of two at most. Larger switches, on the other hand,

inevitably lead to larger parasitic switch capacitances and entail larger CML due to the increase in die

area. Finally, from a comparison of CML for TD and all other nodes the influence of the width of the

used metal lines can be estimated: As explained in section 3.3.6 all current conducting nodes are laid

out fairly wide to protect them against self-destruction. Since this is not the case for the generic gate

TD, it can be inferred that the metal capacitance of all other nodes could be reduced to approximately

150 . . .200fF if they were narrowed down to widths close to the minimum size. Hence, abandoning

this precaution against self-destruction would reduce the overall node capacitances by approximately

30%, which was not found worthwhile running the increased risk.

3.3.5.3 Small Signal Equivalent Circuit for the Complete Transistor Cell

The results of the above analyses are assembled into one small signal circuit equivalent for the analog

signal path of one complete transistor cell, which is shown in Fig. 3.8. The node capacitances of

the four cell border terminals N, E, S and W are directly taken from Table 3.5, those of the generic

transistor terminals TD, TG and TS are calculated from the values listed in Table 3.5 and 3.3. The

node capacitance at the node of the selected transistor MS is taken from Table 3.3. For all of the

parasitic capacitances the absolute minimum and maximum values including the variation of terminal

voltages affecting CSG as well as the state of the switches are added to the schematic. The two types

of resistors R1 and R2 refer to the small and large transmission gates. The range of possible resistance

values is read off from Fig. 3.5. All of the switches are assumed to be ideal, that is free of further

parasitic effects.

In general, the particular combination of resistors and capacitors that limits the maximum achiev-

able bandwidth will depend on the circuit implemented on the programmable transistor array: Due to

the necessary signal routing, an analog signal will usually have to traverse through a few to tens of R2

resistors, before it reaches another gate terminal. Yet, R1 exceeds R2 by a factor of 6 to 24, and CTG
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Figure 3.8: Small signal equivalent circuit model of the complete programmable transistor cell. All switches

are assumed to be ideal. The resistor and capacitor values are understood to be quantified in Ω and fF, respec-

tively.

amounts to almost half of all other node capacitances. Consequently, for designs that get along with

short signal paths (in terms of traversed transistor cells), the pole formed by R1 and CTG is likely to be

the dominating one. Its corner frequency is calculated analogous to (3.1) yielding f-3 dB = 63.7MHz.

Although this is similar to the result in (3.1) attained for the pole introduced by R1 and the largest pos-

sible gate available for MS, the latter pole is assumed to be less critical, because time-critical designs

are not expected to rely on extremely long transistors with L≥ 4µm. As an increase in the transistor

width of the 20 transmission gates T1 belonging to the programmable transistor is more expensive in

terms of silicon area than increasing the size of the six switches in the generic gate multiplexer, the

transistor cell design could be improved by a moderate resizing of the gate multiplexer. A viable com-

promise between the increase in parasitic capacitances and area and a reduced on-resistance of the

switches of the gate multiplexer is expected to be found in the range of WP = 3 and WN = 2 . . .3µm.

3.3.6 Layout of the Programmable Transistor Cell

Finally, the layout of one complete transistor cell shall be discussed. Layout and floorplan of one

NMOS transistor cell are illustrated in Fig. 3.9. Since the two types of transistor cells merely differ in

their respective programmable transistor, their layouts are almost identical in general and completely

identical at their boundaries. N- and PMOS transistor cells can be lined up in X- and Y direction with

a pitch of 198.2 and 201.15µm, respectively.

Overview of the Floorplan. The programmable transistor is located in the center of the layout of

the transistor cell. The selection circuitry necessary to select the desired MS, that is, the NOR gate,

the transmission gate T1, and the NMOS transistor M1 depicted in Fig. 3.4 are arranged around the

field of the 20 selectable transistors MS. The layout of the programmable transistor is routing limited
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in that some of its area is dedicated exclusively to host the necessary metal and polysilicon lines. The

multiplexers for the generic transistor terminals TG, TD and TS are placed next to the upper, left and

lower border of the programmable transistor, respectively. Note, that the gate multiplexer occupies

only 2/3 of the area of the source and drain multiplexers, due to its smaller transmission gates.

The four blocks of SRAM are placed at the four corners of the necessary transistor cell ingredients

described above. On the right hand side of the cell the buffer for probing inner-cell signals together

with the necessary selection circuitry is added. The global signals, as e.g. the BIT and WORD lines,

power and array power (vdd, gnd, vdda, gnda), and the selection lines for the cell buffer, V<0:1> and

H<0:1> are routed along the four edges of the transistor cell.

Layout: Style and Concept. It is impossible to quantify the area efficiency of the proposed layout.

However, a few comments on its style and compactness seem to be in place: First, it was indeed

attempted to keep the occupied silicon area small. Yet, the result largely depends on the particular

placing of the different components, which severely affects the necessary routing. The following

arguments strongly depend on the given placement being reasonably area-efficient. Second, the layout

carefully supports the electrical functionality in two regards: On one hand, extra-wide metal lines are

used for the current conducting nodes, as e.g. the border terminals, the generic source and drain

terminals, and all power supply connections to avoid self-destruction due to electromigration. On

the other hand, substrate and n-well contacts as well as guard ring structures are generously spent to

properly isolate the different subsystems from each other. Third, the whole design is routing limited

in that there is little to no space left for additional routing in either of the three metal layers. This

puts the excess area introduced by the inner-cell node probing buffer into perspective, because it

does not extend the width of the transistor cell by the full 30µm of its own width: Since the global

signals must cross at each corner, the vertical signal routing could be distributed only to one additional

metal 1 layer without the buffer, albeit would still occupy a considerable amount of the then free

area. However, taking into account the three additional signals V<0:1> and COUT required by the

cell buffer, it becomes clear, that the inner-cell probing does not come entirely for free. Finally, as

the miniaturization of the transistor cell layout is limited by the necessary routing, more advanced

fabrication technologies providing six or more metal layers and allowing for stacking of vias that

connect the different metal layers is expected to foster more compact transistor cell layouts in second

generation FPTA cells.

Layout Sizes and Configuration Overhead. In addition to the floorplan drawn to scale, the di-

mensions of the components of the transistor cell are summarized in Table 3.6. Apart from width

X , length Y and area A of the respective components, Table 3.6 also calculates the area percentage

of the entire transistor cell. To further quantify the configuration overhead inherent to the transistor

cell, the area of each of the components is also calculated in units of the largest transistor that can be

realized featuring W = 15µm and L = 8µm. Accordingly, the entire cell exceeds the area occupied

by this largest feasible transistor by a factor of 228 and is still 18 times bigger than the array of the

20 selectable transistors. In other words, the remaining 94% of silicon area are only used for the

configuration.

The programmable transistor already makes up for roughly a third of the transistor cell. The

24 bits of SRAM use up a modest 13.4 % while the three analog multiplexers together with the

routing switches demand almost another third of the available space. Although the inner-cell-probing

facilities are listed with an area consumption of 15 %, the effective increase in cell area is probably

considerably smaller as discussed above.
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A in % of
Device X [µm] Y [µm] A [µm2]

the whole cell
A [A(M15/8)]

Transistor cell 198.2 201.15 39,868 100 227.87

Largest Transistor (15/8) 10.80 16.20 175 0.44 1.0

Field of 20 transistors 42 54 2241 5.62 12.81

Programmable transistor 117 109 12,755 31.99 72.9

10 transistor selectors 27 58 1541 3.86 8.81

6 routing switches 25 102 2570 6.45 14.69

6-pack of SRAM bits 32 42 1335 3.35 7.63

24 SRAM bits — — 5340 13.4 30.52

3-bit TG multiplexer 28 86 2402 6.02 13.73

3-bit TD/TS multiplexer 88 42 3713 9.31 21.22

Cell buffer 30 140 4200 10.53 24.01

Cell buffer multiplexer 41 47 1921 4.82 10.98

Cell buffer unit 28–41 187 6121 15.35 34.99

Table 3.6: Absolute and relative sizes and area consumption of the different subcircuits constituting one com-

plete NMOS transistor cell.

Protection against Self-Destruction. According to Chakraborty and Pinaki [Cha02], the two degra-

dation processes that apply to the transistor cell level are electro- and stress migration. While the first

phenomenon describes the deterioration of metal lines caused by excessively high current densities,

the second one similarly affects the metalization layers but is the result of mismatches in thermal

expansion coefficients and excessive thermal stress. While the latter hazard may be avoided by trig-

gering a shutdown of the FPTA depending on the die temperature, the problem of electromigration is

prevented by an extra-wide layout of the metal lines realizing the current conducting nodes.

For the given selectable transistor dimensions and the maximum saturation currents defined by

the process technology [Aus97c], the maximum current through an N- and PMOS transistor, if short-

circuited between the power supplies, amounts to 7.95 and 4.05µA, respectively. However, in the

transistor cell, the current has to traverse at least one switch to get from either of the power supply

voltages to the drain or source terminal. Thus, the maximum current flowing through one transistor

is limited to approximately 400 to 500mA for an NMOS cell. In order to comply with the maximum

dc-currents allowed by the manufacturer [Aus97c], the metal lines for the generic drain/source termi-

nals TD and TS are laid out 4µm wide. On one hand, the currents of a large number of other transistor

cells may be collected at the cell border terminals. On the other hand, these currents are attenuated

by all of the transmission gates they have to pass. Since an exact estimate of the worst case currents

that have to be taken into account (with a realistic probability of occurrence) is difficult to obtain, the

4µm used for TD and TS are doubled to allow for a sufficient safety margin.

3.4 SRAM for Configuration Storage

In principle, three types of memory could be used to store the configuration of the 256 transis-

tor cells: EEPROM10 based on floating gate technology, DRAM or SRAM (cf. Rhein and Freitag

[Rhe92]). The target specifications formulated in section3.1.2, namely to allow for a fast reconfigu-

10Electrically Erasable and Programmable Read Only Memory
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ration (tconfig ≤ 100µs) for a nearly unlimited number of times (at least hundreds of billions), rule out

the use EEPROM [Rhe92]. The use of DRAM, on the other hand, requires a more elaborate control

logic for the inevitable refresh, which also deteriorates the adjacent analog signals by crosstalk and

substrate coupling effects. Yet its main advantage, the small area consumption, would be used up by

the line drivers necessary to drive the configured decoders and switches. In contrast, SRAM meets all

these constraints and is therefore considered the technology of choice, which also manifests itself in

its widespread usage in FPGAs, whose requirements are similar to those of the FPTA.

3.4.1 SRAM Cell

The SRAM cell itself is designed as a six transistor (6-T) cell, which is discussed in a variety of text

books on CMOS design, e.g. [Gei90a], [Pre01] or [Mil87a]. Its implementation including transistor

dimensions is depicted in Fig. 3.10. The latch formed by the transistors M1, M2, M5 and M6 stores the

information bit, while the pass transistors M3 and M4 allow to read out and overwrite the state of the

latch. In the proposed FPTA chip, the latch is also used to drive the decoders and switches directly

connected to its outputs OUT and OUT.

W

M3 M4

M1 M2

M5 M6

Latch

OUT OUT

BITBIT
1.4/.6 1.4/.6

.8/.6

1.4/.6 1.4/.6

.8/.6

Figure 3.10: Six transistor SRAM cell. Channel dimensions are added in µm.

Given that the bit lines are precharged to a voltage close to vdd, the transistor dimensions can be

determined following the arguments of Preston [Pre01]: The read operation requires the aspect ratio

of the pass transistors to be sufficiently small compared with that of the NMOS transistors to avoid a

read upset. The write operation, on the other hand, demands the aspect ratio of the pass transistors

to be sufficiently large compared with that of the PMOS transistors of the latch for the SRAM cell to

be writable. Although Preston [Pre01] reports some rules of thumb for the abovementioned ratios,

the final sizing of the SRAM cell is also subject to minimizing the necessary die area and must be

verified by elaborate simulations, since it largely depends on the actual process parameters and their

variations. Compared to Preston’s [Pre01] recommendations, the transistor dimensions reported here

stress the ability to overwrite the content of the latch and trade off a bit of the safety margin for

reading the cell against its compactness in terms of layout.

3.4.2 SRAM Architecture

The SRAM itself, that is, abstracted from its being embedded in the transistor cell array, is organized

as an array of 96 x 64 bits. More precisely, the SRAM contains 96 horizontal bit lines and is controlled

by 64 vertical word lines. The link between the arrangement of the 24 SRAM bits contained in each

transistor cell as shown in Fig. 3.2 and the global view onto the SRAM itself is provided by Fig. 3.11.

Accordingly, the SRAM of each transistor cell is controlled by six bit and four word lines.
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Figure 3.11: Structure of the distributed SRAM with read/write amplifiers.

The signals for the word lines W<0> to W<63> are generated by means of a 6-bit decoder, whose

outputs are activated by the external WORD_EN signal through the subsequent row of NOR gates.

This enabling scheme is employed for all of the global decoders on the FPTA chip for the following

reasons: First, it allows to deactivate all of the signals to be generated by the decoder (here that is the

word line signals). Second, the enabling scheme avoids any glitches on the decoded signals due to

changes in the address code and ensures that at most one of the decoded signals will be active at all

times. Third, the scheme helps relaxing any timing constraints in that the address can be determined

prior to the respective enable signal; the NOR gates can be designed such that they can drive the

signals at hand fast.

Each of the 96 bit line pairs is controlled by its own read/write unit. The read/write units can

store the information read from or to be written to one column of the SRAM allowing to read and

write all 96 bits of one column in parallel. The read/write units for each row of transistor cells are

aggregated to one larger unit that can be addressed via a 4-bit decoder. Its signals are activated by the

RAM_EN signal. The READ_EN decides upon the kind of operation. The limited number of digital

signals available from the external electronic system severely constrains the possible width of the

data bus DATA<0:5>. A width of six bit was chosen to comply with the logical structure of the SRAM

prescribed by the organization of the transistor cell. In case of writing to the SRAM, the information

for each column has to be divided into 16 packages of 6 bit. These have to be written to the read/write

units in 16 subsequent cycles, prior to writing the information of one entire column into the RAM11

11Random Access Memory
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itself. For the readout of the SRAM, the information of one column is stored in the 96 read/write units

from which it has to be read out subsequently in packages of 6 bit, again using the data bus D<0:5>.

3.4.3 SRAM: IO-Circuitry

The implementation of the read/write units is illustrated in Fig. 3.12 for row l = 16 ·m + i. Please

note, that the tristate buffer consisting of I1 and I2 and the respective data line DATA<i> are shared

among all 96 read/write units. In addition, the AND gate of transistor cell row m, that is shared among

all six read/write units of this transistor cell row, is included in Fig. 3.12 to simplify the explanation

of the operation principle.
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Figure 3.12: Write and read circuitry of one row together with the SRAM cell in row 16 ·m+ i and column n.

The tri-stating of DATA<i> is implemented only once, the generation of RE<m> only 16 times. Nevertheless,

they are depicted in the upper left corner to allow for a complete understanding of the read and write access to

one SRAM cell.

3.4.3.1 Write Operation

The bit to be written to the SRAM cell in row l and column n is stored in flip-flop FF1, using the

tri-state buffer (I1 and I2). The necessary RCLK<m> signal is generated with the 4-bit transistor cell

column decoder only shown in Fig. 3.11. After the desired column has been selected by means of

word line W<n>, it can be written to the cell by activating the global signal WRITE_EN. The required

sequence for writing to the SRAM is summarized in the timing diagram shown in Fig. 3.13.

The left process writes the data for one column of SRAM into the 96 flip-flops FF1 in 16 cycles,

which consists of activating the correct RCLK signal by means of the 4-bit row decoder. Afterwards,

all 96 bits are written to the RAM column selected by the column decoder. In order to configure

the entire FPTA chip, the procedure depicted in Fig. 3.13 has to be repeated for 64 times. The

timing diagram assumes all changes to be synchronous to the rising edge of the main CLK signal.

In case of the presented timing scheme, the configuration of one row of the FPTA’s SRAM requires

exactly 32 clock cycles. Thus, the configuration of the entire FPTA chip takes 64 · 32 = 2048 clock

cycles, which corresponds to 51.2µs for a system clock frequency of 40MHz. However, in the current

implementation of the VHDL code controlling the RAM access, every operation is performed through

the PCI bus. Therefore, in the system proposed in chapter 4, the time for the configuration rather
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t [cycles]0 1 2 3 4 5 26 27 28 29

A<9:6>

CLK

DATA<0:5>

WRITE_EN

A<5:0>

RAM_EN

WORD_EN

A0

required

Write to read/write units in 16 cycles Write 1 SRAM column

A1 A15

D0 D1 D15

A14

D14

30 31 32

A0

D0

Figure 3.13: Timing diagram for writing to the SRAM cells.

amounts to values between 60 and 100µs, that is, if the configuration process is not interrupted by the

operating system.

3.4.3.2 Read Operation

For the readout of the FPTA’s SRAM the content of one column is first sampled by the 96 read/write

units before it can be read out over the tri-stated data bus D<0:5>. This sampling process starts with an

equalization of the bit line potentials, which is achieved by means of transistors M7 to M9 depicted in

Fig. 3.12. When the bit line equalization is finished, the desired column is activated by the according

word line W<n>. As the bit line pairs are loaded with a considerable amount of parasitic capacitances,

it takes rather long for the small transistors in the SRAM cell to charge these bit line pairs. Therefore,

a sense amplifier is used to amplify the small potential difference on the bit lines and store the result

until it is read out from the data bus D<0:5>. The exact timing is summarized in Fig. 3.14.

Please note, that the bit line equalization includes the gates of the sense amplifier, namely of the

transistors M2 to M5; the sense amplifier has to be turned off during the equalization phase. During

the readout of the sense amplifiers, the READ_EN signal has to be active. The readout then consists

of a 16-fold repetition of providing the necessary transistor row address and activating the according

RE<m> signal. In contrast to the 6-bit write accesses, the RAM_EN signal is held low for two clock

cycles such that the data can be read conveniently from the data bus D<0:5> by the external circuitry.

In the conservative, strictly synchronous timing scheme illustrated in Fig. 3.14 the readout of one

column of the FPTA’s SRAM requires 53 clock cycles. Thus, the total time for a readout of the

configuration of the entire FPTA amounts to 64 ·53 = 3392 clock cycles, which corresponds to 84.8µs

for a 40MHz system clock. As the current VHDL implementation of the SRAM control may contain

some further wait states and is also depending on the time slots available from the operating system,

the time for the readout in the evolution system proposed in chapter 4 may be somewhat larger than

these 84.8µs, albeit still in the vicinity of 100µs. However, in those cases in which the timing is

critical for the successful readout operation, that is, the time for the pre-charge phase and the time

between the activation of the WORD_EN and the S_CLK2 signal, the VHDL code adheres to the timing

diagram of Fig. 3.14.



3.4. SRAM for Configuration Storage 75

t [cycles]0 1 2 3 4 5 6 7 8 49

A<9:6>

CLK

S_CLK2

A<9:6>

required

required

read one column of 96 

bits with sense amplifiers

read out the 96 sense amplifiers 

in 16 cycles

PRE_CH

S_CLK1

D<0:5>

READ_EN

RAM_EN

required

validvalid

50 51 52 53 54

WORD_EN

Figure 3.14: Timing diagram for the readout of one column of 96 SRAM cells.

3.4.3.3 Precharge and Sense Amplifier

Prior to the readout of an SRAM cell, the bit lines must be equalized to ensure the correct readout

and avoid read upset. In the current design depicted in Fig. 3.12 the bit line pairs are precharged to

vdd, as recommended e.g. by Geiger et al. ([Gei90a], section 9.10) and Preston [Pre01]. This choice

accelerates the readout in that only the NMOS intrinsically stronger NMOS transistors of the SRAM

cell are responsible for the voltage difference between the bit line pairs. Moreover, the precharge

mechanism ensures that the bit lines are always restored to a well defined state before the next read

operation.

In the proposed readout circuitry of Fig. 3.12 the sense amplifier serves two purposes: First,

it accelerates the charging of the bit pairs. After the SRAM cell has provided a sufficient (in the

order of 100mV) voltage difference, the sense amplifier drives the bit lines to the full logic levels.

Second, it stores the result of the read operation until it is readout from the FPTA chip. The first task

requires a discrete-time comparator that is ideally very fast and possesses a low offset. Here, this

comparator is realized as a dynamic latch, although combinations of differential pairs and latched

structures are considered to be faster ([All02b], section 8.6, [Sas89], [Pre01]). Yet, the dynamic latch

is advantageous in that it shortens the readout data path, since it also solves the second task of storing

the result of the readout operation. The fact that the by far largest contribution to the time for the

readout of one SRAM column stems from the successive readout of 6 bit packages further supports

this choice. The minimum time necessary between the enabling of the word line W<n> and turning

on the sense amplifier with the S_CLK2 signal depends on the resolution of the sense amplifier, the

sizing of the RAM cell and the capacitive load of the bit line pairs. Special care has been taken in the

layout of the sense amplifier to narrow the expected offset distribution. Nevertheless, according to

[Sar91], the achievable resolution is also affected by differences in the capacitive loads of the bit line
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pairs. Thus, the presented design could be further improved by adding a dummy inverter to balance

the capacitive load introduced by I4 as e.g. described in [Sil93].

3.4.4 SRAM: Concluding Remarks

3.4.4.1 Peculiarities of Embedded SRAM

The fact that the SRAM cells are scattered across the entire array of programmable transistor cells

has the following effects on the RAM circuitry itself: First, the output nodes of the SRAM cell,

OUT and OUT, are capacitively loaded. The load varies between 7 and 160fF. On one hand, these

parasitic capacitances facilitate the readout, because they add an initial voltage difference to the bit

line pairs. On the other hand, these capacitive loads must be charged through the pass transistors

M3 and M4 in Fig. 3.10, which slightly increases the time necessary for re-writing the SRAM cells.

However, these effects are not expected to severely affect the operation of the SRAM. Second, the

spatial distribution of the SRAM cells causes the SRAM to appear larger to the according IO-circuitry

than it actually is. A parasitic extraction of the metal line capacitances CML introduced by the bit

and word lines yields values between 1.5 and 2.3pF only in the transistor array itself. Taking further

into account that another 700 to 800µm of metal routing are necessary to cross the distance from the

array boundaries to the word and bit line drivers (made up by the IO-cells), a comparison between the

metal line capacitances and the parasitic capacitances caused by the pass transistors M3 and M4 of the

SRAM cells depicted in Fig. 3.10 yields an effective SRAM size of at least 500×400 = 200kbit.

3.4.4.2 Layout of the SRAM Read/Write Units

The layout of six read/write units serving 6 bit line pairs is displayed in Fig. 3.15. It occupies 336.3×
201.15µm2 of silicon area. Except for the AND gate at the top of the left block of circuitry,

which corresponds to the AND gate in Fig. 3.12, the layout consists of 6 identical, albeit vertically

mirrored, rows. The circuitry shown in the left half of the figure corresponds to the flip-flop FF1 and

the tri-state buffers I3, I7 and I8 depicted in Fig. 3.12; it is composed of standard cells provided by the

manufacturer [Aus97a]. The circuitry shown in the right block of Fig. 3.15 accounts for the precharge

unit and the sense amplifier.

As was explained in section 3.4.3 all of the 96 bit line pairs are (dis-) charged at once during

the read-out, write and precharge phases. During normal operation one bit line of each bit line pair

will have to be completely charged or discharged. In the worst case of two inverted write accesses

however, both bit lines have to flip their logic level. Due to the finite resistance and inductance of the

bond wires, the required peak currents may not be available from the power supply. In order to avoid

a break-down of the power supply voltage on the chip, the digital power supply must be buffered by

blocking capacitors. Therefore, the circuitry of the read/write units is embedded in three blocking

capacitors Cblock providing a total of 64.18pF. For all 16 transistor cell rows this adds up to 1.03nF.

If one neglects the external power supply and assumes that exactly one bit line of each bit line pair

is recharged, any of the read, write, or precharge operations results in a drop of 1V in the power

supply voltage. Yet, given that there are additional blocking capacitors in each of the IO-cells (see

section 3.5.5) and including the charge delivered by the external power supply, the chosen blocking

capacitors leave a large safety margin. As they occupy approximately 40% of the shown layout, a

reduction may be considered for saving silicon area in future implementations.
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Figure 3.15: Layout of six SRAM read/write units that serve 6 bit line pairs. The pitch between two adjacent

blocks amounts to 201.15µm.

3.4.4.3 Timing Considerations

A full configuration of the FPTA as well as the readout thereof can be easily achieved within 100µs

according to section 3.4.3. This seems reasonable given an expected testing time of approximately

1ms. To date, six dice from one MPW12 run have been successfully operated at the abovementioned

system clock rate of 40MHz. The circuit simulations using the BSIM3.3 model suggest that the RAM

can be operated at least up to clock rates of 100MHz if synchronous timing schemes similar to those

of Fig. 3.13 and 3.14 are used. Nevertheless, the proposed SRAM is by no means verified to do

so: On one hand, this would require extensive system level simulations that take into account the

most important worst case scenarios as well as Monte Carlo simulations of device variations. On the

other hand, a final verification in hardware would have to report maximum bit error rates for a given

maximum operation speed. Both approaches were foregone owing to the prototype character of the

proposed FPTA chip. Besides, even though time critical operations did not stand higher clock rates,

this flaw could be mitigated by inserting additional wait cycles.

Yet, if the configuration time must nevertheless be reduced, for instance, in case of a larger second

generation FPTA implementation, this may be achieved by some of the following means; First, the

RAM control could use a higher clock rate or take advantage of both clock edges as was explained

in section 3.4.3. Second, if only a fraction of the PTA is used, a partial reconfiguration of either a

12Multi Project Wafer
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subselection of columns or, if the unused cells are not to be configured in a well defined way, of a

subselection of transistor cells can be applied. For future FPTA designs, however, a faster interface,

most easily implemented by a wider data bus, would be desirable.

3.5 IO-Cells

The mixed signal test environment – described in chapter 4 – provides only one fast analog input

and output channel, respectively. An integration of the necessary analog-to-digital and digital-to-

analog conversion, on the other hand, is prone to errors and limited analog performance. Moreover,

the effort its design would have required in terms of money and time is beyond the scope of the first

FPTA prototype. Hence, a sample-and-hold based multiplexing system capable of generating complex

spatio-temporal input patterns as well as of realizing complex sampling procedures is a must. The

task is solved by means of an ensemble of IO-cells that can be either used to sample an input voltage

and present its buffered version to the programmable transistor array or sample the output of the array

and hold it until it is driven off-chip. As shown in Fig. 3.1, an IO-cell is dedicated to each of the 64

transistor cell edges of the PTA. Thus, any of the boundary cells of the PTA can be used as an in- or

output. On one hand, this concept combines a maximum of flexibility with minimum analog signal

paths (in terms of multiplexing switches and path lengths between the array border and the according

buffer in- or output) and therefore maximum analog performance. On the other hand, the concept

is expensive in terms of occupied silicon area. Nevertheless, future FPTA chips may benefit from

experiences gathered from experiments that use the proposed system and thus may realize a more

efficient signal management.

3.5.1 Functionality of the IO-cells

The IO-cells consist of a sample and hold stage, a set of switches to configure this S/H stage and some

control circuitry by which the cell can be configured. Each S/H cell features two identical rail-to-rail

amplifiers. While the description of the actual implementation is deferred to section 3.5.2, this section

is confined to a functional view of the IO-cells. The different operation modes of the IO-cells are

summarized in Table 3.7. In the current scope, only modes 0 to 4 and mode 8 are of interest together

with the according entries of the last three columns. Apart from the in- and output configurations, the

IO-cell can be completely turned off via mode 0 – the passive function: This opens all switches, in

particular those three connected to the transistor cell node, whose capacitive load is thereby reduced

to the minimum parasitic capacitances caused by these open transmission gates. Furthermore, both

operational amplifiers are turned off in the passive mode, in order to minimize the thermal impact of

the IO-cells.

3.5.1.1 Output Configurations

The two output configurations direct out and buffered output (mode 2 and 4) as well as the configu-

ration for direct I/O (mode 1) are depicted in Fig. 3.16. In the recommended output configuration,

namely in buffered output mode, switches S3 and S1 are open and the uppermost signal path is used:

The voltage present at the respective cell node is buffered by OP1, and subsequently sampled on CSH

via Ssam. The voltage hold by CSH is then buffered by OP2 until it is multiplexed to the analog output

line ANA_OUT that is buffered by the output buffer described in section 3.7. Since switches S1, S3

and S4 are meant to be configured at most once before each circuit test, they are referred to as static

switches. In contrast, Ssam and Sout must change their state multiple times during a circuit test and are

thus referred to as dynamic switches.
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mode DATA<3> DATA<2> DATA<1> DATA<0> function OP1 OP2

0 0 0 0 0 passive off off

1 0 0 0 1 direct I/O off off

2 0 0 1 0 direct out off off

3 0 0 1 1 direct in off off

4 0 1 0 0 buffered output on on

8 1 0 0 0 buffered input off on

5 0 1 0 1 test/debug on on

6 0 1 1 0 test/debug on on

7 0 1 1 1 — on on

9 1 0 0 1 test/debug off on

10 1 0 1 0 test/debug off on

11 1 0 1 1 — off on

12–15 1 1 X X —/self-destruction on on

Table 3.7: The six different IO-modes. Only modes 0–4 and 8 are meant for regular use. IO modes 5,6 and

9,10 may be beneficial for testing debugging and characterizing the buffer circuits. IO modes 12–15 may result

in short-circuiting the outputs of the input driver and OP1, which may be exploited for heating the chip, but

may also allow for detrimental effects.

The sample and hold unit can be bypassed via switch S3 in the direct out configuration (mode

2). Besides being a fall-back solution if the sample and hold unit should fail to work, it can be used

for testing and debugging purposes, e.g. for measuring the offset distribution of the sample and hold

stages. Moreover, in an evolution experiment, randomly choosing either IO-mode 2 or 4 prior to each

circuit test can help establishing a selection pressure towards circuits capable of driving different

capacitive loads. Finally, the configuration direct I/O (mode 1) connects the respective transistor

cell node to the according probepad, which can be both, input or output. As the probepads can be

connected via bond wires, this allows for a direct access to the PTA. Apart from testing and debugging

the direct I/O configuration allows to connect two FPTA dice via bond wires between the respective

probepads.

3.5.1.2 Input Configurations

The two output configurations direct in and buffered input (mode 3 and 8) are illustrated in Fig 3.17.

In mode 3 the IO-cell is again used as a sample and hold unit (upper signal path is active, S2 open).

Yet, the input signal applied to the external analog input ANA_IN is assumed to be sufficiently strong

SAMPLE

CELL

OUT

PROBE

PAD

OUT_EN

OP1
OP2

CSH

S4 Ssam

S1

S3

Sout

output modes

Figure 3.16: Simplified schematic illustrating the three different output modes. The connection to the probepad

actually serves as both, in- and output.



80 Chapter 3. Implementation of the FPTA

to directly drive the hold capacity CSH. As switch S6 is configured statically, the cell node is always

driven by OP2, which follows the voltage sampled on CSH. Here the possibility to update a set of

input voltages all at once is foregone to simplify the signal path in particular and the IO-cell design

in general.

SAMPLE

IN CELL

SH_INOP2

CSH

S5

Ssam

S2

S6

input modes

Figure 3.17: Simplified schematic depicting the two different input modes.

If only one analog input is required, it can be freed from the additional noise and distortion

introduced by the sample and hold stage by using the direct in configuration, which shortcircuits the

analog input port and the according cell node. If the programmable transistor array is used to route

test signals between different IO-cells, all of the buffers contained in the IO-cells can, in principle,

be characterized: Since a combination of IO-modes 8 and 2 allows to characterize OP2, the behavior

of OP1 can be inferred from the behavior of the IO-cell in mode 1. This should at least allow for the

measurement of the offset distribution of the integrated buffers.

3.5.2 Architecture of the IO-Cells

The implementation of the different IO-cell functionalities discussed above is shown in Fig. 3.18. The

analog core of the cell realizing the sample and hold circuits as well as the switches connecting the

analog signals are depicted in the upper part of the figure. The digital circuitry necessary to control

the analog functionality is divided into four different blocks, which are displayed in the lower part of

Fig. 3.18:

Lower left corner: Decoder An 8-bit decoder is used to configure the 64 different IO-cells. The

last two bits of the address bus, A<1:0>, are used to determine three independent clock signals

DFCLK<1:3>. Again, a separate active-low signal, SH_EN, is used to activate the outputs of the

address decoder to avoid glitches.

Lower middle part: IO-mode The DFCLK<1> signal is used as a clock for flip-flops FF1 to FF4,

which are programmed by the first four bits of the data bus, DATA<0:3>. The content of Flip-

flops FF1 and FF2 determines whether any of the direct modes 1 to 3 are enabled. The buffered

out- and input modes 4 and 8 are configured using FF3 and FF4, respectively. That is, their

outputs control the state of switches S4 to S6 and provide the appropriate power-down signals

for the operational amplifiers.

Lower right corner: Sample signal This block decides upon the generation of the SAMPLE signal

that is used to steer Ssam and thereby define the sample and hold stages. The sample signal

of each IO-cell can be either chosen from seven independent signals, namely SAM<0:3> and

DATA<3:5>, or can be connected to gnd to turn off the sampling mechanism. The necessary

information is stored in the three flip-flops FF5 to FF7, which are programmed by means of the

DFCLK<2> clock in conjunction with DATA<0:2>. The manner in which the data bus signals

are allocated avoids unwanted glitches on the SAMPLE line during the configuration phase.
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Figure 3.18: Simplified schematic of one entire IO-cell. All switches are implemented as transmission gates.

Digital signals are usually depicted in one polarity only. The additional inverters necessary to generate the

inverse signals are omitted as are any additional buffers for signal restoration.

Right middle part: Output enable In the buffered output configuration (mode 4), the node voltages

sampled at the according cell must be read out from the output of OP2. To allow the output

of exactly one IO-cell to be multiplexed onto the global ANA_IN signal, switch Sout can be

controlled by using the DFCLK<3> signal. The NAND gate ensures that Sout can only be

activated if the IO-cell is indeed configured as a buffered output.

3.5.3 Configuration of the IO-cells

The IO-cells have to be configured in two steps: First, the IO-mode of the respective IO-cell addressed

by A<7:2> must be set according to Table 3.7. This is achieved by using sub-address A<1:0> = 01

during the required activation period of SH_EN, as depicted in Fig. 3.19. Second, the source of the

SAMPLE signal must be chosen for the respective cell. Table 3.8 lists the bit patterns necessary for

the eight possible configurations. The second and fourth block shaded in gray in Fig. 3.19 exemplify

the required timing of the signals involved. In particular, the sub-address A<1:0> must be set to 10 to

enable the required DFCLK2 clock.
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A<1:0>

CLK

SH_EN

01

t [cycles]0 1 2 3 4 5 6 7

10

A<7:2> cell n cell n

DATA<0:3> required required

01 10

cell n+1 cell n+1

required required

IO−mode
sample

 signal
IO−mode

sample

 signal

t [cycles]0 1 2 3 4 5 6 7

Figure 3.19: Timing diagram for the configuration of two IO-cells.

No. DATA<2> DATA<1> DATA<0> SAMPLE

0 0 0 0 GND

1 0 0 1 SAM<0>

2 0 1 0 SAM<1>

3 0 1 1 SAM<2>

4 1 0 0 SAM<3>

5 1 0 1 DATA<3>

6 1 1 0 DATA<4>

7 1 1 1 DATA<5>

Table 3.8: Configuration of the SAMPLE signal. In the second phase defining the SAMPLE signal, only data

lines DATA<0:2> are required.

3.5.3.1 S/H Operation Mode 1

In a typical application, the IO-cells are meant to operate as buffered in- and outputs. If the number

of independent input voltages does not exceed six or seven and all outputs can be sampled at the

same time, the required SAMPLE signals can be generated from SAM<0:3> and DATA<3:5>. In this

case, applying two input voltages to different cells can be achieved by a signal pattern similar to that

illustrated in Fig. 3.20 (provided that the IO-cells have been correctly configured in the buffered input
mode beforehand): Here, the sample signals SAM<0> and SAM<1> are used to subsequently sample

the analog voltages V<0> and V<1> applied to the global ANA_IN terminal so that they are stored on

CSH and applied to the respective transistor cell node by OP2.

The procedure necessary to read out three cell nodes at two separate times is described by the

timing diagram of Fig. 3.21. As the sample lines SAM<0> and SAM<1> are already used up for the

sampling of the input voltages V<0> and V<1>, SAM<2> is used to sample the outputs at cells i and j
in the second clock period. The node voltage at the output of cell k is recorded during the fourth clock

period by SAM<3>. The output voltages sampled in IO-cells i, j and k are multiplexed to the global

analog output ANA_OUT by combining the SH_EN signal and the respective cell address. In this case,

the sub-address A<1:0> must be set to 11 for SH_EN to be converted into the required DFCLK<3>

clock.
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Figure 3.20: Timing diagram for writing two ana-

log voltages to two IO-cells.

The abovementioned limitation to six or seven separate input signals depends on the design of the

external electrical system: Provided that the external circuitry allows to hold the analog input signal at

the desired level until the set of outputs is sampled, the signal used for sampling the last (seventh) set

of input voltages can also be used for sampling the set of output signals. While the rising edge of the

last sample signal determines the start of applying the last set of analog inputs, its falling edge defines

the termination of the sample period of the set of outputs. However, if less than seven sample signals

are used, it is recommended to use separate signals for in- and output sampling for the following

reason: As explained in section 3.5.4, the falling edge of the SAMPLE signal will cause some charge

injection onto CSH, which will add a small offset to the desired input voltage. Omitting the falling

edge during the sampling of the last input voltage will therefore result in a small mismatch between

the last set of input voltages and those sampled before.

3.5.3.2 S/H Operation Mode 2

In the unusual case in which more than 7 independent sample signals are essential, as e.g. for 8-

bit DACs, the IO-cells can be operated in another scheme that allows for an arbitrary number of

independent sample actions. At first, in the configuration phase, the sample signal for all IO-cells

CLK
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t [cycles]0 1 2 3 4 5 6

sample

i and j

SAM<3>

SAM<2>

A<1:0> 11

A<7:2> cell i cell kcell j

sample k

and read

out i

read

out j

read

out k

7

Figure 3.21: Timing diagram for the analog readout of an analog voltage by means of an IO-cell.
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designated to work in either of the two buffered modes has to be set to gnd. During the actual circuit

test, the different sample signals used for the in- and output of analog voltages according to the timing

diagrams depicted in Fig. 3.20 and 3.21 have to be generated as depicted in Fig. 3.22:

A<1:0>

CLK

SH_EN

10

t [cycles]0 1 2 3 4 5 6

A<7:2> cell i cell j

DATA<0>

cell i

SAM<0>

SAMPLE

cell k

cell j cell k

Figure 3.22: Timing diagram for the generation of an arbitrary number of SAMPLE signals.

During the sampling phase, one of the seven possible sample lines must be tied to logic high

(here SAM<0> is chosen) and the sub-address A<1:0 must be set 10. A sample signal in any of the

64 IO-cells is then activated by switching the SAMPLE line from gnd to SAM<0> and deactivated

again by switching it back to gnd, which is achieved by the combination of the cell’s address A<7:2>,

the SH_EN signal and the necessary sample line configuration encoded in DATA<0:2>. Although this

scheme is more versatile than the one previously discussed, it is prone to a number of disadvantages:

For one, the scheme is more complex and not yet provided by the VHDL module described in section

4.3.2. Second, the maximum sampling frequency is limited to half of the system clock, since the flip-

flops FF5 to FF7 need to be set twice in separate clock cycles. Finally, an overlap of output sampling

and readout as suggested in Fig. 3.21 is impossible, since DFCLK<2> and DFCLK<3> cannot be active

at the same time.

3.5.4 Sample and Hold Units: The Analog Perspective

The analog specifications such as bandwidth, precision and distortion depend heavily on the imple-

mentation of the operational amplifiers and the switches used in the S/H stage, especially Ssam.

3.5.4.1 Rail-to-Rail Operational Amplifier

The requirements for OP1 and OP2 are almost identical: Apart from the usual targets, as e.g. high

precision, low distortion, fast settling time and the like achieved with a minimum of quiescent current,

both op amps must be able to drive between 5 and 30pF in the unity-gain configuration, operate on

the complete power supply range, and provide a large-signal bandwidth that ideally exceeds 5MHz.

In normal operation, that is when the analog output is driven by the output buffer, a resistive load can

only be encountered in the buffered input mode, where it can be a part of the circuit residing in the

PTA. Though undesired in this case, the ability to drive resistive loads is almost unavoidable when

designing the op amp to drive large capacitive loads at high speed. Due to these most similar target
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specifications, the same op amp is used for both buffers OP1 and OP2. Its design is detailed in section

3.7.

3.5.4.2 Switches

Most of the analog switches in the S/H block shown in the upper part of Fig. 3.18 are not switched

during the normal operation thereof. They must merely be large enough not to affect the necessary

analog bandwidth. Therefore, all of these switches are implemented as transmission gates with the

same channel dimension as the one depicted in the center of Fig. 1.3.2.3. Within the S/H block shown

of Fig. 3.18, the largest load is given by CSH = 5pF. Thus, the bandwidth is limited most severely by

the time constant of the on-resistances of S5 and Ssam and the CSH. According to (1.10) the settling

time for the VSH can be calculated by

Tsettle = RTG(CSH +COP,in) ln(2)Res [bit] = 2 ·350Ω ·5.46pF ·16ln(2) = 42.2ns , (3.2)

where an approximate input capacitance of OP2, COP,in = 463fF is added to CSH and the maximum

on-resistance is estimated from Fig. 3.5(a). The relatively small Tsettle leaves room for sampling any

kind of signals with a precision of 16 bit at 20MHz and matches rather well with the smallest settling

times achieved by the used op amps, which amount 60 to 80ns (cf. section 3.7).

The second time constant of interest is described by the maximum hold time Thold. It can be

computed by extending (1.12) to all of the involved reverse-biased terminal diodes:

Thold =
CSH +COP,in

Inp− Ipn
·Vdd ·2−Res [bit] =

5.46pF

54fF
·5 V ·2−16 = 7.7ms . (3.3)

Depending on the desired precision, the stored voltage VSH should be refreshed or read out after less

than 5 to 100ms. As typical circuit tests are not to exceed a few ms during which a series of hundreds

of analog test vectors are applied, the hold time is more than sufficient.

Of the two dynamically used switches, namely Sout and Ssam, only the charge injected by the latter

one causes an error voltage on a hold capacitor in the way described in section 1.3.2.3. To reduce

the resulting error, the transmission gate is extended by a pair of dummy transistors as depicted in

Fig. 3.23. The dummy transistors M5 and M6 are designed to be exactly half of the transistors M3

and M4 constituting the transmission gate itself. For an infinitely fast clock signal Vφ the amount

of charge injected by M5 and M6 countervails that injected by the transmission gate itself. In this

case, the uncorrected error voltages Verr0
induced by either M3 or M4 can be calculated by means of

(1.17). Table 3.9 lists some values for the error voltages caused by M3 and M4 as well as for the sum

Vin

B1

B1

Vout

Vφ

Vφ

M1

M2 M4

M3 M5

M6

1x5.6 2x5.6 1x5.6

3x5.6 6x5.6 3x5.6

Figure 3.23: Implementation of Ssam as a transmission gate with dummy transistors to reduce charge injection.

All transistors possess the minimum channel length L = 0.6µm and width W = 5.6µm, albeit a different number

of gates.
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τcrit = 5V
αcrit

[ns] Verr0
[mV] Verr[mV]

Source (1.15) (1.17) BSIM3.3

VS
∼= VSH[mV] M3 M4 M3 M4 sum(M3,M4) sum(M3, . . . ,M6)

0 1.34 ∞ −5.34 5.19 −0.15 0.45

1 2.94 ∞ −4.17 5.19 1.03 0.21

2 9.48 53.44 −3.09 6.91 3.82 0.21

3 168.45 10.34 −2.05 9.09 7.04 0.21

4 ∞ 4.18 −1.73 11.32 9.59 0.21

5 ∞ 2.23 −1.73 13.58 11.85 0.86

Table 3.9: Data for the clock feedthrough analysis of the transmission gate depicted in Fig. 3.23. The last

column reports the results of a typical mean simulation of a sample operation performed by the IO-cell.

thereof. Their respective contributions partially cancel each other. Yet, due to the different channel

dimensions and process parameters, cancellation is far from complete.

In reality, however, the clock signal Vφ is bound to change in a finite time. As discussed in sec-

tion 1.3.2.3, this situation can be described by (1.16) for one NMOS pass transistor without dummy

cancellation. Here some of the injected charge can escape through the channels of the transmission

gate during its turn-off. As this also holds for the dummy transistor pair, proper charge-injection

cancellation can be achieved with two different timing schemes, as is reported by Eichenberger and

Guggenbühl [Eic89]. Both schemes are discussed based on the nomenclature and definitions of sec-

tion 1.3.2.3.

simultaneous switching The principle idea is to use slow clock signals which satisfy α ≪ αcrit

(where αcrit is defined in (1.15)) and thus allow almost all of the charge injected during the

on-phase of the switch to be equalized through the respective transistor channels. For a given

signal voltage VS
∼= VSH, the relative size of say M3 and M5 can be adjusted such, that for the

actual delay between the two clock signals Vφ and V ′φ the two contributions of pass and dummy

transistor cancel out. This method can be advantageous, if the signal levels are confined to a

small range, as the slow switching minimizes the net charge left on node VSH. However, as the

error voltage induced on VSH depends on VS, it does not work very well for signals spread over

the whole power supply range. Moreover, the required synchrony of Vφ and V ′φ is difficult to

achieve.

delayed switching If the dummy clock signal V ′φ is delayed until the transmission gate ceases to

conduct, the dummy transistors will deposit their full charge on node VSH inducing the error

voltage −Verr,0 defined in (1.17). In the ideal case of a very fast clock signal Vφ satisfying

α ≫ αcrit, the same is true for the transistors of the transmission gate. Consequently, the two

effects can be arranged to cancel by designing the dummy transistors to be half as wide as the

pass transistors.

As the voltages to be sampled on CSH can take on any value in the full power supply range,

the delayed switching scheme is adopted in the proposed IO-cell implementation. Relatively strong

buffers are used to drive the clock signals Vφ and V ′φ , thus ensuring steep slopes. The delay is achieved

by using the buffers B1 and B2 shown in Fig. 3.23. Table 3.9 summarizes the critical switching times

τcrit = 5V
αcrit

[ns] for six different signal levels. Typical mean simulations of the involved part of the IO-

cell using realistic metal line capacitances yield switching times between 300 and 400ps, which is at
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least smaller than τcrit by a factor of 3. The resulting error voltages are summarized in the last column

of Table 3.9. According to these simulations of the typical mean case, the error voltage induced by

the injected charge of the transmission gate is reduced by at least a factor 10, seems to be constant

in the range between 1 and 4V, and always stays below 1mV. However, more elaborate simulations

including back-annotation and Monte Carlo analyses would be necessary to verify the implemented

clock feedthrough cancellation to work as well for realistic device mismatch and process variations,

too. Precise testing is elaborate, but can, in principle, be achieved by using different operation modes,

as has been hinted at in the preceeding subsections.

3.5.5 Layout of an IO-Cell

Layout and floorplan of the circuitry placed to the right of one row of the PTA array are shown in

Fig. 3.24. Apart from the IO-cell itself, the layout contains part of the power routing, a signal bus

with row decoders and some block capacitors. In principle, the same layout is placed adjacent to the

programmable transistor array on all of its four boundaries. Therefore, the pitch of two neighboring

layout blocks can be adapted to the pitch of the PTA cells in X- and Y-direction, namely between

201.15µm and 198.2µm.
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Figure 3.24: Floorplan (top) and layout (bottom) of one complete IO-cell, as used to the right of the transistor

array. The displayed structures occupy an area of approximately 985×205µm. The pitch between two adjacent

IO-cells amounts to 201.15µm.

The analog circuitry is placed closer to the PTA than the digital circuitry to avoid deterioration

of the analog signals in the cell array and the S/H stage of the IO-cell. Read from left to right, the

following blocks are realized in the layout shown in Fig. 3.24: The PTA is surrounded by 100µm

wide metal lines providing the power for the analog array. The substrate beneath is used as a guard

ring to isolate the PTA substrate from the substrate beneath the outer circuitry. The actual sample

and hold unit, whose schematic is depicted at the bottom of Fig. 3.18, is placed next to the power

supply ring and followed by the digital interface of the IO-cell (the schematic of which is depicted at

the bottom of Fig. 3.18). It is surrounded by block capacitors which are realized as PMOS transistor

gates (cf. section 1.2.2). These block capacitors are used to stabilize the digital power supply against

the current spikes caused by the fast buffers generating the SAMPLE signals. On one hand, this
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ensures proper logic high and low levels at the gates of the sample and hold switches, and on the

other hand, the power blocking is meant to reduce the substrate coupling of the fast digital signals.

A signal bus containing most of the global analog and digital signals encircles the PTA. It is located

between the digital block and the probepad usable for inter-chip bonding. The necessary row and

column decoders are placed beneath this signal bus. The probepad occupies an area of approximately

100µm× 100µm to facilitate bonding. However, the actual contact area is limited to 40µm× 40µm

to reduce its capacitance. The area next to the probepad is used for further blocking of the digital

power. At the right hand side, the chip ends with part of the analog power supply ring, which is also

blocked by PMOS gates. The blocking capacitances per IO-cell amount to 43.3pF and 47.3pF for the

digital and analog power supply, respectively. For the complete chip, this corresponds to 2.77nF and

3.03nF.

3.6 Inner-Cell Signal Probing

Successfully evolved circuits are of most interest if they meet the desired specifications in an unex-

pected, unconventional way. It is precisely in this case, that new (sub-) circuits and circuit principles

are found by the evolution system. However, such unconventional circuit solutions may also defy un-

derstanding. Though simulations can indeed mitigate the analysis of these circuits, they may not be

precise enough to capture all parasitic effects the evolved circuit may exploit. Hence, the FPTA chip

offers13 the possibility to probe most of the inner nodes of the PTA and even attain a rough estimate

of most of the involved currents therein.

3.6.1 Inner-Cell Probing Concept

Concretely, the inner-cell probing facilities allow to read out the voltage of either of the cell border

terminals N or E, or of the generic transistor terminals TD or TS. The situation is illustrated in

Fig. 3.25 for a cutout of 3× 3 transistor cells. Those terminals that can be read out are shaded in

white. As the east and west as well as the north and south terminals of adjacent cells are directly

connected, the W and S terminals of cell (i,j) can be read out as the E and N terminals of cells (i-1,j)

and (i,j+1), respectively. Moreover, since the gate terminals ideally do not sink or source any current,

the voltage at the generic gate terminal TG can be inferred from its connecting node, that is from either

of the known power supply voltages or from one of the border terminals N, W, S, E. Consequently, all

node voltages within the programmable transistor array are, in principle, accessible by the inner-cell

probing facilities.

Based on the available node voltages, the voltage drop across the routing and multiplexer switches

can be used to estimate the involved currents flowing through the generic transistor terminals TD and

TS as well as through the routing connections. Assuming a precision of 1.25mV (corresponding

to a resolution of 12-bit) for the measurement of the node voltages and using an average resistance

of 300Ω as suggested by Fig. 3.5(a) for the resistance of the involved transmission gates yields a

current resolution of approximately 4µA. Yet, even after an elaborate calibration of the cell buffers,

an accuracy of 10µA is probably more realistic.

3.6.2 Implementation of the Inner-cell Probing

Overview. The inner-cell probing is based on the cell buffer circuits included in the programmable

transistor cell (see section 3.3.1). Fig. 3.26 illustrates the involved circuitry included in the transistor

13Actually, at the time of writing, this feature has not been verified by a hardware test due to limited time and need.
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Figure 3.25: Cutout of 3×3 programmable transistor cells in a simplified schematic representation to elucidate

the inner-cell probing principle. The whitely shaded circuit nodes N, E, TD and TS can be selected for analog

readout.

cells themselves as well as the peripheral circuitry necessary for the row, column and terminal selec-

tion. The diagram depicts only the first and last row and column of the respective circuitry; 14 rows

and columns are omitted. Two 5-bit decoders are used to produce two horizontal and two vertical

select signals for each transistor cell; they are denoted as H<n> and V<m>, respectively. The chosen

address is activated by a global PROBE_EN signal, which is achieved through the NOR gates follow-

ing the row and column decoders. If the PROBE_EN signal goes low, exactly one horizonal and one

vertical select signal are activated according to the address present on the address bus A<9:0.

The multiplexer included in each of the 256 transistor cells uses the two pairs of horizontal and

vertical select signals to determine if and which of the four nodes N, E, TD and TS is to be connected

to the cell buffer. The encoding of the five multiplexer states is summarized in Table 3.10. The
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Figure 3.26: Architecture and control of the inner-cell probing facilities.

multiplexer also controls the state of the cell buffer: It is only powered up, if indeed one of the four

cell nodes are to be buffered.

All buffer outputs of the same column share one node, which is feasible since only one of the

256 cell buffer in the whole array can be active at a time. This mitigates the need for an additional

switch at the output of the cell buffer. If either one of the vertical select lines of one transistor cell

column is activated, the buffer output of this column is connected to the global output buffer through

a transmission gate.

Timing Diagram. The proposed architecture requires an input signal pattern similar to that one

depicted in Fig. 3.27: After the desired transistor cell and terminal have been determined by the

according address A<9:0>, the PROBE_EN signal is used to activate the necessary select lines H<n>

and V<m>. Now, the cell buffer, the global output buffer and any other off-chips circuits used for

further processing have to settle to the probed node voltage, before the result can be quantized by an

external ADC. The chosen buffer is switched off again, before the cycle can be repeated for the next

terminal node to be probed.
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V<0> V<1> H<0> H<1> PD COUT

1 0 1 0 0 S = SOUTH

1 0 0 1 0 TS = SOURCE

0 1 1 0 0 TD = DRAIN

0 1 0 1 0 E = EAST

X X 0 0 1 Z

0 0 X X 1 Z

Table 3.10: Encoding of the inner-cell signal multiplexing and the power down signal for the output buffer.

Note, that at most one of each select line pairs V<0>,V<1> and H<0>,H<1> can be active, because each pair is

generated by a multiplexer.

A<9:0>

CLK

ADC_CLK

PROBE_EN

required

t [cycles]0 1 2 3 4 5 6 7 8 9

required

t [cycles]0 1 2 3 4 5 6 7 8 9

Figure 3.27: Timing diagram for the successive readout of two inner-cell nodes.

Inner-Cell Multiplexer. The cell buffer unit consisting of the cell buffer and the according mul-

tiplexer is implemented as shown in Fig. 3.28. The transmission gates that connect the selectable

terminals N, E,TD and TS to the input of the cell buffer possess a channel width of 4.2µm and 1.4µm

for the P- and NMOS transistor, respectively, which is more than sufficient with respect to the small

capacitive load present at the input of the buffer. However, during the readout of either of the four

node voltages, this capacitance is added to the selected node through the closed switch. The additional

capacitance is calculated from the input capacitance of the cell buffer, the capacitance introduced by

the necessary metal lines and the additional capacitance of the three open and the one closed trans-

mission gate seen from the buffer input. It adds up to 266 to 290fF. On one hand, this is of the

same order as the capacitances inherent to the respective nodes to be probed and thus may very well

affect the circuit behavior. On the other hand, compared to the sum of only those capacitances in the

vicinity of the nodes to be probed, the influence of the additional capacitance introduced by the cell

buffer node is relatively small and its effect should not deteriorate the circuit behavior too gravely in

most situations.

Analog Considerations. The design of the rail-to-rail operational amplifier used for buffering the

probed terminal voltages is discussed in section 3.7. Nevertheless, a few remarks concerning the

analog intricacies inherent to the inner cell probing concept seem to be appropriate here: First, it is

not until the PROBE_EN changes to low that the selected cell buffer is powered up. According to

transient circuit simulations, the time between the cell buffer being switched on and the final settling

of the signal is dominated by the buffer’s slew rate and settling time. However, the inner-cell probing

concept might be enhanced by storing the information about the state of the amplifier within one of

the two unused SRAM bits of the transistor cell.
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Figure 3.28: Inner-cell readout circuitry for one PMOS cell.

Second, the cell buffer has to drive a fairly large capacitive load, which was underestimated at its

design-time. In fact, the cell buffer is optimized for driving capacitive loads in the order of 5pF. Yet, a

closer look at the involved capacities yields load values between 20 and 40pF, of which approximately

10pF can be attributed to the shared output node before the column-selecting transmission gate (in

Fig. 3.25), while the rest is introduced by the global ANA_OUT line. 60% of the former contribution

stem from the coupling to the input gates and Miller capacitors of the 15 deactivated buffers. They

could be avoided by additional switches at the buffers’ output. However, the more severe problem

is caused by the large metal capacitance of the global ANA_OUT node, which encircles the whole

PTA. In future, this problem could be mitigated by utilizing the buffers of the according row of IO-

cells to buffer the output of the cell buffers. For the existing chip, this capacitive load will probably

increase the settling time of the cell buffers by a factor of two, at least for input voltages between 1

and 4V. According to simulations for typical mean process parameters, the cell buffers are still stable

for capacitive loads of up to 40pF, albeit exhibit a considerable decrease in phase margin to about

40◦. While probably sufficient for the chips already fabricated, this phase margin would offer too

little security for future submissions/designs.

Depending on the capacitive load, the buffer is simulated to settle to 0.1% of the input step within

100 to 200ns in the range of 1 to 4V and at least within 400ns for voltages close to the power supply

rails. Accordingly, sample rates between 2 and 5V should be feasible. However, due to the limitation

to one analog output, this rate may not be achievable if more than one cell node and or the voltage at

one or more border cells must be read out.

As the amplification of the probed node voltages is performed by different cell buffers, precise

measurements ,as e.g. necessary for estimating the node currents, will require an accurate calibra-

tion measurement of the offset distribution of the cell buffers. The respective offsets must then be

subtracted from the measured data in some post-processing stage within the software.

3.7 Family of Rail-to-Rail Operational Amplifiers

The implementation of the FPTA chip described in the preceeding sections required three different

operational amplifiers. All of them are connected as unity gain buffers and all of them serve a similar

purpose, that is to buffer a signal for a subsequent processing stage. Since nothing particular is known

about the voltage levels of the signal, all of the buffers must cover the full power supply range with

their input and output compliance. Moreover, at least two of the three types of amplifiers must be
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disconnectable and all of them shall consume relatively little current in order to limit the self-heating

of the FPTA chip. However, while the cell buffer as a part of the transistor cell (depicted in Fig. 3.2)

needs to be small to reduce area consumption and capacitive loading, the IO-cell buffer (Fig. 3.18)

and the global output buffer (Fig. 3.1) do not suffer from this constraint and can thus be designed to be

faster. As the output buffer needs to drive larger resistive and capacitive loads than the IO-cell buffer,

different amplifier implementations deem necessary here, too. Owing to the similar requirements,

all of the three amplifier designs are derived from the same type of topology, which is exemplarily

discussed for the IO-cell buffer.

3.7.1 IO-cell Buffer

3.7.1.1 Design

The schematic of the IO-cell buffer is illustrated in Fig. 3.29. Its topology is inspired by the work

of Milkovic [Mil85] referred to by Allen and Holberg [All02b] (section 7.1), Ferri et al. [Fer98],

Loose [Loo99] (section 4.4.5 and 4.5.2), and Laker and Sansen [Lak94a] (section 6.7.2). The op amp

consists of four main parts: An NMOS and a PMOS input stage to ensure proper operation over the

full input voltage range, a class AB output stage to combine low output resistance with a modest

quiescent current and a bias generator to bias the cascodes and current sink/source transistors M18

and M19. The rail-to-rail nature of the design manifests itself in the fact that topologically in- and

output stages are totally symmetric in their usage of P- and NMOS devices.
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Figure 3.29: Schematic of the operational amplifier used as a buffer for the sample and hold units of the

IO-cells. Some of the transistors controlling the power down are omitted for clarity. The transistor sizes are

denoted in µm.
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The input stages are implemented as cascode symmetrical CMOS OTAs14 as discussed by Laker

and Sansen [Lak94a], with the exception that one of the two cascodes is replaced by a second cur-

rent mirror (transistors M14, M15 and M22, M23). Some peculiarities of the implementation shall be

exemplified by the NMOS input stage: The current mirrors consisting of M6, M7 and M8, M9 form a

current amplifier with a current gain of B ≡W7/W6 = W8/W9 = 1/5, which is considerably smaller

than the values suggested by Laker and Sansen [Lak94a]. However, according to their discussion of

the symmetrical OTA, this choice is motivated as follows: A small value of B is chosen to increase

the PM15, thus allowing for a smaller compensation capacitor CC. The entailed decrease in GBP16

and SR17 is compensated by increasing the channel widths of the differential pair (M12 and M13)

and an increased bias current sunk by M18. The P- and NMOS input pairs are sized to deliver the

same transconductance gm, which balances the contributions of both input stages, whose outputs are

shorted as suggested by Ferri [Fer98] and Loose [Loo99].

The output stage consists of the push-pull amplifier formed by M38 and M39 and the source fol-

lowers realized by M32 to M34 and M35 to M37. The paramount task of the source followers is to

split the gate voltages of the push-pull amplifier by two VGS voltages to reduce their quiescent cur-

rent. The push-pull amplifier is biased to work in the class AB operation mode to avoid crossover

distortion. Each of the two source followers is actively biased by both input stages, which generalizes

the concept of Milkovic [Mil85] to a complementary pair of input stages. The active biasing acts

as a feedforward of the difference in the currents through the differential pairs and thus increases

the gain of the output stage. The compensation capacitor CC is inserted between the in- and output

of the output stage to benefit from a Miller-like enlargement, which owes to the gain of the output

stage. Except for the push-pull amplifier no minimum size transistors have been used to foster proper

matching, which helps in reducing the offset and distortion of the fabricated amplifier circuits.

3.7.1.2 Layout

The layout of the rail-to-rail buffer is shown in Fig. 3.30. It occupies 161µm× 101µm of silicon

area. Signal routing is limited to the first two metal layers to allow for signal and power routing on

the third metal layer. Device mismatch is reduced by using common centroid geometries (see e.g.

[All02b], section 2.6) for the differential input pairs and current mirrors. Ground and n-well contacts

are generously spent to reduce the influence of substrate noise and coupling.

3.7.2 Global Output Buffer

The global output buffer is a case of successful design-reuse in that it could be derived from the IO-

cell buffer by resizing only the output stage. As will be shown in section 3.7.4, its performance does

indeed closely resemble that of the IO-cell buffer. Yet, owing to the larger output stage, the global

output buffer can drive larger capacitive and resistive loads, which is paid for by a higher quiescent

current dominated by the push-pull amplifier. Schematic and layout view of the output buffer are

presented at the top and bottom of Fig. 3.31, respectively.

Fortunately, as the global output buffer is not limited by severe geometrical restrictions, the layout

thereof could reuse the layout of the IO-cell buffer to a large extent. The main difference is due to the

increased push-pull amplifier and its according source followers, whose channel widths area increased

to account for the increased gate capacities of the output transistors M38 and M39. In addition, the

14Operational Transconductance Amplifiers
15Phase Margin
16Gain Bandwidth Product
17Slew Rate
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Figure 3.30: Layout of the rail-to-rail operational amplifier used in the sample and hold cells.

layout of the output buffer is surrounded by a wide power supply ring delivering the necessary currents

in the range of 10mA. The area beneath the power ring is again used for an ample supply of substrate

contacts. The complete layout occupies a silicon area of 246.75µm×147.4µm.

3.7.3 Cell Buffer

The circuit schematic of the cell buffer is depicted in Fig. 3.32. Its design is primarily driven by

the necessity to fit it into the silicon area left in the IO-cell. Therefore, the goal was to implement

a rail-to-rail buffer meeting the given area constraints whilst optimizing its electrical specifications.

Consequently, the cell buffer performs worse in terms of gain, GBP and SR when compared to his

big brothers. To reduce the layout size of the cell buffer, the cascodes in the input stages have been

omitted, which reduces the transistor count by five. Moreover, the amplifier had to be completely

resized, as can be seen from Fig. 3.32. However, the cell buffer design also utilizes the abovemen-

tioned current gain of 1/5. The layout of the cell buffer measures approximately 30µm×140µm and

is included in the layout of the NMOS transistor cell presented in Fig. 3.9.

3.7.4 Summary of Simulated Performance

The three buffer implementations have been simulated for typical mean process parameters at a tem-

perature of T = 27 ◦C. The simulation results are summarized in Table 3.11. They are further detailed
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Figure 3.31: Top: schematic of the rail-to-rail operational amplifier used as the output buffer. Some of the

transistors controlling the power down are omitted for clarity. The transistor dimensions are denoted in µm.

Bottom: Layout of the output buffer.
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Figure 3.32: Schematic of the operational amplifier used as a buffer for probing of inner-cell nodes and cur-

rents. Some of the transistors controlling the power down are omitted for clarity. Transistor sized are denoted

in µm. The wires replacing the devices omitted in comparison to the IO-cell buffer are colored in grey.

in a number of performance plots in appendix B. All results of Table 3.11 apply for an almost infinite

load resistance of Rload = 1GΩ, albeit a different set of capacitive loads: The IO-cell buffer was orig-

inally designed for capacitive loads of Cload ≈ 10pF. The load capacitance of the ANA_OUT signal

the buffer has to drive is estimated to a value between 10 and 30pF. The global output buffer has been

targeted at driving capacitive loads up to 100pF, which is probably more than sufficient to drive the

subsequent external circuitry. Finally, the cell buffer has been developed for driving capacitive loads

of approximately 5pF, whereas post-design considerations lead to an estimated capacitive load of 20

to 40pF.

Table 3.11 accounts for the best situations in terms of the applicable in- and output voltage or

frequency range as denoted in the according footnotes. For instance, the UGB18 decreases for common

mode voltages VCM ∈ [0V,1V]
⋃

[4V,1V] as can be observed from Fig. B.1(d), B.6(d) and B.10(d)

in appendix B. First, the at VCM around 1 and 4V one of the two input transistor pairs ceases to

conduct as its VGS decreases below the threshold voltage VT. The further drop for VCM approaching

either vdd or gnd closer than approximately 0.3V is due to the decreasing transconductance gm of the

single active differential pair as it leaves the saturation region. This effect can be mitigated enlarging

the W/L ratio of the according current mirror loads (M7,M8 and M29,M30) relative to that one of the

differential pair transistors. This is actually the second reason for choosing a small current gain B.

The decrease of dynamic performance towards the power supply rails also manifests in the decreased

SR and the increased settling times Tsettle for common mode voltages in the vicinity of vdd and gnd.

Typically, the three buffers are operated in some kind of sample and hold fashion: The cell buffer

has to drive the output line to the sensed input voltage subsequent to its start up for every measured

voltage, the IO-buffer is indeed used in a sample and hold unit, and the output buffer has to drive

18Unity Gain Bandwidth
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Buffer IO-cell Output Cell Buffer

Cload[pF] 10 30 100 5 20 40

AOL
a[dB] 114 114 114 ≥ 82 ≥ 82 ≥ 82

UGBb [MHz] ≥ 55 ≥ 38 ≥ 52 ≥ 27 ≥ 27 ≥ 27

PMc [◦] ≥ 71 ≥ 51 ≥ 67 ≥ 69 ≥ 42 ≥ 31

SR1-4
d,e [ V

µs
] 87.9 85.5 100.2 39.3 36.1 29.0

SR0-5
d,f [ V

µs
] 12.6 14.5 12.2 7.4 9.3 6.4

CMRRg [dB] 112 112 112 90 90 90

THDh [dB] ≤−85 ≤−85 ≤−85 ≤−80 ≤−80 ≤−81

Tsettle,1-4
i,j [ns] 51 61 51 107 140 270

Tsettle,0-5
i,k [ns] 391 388 403 432 428 417

Itot
l[mA] ≤ 1.7 ≤ 1.7 ≤ 10.2 ≤ 0.3 ≤ 0.36 ≤ 0.36

aMinimum for VCM ∈ [1V,4V].
bMinimum for VCM ∈ [1.5V,3.5V].
cMinimum over entire power supply range: VCM ∈ [0V,5V].
dThe slew rate is calculated between 10 and 90 % of the amplitude of the output step.
eMinimum for steps between 1V and 4V.
fMinimum for steps between 0V and 5V.
gMinimum for frequencies smaller 1kHz.
hMaximum for input amplitudes Vin ≥ 0.5V.
iTsettle is calculated for a precision of 0.1% of the output step.
jMaximum for steps between 1V and 4V.
kMaximum for steps between 0V and 5V.
lMaximum over entire power supply range: VCM ∈ [0V,5V].

Table 3.11: Overview over the specifications of the three different rail-to-rail op amps for different capacitive

loads.

the voltages that are multiplexed to its input from different IO-cells to the input of a – clocked –

ADC. In short, the paramount dynamic specification is described by the time needed to settle to the

output voltage at hand, which in case of the IO-cell buffer may be complicated by the fact that the

input voltages may be randomly drawn from the entire power supply range, as for instance for the

quasi-dc tests presented in chapters 5 and 6. Consequently, the three buffers are rather optimized

for high SR and PM than for a high UGB to attain short settling times for large voltage steps and

guarantee stability in the unity gain configuration. In case of global output and IO-cell buffer, the

according settling times allow for sample rates of up to 20MHz for VCM ∈ [1V,4V] and 2.5MHz

if the full input voltage range has to be covered. The large signal bandwidth can be calculated by

f (A) = SR
2πA for an input amplitude A. In case of the global output and the IO-cell buffer, the large

signal bandwidth thus amounts to approximately 15.9MHz and 5.9MHz for A = 1V and A = 2.4V

when the according slew rates depicted in Fig. B.2 and B.7 are inserted. This in turn is in good

accordance with the frequency spectra shown in Fig. B.3, B.4 and B.8

From the viewpoint of design automation, the simulation on which the results presented above

are prohibitively elaborate and time-consuming. Nonetheless, the set of op amp specifications is
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far from complete as the calculation of the PSRR19 and a noise analysis are foregone. Moreover,

the simulations have been restricted to one die temperature and did not account for the performance

spread due to varying process parameters, nor did they extend to Monte Carlo techniques to capture

offset distribution allowing for a more realistic value for the CMRR20. Accordingly, the performance

evaluation within a design automation environment must be simplified to a reasonable amount of test

cases that nonetheless samples the space of feasible input conditions densely enough to guarantee

proper functionality.

3.8 Measurement of Die Temperature

Monolithic temperature sensors typically exploit a specific property of pn junctions inside of diodes or

bipolar transistors to establish a voltage proportional to absolute temperature (PTAT) (cf. e.g. [Tim76],

[Sza96], [Bro96], [Bak96], [Tut98]). Here, the concept is exemplified for the pnp transistor displayed

on the left hand side of Fig. 3.33:

FPTA ADM1031

analog

post−

processing

N x II Ibias

A/D

conversion

bias diode

temperature

sensing BJT

E
B

C

Figure 3.33: Schematic of the die temperature sensing concept using an ADM1031 device from Analog Devices,

Inc.

The emitter current of a forward biased npn transistor can be described by

IE =
β −1

β
IS =

β −1

β
IS · e

VEB
kT/q , (3.4)

if the Early effect is neglected (see for example [Lak94a], section 2.1.4). Equ. (3.4) can be solved for

the emitter base voltage VEB, which depends on the absolute temperature T and the emitter current:

VEB(IE ,T ) = ln

(
β

β −1

IE

IS(T )

)
· kT

q
. (3.5)

For a pair of fixed emitter currents, IE,1 = N · I and IE,2 = I, the difference between the according base

emitter voltages amounts to

∆VEB(N,T ) ≡ VEB(N · I,T )−VEB(I,T ) = ln(N)
k

q
·T = ln(N) ·86.2

µV

K
·T , (3.6)

which solely depends on the absolute temperature and the ratio of the two emitter currents. Hence,

it is referred to as the desired PTAT voltage. Unfortunately, for the typically used current ratios of 8

19Power Supply Rejection Ratio
20Common Mode Rejection Ratio
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[Tim76], [Tut98] or 10 [Sza96], the slope of ∆VEB amounts only to a meager 200 µV
K

. Accordingly,

temperature measurements with an absolute accuracy around 1K necessitate elaborate low-noise am-

plification as well as proper offset cancellation techniques. Viable candidates are, for example, auto-

zeroed switched-capacitor circuits used by Tuthill [Tut98], or chopper-stabilized amplifiers proposed

by Bakker and Huijsing [Bak96].

Though feasible, the design effort necessary to integrate either one of these concepts into the

FPTA has been considered beyond the scope of the first prototype. As a compromise, four vertical

pnp transistors are positioned next to the four corners of the PTA (as illustrated in Fig. 3.1 and 3.34),

which have to be read out by an external device. The decision for vertical pnp transistors is based

on the arguments of Bakker and Huijsing [Bak96] and Tuthill [Tut98], who point out that in CMOS

technology, vertical pnp transistors are usually better suited for temperature sensing than their lateral

counterparts. Since, in an n-well CMOS process, the vertical pnp transistors are implemented by

using the substrate for the collector terminal, the collector terminal cannot be used, which decreases

the number of possible readout chips.

Fig. 3.33 illustrates how the four pnp transistors on the FPTA could be used to determine its die

temperature by means of the remote temperature sensors of the ADM1031 [Ana03b] offered by Analog

Devices, Inc. : The sensing transistor is forward biased by the voltage drop across the bias diode. The

base voltage is then compared to the emitter voltage at two different emitter currents. The difference

between the two subsequent measurements of VEB yields the desired ∆VEB, which is converted to a

digital expression for the measured temperature in ◦C in the ADM1031 chip.

3.9 Layout of the Complete Chip

Top Level Organization. From the annotated microphotograph depicted in Fig. 3.34, it can be seen

that the global structure of the chip has already been captured by the schematic overview of Fig. 3.1.

The main discrepancies are that the output buffer is located in the upper right corner instead of the

upper left corner – that is in close vicinity to the analog output pads – and the fact that the bipolar

transistors dedicated to the temperature measurement are smaller and placed closer to the PTA. The

microphotograph also marks the locations of the probepads, that are placed as closely as possible to

the chip boundaries, and points out the signal bus gathering the global digital signals use in and for

the IO-cells as well as for the different sorts of address decoders adjacent to those four edges of the

IO-cell blocks that point outward.

Pad Layout. All of the regular pads relevant to a normal operation of the chip are placed at its

northern and western edges. The regular pads on its southern and eastern side are either power pads

or connected to the base or emitter of the BJT21 in the lower right corner. As the power pads on

the northern and western edges of the chip should be sufficient for normal operation of the chip,

this arrangement lends itself to directly connecting two or four FPTA chips together by means of the

probepads. The parallel control of several FPTA chips with one set of digital signals is supported

by a CHIP_SEL signal, which must be low for accessing any of the enable signals controlling all the

necessary controllers.

Power Supply Strategy. The FPTA chip features four different power supplies:

3.3V digital power (VDD33, GND33) The tri-stated data bus DATA<0:5> runs on 3.3V and therefore

needs its own pair of power pads. All of the pads are located left to the SRAM control unit.

21Bipolar Junction Transistor
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The extra voltage level of 3.3V is imposed by the external circuitry of the PCI card Darkwing,

which is used as the mixed-signal interface between chip and computer (see chapter 4).

5V digital power (DIGVDD, DIGGND) The regular digital power supply is mainly used for the dig-

ital interface of the IO-cells, the SRAM control, digital pads and the decoders. It is separated

from the analog power supply to increase analog signal integrity and reduce substrate noise.

Moreover, the digital power supply is blocked by a total capacitance of 3.8nF. The according

power ring encircles the chip and uses the power lines in the pads whenever possible.

Analog power supply (VDDA, GNDA) The analog circuitry, that is, all of the circuitry in the PTA,

except for the programmable transistor themselves and all of the analog circuits in the periphery,

possesses its own analog power supply. The according power ring surrounds the chip at the

outward pointing edge of the probepads, where the area beneath the according metal lines is

used for capacitive blocking, which totals to 3.03nF.
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Figure 3.34: Microphotograph of the FPTA chip.
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Transistor array power (ANAVDD, ANAGND) The gnd and vdd taps included in Fig. 3.2, from

which the programmable transistors draw their power, possess their own power supply. The

according power ring encloses the PTA. This choice allows to measure the power consumed by

the candidate circuit at hand, to shut down its power supply in case of overheating, or to change

the power supply voltages offered to the PTA. The latter possibility lends itself to the artificial

evolution of low-voltage circuits.

Layout Sizes. The entire chip occupies 6×5.5 = 33mm2. However, only 3.2×3.2mm2, that is, a

lean 30% are occupied by the transistor array itself. As the peripheral circuits grow only linear in size,

this leaves room for larger PTA featuring 32×32 or even 64×64 cells. However, given the expected

signal deterioration due to the parasitic resistors and capacitors, a simple enlargement of the PTA may

not be the best alternative for the artificial evolution of more complex circuits.

3.10 Yield Analysis

A total of 30 FPTA chips was attained from the MPW run. Of these thirty, one chip was destroyed

by the experimenter and 13 exhibited a short between the digital gnd pad and a regular signal (1) or

a vdd pad of one of the analog power supply lines. Of these 13 shortcircuited chips, four were found

to be defect after being bonded, while the remaining 9 were only tested on a wafer-prober. Thus, a

destruction during the bond process can be eliminated as the main cause of failure. To date, a final

explanation for the high failure rate has not been found, which leaves open the question whether the

failure is caused by a weakness in the design or is the result of a fabrication problem. While five of the

six bonded chips without shorted power supplies have been found to work, one possesses a column

defect in the SRAM. This, however, may point to a yield rate that is conceivable for the given chip

size and fabrication technology.

At least four of the five bonded chips have been extensively used throughout the last three years in

various evolution experiments. The effective time they have been operated within an evolution loop

is estimated to be between 0.5 and 1.5 years. During this time, none of these FPTA chip showed any

sign of severe degradation.

3.11 Comparison of the Heidelberg and JPL FPTA Chips.

The work that most closely resembles the approach presented in this thesis is a research project on

hardware evolution performed at the JPL by A. Stoica, R. Zebulum, D. Keymeulen et al. [JPL]. As

has already been mentioned at the beginning of this chapter, the JPL project also focuses on artificial

evolution of analog electronic circuits on a reconfigurable device referred to as an FPTA. Hence, this

last section shall compare the two different approaches to FPTA-based intrinsic hardware evolution.

However, it should be noted that the group, or members of the group, also published work on extrinsic

hardware evolution. While part of this work is based on simulating a model of one of the group’s

FPTA chips, another part is devoted to experiments in which an unconstrained circuit representation

is chosen.

FPTA Chips Developed at the JPL. To date, the efforts of Stoica’s group have lead two three FPTA

generations of increasing complexity. To distinguish the FPTA chip proposed in this thesis from the

JPL FPTA chips, they will thus be referred to as FPTA0, FPTA1, and FPTA2, or FPTAx in short. The

reconfigurable part of one of the elementary PTA cells used in the FPTA2 chip is depicted in Fig. 3.35.

In case of the FPTA0 and FPTA1 chips, a programmable cell is similar to the part denoted as stage
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1. While the FPTA0 consists of exactly one of these cells [Zeb00b], that is features eight transistors

amenable to synthesizing new circuits connected by 24 switches, the FPTA1 chip hosts an array of

these programmable cells [Sto00b], [Sto01d]. The FPTA2 however, features an array of 8× 8 cells,

whose core is given by the reconfigurable circuitry shown in Fig. 3.35 [Sto01c], [Sto02b], [Zeb03]. In

addition, each cell also embodies some additional programmable non-transistor devices such as photo

diodes, variable resistors and capacitors [Sto01c], [Zeb03]. Similar to the FPTA chip proposed here,

the cells of the FPTA2 are also connected to the four nearest neighbours in North, West, North and

East direction. Yet, unlike the FPTA proposed here, the FPTA2 cells possess in- and output terminals

that suggest a predefined direction.
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Figure 3.35: Schematic of the elementary transistor cell of the FPTA2 chip developed by the group of Adrian

Stoica at the JPL. The encircled numbers denote switches. Figure was manually copied from [Sto01c] for better

readability.

The reconfigurable part of the transistor cell illustrated in Fig. 3.35 consists of a total of 14

transistors used to synthesize the desired circuits. The configuration is achieved by a total of 44

switches. Besides, the cell embodies two 100fF capacitors (Cm1 and Cm2 and the compensation

capacitor Cc = 5pF. The FPTA2 transistor cell has been demonstrated to be capable of hosting a

variety of different building blocks and circuits including logic gates, common source amplifiers, and

transconductance amplifiers [Zeb00b]. The latter structure can be extended to a two or three stage

operational amplifier by means of the second an third stage.

Comparison of the Different FPTA Concepts. The proposed FPTA chip provides exactly one

programmable transistor per cell, that is it provides the elementary unit of CMOS circuits, whereas the

cells of the FPTAx chips possess some inner structure. On one hand, this implies that it is impossible

to use any of the FPTAx cell’s transistors in an unconstrained fashion. On the other hand, in case of

the FPTA2, this increases the complexity of the circuits synthesizable on the chip. In principle, both

types of FPTAs lend themselves to the evolution of analog or mixed signal circuits on the transistor
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level as well as to circuit synthesis using predefined building blocks22. However, the FPTAx chips

may induce a bias towards conventional circuit design due to their inner structure. While this may

preclude the discovery of new circuits and concepts, it may also accelerate the hardware evolution

process.

Another important difference between both FPTA concepts is that the analog substrate proposed

here is restricted to CMOS transistors only, whereas the FPTAs developed by Stoica et al. feature

several passive components, which can facilitate the synthesis process. In particular, capacitors are

considered to be very helpful in implementing a desired frequency behavior. Yet, in the design of

the proposed FPTA, such passive components have omitted intentionally to enforce the evolution

of transistor-only circuits, which can be implementd in a larger variety of fabrication processes and

are less expensive. Last, but not least, the FPTA chip presented and used in this thesis features

programmable transistor dimensions, which yet offer another important aspect of circuit synthesis

that is foregone in the FPTAx designs.

22For theFPTA chip proposed here this will be exemplified in chapter 8 for the FPTA



Chapter 4

Evolution System

USER, n. The word computer

professionals use when they mean

"idiot".

Claw Your Way to the Top
DAVE BARRY

The evolution system described in this chapter is both, one of the important re-
sults of the thesis described here as well as the research tool that allows for the
hardware evolution experiments presented in chapters 5 to 8. The system can be
divided into three parts: The FPTA chip serving as a an analog substrate for the
test of candidate circuits, a mixed-signal test environment, and a software pack-
age that allows to implement the algorithms and define the experiments in terms
of test patterns and target functionalities. While the implementation of the FPTA

chip has already been detailed in the previous chapter, this chapter concentrates
on a survey of the system as well as a description of those components that are
most relevant to this thesis.

Hardware evolution of analog electronic circuits necessitates a computer program that simulates the

artificial evolution process, whose general form has been described in Chapter 2. If it is to be intrinsic,

it furthermore requires some sort of hardware that serves as a substrate to test the candidate solutions

created by the evolutionary algorithm. The analog substrate, on which the experiments presented

within this thesis are based, has been detailed in the previous section. However, the FPTA chip must

be embedded in an appropriate mixed-signal test environment to be amenable to the evolution process.

From the user’s point of view it is even desired to integrate all necessary functionalities in a software

package that provides the interface to the experimentalist who is interested in setting up a particular

hardware evolution experiment. On one hand, the software has to encapsulate all of the low level

functionalities. On the other hand, it must provide sufficient and convenient means to change the

optimization algorithm as well as to formulate a large variety of test scenarios. The entirety of all
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these components, that is, chip, external electronics, low level control thereof as well as the necessary

software is referred to as the evolution system.

4.1 Overview of the Evolution System

The evolution system consists of three main parts: The software package DarkGAQT that is executed

on a general purpose computer, the FPTA chip hosted by a dedicated carrier board, and an intermediate

hardware level that interfaces the former two. The entire system as well as the signal flow between its

main components is depicted in Fig. 4.1. During an evolution experiment, the evolutionary algorithm

is executed on the computer as part of the DarkGAQT software. Thereby it generates a stream of

candidate circuits that are passed to the PCI-interface card. The interface card is used to configure the

FPTA chip and subsequently tests this individual. To accomplish this, the test data – stored in the local

RAM on the interface card – is first converted into an analog test pattern that is applied to the FPTA.

The circuit response of the individual under test is converted back into the digital domain before it

is stored in the local memory. Eventually, the computer fetches the measured circuit response data

from the local RAM and calculates the according fitness. After having tested all individuals of the

current generation, the evolutionary algorithm proceeds by creating a new generation based on the

fitness results recorded for the last generation.
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Figure 4.1: Overview of the evolution system.

Besides the execution of the evolutionary algorithm, the DarkGAQT software has to manage

the test patterns, which are stored on the PCI interface card before the evolutionary loop is started.

Moreover, it also has to ensure that all data of interest is stored and must provide the desired user

interfaces. In the proposed project, the FPGA together with the local memory on the mixed-signal

test card are primarily used to perform the circuit tests in real-time, independently of the interrupts

triggered by the operation system running on the host computer. An early version of the evolution

system is shown in Fig. 4.1. The experiments presented in chapter 5 are actually performed with a
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Personal ComputerPlug in  Board PCI  Interface Card

Figure 4.2: Photograph of an evolution system with the old PCI interface card.

similar setup. The remaining sections of this chapter will detail some aspects of functionality and

control of the external electronics, and of the DarkGAQT software.

4.2 Mixed-Signal Test Environment

The mixed signal test environment serves two main purposes, namely the configuration of the FPTA

and the test of the candidate circuits. As the hardware evolution approach heavily relies on the evalu-

ation of many candidate circuits, a high testing rate is sought. Hence, re-configuration of the chip as

well as the test procedure must be sufficiently fast. The desired timing for the re-configuration of the

FPTA has already been stated in section 3.4.3. On the other hand, the evaluation of candidate circuits

requires the synchronous generation of analog input voltages and control signals as well as the syn-

chronous readout of the resulting outputs produced by the circuit under test. Thereby, a large signal

bandwidth of up to 5MHz must be covered according to the discussion of section 3.5.4. However, to

allow for proper sampling of smaller signal variations, as e.g. in sinusoidal signals, the sampling rate

must be considerably higher. In addition to the temporal requirements, it must be ensured that the

fidelity and precision of the analog signals suffices the demands of the fitness evaluation at hand.

4.2.1 Electrical Test System: Background

The electrical test system outlined in Fig. 4.1 comprises three main components, namely a host com-

puter, a PCI-based mixed signal test board, and a peripheral chip carrier board. The necessity for dis-

tinguishing between a mixed signal test board and the chip carrier board arises from practical rather

than electrical reasons: The mixed signal test card serves as a research tool for three independent

projects in the Electronic Vision(s) group. In addition to the project described here, the test board

supports the characterization of high dynamic range sensors [Bre05] and the training of hardware

neural network chips [Sch05] and [Hoh05].

Within the project described here, two different PCI-based mixed signal PCBs1 have actually been

used. The first one, which is a part of Fig. 4.2, was developed by Holger Blinzinger [Bli00] for a

1Printed Circuit Boards
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Figure 4.3: Annotated photograph of the top side of the Darkwing board. Photograph courtesy of Felix

Schürmann.

different purpose and adapted to serve as a mixed signal test card by other members of the Electronic

Vision(s) group. The second mixed signal test board developed by Joachim Becker [Bec01] includes

the changes mentioned above and improves and extends the concept of the first one; its top side is

depicted in Fig. 4.3. Since the latter test board — called Darkwing— has been used for all experiments

except for those of chapter 5 and as it is currently the standard test board for the evolution systems

described here, the further discussion concentrates on the Darkwing based test system.

Besides being a necessary prerequisite for this thesis, the available mixed signal test boards im-

pose some constraints on the design of the chip carrier board — called Brightwing— and the FPTA

chip itself. First, the connector between Brightwing and Darkwing is limited to 48 pins2 , of which

only 33 provide freely programmable digital signals. Second, the output voltage range of the DACs

and the input voltage range of the ADC are limited so that neither DAC nor ADC can be directly used as

an input or output, respectively. While the former constraint had to be considered in the FPTA design,

the latter one necessitated further processing of the analog in- and output signals on the Brightwing

board.

4.2.2 Test Environment: Digital Part

The electrical test system is summarized in Fig. 4.4. In case of the Darkwing board, only those

components are considered that are relevant to this thesis. For a more thorough description the reader

is referred to [Sch05] and [Bec01]. As far as the Brightwing board is concerned, only the current

default setup that is usually used during an artificial evolution experiment is taken into account, where

the connector strip at the bottom of Fig. 4.4 forms the only exception. While the operation of the

2Technically, the connection between Darkwing and Brightwing requires a further adapter board called Gosalyn. However,

as the Gosalyn [Bec01] board merely translates the signals from a CMC (Common Mezzanine Card) connector to another

connector format, the Gosalyn board is left out of consideration here.
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digital components is summarized here, the analog signal path is discussed in the next section. The

software controlling the programmable logic chip is dealt with in section 4.3. Most of the components

of the Darkwing that are discussed below are annotated in the photograph of the board’s top side

depicted in Fig. 4.3. However, the following description of the digital components as well as the

discussion of the analog signal path are essentially based on Fig. 4.4.

General Purpose Computer. The evolution system is hosted by an IBM compatible general pur-

pose computer in the sense that the Darkwing board is inserted into one of its PCI slots. The computer

architecture as well as the operation system are essentially a tradeoff between speed, effort necessary

for the setup and maintenance thereof, and cost. In the course of the project, two types of processors

have been in use, namely Athlon XP 1700+ and Intel Pentium IV 2.4GHz processors. The host com-

puters are operated under Linux, kernel 2.4.x. A more detailed account of the host computer system

is available in [Sch05]. In principle, the general purpose computer, the Darkwing boards, and the

software managing the communication between computer and hardware allow for the parallel opera-

tion of several Darkwing boards in one host computer. Although the parallelization of the candidate

evaluation would result in a significant speedup, this feature is not yet taken advantage of due to a

shortage in Darkwing boards.

FPGA and Local Memory. The main control instance of the Darkwing board is a Xilinx Virtex-E

FPGA [Xil]. Within the Electronic Vision(s) group three different types that differ in the available

number of logic blocks are used, namely XCV 300E, XCV 400E, and XCV 600E. However, for

the evolution system described here, all of them have been successfully used. On one hand, the

FPGA provides a relatively fast communication channel between the host computer and the FPTA

chip. On the other hand, it controls the mixed signal circuitry dealing with the analog interface of

the Brightwing board. In other words, the Darkwing board serves as a combination of a mixed signal

pattern generator and a mixed signal scope, albeit not necessarily providing high frequency sampling.

In order to ensure a synchronous operation, the Darkwing board provides some local memory. On

one hand, this allows to store some information that remains unchanged during an evolution run, as

e.g. the test pattern. On the other hand, the local memory serves as a buffer between host computer

and FPGA in the sense that the host computer can transparently read and write to this local memory

via DMA3 burst accesses. Although the Darkwing board offers both, SDRAM4 and SRAM, only those

two Mbyte provided by the local SRAM are utilized as this proved to be sufficient and simpler to use

due to the constant latency.

PCI Bus Interface. The FPGA is connected to the PCI bus via the PCI bridge PLX PCI 9054 [PLX00].

As the PCI bridge can be configured in different ways, the desired configuration is provided by a non-

volatile memory, that is an EEPROM. The PCI bridge essentially implements the relatively complex

PCI protocol [PCI95] and mediates between the local bus running at a user-specified frequency and

the PCI bus running at 33MHz. The PCI bus yields a maximum bandwidth of 33MHz×32 bit = 132

Mbytes/s. The PCI bus frequency results in a FPTA re-configuration time of approximately 100µs as

has already been explained in section 3.4.3. On one hand, this is not considered a severe limitation,

on the other hand the configuration time might be further reduced by using the local memory on the

Darkwing board to buffer the respective configuration information. The second operation that may

be affected by the limited bandwidth of the PCI bus is the readout of the measurement results stored

temporarily in the local SRAM. Thereby, each 32-bit word transports two measured voltages. The

3Direct Memory Access
4Synchronous Dynamic Random Access Memory
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purpose computer (top), Darkwing FPGAs interface card and Brightwing chip-hosting board.
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maximum rate thus amounts to 66 MSPS5, whereas a more realistic estimate on the basis of the prac-

tically achieved transfer rate [Sch05] results in 40 MSPS. Given that the measured data is read after

the measurement process has terminated, this could prolong the measurement time for up to a factor

of 1/2 in case of the maximum sample frequency of 20MHz. However, in a typical experiment, the

sampling rate will probably be in the order of 1MHz, in which case the additional time for the readout

of the measured data becomes negligible.

Configuration of the FPGA. Typically, the FPGA is to be configured at least once at the start of the

respective software accessing the Darkwing board. The configuration is taken care of by the Xilinx

CPLD XC9536XL chip [Xil04]. Owing to the PCI bridge, this can be accomplished via the PCI bus.

The CPLD chip is also used to program the PLL6 which derives the system clock from a reference

crystal oscillator providing a frequency of 16MHz. The system clock is utilized by the PCI bridge as

well as by the FPGA. In the latter case, the clock amplitude must be reduced from 5V to 3.3V by the

CPLD.

Power Supply. The Darkwing board provides several different power supply voltages that are de-

rived from the supply voltages available from the PCI bus. In case of the Brightwing board, only the

regulated analog 5V supply and the unregulated digital 3.3V supply are of interest. The latter 3.3V

supply is directly taken from the PCI bus and thus expected to be very noisy. However, this voltage is

exclusively used for the supply of the tristated DATA<0:5> pads. Since the 3.3V power is completely

decoupled from the rest of the FPTA chip, the according noise contribution should be negligible.

4.2.3 Analog Signal Path

The analog signal path is depicted in the lower half of Fig. 4.4. It comprises the data converters

and op amps belonging to the Darkwing board as well as the op amps and the FPTA chip located

on the Brightwing board, which is depicted in Fig. 4.5. The analog loop starts with the digital-to-

analog conversion performed in the AD768 and ends with the analog-to-digital conversion achieved

by the ADS800. The following discussion adopts an FPTA centric perspective, that is, the analog path

is divided into the external circuitry ending at the input of the FPTA chip and another branch that

processes the signal available at the FPTA’s analog output.

4.2.3.1 Analog Input

The generation of the input signals for the FPTA starts with a D/A conversion provided by the 16-bit

DAC AD768 [Ana96]. Being a current steering DAC, the device is connected to source between 0

and 20mA, which is converted into a voltage by means of R6 and the MAX4430 [Max00] operational

amplifier. With R6 = 200Ω, this results in an output swing of 0 to 4V, which is already buffered.

Since the input voltage required at the ANA_IN terminal of the FPTA chip must include both power

supply rails, the output signal of the MAX4430 op amp must be further amplified on the Brightwing

board. To achieve this, an LT1809 [Lin00b] op amp is used as a noninverting amplifier. If the output

of the MAX4430 is denoted as Vdwo, the desired voltage at the input of the FPTA, VANA_IN can be

calculated by:

VANA_IN = Vdwo
R1 + R2

R1
= Vdwo

3kΩ + 2kΩ
3kΩ

=
5

3
Vdwo , (4.1)

5Mega Samples Per Second
6Phase Locked Loop
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(a) Brightwing top side (b) Brightwing bottom side

Figure 4.5: Photographs of top (a) and bottom 4.5(b) of the chip carrier board Brightwing.

where R1 = 3kΩ and R2 = 2kΩ have been used. This particular choice reduces the feasible output

range of the AD768 DAC by 25% and thus decreases its potential linearity more severely than neces-

sary. However, the chosen gain was imposed by the inability of the LM6361 [Nat99] op amp that was

used instead of the MAX4430 on the predecessor of the Darkwing board, because its output swing

was limited to 3.3V.

4.2.3.2 Analog Output

The analog output voltage of the FPTA again includes both of its power supply rails. However,

the full scale input range of the 12-bit ADC ADS800 [Bur95] that is used for the analog-to-digital

conversion stretches only from 0.25 to 4.25V. Therefore, the output signal VANA_OUT must not only

be attenuated, but also be shifted to cover most of the available input range of the ADC. To accomplish

this, an OPA2634 [Bur99] op amp is connected as an inverting amplifier as depicted in the lower right

corner of Fig. 4.4. The necessary reference voltage Vref that serves as a virtual ground is provided

by the 12-bit DAC MAX5104 and buffered by the OPA2634 operational amplifier. The MAX5104

DAC provides four conversion channels, yet can only be used for slow varying signals due to its large

conversion time of 12µs.

For a given, fixed reference voltage Vref, the output of the OPA2634 op amp can be calculated by

Vdwi = Vref +(Vref−VANA_OUT)
R4

R3
=

3

4
Vref +(Vref−VANA_OUT) (4.2)

where R4 = 1.8kΩ and R3 = 2.4kΩ have been assumed. The gain is chosen as 3/4 as to leave some

security margin. Thus it is ensured that the output voltage Vdwi can always be mapped on the input

range of the ADC independently of devices variations. The ideal reference voltage that places the

output voltage range of Vdwi exactly in the middle of the ADC’s full scale input range can be calculated

to Vref = 2.357V. In this case, the feasible interval of output voltages, [0V,5V], is mapped onto an

interval of according Vdwi voltages that is given by [4.125V,0.375V]. Eventually, prior to conversion,

the transformed output voltage has to pass an MAX4544 analog switch, which might further decrease

the signal fidelity.

In order to account for the limited precision of the resistor values as well as the reference voltage

Vref and potential offsets of the op amps, a three-step calibration procedure is mandatory. First, the

lowest DAC input code that drives VANA_IN to 5V must be determined. Second, the references voltage

Vref needs to be adjusted to place Vdwi nicely in the middle of the ADC input range. Finally, the
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conversion of the resulting ADC codes must be adapted such, that the voltages calculated from the

ADC codes coincide with the real voltages present at the FPTA’s output.

4.2.3.3 Analog Performance

All of the external operational amplifiers are chosen as to support the maximum sampling rates pro-

vided by the data converters, that is a minimum of 30 MSPS in case of the AD768 DAC and up to

40 MSPS for the ADS800 ADC; they settle to the desired output voltage in less than 37ns7 with a

precision of at least 0.1%. The MAX4430 and the OPA2634 are operated such, that these values can

be expected to hold over the entire range of feasible in- and output voltages of the FPTA. In contrast,

the LT1809 op amp will suffer from similar performance losses as the op amps used in the FPTA chip

itself (cf. section 3.7.4), because the output swing of the LT1809 also has to cover the device’s own

power supply range. Concretely, the op amp is expected to become slower and loose some of its open

loop gain in the vicinity of the power supply rails. However, in the proposed evolution system this

will probably not affect the overall performance too gravely, as the same effects apply to the op amps

in the FPTA chip itself, whose settling times exceed those of the LT1809 by a factor of two.

Since all of the external devices in the analog path are faster than the analog in- and output

amplifiers in the FPTA chip, the latter ones limit the maximum sample rate for uncorrelated large

signals to 20MHz, which has been set forth in section 3.7.4. In fact, the series of amplifiers will add a

considerable delay to the analog signal. Without proper modeling or measurement of the exact timing

conditions, a sample rate of 20MHz will not be feasible for uncorrelated signals. On the other hand, a

high sampling rate may be beneficial for sampling a relatively slowly varying signal like a sine wave

of a frequency less than 1MHz. Typically8, the evolution system is synchronously operated with

a clock frequency of fsys = 40MHz. In accordance with the DAC specifications and the maximum

sample rates dictated by the FPTA, the clock signals for the data converters on the Darkwing board are

limited to 20MHz. Firstly, the data converters are expected to exhibit better performance below their

maximum sample frequencies. Secondly, this relaxes the timing constraints for the necessary digital

control signals. Finally, it is still possible to increase the frequency of the system clock, provided that

the logic design hosted by the FPTA can be executed at higher clock speeds.

The overall analog signal path is relatively long in that it involves three operational amplifiers

to get the signal to the input of the programmable transistor array on the FPTA and four op amps

to take it from the output cell of the programmable transistor array to the ADC. As none of these

devices is ideal, they will all increase the noise and distortion of the analog signal. At least those two

external op amps on the Brightwing board could be avoided as they are owing to the insufficient in-

and output range of the mixed signal channels on the Darkwing board. Moreover, the signal range

transformations reduce the used fraction of the dynamic range of the data converters and therefore

further decrease the analog precision. Thus, future implementations may improve this situation by

shifting the mixed signal devices to the successor of the Brightwing board. However, this may require

the generation of further regulated analog voltages.

4.3 Hardware Control Software

As has already been mentioned above, it is the responsibility of the FPGA to control the digital and

mixed signal peripheral devices on the Darkwing board. Furthermore, it serves as the digital interface

7The MAX4430 op amp is reported to settle within 37ns to a precision of 0.015% [Max00]. Thus, it is believed to comply

with the 33ns required for a sample rate of 30 MSPS if the desired precision is reduced to 0.1%.
8The system clock frequency was set to 36MHz for the experiments presented in chapter 6 and to 40MHz for those

described in chapters 7 and 8.
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to the respective ASIC. Being a reconfigurable logic device, the FPGA can be programmed relatively

easily to host a wide variety of digital control circuits. This flexibility is of great importance in the

sense that it makes the Darkwing board amenable to being used for different projects of the Electronic

Vision(s) group. Moreover, it allows for gradual improvements of the system at hand: Time-critical

functionalities may first be realized on a software level, subsequently be transferred to the FPGA and

may finally even make their way into the digital part of a mixed signal ASIC. In case of the hardware

evolution system, it is conceivable to migrate computationally expensive data manipulations, as e.g.

Fourier transforms from the host computer to the FPGA. Another option would be the integration

of the evolutionary coprocessor developed and used in the related hardware neural network project

[Sch03], [Hoh05], [Sch05].

The control circuitry residing in the FPGA is described in the high-level developing language

VHDL [Des97]. In order to attain the configuration bitstring necessary to program the FPGA, the

following steps have to be taken: First, the written VHDL code is verified by means of a simulation.

Second, the code is translated into a netlist (here the FPGA Compiler II offered by Synopsys [Syn01]

is used) of generic library devices. Third, the netlist is finally mapped onto the technology at hand,

which is the Xilinx VirtexE device in this case, but could also be another suited FPGA or the standard

cell library of an appropriate CMOS process (here, this is achieved by the Xilinx ISE [Xil03]). Pro-

vided that the place and route process succeeded in finding a feasible solution, the resulting delays

inherent to the physical circuit have to be annotated back to the netlist. If the behavior obtained from

the simulation of the back-annotated netlist is acceptable, the bitstring can be used to configure the

FPGA.

In the context of design automation, it is interesting to note that the design procedure described

above is greatly alleviated by the available synthesis tools. In comparison to the analog design pro-

cess surveyed in section 1.5, the logic design is described on a much more abstract level, that is a

programming language. The synthesis of the according netlist and the generation of the configuration

bit string or physical layout are automatically performed by software tools. Besides the significant

reduction in human design effort, this also facilitates the migration of existing logic modules to new

technologies. However, it should be mentioned that, practically, the digital design process is not al-

ways as straightforward as suggested above. In addition, migration to a different technology may

nevertheless require some changes in the VHDL code.

4.3.1 Overview

The programmable logic design currently in use in the hardware evolution system is sketched in

Fig. 4.1 by means of a simplified block diagram. As the FPGA is to control the peripheral components

of the Darkwing board, the structure of the logic design must somehow reflect the structure of the

Darkwing board itself. Accordingly, the logic design provides interfaces to the PCI bus, the local

memory and to the FPTA chip.

4.3.1.1 General Darkwing specific modules.

The three modules depicted in the upper part of Fig. 4.6, that is, the PCI/IO, SRAM control, and main
control, are specific to the Darkwing board, but independent of the group-specific hardware for whose

test the Darkwing board is actually used. In other words, they can similarly be used in other projects

of the Electronic Vision(s) group.9 The VHDL code describing these modules was written by Dr.

Johannes Schemmel and Tillmann Schmitz.

9The main control must usually be adapted to integrate the project-specific modules at hand.
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Figure 4.6: Simplified block diagram of the VHDL modules executed on the FPGA. The FPTA signals are

explained in appendix A.5. Those signals controlling the FPTA’s SRAM are gathered in RAM<0:5>. The signals

relating to the mixed signal devices on the Darkwing board are denoted as follows: FDAC refers to the fast

AD768 DAC, SDAC to the slow 12-bit DAC, and ADC_MUX to the analog switch multiplexing the two analog

input channels to the ADC.

The main control module integrates and connects all peripheral modules and provides an interface

between the host computer and the state-machines executed on the FPGA. In particular, the main

control provides access to several control registers, which can be read out and written to by the host

computer via the PCI bus. First, this allows to configure some features of the Darkwing board, as,

for example, the analog multiplexer selecting the input to the ADS800 ADC, henceforth referred to

as fast DAC or FDAC. Second, the main control registers provide a means to directly access the data

converters and their clock enabling signals from the host computer. Third, the main control module

implement a mechanism to trigger the start of user-specific processes on the FPGA and allow the host

computer to acquire information about these processes. For instance, in case of the FPTA test engine,

the test pattern sequence is started by setting a bin in the according register. While the FPTA test
engine is running, the computer polls another register, which is changed after the data acquisition

process has terminated. This signals to the software running on the host computer that the measured

data can now be read out from the local memory.

The PCI/IO implements the interface to the PCI bridge and thus enables the communication with

the host computer. It is the prerequisite for the abovementioned communication process between the

logic design residing in the FPGA and the software executed on the host computer. The SRAM control
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module manages the communication with the local memory on the Darkwing board. In the simplified

illustration of Fig. 4.1, the SRAM control module handles both, the (direct) memory access of the host

computer as well as the requests from within the FPGA.

4.3.1.2 FPTA-specific modules

The part of the logic design that controls the analog and digital signals exchanged with the FPTA is

split into two modules: While the FPTA main control is liable for the configuration of the FPTA, the

FPTA test engine generates the digital signals controlling the analog test of the candidate circuit at

hand. As the latter module is vital to the experiments presented in chapters 6 to 8 in that it realizes a

means for real-time testing, the next section is devoted to its functional description. More concretely,

the FPTA main control allows to write to and read from the SRAM of the FPTA chip as well as to

configure the IO-cells of the FPTA. Moreover, the FPTA main control sets the necessary global signals

BUF_PD, CHIP_SELECT, and RESET and deactivates the inner cell probing mechanism.

To realize the read and write access to the FPTA’s SRAM, the timing diagrams depicted in Fig. 3.13

and 3.14 are implemented by the respective VHDL code. Thereby, the packages of six bits that are

written to or read from the respective flip-flops or latches of the FPTA are directly accessed through the

PCI bus. The according state-machine is described in [Bec01]. Since, according to the discussion in

section 3.4.3, the possible increase in the time needed for re-configuring the FPTA has been estimated

to be of minor importance in most experiments, the simple communication scheme described above

has not been altered yet. However, an improved version that exploits the full bandwidth of the PCI

bus and possibly uses the local memory on the Darkwing board to buffer parts of the configuration

bit string for the FPTA is desired in the long run.

The configuration of the IO-cells resembles that of the SRAM communication. It is implemented

by writing to a dedicated register bank and transferring the resulting information into the IO-cells

according to the timing diagram of Fig. 3.19. Hence, a full configuration of all 64 IO-cells requires

128 write accesses across the PCI bus. It should be noted, that the FPTA main control also provides the

possibility of an analog test of candidate circuits configured into the FPTA. Yet, as this is also achieved

by direct register accesses through the PCI bus, the resulting test patterns cannot be guaranteed to

follow a predefined timing scheme. Although rather an advantage for the quasi-dc tests proposed in

chapter 5, the asynchronous candidate tests are in general disadvantageous and are thus depreciated

in the current version of the evolution system. However, they are indeed used for the experiments

presented in chapter 5. Finally, the FPTA main control must arbitrate the signals that may be used by

both FPTA related modules. Examples of which are the data and address bus of the FPTA, and the

respective control and data lines of the data converters.

4.3.2 Analog Test Engine

As any real physical process is bound to happen in time, time is an important input parameter for

the specification of electronic circuits. Thus, the hardware evolution system must provide a means

to evaluate the temporal behavior of the evolving candidate circuits. To accomplish this, the FPTA

test engine in conjunction with the according software interfaces allow the user to specify the relative

temporal position of the different phases and actions occurring in the test pattern generation and data

acquisition processes. Thereby, these relative temporal positions refer to the system clock fsys, which

is typically set to 40MHz during evolution experiments and verification tests.

Generally speaking, the test of a candidate circuits must cover a variety of different specifications.

This may involve different types of circuit analysis (cf. 1.4.2) as well as different test benches. On

one hand, the test bench may be simply realized by the configuration of the IO-cells and the particular



4.3. Hardware Control Software 117

Algorithm 4.1: Principal measurement procedure during an evolution experiment.

write test patterns to SRAM ;

write IO-cell configuration ;

for all candidate evaluations do

download candidate circuit ;

for all test modes tm do

if number of test modes > 1 then

download IO-cell configuration IOCONF[tm] ;

if new test bench required then

download new candidate circuit mixed with test bench ;

end if

end if

run test sequence TEST[tm] ;

end for

end for

test pattern. On the other hand, it may also utilize part of the PTA to provide further routing of in-

and output signals or to load the output of the circuit under test10. Owing to the resulting need for

different test setups, the circuit test is partitioned into different test modes, which can be edited via

the DarkGAQT software. Each test mode allows for a separate IO-cell configuration, test sequence,

and test bench configuration on the PTA.

From the viewpoint of circuit testing, the course of an evolutionary algorithm run can be summa-

rized by Alg. 4.1: At first, the system has to be initialized by the following two steps: For one, the

test sequences for all test modes are stored on the local memory of the Darkwing board. For the other,

the IO-cell configuration of the (first) test mode is written to the FPTA chip. Within the evolutionary

loop, the circuit test starts with the download of its respective configuration bit string to the FPTA. If

only one test mode is used, the according test sequence is then executed by the FPGA. If more than

one test mode is used, the IO-cell configuration must be reloaded prior to running the test sequence.

Furthermore, the utilization of different test benches in the sense of partial PTA configurations also

requires an appropriate reconfiguration of the FPTA before each test.

The test sequences of different test modes are stored in different regions of the SRAM. For each

run of a test sequence, the host computer passes the according SRAM address to the test engine in

the FPGA. The FPTA test engine subsequently executes the measurement instructions stored in a

contiguous block of the local memory on the Darkwing board. The test sequence ends upon a special

instruction code that indicates the termination condition. As detailed in chapters 5 and 6, some circuits

evaluations necessitate the test patterns to be randomized. To accomplish this, the same test sequence

is stored multiple times in the local SRAM, where each copy provides a different random order of the

test cases. For each circuit test, the DarkGAQT software randomly chooses one viable random order

and passes the respective memory address to the FPTA test engine. The number of random orders can

be specified by the user with the only constraint that the resulting test sequence information must not

exceed the size of the SRAM.

4.3.2.1 Test Sequence Elements

To facilitate the subsequent discussion of the test sequence, the element it is composed of shall be

denoted as a test sequence element (TSE). Accordingly, a test sequence, which describes the tempo-

10This mechanism is only used in the experiments presented in section 8.5.
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rally coherent process of test pattern application and data acquisition, is a sequence of TSEs, which

are encoded as measurement instructions. A TSE defines the application of one input voltage to a set

of PTA boundary cells, the process of sampling a different set of PTA boundary cells, the subsequent

readout of one analog voltage stored in an IO-cell, and the settling time between the in- and output

sampling.

16−bit FDAC valueoutput cell
SAM

input

SAM

output
Tsettle

01622252831

16 bit6 bit3 bit3 bit4 bit

32 bit

Figure 4.7: Encoding of an instruction for the mixed-mode test processor. Two 32-bit instructions are stored

in one 64-bit word accessible from the SRAM.

One measurement instruction is encoded in 32 bits as shown in Fig. 4.7. In addition to the 16 bit

wide FDAC value, which defines the analog input voltage, the instruction contains the information

necessary to realize the desired sampling processes. Here, the IO-cells are operated in S/H operation

mode 1, which is described in section 3.5.3.1. Accordingly, three bits are required to choose between

the seven possible sources for the sample signals. While the bits 25 to 27 define the sample signal

that shall be used sampling the analog input voltage, bits 22 to 24 determine which sample signal is

activated for sampling the output(s) at the respective PTA boundary cell(s). The output cell, whose

analog voltage is to be read out by the global buffer of the FPTA and is to be converted by the ADC, is

specified by bits 16 to 21. Finally, Tsettle, encoded by the last four bits 28 to 31, specifies the number of

clock cycles the FPTA test engine is to wait between starting the input sample phase and terminating

the output sample phase.

In the most general case, one TSE comprises the application of an input voltage and the sampling

and readout of an output voltage. However, if multiple input and output voltages are to be applied

and sampled for evaluating one test case, not all of the three actions are necessary or even allowed for

all TSEs. Therefore, one measurement instruction can also encode different types of TSEs, which are

summarized in Table 4.9.

First, if n input voltages shall be applied, the first n− 1 TSEs are restricted to applying an input

voltage, which is indicated by setting the output sample signal code to ‘000’. The nth TSE then will

do both, apply the last input and sample the first output voltage. Second, if m output voltages shall

SAM SAM
Tsettle

input output
A<out> 16-bit FDAC value

input + output VVVV VVV VVV VV VVVV VVVV VVVV VVVV VVVV
input only VVVV VVV 000 XX XXXX VVVV VVVV VVVV VVVV

output only VVVV 000 VVV VV VVVV XXXX XXXX XXXX XXXX
output, no sample VVVV 000 000 VV VVVV 1111 1111 1111 1111

sequence stop 1111 000 000 00 0000 1111 1111 1111 1111
Table 4.1: Instruction codes for the mixed mode test processor. While ’V’ indicates that the value of the bit is

evaluated, X’ denotes a "don’t care".
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be read out, the TSEs n+ 1 to n+ m−1 are restricted to sampling an output voltage and allowing for

the subsequent conversion by the ADC. This type of TSE is encoded by a measurement instruction

in which the input sample signal is set to zero. However, often it is not required or even desired to

sample the outputs at different times wasting precious sample signals. Hence, in this case all sample

signals would be sampled with the nth TSE. The last m−1 TSEs are then restricted to reading out the

output voltages sampled and hold by the respective IO-cells. The according instruction code, as well

as the instruction code used to indicate the end of the test sequence are listed in Table 4.1. Note, that

the codes for termination and for the readout of a sampled output voltage without sampling cannot

be mixed up with the other three TSE types, yet are themselves defined ambiguously. Although a

maximum settling time for reading out sampled output voltages is rarely used, this ambiguity must

be remedied in future versions of the VHDL code. However, this can simply be achieved by choosing

different FDAC codes.

4.3.2.2 Timing Diagram

The general measurement scenario featuring multiple in- and outputs is illustrated in the timing dia-

gram of Fig. 4.8 for n = 2 in- and m = 3 outputs. Here, the FDAC values, the timing of the sample

signals SAM<0:3>, and the address of the output cells A<7:2> are defined by the respective TSEs.

Please note, that in case of the latter two, the information in the measurement instructions must com-

ply with the chosen IO-cell configuration to attain the desired results. Analog to the timing diagram

shown in Fig. 3.21, the outputs of cells i and j are sampled at once via SAM<2>. and cell k is sam-

pled via SAM<3>. Thus all of the first four TSE types listed in Table 4.1 are applied here. The

FDAC_CLK and ADC_CLK signals are generated automatically by the FPTA test engine based on the

timing information included in the measurement instructions.

In principle, the settling time for each type of non-terminating TSE is well defined and can be used

to adjust the timing, even if not all or none of the sample signals are actually used. In case of input-

only TSEs, the settling time Tsettle defines the number of clock cycles between two input sample phases

∆Tin = Tsettle +2. In the according DarkGAQT user interface, this settling time can be configured once

for each test mode and is denoted as TSin11, which is the notation used in Fig. 4.8. The limitation

to one global TSin per test mode should not be too severe, since the sequential application of input

voltages is a restriction imposed by the external hardware and the structure of the analog IO of the

FPTA chip. Hence, typically TSin is minimized under the constraint of a predefined analog precision.

In case of an IO TSE, the settling time determines the number of clock cycles between the activation

of the input sample signal and the deactivation of the output sample signal. Again, the exact number

of cycles is calculated by ∆TIO = Tsettle + 2 = TsettleIn+ 2, where TsettleIn corresponds to the

DarkGAQT notation. Finally, for output-only TSEs, the settling time between two successive output

sample processes is given by ∆Tout = Tsettle + 2 = TsettleOut+ 2. Thereby, the time between two

readouts (and A/D conversion) of sampled output voltages is also defined — even if no output is

sampled. The settling times TsettleIn and TsettleOut can be set individually for each output of

each test case in the according DarkGAQT user interface.

The DarkGAQT software allows to adjust two further parameters of the FPTA test engine. First,

the variable FDAC2Sample specifies the number of clock cycles between the activation of the FDAC_-

CLK and the SAM<0> signal. For the remainder of this thesis, this value has been set to one, which

corresponds to the situation depicted in Fig. 4.8. This allows the input voltage VANA_IN to partially

adapt its new value, before it is sampled on the hold capacitor of the respective IO-cell. The second

parameter InputSampleSettleMax determines the number of cycles for which the input sample

11Throughout this chapter, entities that are part of a software, as e.g. the DarkGAQT program, are printed in typewriter
font.
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Figure 4.8: Timing diagram for a measurement comprising the application of two input and the readout of

three output voltages.

signal can be maximally active in case of long settling times. It was experimentally verified thatInputSampleSettleMax should be equal to or larger than four to avoid an impaired signal quality.

Altogether, these parameters may be adjusted in order to optimize the analog precision of the hardware

evolution system at hand.

4.3.2.3 FPTA Test Engine: Implementation

Due to the encoding of one TSE (depicted in Fig. 4.7), the settling time Tsettle can only be chosen

from 16 different values. In order to increase this rather small dynamic range, a global multiplier

1≤ TSMul≤ 16 (DarkGAQT notation) is introduced. Though sufficiently practical for most problems,

this solution is disadvantageous for frequency sweeps, since they require an impractical large number

of test cases for large dynamic ranges as e.g. used in the experiments of chapter 7. However, the

particular encoding of the TSE meets concerns about the maximum rate with which the measurement

ADC value[0]

0324863

16 bit

64 bit

16

0x0

4 bit

ADC value[1]

16 bit

0x0

4 bit

ADC value[2]

16 bit

0x0

4 bit

ADC value[3]

16 bit

0x0

4 bit

122844

Figure 4.9: Structure of the SRAM words stored by the analog test engine.
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Algorithm 4.2: Simplified and serialized procedure for generating the control signals for one contiguous test

sequence. The aggregation of four ADC values into one SRAM word is omitted for brevity.

repeat

WORD<63:0>← SRAM; // fetch new data from SRAM

INSTR[0]<31:0>←WORD<63:32> ;

INSTR[1]<31:0>←WORD<31:0> ;

for i← 0 to 1 do
Tsettle[i]<7:0> ← INSTR[i]<31:28> · TSMUL; // parse instruction
SAM_IN[i]<2:0> ← INSTR[i]<27:25>;

SAM_OUT[i]<2:0> ← INSTR[i]<24:22>;

CELL_OUT[i]<5:0> ← INSTR[i]<21:16>;

FDAC_VAL[i]<15:0> ← INSTR[i]<15:0>;
// execute one measurement instruction
if SAM_IN[i]<2:0> 6= ′000′ then

set DAC to FDAC_VAL[i] ;

apply resulting VANA_IN to IO-cells controlled by SAM_IN[i] ;

end if

wait for Tsettle[i] cycles ;

if SAM_OUT[i]<2:0> 6= ′000′ then

sample one or more PTA boundary signals via SAM_OUT[i] ;

end if

if
(

SAM_OUT[i]<2:0> 6= ′000′
)

||
(
(SAM_OUT[i]<2:0> == ‘000’) && (FDAC_VAL[i] ==

‘0xFFFF’)
)

then

read out IO-Cell CELL_OUT[i] and apply to VANA_OUT ;

convert VANA_OUT to ADCVAL[i] ;

store ADCVAL[i] to SRAM;

end if

end for

until (INSTR[1] == termination code) || (INSTR[0] == termination code)

instructions can be fetched from the local SRAM. As this problem only arises for maximum sample

rates, dynamic range and therefore convenience was traded off against speed here. In this vein, two

measurement instructions are stored in one 64 bit wide SRAM word to make best use of the bandwidth

and capacity available from the SRAM. Likewise, four ADC values are gathered before they are written

back to the SRAM as one word. The concrete encoding is illustrated in Fig. 4.9.

Altogether, the principle operation of the FPTA test engine can be described by Alg. 4.2. In

short, the engine fetches a word from the local memory on the Darkwing board, parses the according

two measurement instructions, realizes the according TSEs, aggregates the resulting ADC data, and

subsequently writes it back to the local memory. Nevertheless, though the procedure is presented

in a serialized form in Alg. 4.2, the actual VHDL implementation is split into several parallel state

machines to decouple processes that feature different periodicities as, for instance, fetching new in-

struction from the SRAM, executing one TSE or writing back the ADC values. Moreover, to provide

useful functionality for small sample rates requires some signals and processes must be pipelined.

For example, the FDAC_CLK signal for TSE n+1 is already activated before the output sample signal

of TSE n is deactivated. Finally, the maximum sample rate was chosen to be half of the system clock

fsys for the following reasons: First, the sampling rate of 20MHz for a typical fsys = 40MHz are

already close to the maximum sample frequency guaranteed by the FDAC. Second, the execution of
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one measurement instruction per system clock would have unnecessarily increased the complexity of

the VHDL design.

4.4 DarkGAQT Software Package

The DarkGAQT 12 software represents the front end of the hardware evolution system. It hosts the

evolutionary algorithm, encapsulates the hardware access, manages the test patterns and evaluation

criteria, and provides the according user interfaces. Some features desirable for such a software tool

are flexibility and fast executions. Flexibility is sought for the design of the evolutionary algorithm

and for the description of the experiments. The need for fast execution refers to the evolutionary

loop itself. The hardware evolution approach intrinsically relies on a large number of candidate

evaluations, which is supported by relative fast testing in hardware. In this vein, the implementation

of the EA is not to form the bottleneck for the achieved evaluation rates. The above demands render an

implementation in the programming language C++ [ISO98] an almost optimal choice, as it combines

object orientation and fast execution. Furthermore, C++ is widely used and provides the necessary

low-level function for hardware access. To speed up the evolutionary process, the evolutionary loop

of DarkGAQT is partitioned into three separate threads.

In its current state, DarkGAQT is exclusively developed and used under Linux using the kernel

version 2.4.x and the GCC 3.3 compiler [gcc]. However, in principle it should be straightforward

to migrate the software to a Windows operation system and another compiler, because all of the

used libraries are also available for Windows: First, graphical user interface, string manipulation,

and XML13 [Ray01] handling employ the QT library by Trolltech [Tro]. Second, the multithreading

architecture of the evolutionary loop is based on Pthreads [Nic98], which are also available under

Windows. Finally, the low level hardware access is mediated by the WinDriver 6.x product offered by

Jungo, Inc. [Jun03], which was actually developed for Windows first. DarkGAQT is a conjoint work

with S. Fölling, M. Trefzer and D. Brüderle: The multithreaded genetic algorithm framework and the

visualization of candidate circuits was developed by S. Fölling [Föl00]. D. Brüderle implemented

most of the building block representation used in chapter 8. M. Trefzer has been mainly liable for

organizing, extending, refining and improving the algorithmic framework including for example the

XML functionality. The low level hardware access class is derived from the tree of TAess classes

that were originally developed by J. Schemmel in [Sch99].

4.4.1 Overview

While the following subsection explains the architecture of the DarkGAQT software package, this

section takes a more functional view on the program in that it explains its prevalent features. How-

ever, concrete implementation of the evolutionary algorithm as used for the experiments presented in

chapters 5 to 8 is deferred to section 4.4.3.

Evolutionary Algorithm. Currently, the implementation of the evolutionary algorithm is based on

a generational model that most closely resembles a genetic algorithm. Yet, as the DarkGAQT soft-

ware allows for the implementation of new representations, it could also host a genetic programming

approach. As has been pointed out in chapter 2, evolutionary algorithms are inherently modular,

in that their main constituents are mostly independent of each other. The object-oriented nature of

12At first, the software was called GAQT, which is a combination of GA and QT, that is genetic algorithm and the QT [Tro]

library used for graphical user interfaces. Later on, the prefix ‘Dark’ was added to indicate the software’s customization

to the Darkwing board.
13Extensible Markup Language
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DarkGAQT supports this modularity in that it does not only include different selection methods, fit-

ness functions and circuit representations already, but also provides mechanisms to incorporate new

types thereof. DarkGAQT offers the four standard selection schemes presented in chapter 2, that is

truncation, rank-based, fitness-proportional and tournament selection.

The main unit of evolution is the Population, which essentially holds an array of Genotype14

objects, which encode the genome of the candidate circuits. The standard Genotype class is de-

tailed in section 4.4.3. In order to implement different representations and variation operators, new

classes GenotypeXXX have to be derived from Genotype. The derived classes must at least provide

the generic methods rossoverGenotype(), mutateGenotype() and updateRepresentation().

The latter method is used to convert the information stored in the genotype object at hand into the

generic format of the standard Genotype class, which can be processed by other components of the

DarkGAQT program, e.g. for visualization of the corresponding FPTA configuration or for the down-

load to the chip. Within this thesis, two genotypes, namely the standard Genotype class and the classGenotypeBBlok, which is discussed in chapter 8 are used. A third representation – based on the

class GenotypeTurtle – has been presented in [Tre04].

Representation, selection scheme, and parameters of the evolutionary algorithms are configured

through the GaConfig class, which reads the according information from an XML file on invocation of

the DarkGAQT program. In the context of the DarkGAQT software, the fitness function is perceived

rather as a part of the experiment than as a part of the evolutionary algorithm, because its main purpose

is to describe the desired target functionality. Accordingly it is handled in the part of the program that

describes the experimental setup.

Definition of the Experiment. The experimental setup is managed in the class Experiment, which

comprises one or several TestMode objects. Fig. 4.10 shows a screenshot of the according graphical

user interface. The TestMode class contains the entire information necessary for the generation of a

test sequence executed by the FPTA test engine that has been explained in section 4.3.2. In particular,

that are the test pattern itself, the IO-cell configuration, possibly a test bench gene possibly a number

of random orders or the test pattern. In addition to the information about the actual hardware test,

the TestMode class also determines how test pattern and acquired data are to be interpreted. First,

the table holding the input data also stores the target values with which the candidate circuits are to

respond to the input stimuli. Second, the TestMode defines the fitness function that is to be used.

The fitness function is also liable for necessary conversions of the input data and/or the measured

circuit response. Typical examples are the conversion of a binary pattern into an integer representation

(employed in chapter 6, or a Fourier transform to convert the measured data into a frequency response,

which is utilized in in chapter 7. On one hand, the combined application of the actual fitness criterion

and a possibly necessary conversion of in- or output data allows to minimize the computational effort.

On the other hand, one may object, that this interwoven implementation hinders efficient reuse, which

may eventually lead to decoupling fitness evaluation and data conversion. Finally, the TestMode
objects define how the output data shall be plotted in the according ResultPlot windows.

The test pattern data is organized in a table, in which each test case, that is one contiguous set

of input voltages, settling times and target values, corresponds to one row. On one hand, the user

interface allows to manipulate single entries or selected regions by hand. On the other hand, theTestMode class provides a large number of powerful functions to create particular input patterns,

which are also accessible from the user interface. Hence, the implementation of the test modes and

the according interface combine convenience with full control and flexibility. However, in some cases

14Actually, in the DarkGAQT source code, many classes are organized such that a concrete version dedicated to the cur-

rent FPTA is derived from a more abstract class. The according class names all contain an ‘FPTA’. For simplicity, this

distinction as well as the additional ‘FPTA’ is omitted here.
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Figure 4.10: Screenshot of the graphical user interface to the Experiment class.

further encapsulation into more user-friendly interfaces may be desirable. The fitness functions are

implemented as objects that are derived from the base class FitnessBase. If the desired function is

not already covered by the set of implemented functions, a new class must thus be added to the source

code.

The Experiment class itself organizes the TestMode objects. This includes some support in

distributing the test sequences into the local memory. Moreover, the Experiment objects hold some

general information necessary by all test modes. Viable examples are the system clock frequency

fsys or the randomization of the test mode order. Due to the current architecture of the DarkGAQT

software, it is not advisable to change the experimental setup during a measurement or the course of

the evolutionary algorithm. However, DarkGAQT ensures that the current settings of the Experiment
object are used whenever the evolution process is (re-) started or a verification test is performed.

Visualization of Measured Output Data. In the design of a hardware evolution experiment tar-

geted at a particular circuit functionality, it is often beneficial to receive some feedback from the

evolutionary process. Therefore, the fitness of the best, worst and mean individual of each generation

is plotted against the number of generations. Yet, even more interesting, and also more important for

the user, is the evolution of the output behavior of the currently best individual: First, the according

behavior allows for a quick assessment of the quality of the evolved solutions. Second, it allows the

user to discover possible local minima that may be avoided by an appropriate alteration of the fitness

criterion. Therefore, the DarkGAQT software provides a family of ResultPlotTMXXX classes that
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plot the respective circuit response. For each analysis type15 a specialized class is derived from the

base class ResultPlotTM. All ResultPlotTMXXX objects are gathered in an ResultPlotXP object.ResultPlotTM itself is derived from a plotting widget of the QWT library.

Verification Tests. One of the key questions arising in hardware evolution is whether the perfor-

mance of evolved designs is a) reproducible under similar and b) under different conditions. In the

context of this thesis, different conditions may be another FPTA chip, another circuit temperature,

another time scale or another substrate, as e.g. a simulation. At least the reproducibility under similar

conditions and on a second FPTA chip is investigated for all the evolved circuits proposed in chapters

5 to 8. To allow for these investigations, the DarkGAQT software provides an interface that allows

to load and test the evolved circuits outside of the evolution loop. The resulting fitness values as well

as the measured output behavior can be stored in ASCII files. The latter functionality can utilize a

special function of the ResultPlotTM class family, since the same arrangement of the measured data

is needed in both applications.

Editors. In addition to the Experiment window several other editors are provided in the current

DarkGAQT version: First, a circuit editor allows to visualize evolved circuits as well as to create new

circuits by hand. This functionality is mandatory for all kinds of calibration measurements and system

characterizations as well as for the generation of suited test benches. The circuit editor also allows

for direct download of the current configuration to the FPTA and also allows to view the configuration

currently residing on the FPTA. Second, further editors allow to manage libraries of building blocks

and the genetic access rights, both of which are introduced and utilized in the experiments presented

in chapter 8.

Log Files. The implementation of the evolutionary algorithm allows to write log files that record

some of the information generated during the evolution run. Such information may be the best,

mean or fitness values, the best individual of every 10th generation or the mean hamming distance

between the individuals of each generation. Which information is to be stored can be configured in

the GaConfig file.

Hardware Abstraction Layer. The hardware access is encapsulated in the class FPTAConfig,

which is derived from the tree of TAess classes that were originally developed by J. Schemmel

in [Sch99]. FPTAConfig provides access to both, the Darkwing board and the actual FPTA chip. For

instance, FPTAConfig converts the standard Genotype data into the necessary configuration bitstring

for the FPTA, converts the test sequences stored in the TestMode objects into the measurement in-

structions stored in the local SRAM on the Darkwing board, reads the measured output data from the

local memory, and calculates the according voltages from the attained ADC data. FPTAConfig is also

liable for matching the real voltages present on the FPTA chip and their virtual counterparts residing

in the DarkGAQT program. To achieve this, FPTAConfig receives a configuration object of the typeCardManConfig that can be edited via the HWControl window. For each Darkwing Brightwing com-

bination, this user interface must be used to calibrate the analog voltage levels and their models in

the computer. The resulting configuration is usually loaded in the startup phase of DarkGAQT. The

information is then transferred to the FPTAConfig object, which sets the reference voltage Vref (cf.

Fig. 4.4) accordingly and uses the conversion factors provided by the CardManConfig object.

15Note, that there are more and different analysis types in the context of DarkGAQT that were presented in section 1.4.2.

Here, naturally all measurements are bound to be transient analyses. Yet, they can be looked at and evaluated in different

ways, e.g. as a frequency response attained from a step function.
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4.4.2 Multithreading Architecture

The principal architecture of the DarkGAQT software is illustrated in Fig. 4.11. The user interfaces

providing the actual front end are summarized in the box at the top end of the diagram. The low-

level interface to the Darkwing board hosting the FPTA chip is indicated by the aforementionedFPTAConfig class. Most of the class objects and thus most of the functionality is linked via the

central GaMain object, which grants access to the actual evolution engine depicted below the GaMain
object. While the main control (GaMain) as well as all user interfaces share a single thread, the

evolution engine is distributed over three additional threads. Here, multithreading is used to speed

up the evolution process: If the entire application was run in one thread, the CPU could not be used

during the actual hardware test, because it had to to wait for the procedure to end, before it gets in

control again. Yet, if the part of the program performing the hardware test is executed in a separate

thread, the processor is free to carry out other tasks like the evaluation of individuals that are already

tested or the creation of new offspring.

The first thread hosts the population manager object PopMan. The population manager encapsu-

lates the evolutionary part of the loop. That is, the PopMan sorts the old generation according to the

attained fitness values and creates a new generation by means of the according variation operators and

based on the chosen selection scheme. The new individuals created by the PopMan are subsequently

passed to the CardMan running in another thread using pointers to Genotype objects.

The prevalent functionality of the CardMan is to organize the hardware test of the new candidate

circuits, which entails their download, the application of the test pattern and the gathering of the

resulting measurement results. Therefore it possesses an FPTAConfig object that provides the low-

level interface to the Darkwing board. The measured results are collected in an object of the special

container class Result. A pointer to these raw results is then passed to the Evaluator executed in

yet another thread. Here, the primarily task is to calculate the fitness based on the measured data

received from the CardMan. However, as explained above, this may necessitate a transformation of

the raw data, as, for example, done in a Fourier transform.The resulting fitness value is stored in theResult object which is finally transmitted to the PopMan again. The PopMan can now assign the

received Result to its respective Genotype by means of an identification tag that is a member of theGenotype class as well as of the Result class.

The three thread objects of the PopMan, CardMan and Evaluator classes are members of theGaMain class. They are linked by pipelines that are used to pass the object pointers of the respective

transport objects from one thread to the next. In particular, these pointers are enqueued on the trans-

mitting end of the pipeline and are taken out of the pipeline on the receiving end. This mechanism

ensures that the evolutionary loop itself is inherently thread-safe, since each of the shared data ob-

jects can only be accessed by one thread at a time. Yet, the pipelining concept can also be very fast,

because the data exchange is restricted to object pointers.

The PopMan class offers some means to control the evolutionary loop rendering it as the master

thread. For instance, the PopMan provides the methods to start and stop the evolutionary loop, where

the latter functionality is implemented such, that all individuals of the last generation are gathered

prior to stopping the loop. Furthermore, the PopMan provides a mechanism to access some data of the

current generation, which is needed for the visualization of the fitness curves as well as the plots of the

currently best individual. Here, function calls from within the PopMan thread as well as requests from

the main thread the GaMain object is running in can be targeted at the same data. Therefore, thread

safety is ensured here via the mutual exclusion principle provided by the Pthreads library [Nic98].

In case the evolution engine is stopped, the GaMain object can directly access the three daughter

threads constituting the evolutionary loop. First this is used to pass the necessary configuration files

to these objects, namely a pointer to the Experiment object to both, Evaluator and CardMan, a
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Figure 4.11: Simplified block diagram of the DarkGAQT software. All boxes whose first line is printed in

typeface courier represent classes that exist in the actual source code, albeit sometimes with slightly different

names. Exceptions are the Darkwing card in the lower left and the box at the top of the figure, which summa-

rizes the main user interfaces found in the actual source code. Please note that the arrows in the evolutionary

loop, Genotype and Result are denoting class objects used to exchange in information between PopMan,CardMan and Evaluator. Most classes contain a short summary of their functionality. In case of the CardMan
and Evaluator classes it is also indicated that they possess a pointer to the Experiment class.
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Algorithm 4.3: Evolutionary Algorithm implemented in DarkGAQT.

for g← 1 to number of generations do

Sort population in descending order // best = lowest fitness value = first
for i← 1 to keepPart ·populationSize donewGeneration[i℄← oldGeneration[i℄
end for

for i← keepPart ·populationSize+ 1 to populationSize do

Select Genotype1
Select Genotype2newGeneration[i℄← Crossover(Genotype1,Genotype2)newGeneration[i℄->mutate() ;evaluate(newGeneration[i℄) ;

end for

end for

copy of the CardManConfig to the CardMan and a copy of the GaConfig to the PopMan. Second, this

direct access allows to use the daughter threads for the verification tests.

4.4.3 Implementation of the Evolutionary Algorithm

The basic genetic algorithm implemented in the DarkGAQT software is described by Alg. 4.3. At

first, the received fitness results are used to sort the population. Note, that unlike in section 2.2.3 and

7.3.1.3 the population is sorted in descending order, that is the fittest individuals featuring the lowest

fitness values attain the lowest rank. At first, the best keepPart · populationSize individuals are

promoted to the next generation, which could be perceived as an extension of the elitism concept.

Although greatly increasing the selection pressure, a keepPart resulting in a direct transfer of more

than the best individual can be beneficial in the context of intrinsic hardware evolution, because it pre-

vents good solutions from being replaced by worse candidate circuits that encounter more favorable

conditions once.

Second the rest of the population is filled by means of crossover and mutation. To accomplish

this, two genotypes are selected from the old generation by means of the chosen selection scheme.

Next, the two individuals undergo a crossover operation with probability p = crossover rate. Note,

that the crossover operator generates one offspring only in the DarkGAQT implementation. If it is

decided not to have crossover, the individual selected first, that is Genotype1 is chosen. The resulting

gene — independent of the occurrence of a crossover operation — is then mutated with probability

p = mutation rate . Finally, the individual is submitted to the CardMan thread for evaluation.

If truncation selection is used, the first individual, that is Genotype1 is randomly chosen from

the best mutatePart · populationSize individuals, whereas the second individual Genotype2 is

randomly drawn from the best rossOverPart ·populationSize individuals.

Representation. The standard (or plain) genotype used for all experiments presented in chapters

5 to 7 is a straightforward encapsulation of the information necessary to configure the FPTA. The

representation of one transistor cell is depicted in Fig. 4.12; it is stored in a CellGene object. The

switch states of the six routing switches are also encoded as single bits in the CellGene. The connec-

tions of the three generic transistor gates TD, TG and TS are modeled by enumerations featuring the

same eight choices available on the chip itself. That is, both power supply voltages vdd and gnd, the

four cardinal points N,W,S,E and two multiplexer codes that leave the respective gate unconnected.
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Finally, width and length are also encoded as enumerations that again comprise exactly those values

offered by a PTA cell. Yet, in contrast to the terminal connections, the transistor dimensions are

ordinal attributes which can be exploited to implement a special mutation operator that applies only

small variation of the actual value. Note that a transistor width W = 0 means that the programmable

transistor is not connected at all. The whole Genotype is composed of an array of CellGene objects.

W
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E

Routing Switches

Representation:

switch sw ∈ {0,1}6

Mutation:

for i← 1 to 3 do

flip bit sw[i] with p = µRouting ;

end for
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Gate Multiplexing

Representation:

multiplexer mux ∈ {vdd,gnd,N,S,E,W,NC,NC}3

Mutation:

for i← 1 to 3 do

randomly choose new mux[i] with p = µTermConnect ;

end for

W/L
Transistor Dimensions

Representation:

Width W ∈ {0,1,2, . . . ,15}, Length L ∈ {0.6,1,2,4,8}
Mutation:

randomly choose W with p = µW/L ;

randomly choose L with p = µW/L ;

Figure 4.12: Genotypical representation and ‘point mutations’ of one transistor cell (chromosome). The Mu-

tation rates are denoted as µ .

Mutation Operator. The mutation operator is applied to all attributes of all CellGene objects of theGenotype with probability p = mutation rate. The particular mutation operations are also illustrated

in Fig. 4.12. Essentially, the respective attribute values are randomly chosen from the set of all feasible

choices provided by the respective part of the representation.

Crossover Operator. Crossover is applied at the level of transistor cells only, that is only integer

transistor cells can be exchanged between crossover partners. The crossover operation is elucidated

by Fig. 4.13. In contrast to most of the common crossover operations, the two genotypes are not

perceived as linear objects, but rather as two-dimensional entities. Accordingly, the crossover starts



130 Chapter 4. Evolution System

with randomly choosing a rectangle of transistors cells, which are denoted by squares in Fig. 4.13.

Subsequently, the transistor cells bounded by the chosen rectangle of the first genotype are replaced

by those of the crossover partner to yield the desired offspring. The maximum edge length of the

randomly selectable rectangles can be prescribed by the parameter crossover block size. The two

dimensional crossover is preferred over a linear alternative, as it reflects the intrinsic topological

nature of electronic circuits hosted on the FPTA. It is thus expected to be less destructive and to yield

better results.

parent 1 parent 2

child

Figure 4.13: Two-dimensional crossover opera-

tion used in the DarkGAQT software exemplified

for genomes restricted to 6×6 transistor cells.

Genetic Algorithm Parameters. The parameters defining the actual version of the genetic algo-

rithm are summarized in Table 4.2. The particular parameters used for the experiments presented in

chapters 5 to 8 will be summarized in similar tables, in which the explanation is replaced by the actual

value.

GA Parameter Meaning

population size number of individuals in one population (or generation)

number of generations defines for how many generations the algorithm shall be run

selection scheme choose truncation, rank based, fitness proportional or tournament selection

reprod. fraction also referred to as keepPart. Defines the number of best individuals determinis-

tically transferred to the next generation

mut. fraction fraction of the best individuals from which the first individual of a crossover oper-

ation is randomly chosen if truncation selection is utilized

mut. rate Term. Con. mutation rate for mutating the connections of the three generic transistor terminals.

Choices are both power supply voltages as well as N, W, S, E

mut. rate W,L mutation rate for changing the transistor’s width or length

mut. rate Routing mutation rate for flipping a routing bit

crossover fraction fraction of the best individuals from which a crossover partner is randomly chosen

if truncation selection is utilized

crossover rate probability for performing a crossover operation

, crossover block size maximum edge length of the rectangles of transistor cells that are exchanged be-

tween two crossover partners

Table 4.2: Summary of the genetic algorithm parameters.



Part III

Experiments and Results

131



132



Chapter 5

Evolution of Quasi-DC Solutions

Der Worte sind genug gewechselt,

laßt mich nun endlich Daten sehen.

freely adapted from Faust
JOHANN WOLFGANG VON

GOETHE

The proposed evolution system is initially tested with experiments aiming at spe-
cific target DC behaviors. First, the test of the DC behavior allows for a relatively
simple setup and can be easily stated in terms of the fitness function. Second, veri-
fying the DC behavior is both, one of the most important modes of circuit analysis
and, strictly speaking, impossible, since every measurement is bound to happen
in time. The experiments can be divided into two case studies, the evolution of
symmetrical logic gates and that of a Gaussian voltage to voltage transfer char-
acteristic. While a series of experiments illuminates the influence of the number
of transistor cells available to the EA, the former experiments reveal that evolu-
tion’s success varies for different types of logic gates. Moreover, by means of a
second series of experiments targeted at finding logic gate circuits, it is shown,
that it is both, necessary and sufficient to randomize the test pattern in order to
find the desired quasi-DC solutions. Finally, the behavior of all of the evolved
circuits measured on two different dice is compared.

5.1 Introduction

5.1.1 Rationale

In order to test and study the evolution system described in chapters 3 and 4, two sorts of experiments

have been carried out in which the goal has been to find circuits with a desired DC output character-

istic. On one hand the restriction to the DC case simplifies the task as well as the analysis and is thus

133
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considered a good method to test the system. On the other hand, in conventional electronics a stable

DC operating point is necessary for most circuits to work properly, Therefore, one has to ensure that

stable DC solutions can be found by the evolution engine.

In the literal sense, testing a DC solution would require to wait for an infinite time for the outputs

to settle to its dc values for every single test case. Since, of course, this is as infeasible as unnecessary,

the circuits under test could either be verified to exhibit the correct output behavior for the maximum

time prescribed in the desired specifications or the order of the test data must be randomized. The

former approach may be very time consuming precluding its application within the loop of an evolu-

tionary algorithm. Thus, the latter approach is chosen and the evolved circuits discussed in this paper

are referred to as quasi DC solutions. However, in order to guarantee the stability of the evolved DC

circuits, an additional long term test would be mandatory. Although this is omitted for the experi-

ments presented in this chapter, the digital-to-analog converters described in chapter 6, which are also

evolved with randomized test patterns, are verified to work on a second, larger time scale. Thus, the

randomization procedure is considered sufficient. The question whether a randomization of the test

patterns is indeed necessary is addressed by a preliminary series of experiments. Here, the behavior

of circuits evolved with randomized and non-randomized test patterns obtained from different tests is

compared.

The artificial evolution of quasi DC solutions is presented on the basis of two test cases, namely

the analog behavior of the six logic gates and a Gaussian voltage transfer characteristic (V-V curve).

For one, logic gates are key elements to digital as well as mixed signal design; for the other, imple-

mentations of the logic gates known to work well exist within the given design space. Accordingly,

they can be used as a benchmark for the performance of the evolved circuits. The design of a Gaussian

function circuit, on the other hand, is less intuitive and more of an analog nature; thus it may be better

suited for the proposed evolution system. Compared to other computational circuits as e.g. a cubic or

a root circuit, a Gaussian function seems to be more of a challenge, because it is non-monotonic and

possesses two inflection points.

5.1.2 Related Work

5.1.2.1 Logic Gates

Although quite a few hardware evolution experiments address the evolution of logic gates, they usu-

ally differ from the work proposed here, in that a transient analysis – which covers only one or few

particular timings/transitions – is used to evaluate the candidate circuits. Table 5.1 summarizes some

experiments dedicated to the artificial evolution of logic gates.

While Santini et al. [San01] use their PAMA device for the evolution of an XOR gate, the group of

Adrian Stoica either uses one of their three FPTAs, the according software model or do not constrain

the evolution process to any hardware at all. The experiments performed by Stoica et al. cited in

Table 5.1 are not restricted to the evolution of the logic gates itself, but emphasize different aspects

of the evolution process and or qualities inherent to the evolved circuits. For instance, in [Key00b]

evolution is used to regain the functionality of an evolved XNOR gate after the application of different

faults, [Sto01a] investigates whether Hardware evolution can help to find circuits working at extreme

temperatures and [Sto02a] deals with NAND gates at low power supply voltages. On the other hand,

the work documented in [Sto01b] and [Sto02b] addresses the reliability and portability of evolved cir-

cuits: In the former publication the candidate solutions are tested in Software as well as in Hardware

– a technique the authors refer to as mixtrinsic Hardware evolution, because it comprises intrinsic

and extrinsic tests. In the latter contribution the fitness is calculated from two transient analyses at

different time scales. Zebulum et al. ([Zeb98c]) as well as Bennett et al. ([Ben99]) evolve logic gates

from bipolar transistors and resistors in an unconstrained manner using SPICE simulations, albeit with
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Used No. of
Group Gate

Devices
HW! Mode

Evaluations
Reference

Santini et al. XOR BJT, R intrinsic 60.4 k [San01]

XNOR CMOS intrinsic 12 k [Key00b]

AND CMOS mixtrinsic 900 [Sto01b]

intrinsic
Stoica et al. AND CMOS

unconstrained
10 k [Sto01a]

NAND CMOS unconstrained ? [Sto02a]

NAND CMOS unconstrained ? [Sto02b]

Zebulum et al. AND, OR, XOR BJT, R unconstrained 2.5 k [Zeb98c]

Bennett et al. NAND BJT, R unconstrained < 2.224 M [Ben99]

Shibata all 2-input gates CMOS unconstrained 1 M [Shi01]

Table 5.1: Related work concerning the artificial evolution of logic gates.

different circuit representations: The former approach uses genetic algorithms, the latter one genetic

programming. Finally, Shibata ([Shi01] evolves all logic gates featuring two inputs and one output

within one evolution run: A special technique is used to decompose a total of four human made logic

gates (NAND, NOT, NOR, XOR) provided to the design engine and re-synthesize the resulting com-

ponents to form all of the desired gates. In general, the extrinsic approaches yield better circuits than

their intrinsic counterparts. In fact, probably none of the intrinsically evolved logic gates cited here,

would have been denoted as perfectly meeting the fitness criterion that will be set forth in the next

section, even if only those test cases, for which results are documented in the respective publications

would be used for this comparison. On the other hand, most of the extrinsically evolved gates refer-

enced here, probably would match the part of our fitness criterion that is covered by the reported test

data.

5.1.2.2 Gaussian Function Circuit

In analog circuit design Gaussian function circuits received attention as one of several so-called mem-

bership functions used for the fuzzyfication of crisp input signals in fuzzy logic controllers. Hence,

they are primarily found in analog implementations of such fuzzy logic controllers: For instance, Lin

et al. ([Lin98]) present a circuit that, if operated in weak inversion, exhibits a Gaussian I-V output

characteristic, which is adjustable in amplitude, width and offset. Other examples comprise the work

of Kettner et al. ([Ket93]), who presents a piecewise approximation of a Gaussian I-I curve and that

of Shuwei et al. ([Shu96]), who reports a universal membership function circuit that – among others

– can produce a Gaussian-like (triangular) I-I curve.

In the realm of hardware evolution, the problem of designing a Gaussian function circuit in CMOS

technology has been approached by the groups of Adrian Stoica and John Koza as well as by Kevin

Sheehan. While Koza et al. use genetic programming to evolve a Gaussian I-V characteristic in an

unconstrained extrinsic approach reported in [Koz99f], the problem is considered for proof of concept

experiments as well as for benchmarking tests in a bunch of publications by Stoica et al.. An extrinsic

approach using a SPICE model of the group’s field programmable transistor array (FPTA-0) chip is

documented in [Sto99] (I-V characteristic) and an intrinsic one utilizing the actual chip itself is re-

ported in [Sto00a] (V-V characteristic). Finally, [Zeb02] reports an unconstrained hardware evolution

experiment targeted at a Gaussian I-V characteristic that is turned into a V-V characteristic by means

of a 100kΩ resistor. To the author’s knowledge, only this last paper contains a quantitative analysis
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of the resulting Gaussian IO characteristic. In fact, this latter IO-characteristic appears to resemble

the target curves more closely than the characteristic resulting from the aforementioned intrinsic ap-

proach. In [She02] Sheehan reports the ex- and intrinsic evolution of Gaussian V-V characteristics

by means of predefined circuits consisting of three amplifiers and additional two-terminal elements

the author refers to as generalized impedances comprising resistors and diodes. It is the values and

types of these generalized impedances that can be chosen for predefined locations in the proposed

circuit template to generate the desired circuit behavior. As a tribute to the limited range of general-

ized impedance values, Sheehan1, presumably chooses a fitness criterion that does not prescribe the

scale and offset of the output voltage, which further facilitates the design task. The best intrinsically

evolved circuits perform significantly worse than the best extrinsically evolved one, which itself is

e.g. flawed by discontinuities in the output characteristic close to zero as well as an almost linear

slope.

Although the referenced Gaussian function circuits differ in the physical in- and output quantities

as well as in the parameters of the according output curves, the approaches for which a relative

error is either reported or could be inferred 2 are compared in Table 5.2. Please note that the circuits

Type of No. of Mean
Group

Characteristic
EHW Mode

Evaluations Error [%]
Reference

Kettner et al. I-I — — ≈ 2 [Ket93]

Stoica et al. I-V (V-V) unconstrained 1600 1.86 [Zeb02]

Koza et al. I-V unconstrained 23.04 M ≤ 1.2 [Koz99f]

Table 5.2: Related work: Design/Evolution of Gaussian function circuits.

produced by artificial evolution are not as thoroughly tested nor as well understood as can be assumed

for hand-designed ones that are actually produced. Thus, it is conceivable that they are inferior to the

circuit proposed in [Ket93] in terms of settling time, long term stability, portability to other process

technologies or temperature variations. The relative mean error is calculated from the mean error per

data point divided by the full scale of circuit’s output. In case of the circuit proposed in [Ket93], the

error is estimated from a plot of the deviation from the target function versus the input current. The

mean error for the circuit evolved by Koza et al. is calculated from the circuit’s fitness value by means

of the reported fitness function, assuming that none of the errors exceeds a value of 5% and therefore

represents an upper threshold.

5.2 Experimental Setup

5.2.1 Problem Definition

As mentioned above, the task is to find (quasi-)DC solutions for two classes of problems, namely for

the six symmetric two-input gates and a Gaussian function circuit. More specifically, the task is to

find circuits, whose outputs settle – after a finite period of time – at a target voltage that is completely

defined by the set of input voltages (V-V characteristic). Thus, the problem can be described in terms

of this particular target output characteristic, the test pattern used to sample the circuit’s behavior and

1This actually holds for all of the abovementioned evolutionary approaches.
2Although Sheehan does specify different error values for the set of experiments presented in [She02], the exact definition

of the underlying error measure can not be found within the entirety of 184 pages constituting his thesis, thus rendering

the values useless for a comparison.
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the time allowed for the circuit to settle. The fitness criterion maps the measured behavior of the

circuit onto a single quality scale allowing to compare the performance of different circuits.

5.2.1.1 Target Function

Logic Gates. The general form of the target function for the experiments aimed at the artificial

evolution of logic gates is a function of two input voltages Vin1 and Vin2:

Vtar = Vtar(Vin1,Vin2) . (5.1)

The actual target voltage depends on the respective gate that shall be evolved. Table 5.3 contains

the truth table of the six symmetric two-input gates considered here. The analog DC behavior of

Input A Input B NOR NAND AND OR XOR XNOR

0 0 1 1 0 0 0 1

0 1 0 1 0 1 1 0

1 0 0 1 0 1 1 0

1 1 0 0 1 1 0 1

Table 5.3: Truth table for the 6 symmetric logic gates the evolution experiments are aimed at.

logic gates is typically defined by the two thresholds VIL and VIH specified in Table 5.4. For input

voltages below VIL, the input must be treated as a logic zero, for those above VIH as a logic one. The

exact behavior for input voltages in the transition region between these two thresholds is irrelevant

for digital circuits; in fact it would constrain the designer (or artificial evolution in this case) more

severely than necessary. The outputs of the evolved circuits on the other hand are required to identify

the two possible logic values with the power supply rails, as summarized in Table 5.4: While a logic

0 translates to a target voltage of 0V, the output is required to reach 5V in case of a logic 1.

Input low: VIL Input high: VIH Output low: VOL Output high: VOH

Vin1,2 ≤ 2V Vin1,2 ≥ 3V Vout = 0V Vout = 5V

Table 5.4: Definition of the analog (threshold) voltages associated witht the logic in- and output values high

and low.

In order to illustrate the definitions above, the target behavior of a NOR gate is depicted on the left

hand side of Fig. 5.1. The target function is sampled at the input voltages defined by the test pattern

described in section 5.2.1.3.

Gaussian Function Circuit. The target output voltage for the evolution of Gaussian function cir-

cuits is completely defined by one input voltage Vin:

Vtar = 1V+ 3V · exp

(
Vin−2.5V

1V

)2

. (5.2)

The graph of this function is plotted on the right hand side of Fig. 5.1. Please note, that the chosen

target function is considerably wider than that used e.g. by [Zeb02] and [Koz99f]. Furthermore it

differs from the target functions defined in the publications cited above in the offset of 1V.
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Figure 5.1: Left: Illustration of the output characteristic of an ideal NOR gate for the test pattern depicted in

Fig. 5.2. Right: Visualization of the Gaussian target function defined by (5.2).

5.2.1.2 Fitness Function

The fitness function used throughout all experiments during the process of evolution is simply the

sum of the squared errors,

SSE =
512

∑
i=1

(Vtar(i)−Vout(i))
2 , (5.3)

where a total of 512 input test points is used to evaluate the behavior of the candidate circuits through-

out all experiments. In order to assign a physical meaning to the fitness measure, the fitness values

obtained from (5.3) are converted to the root mean square error per data point in mV by:

F = RMSE =

√
SSE

512
· 1000 . (5.4)

5.2.1.3 Test Patterns

Logic Gates. Instead of testing the candidate circuits on a fine, equidistant 2-dimensional grid of

input voltages, one input is held at either one of eight different voltages Vset while the other input is

swept by means of 64 Vsettle voltages. This allows to sample the circuit’s output with a high resolution

using only a moderate number of test points. Taking furthermore into account that the input region

between 2 and 3V needs not be sampled (cf. 5.2.1.1) results in the following test pattern: For each of 8

different set voltages Vset, evenly spaced between 0 and 1.714V, and 3.286 and 5V 64 sweep voltages

for Vsweep are taken from 64 voltages evenly spaced between 0 and 1.968V and between 3.032V and

5V, either chosen randomly or applied in ascending or descending order. The test pattern is shown

on the right hand side of Fig. 5.2. However, for the illustration of the characteristic output curves of

the evolved circuits 11 evenly spaced Vset and 250 Vesettle voltages are used including the transition

region between 2 and 3V. This is depicted on the left hand side of Fig. 5.2.

Gaussian Function Circuits. The input test pattern for the Gaussian Function Circuits consists of

512 input voltages Vin that are randomly drawn from 512 different equally probable input voltages

that are evenly spaced in the interval from 0 to 5V (equaling the power supply range). In contrast to

all other experiments in the remainder of this thesis, the test patterns used for the experiments of this

chapter are generated for each candidate circuit individually and may contain the same input voltage

more than once.
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Figure 5.2: Test voltage pairs for the evolution of logic gates as used during evolution (left) and for the

verification tests (right).

Timing. Throughout all experiments of this chapter, each input voltage is set by the code running

on the host PC3. In contrast to the synchronous test pattern generation proposed in section 4.3.2,

the exact timing of the voltage change can not be controlled. Moreover, the operating system may

interrupt the measuring process for fairly large intervals. On one hand, this precludes strict timing

constraints, on the other hand it does raise some selection pressure towards solutions working on

different time scales. Yet, from the average test rate of 118 individuals per second one can infer that

the output of the candidate circuits must settle at least within 16.6µs. In fact, the required settling

time will be somewhat smaller (around 10µs) since the average test rate includes the time necessary

to download the circuits under test as well as the time required by the software, i.e. the GA itself,

display and storage of the results and the operating system.

5.2.2 Geometrical Setup

All experiments presented in this chapter are restricted to a fraction of the FPTA, namely a square

of transistor cells located in the lower right corner of the chip. The size of this square of transistor

cells represents a tradeoff: On one hand, a larger number of transistor cells increases the number

of possible successful circuits and/or circuit implementations. On the other hand, a larger square

of transistor cells available to the GA also increases the search space, which may prolong the time

necessary for the algorithm to converge to a good solution.

Throughout all of the logic gates experiments, the active area of the FPTA is restricted to 5× 5

transistor cells, as can be seen from the left hand side of Fig. 5.3, which also depicts the location of

the in- and outputs. The geometrical setup for the Gaussian function circuits is illustrated on the right

hand side of Fig. 5.3. Here, the edge length of the array available to the GA is varied from 4 to 11

in order to investigate the influence of the number of transistor cells on the results produced by the

artificial evolution process. Despite the variation in array size the location of the in- and output is

kept fix for all experiments.

5.2.3 Overview of the Experiments

The artificial evolution of quasi-DC solutions has been targeted at two different types of electronic

circuits, namely symmetric two-input logic gates and Gaussian function circuits. The experiments

focusing on the evolution of logic gates are divided into two case studies:

3Personal Computer
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Figure 5.3: Geometrical setup used for the Evolution of: Left: Logic gates and Right: V-V Gaussian circuits.

5.2.3.1 Evolution of Logic Gates I

The main idea of this first case study is to investigate the influence of different degrees of test pattern

randomization on the according evolution results. Therefore, three experiments each featuring 30

runs were carried out for the symmetric two-input gates NAND, NOR, AND, OR and XOR. The test

paradigms for the three different experiments of case study I are summarized in Table 5.5: During

Experiment number Vin1 Vin2

1 Vset Vsweep : forward sweep

2 Vset Vsweep : random values

3 Vset / Vsweep : random values Vsweep / Vset : random values

Table 5.5: Test paradigms for the fitness evaluation for the evolution of the logic gates in case study I.

experiment 1, the 8 set voltages Vset are always applied to input Vin1 – in ascending order – and Vsweep

– applied to input Vin2 – is swept through all of its possible 64 different values in ascending order for

each Vset. Experiment 2 differs from experiment 1, in that here Vsweep is randomly chosen from the 64

possible values for 64 times. Finally, during experiment 3 the mapping of Vset and Vsettle to Vin1 and

Vin2 is determined randomly before each individual is tested.

5.2.3.2 Evolution of Logic Gates II

The second case study utilizes the setup of experiment 3 of case study I to increase the statistical

importance of the data by performing a total of 100 runs per logic gate. Moreover, case study II also

includes data for the XNOR gate, which completes the list of symmetric two-input gates.

5.2.3.3 Evolution of DC V-V Gaussian Circuits

For the evolution of Gaussian function circuits 8 experiments have been carried out. The experiments

differ in the number of transistor cells available to the GA. Thereby, the edge length of the square of

cells is varied from 4 to 11 (cf. Fig. 5.3). For each edge length a total of 10 runs has been carried out.
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5.2.4 GA Parameters

A plain genetic algorithm employing truncation selection was used for all of the experiments pre-

sented in this chapter. The according parameters are gathered in Table 5.6. The two sets of parameters

GA Parameter Logic Gates Gaussian curve

population size 50 50

reproduction fraction 0.2 0.2

mutation fraction 0.4 0.4

crossover fraction 0.6 0.6

crossover rate 40% 40%

mutation rate 3% 3%

number of generations 5000 10000

crossover block size 3 3 . . .6

edge length of used array 5 4 . . .11

Table 5.6: Genetic algorithm parameters used throughout the experiments presented in this chapter.

for the logic gates and the Gaussian function circuit experiments are identical, except for the max-

imum edge length of the rectangles exchanged between two crossover partners and the number of

generations per run that serves as the stop criterion. The maximum crossover block size is calculated

to be the rounded up half of the edge length of the used array. A fairly high reproduction fraction is

used to prevent the algorithm from loosing the currently best solutions due to the randomized nature

of the test pattern or to noise inherent to the measurement.

5.2.5 Verification Tests

In order to qualify the evolved circuits, their fitness – calculated by (5.4) – can be established in dif-

ferent ways: First, the RMS4 error obtained from the evaluation of the last generation of the evolution

run is taken into account. Second, the best individual of each run is subsequently tested 100 times

outside of the evolution loop and the according mean, minimum or maximum RMS errors may be

used as the fitness criterion. These values will be referred to as the last, mean, best or worst fitness

value throughout the remainder of this chapter.

Case study I is designed to investigate the influence of spatio-temporal order of the applied test

patterns on the evolutionary success. This is achieved by applying a total of 13 different test methods

to characterize the performance of the evolved gates; Table 5.7 gives an overview. While test mode 1

simply uses the fitness value achieved by the best individual of the last generation, methods 2 to 13

employ the mean of 100 verification tests. Methods 2,3 and 4 differ merely in the order in which the

Vsweep values are applied, i.e. whether they are applied in ascending, descending or random order. Test

methods 5 to 7 correspond to methods 2 to 4 except for the fact that the allocation of Vset and Vsweep

to Vin1 and Vin2 is swapped. Finally, the test methods 2 to 7 are applied to evaluate the performance

on a second die, which constitutes methods 8 to 13.

5.3 Results: Evolution of Logic Gates I

Since this first case study is merely used as a pre-study, the acquired data is presented in a highly

aggregated manner. A more detailed analysis is deferred to section 5.4 describing the results of case

4Root Mean Square
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Number Vin1 Vin2 Chip

1 lowest error from last generation

2 forward sweep

3 Vset Vsweep backward sweep

4 random values 1

5 forward sweep

6 Vsweep backward sweep Vset

7 random values

8 forward sweep

9 Vset Vsweep backward sweep

10 random values

11 forward sweep
2

12 Vsweep backward sweep Vset

13 random values

Table 5.7: Thirteen different test methods employed for the characterization of the evolved logic gates.

study II. The results for the three different experimental setups of case study I (cf. 5.5) are summarized

in Fig. 5.4 for the five logic Gates NAND, NOR, AND, OR and XOR: The best-of-run solutions of all

30 runs of each experiment are evaluated for all 13 test methods given in Table 5.7. For each gate the

mean RMS error averaged over all runs of one experiment is plotted against the test method.

Regarding Fig. 5.4, the following features are evident for the results obtained from all five logic

gates: On average, the circuits evolved within experiment 1 yield significantly better results when

tested with method 1,2 or 8 than for any other test method. The curves belonging to experiment three

on the other hand exhibit the least amount of variation: The mean of the measured RMS errors is

comparable for all test methods with the small exception that the results of the first test mode are

always slightly better than those for the remaining 12. Moreover, averaged over all test methods but

1,2 and 8, the results of experiment 3 outperform those of the first two experiments for all gates but

the AND gate, where they are approximately equal to those of experiment 1. Apart from the XOR

gates, the circuits resulting from experiment 2 perform worse on average for tests 5− 7 and 11− 13

than for tests 2−4 and 8−10, that is for those tests with swapped inputs.

From the above observations the following can be concluded: First, the GA tends to exploit a

fixed order in the input pattern, such that a reversed or randomized order will lead to significantly

worse results. This undesired behavior can be remedied by randomizing the input test pattern, as can

be seen from the small variation of the curves corresponding to the results of experiment 3. Second,

the data recorded from experiment 2 indicates that a fixed spatial allocation of input signals may

also be abused by the process of artificial evolution. Again, at least for symmetric gates this can be

prevented by randomizing the mapping of the input signals. Since the evolved gates presented within

this case study are bound to work under all of the tested conditions, it makes sense to compare the

worst mean RMS errors obtained for the three different experimental settings. In this regard, the

results of experiment 3 surpass those of the remaining two experiments, and thus must be considered

the method of choice.

Finally, a comparison of the RMS errors measured on the two different dice may inspire two

insights: First, the fact that the results obtained on both chips are so similar deems those results

reproducible. Second, the evolved circuits can be said to perform almost equally well on both chips.

A closer look at the results for test method 1 reveals that in most cases the according RMS error

is somewhat smaller than for all other test methods. This could be due to a population that, at the
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Figure 5.4: Mean fitness achieved for the 13 test

methods defined in Table 5.7 for the logic gates NOR,

NAND, AND, OR and XOR (read from left to right,

top to bottom). The three curves correspond to the

three testing paradigms used for the fitness evalua-

tion during evolution that are listed in Table 5.5. The

according line specs are shown in the legend of the

graph for the XOR gate. For each data point the re-

sults for the according 30 runs are averaged. In case

of the fitness values gained from the verification tests

(methods 2 to 13), the mean RMS error is determined

as the average over 100 subsequent measurements.

end of the evolution run, has converged to small variations of one genotype, which complies with

the large fraction of individuals that are promoted to the next generation without change as well as

the truncation selection scheme and the according portions allowed to be selected for crossover or

mutation. Thus, although an individual is measured to be best, it may lack an effective genetical

advantage, yet may have encountered the conditions that suited it best in terms of noise or test pattern

order and timing.
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5.4 Results: Evolution of Logic Gates II

To further study the evolution of all six logic two-input symmetric gates, the experimental setup of

experiment 3 of the first case study described in Table 5.5 is used. A total of 100 runs was performed

for each of the six gate types. With each run taking about 30min to finish, the experiments kept

running for an effective time of approximately 12.5 days.

5.4.1 Overview over the Results of all Runs

At first, an overview of the results shall be given by means of the fitness histograms shown on the

left hand side of Fig. 5.5. For each of the six gates the frequency with which the best-of-run solution

achieved a fitness value falling in one of 100 bins is plotted, where fitness refers to the RMS error

defined in (5.4). This RMS error is calculated as the maximum over the 13 test methods described in

Table 5.7. The bin size, imprinted in the histogram for the evolved NAND gates, amounts to 31.7mV

and is used for all of the six graphs.
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Figure 5.5: Left: RMS deviation from the ideal response for 100 evolutions of the DC behavior of the six logic

gates. The maximum error calculated from the 13 test methods defined in section 5.2.5 is taken as the RMS

error. The same x-axis is used for all six histograms. Right: Typical CMOS implementations of the 6 logic

gates NAND, NOR, AND, OR, XOR and XNOR.

The results suggest that the evolution experiments were quite successful in finding solutions for

the NOR and the NAND gate behavior, but had more difficulties in finding good solutions for the AND
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and OR problems. While for these four gates solutions with an error value less than 100mV were

found by the GA, this did not happen for the XOR and XNOR problems, where the lowest error was

observed to be above 500mV. Standard text book implementations of the six logic gates considered

here are shown on the right hand side of Fig. 5.5. The complexity of these text book solutions

increases from NOR and NAND to AND and OR to XOR and XNOR, indicated for example by the

number of necessary transistors they are composed of. A comparison between this complexity and the

evolution results displayed on the left hand side of Fig. 5.5 suggests that the difficulty in evolving the

according gate functionality corresponds to the complexity of their typcial CMOS implementations.

As can be seen from the left hand side of Fig. 5.5, even the best of the evolved circuits exceed a

minimum RMS error of 50 to 80mV depending on the gate type. This must not necessarily be due

– at least to full extend – to an imperfect behavior of the tested circuits: The readout of the circuit’s

output voltages described in section 4.3.1 was not perfectly calibrated neither during the evolution

experiments nor at the time of the verification tests. In fact, the data acquired during the verification

tests indicates an offset of 70mV for the ground potential. Considering that depending on the gate

type 25, 50 or 75% of the test data points ought to produce an output voltage of 0V, this offset causes

a minimum RMS error between 18 and 53mV. Another error source inherent to the system is the

limited precision of the measurement, which is caused e.g. by noise, distortion or the finite resolution

of the ADC. Yet, this contribution is estimated to be in the order of a few mV and thereby considerably

smaller.

The plot shown in Fig. 5.6 tries to estimate the number of evolution runs that produced perfect
solutions to the posed problems. A circuit is considered to be perfect if the maximum RMS error ob-

tained from the 13 test methods of section 5.2.5 is smaller than 100mV. Because of the imperfections
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XNOR
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Number of circuits with an RMS error < 100 mV

Figure 5.6: Number of evolved circuits that achieved an overall error smaller than 140 mV.

inherent to the measurement process discussed above, even the most ideal circuit will exhibit a finite

fitness, such that the perfect ones must be determined by means of a threshold. The particular choice

for the threshold is somewhat arbitrary. Therefore it was chosen such that the output characteristics

of the circuits with a fitness below the threshold are verified to be close to the desired behavior. Since,

from a designer’s point of view, deviations from the target behavior may be crucial for input voltage

pairs close to the power supply rails and negligible for those occurring in the vicinity of the transition

region, the yield illustrated in Fig. 5.6 may underestimate the number of perfect solutions found.

The number of evolved gates that reveal a perfect output characteristic is rather small. As was

already observed from the histograms on the left hand side of Fig. 5.5 the success rate decreases with

the complexity of the text book solution for the respective target gate: It is in the order of 5% for the

NAND and NOR problem, amounts to 1-2% for the AND and OR gates and to 0% for the most difficult

of the symmetric gates, XOR and XNOR.
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5.4.2 Output Characteristic of the Best Evolved Gates

In order to gain insight into the quality of the circuits rendered perfect in the last section, the output

characteristic of the best solutions for the six logic gate problems are depicted on the left hand side

of Fig. 5.7 (NAND, NOR, AND and OR) and Fig. 5.8 (XOR and XNOR). Here, best refers to those

best-of-experiment solutions, which achieve the smallest value for the maximum RMS error obtained

from the 13 test methods defined in section 5.2.5. The according fitness scores are stated in the title

of each plot. The output characteristics are based on data acquired using the test pattern of 11 Vset

voltages described in section 5.2.1.3 in conjunction with test method 2 from Table 5.7. While the

measured output characteristics are depicted in the left column of Fig. 5.7 and Fig. 5.8, the right

column of Fig. 5.7 and Fig. 5.8 illustrate the simulated output characteristic of the respective text

book solution. The text book solutions, which are taken from the standard cell library of the CMOS

fabrication process used for the FPTA chip [Aus97a], possess the same topology as those shown on

the right hand side of Fig. 5.5; they are simulated for typical mean conditions at T = 27 ◦C.

While the output behaviors of the best evolved NAND, NOR, AND and OR gates shown in Fig. 5.7

match the desired specifications almost perfectly, the output curves of the best circuits found for

the XOR and XNOR gates depicted in Fig. 5.8 fail to reach the power supply rails even for input

voltage combinations close to the power supply rails. Yet, for a more relaxed set of specifications,

e.g. VIL < 1V, VIH > 4V, VOL < 1V and VOH > 4V the best evolved XOR and XNOR gates would be

solving the problem.

In order to further qualify the achieved gate characteristics, they are compared to the simulated

DC behaviors of their standard cell counterparts shown on the right hand side of Fig. 5.7 and 5.8:

In terms of the DC behavior considered here, the evolved NAND and NOR gates outperform the

simulated text book solutions; they possess the higher gain and the transitions of their outputs are

confined to a more narrow region. The output curves of the best evolved AND and OR gates on

the other hand seem to be of similar quality as those of the simulated human-designed solutions. A

comparison of both types, NAND and NOR versus AND and OR, suggests that the GA chose a two

stage topology in both cases to match the desired specifications. For both classes, the NOR and NAND

as well as the XOR and XNOR problem, the standard cell solutions would fail to perfectly satisfy the

fitness requirements used throughout the evolution experiments. Since these circuits are successfully

used as building blocks in all sorts of applications, it must be concluded that the used fitness criterion

was too ambitious and therefore may have decreased the success rate of the evolution experiments.

Finally, in case or the XOR and XNOR problems, it should be noted that the number of transistor

cells offered to the algorithm may have been to small: Although the geometrical setup described in

section 5.2.2 provides 25 transistor cells, the author found it impossible to implement the text book

solution shown on the right hand side of Fig. 5.5 within one hour of time. Thus a shortage in resources

together with a fitness criterion too strict may partly explain the failure to find perfect solutions for

the XOR/XNOR problems.

For the sake of fairness, it should be noted that the above comparison of evolved gates and their

standard cell equivalents is restricted to their DC behavior and must be understood against the back-

ground of the particular fitness criterion used for the described evolution experiments. In addition

to their DC behavior, the standard cell gates possess a bunch of beneficial qualities as for example

a fast settling time or a low power and area consumption, which are not verified for the evolved cir-

cuits. However, as described in section 5.2.1.3, the evolved gates must at least settle in less than

approximately 10µs and are bound to use no more than 25 transistors.
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Figure 5.7: Left: Measured performance of the best evolved NAND, NOR, AND and OR gates. Right:

Simulation results for the NAND, NOR, AND and OR gates depicted on the right hand side of Fig. 5.5. The

legend is shown in the plot in the upper left corner.
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Figure 5.8: Left: Measured performance of the best evolved XOR, and XNOR gates. Right: Simulation results

for the XOR and XNOR gates depicted on the right side of Fig. 5.5. The legend shown in the plot in the lower

right corner is used for all 4 plots.

5.4.3 Performance Comparison for Different Tests

In order to verify that the behavior of the evolved gates is reproducible for multiple tests and similar

for different chips, minimum and mean fitness of all 100 evolution runs is plotted against the test

method for all six gates in Fig. 5.9. For each of the test methods 2 to 13 the best, mean and worst

RMS error value obtained from 100 verification tests is plotted. The graphs are similar to those of

Fig. 5.4; in fact, the curves denoted as the mean mean RMS error in the legend correspond to the

curves plotted there. Since this second case study uses the same experimental setup as experiment 3

of case study I, the aforementioned mean mean curve can be compared with the according curve of

Fig. 5.4 and is indeed found to be of similar shape and falling in the same range of RMS error values

for all five logic gates considered in Fig. 5.4.

Similar to the results for experiment 3 of case study I, the mean as well as the minimum fitness

calculated from the 100 runs is almost constant over all thirteen test methods. On one hand, this

underlines the hypothesis that the randomization of the test data described in Table 5.5 forces the

evolution process to find solutions that work for a variety of different test patterns. On the other hand,

a comparison of the results for test methods 2 to 7 with those attained from methods 8 to 13 proves

that the evolved circuits work similarly well on a second chip and thus can be assumed to possess a

minimum of robustness against variations of the characteristics of the used devices. However, for the

curves indicating the mean RMS error averaged over all 100 runs, the last fitness value, i.e. that for

test method 1, is smaller than the fitness values for all other test methods. To some extend this can

be explained with a highly converged population as discussed at the end of section 5.3. Following

this argument, one actually has to compare the mean last fitness values with the best mean fitness

achieved for the 100 verification tests of methods 4 and 7. The remaining small differences – at least
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Figure 5.9: Minimum and mean fitness achieved for the 13 test methods defined in Table 5.7 for the logic gates

NAND, NOR, AND, OR, XOR and XNOR (read from left to right, top to bottom). In case of the fitness values

gained from the verification tests (methods 2 to 13), the minimum, mean and maximum RMS errors obtained

within the 100 verification tests are plotted. The legend for all plots is shown in the graph belonging to the XOR

gates (lower left).
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observable in case of the NOR, AND and OR gates – may be due to circuits whose performance

during evolution was not reproducible during the verification tests, because they strongly relied on

the conditions present at the time of their evaluation. Examples for such conditions could be the

temperature or the actual charge distribution on the chip.

The small spread of the curves for the worst, mean and best result achieved in 100 verification tests

reveals that the performance of the evolved circuits is reproducible. Exceptions are the test methods

for which Vsweep is randomized (methods 4,7,10,13). A considerable performance spread is observed

for the means averaging over all 100 runs as well as for the performance of the best individuals found

for the XOR and XNOR problems. Apparently, the RMS error obtained for imperfect solutions varies

depending on the actual random order of the applied test pattern. However, this is not the case for the

perfect solutions found for the NAND, NOR, AND and OR problem, because they respond correctly

in all allowed test cases.

5.5 Results: Evolution of DC V-V Gaussian Circuits

The experiments dedicated to the artificial evolution of Gaussian function circuits are studied less

rigorously – in terms of performed runs – than those dedicated to the synthesis of logic gates. Due to

a lack of typical circuit implementations in the literature, it is hard to predict the number of transistors

necessary to solve the problem. Accordingly, a series of 8 experiments has been carried out in which

the number of transistor cells available to the algorithm is varied from 16 to 121; that is, the different

sizes of the quadratic arrays are characterized by their edge length varying from 4 to 11. For each

experiment 10 runs have been performed.

5.5.1 Overview over All Experiments

The results of all of the 80 runs are summarized in the 8 histograms shown in Fig. 5.10. The data used

for these histograms is calculated according to (5.4) as the highest RMS error values obtained from

100 verification tests. The majority of the evolved Gaussian function circuits achieve RMS errors in

the range of 50 to 350mV per data point. Due to the small number of runs, significant differences

in the results for different edge lengths of the array of transistor cells available to the GA are hardly

recognizable. However, considering the mean and minimum RMS error for each available edge length

plotted on the right hand side of Fig. 5.12, there seems to be a slight correlation between larger edge

lengths and better results.

5.5.2 Output Characteristic of the Best Evolved Circuits

In order to illustrate the quality of the evolved circuits, the best solutions found for each array size

are plotted in Fig. 5.11. Each graph contains the Gaussian target curve as well as the two transfer

characteristics of the according circuit measured on chip 1 and chip 2.

While the measured curves plotted in Fig. 5.11 approximate the target function quite closely,

they are not exactly of a Gaussian shape. In fact, the output characteristics of the evolved circuits

rather resemble a piecewise nonlinear approximation of the Gaussian target function. For one, the

synthesis of circuits whose output characteristic is exactly Gaussian is a difficult task. Even worse,

the specification of absolute values for the width and amplitude of the target function in general

as well as the actual values used in particular increase the difficulty of the task. For the other, the

approximative nature of the evolved solution corresponds to the formulation of the fitness function

which rewards close proximity to the target function rather than a Gaussian shape. All of the best-

per-edge-length solutions work well on the second chip, too. From Fig. 5.11 it can be observed that
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Figure 5.10: RMS deviation from the ideal re-

sponse for the evolution of circuits exhibiting a

Gaussian V-V characteristic. From top to bottom,

the edge length of the square array of transistor

cells is increased from 4 to 11. The RMS error

is calculated as the maximum obtained from 100

verification tests.

the according output curves are slightly shifted towards higher voltages. Possible reasons for this

behavior are different calibrations of the two evolution systems – as was already explained in section

5.4.1 and die-to-die variations between the used chips.

The RMS errors obtained for the best solutions obtained for each of the 8 array sizes available

to the algorithm are listed in Table 5.8. From the maximum RMS error in mV the relative error

in % is calculated by dividing the former one by the nominal output amplitude of the target curve.

The according relative errors range from 2.5 to 4.9% and – on average – exceed those found in the

related work summarized in Table 5.2 by a factor of 1.5 to 2. Since the work cited in Table 5.2 is

edge length 4 5 6 7 8 9 10 11

RMS error in mV 148.2 104.0 99.2 128.0 98.6 89.8 76.3 102.4

RMS error in % 4.94 3.47 3.31 4.27 3.29 2.99 2.54 3.41

Table 5.8: RMS error for the best-per-edge-length solutions. The maximum error value obtained from 100

verification tests is used. The RMS error in % is obtained by dividing the RMS error in mV by the nominal

output amplitude of 3V.

either a human design that was published in a journal ([Ket93]) or the result of extrinsic hardware

evolution ([Zeb02], [Koz99f]), these results seem to be absolutely promising. Finally, one should
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Figure 5.11: Output characteristic of the best Gaussian circuits for each available array size. The legend

imprinted in the plot in the upper left corner is used throughout all eight graphs. The RMS error specified in the

title is calculated from the last evaluation of the best-of-run solution of the respective run.
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not overestimate this quantitative comparison, because the experimental setups differ considerably

in terms of the specification of the target curve, the test pattern and the physical type of the in- and

output signals utilized by the different groups.

5.5.3 Verification Measurements

In analogy to section 5.4.3 the reproducibility and transferability of the results attained for the evolved

Gaussian function circuits shall be analyzed here. The results for the 100 verification tests are sum-

marized on the left hand side of Fig. 5.12. Except for the minimum worst and mean last fitness for

edge lengths 6 and 7 all curves are located in relatively close proximity. Thus, it can be stated, that the

measured performance of the evolved circuits can be reproduced within the 100 tests. The remain-

ing spread can be explained with the variation introduced by the different orders in which the input

voltages were applied.
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Figure 5.12: Left: Comparison of the minimum and mean of the last, best, mean and worst fitness values.

While last refers to the last fitness value measured at the end of the evolution process, best, mean and worst

denote the minimum, mean and maximum RMS error values obtained from the 100 verification measurements.

Minimum and mean are then calculated from the ensemble of those according 10 values for each evolution run.

Right: Comparison of the minimum and mean worst fitness measured on 2 chips.

The performance of the evolved circuits measured on a second chip, denoted as chip 2, is com-

pared with that obtained from chip 1, the chip used throughout all of the evolution runs, in the graph

on the right hand side of Fig. 5.12: It can be observed that the evolved circuit still work fairly well

on the second chip. The fact, that the RMS error obtained on the second chip is up to 50mV larger

than its counterpart measured on the first chip may – at least partially – be due to differences in the

calibration of the external analog circuitry of the two different evolution systems. This hypothesis is

sustained by the systematic shift seen in the output characteristics discussed in section 5.5.2.

5.6 Discussion

Two different kinds of intrinsic hardware evolution experiments have been presented. The results

show that the proposed evolution system is capable of finding quasi-DC solutions for simple analog

circuit design tasks. While perfect solutions were found for the DC functionality of the four logic

gates NAND, NOR, AND and OR, this was not the case for the XOR and XNOR functionality.

On one hand, the failure of finding perfect solutions for the XOR and XNOR problems is due to
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the higher difficulty immanent to the problem compared to the other four symmetrical two-input-

gates considered here. On the other hand, an overly strict specification of the target function may

have precluded the search process from finding solutions to the XOR/ XNOR problem that would

have been perfectly compliant with industry’s standards for the DC output characteristic. It should

be mentioned though, that some of the circuits found would satisfy a more relaxed specification of

the output characteristic. Moreover, the XOR/XNOR circuits reported in the literature discussed in

section 5.1.2.1 are not believed to perfectly satisfy the constraints posed to the candidate circuits

throughout the experiments presented here. However, regarding the yield of perfect solutions for all

six symmetric two-input gate problems, better algorithms will have to be found to face more realistic

circuit synthesis problems.

By means of a series of experiments targeted at the evolution of logic gates, it was also shown

that it is necessary to cover as many realistic test cases as possible in the test pattern used during the

evolution process. A randomization of the test pattern was found to be necessary to prevent the GA

from exploiting its spatio-temporal order. Finally, the successful evolution of Gaussian voltage char-

acteristics demonstrates that it is feasible to find circuits approximating basic mathematical functions

with the evolution system presented. Compared to the results reported in the literature the evolved

Gaussian function circuits perform well, especially, if one takes the differences in the respective setup

and target specification into account.

In general, the performance of the evolved solutions was found to be reproducible in 100 consec-

utive tests for the logic gates as well as for the Gaussian function circuits. Moreover, the circuits were

found to work well on a second chip and thus are believed to be portable between different dice of

the FPTA. Future work will have to answer the even more important question, whether the evolved

circuits can be simulated by simple transistors (as opposed to programmable transistor cells) using

the process parameters of the fabrication process the FPTA was produced with.



Chapter 6

Evolution of Digital-to-analog Converters

I never read; I only look at pictures.

ANDY WARHOL

Within this chapter the proposed system is used to find digital-to-analog convert-
ers (DACs) by hardware evolution for two reasons: First, DACs are a important
building blocks in today’s electronic systems. Second, the necessary setup is used
to test the ability of the evolution system to handle problems that require multiple
input signals. The target DACs are unipolar, possess a resolution of six bits and
produce a voltage mode output. Different experiments investigate the influence
of the geometrical setup as well as the dependency on the analog voltage levels
used to code the input signals. While the evolved circuits achieve an effective res-
olution of up to five bits and are verified to work well at different time scales as
well as on different dice, they lack the ability to abstract from the analog voltage
levels of the digital input signals. It is experimentally verified that this can be
remedied by inserting digital buffers at the circuits’ inputs.

During the last decades, many signal processing tasks have been shifted from the analog to the digital

domain. However, in order to interface electronic systems with the real world, digital signals have to

be translated into physical signals, which usually requires a conversion into analog signals. Digital-

to-analog Converters (DACs) thus have become key elements in many of today’s electronic systems.

As a matter of fact, they are used in a large variety of applications ranging from CD players to

graphic cards, from wireless communication devices to automotive applications. Moreover, DACs

are important components in industrial process control applications as well as in fly-by-wire systems

used in modern airplanes. Accordingly, if evolvable hardware is ever to be useful for building up

complex electronic systems, it will have to be able to interface to digital signals.

The DACs found by means of hardware evolution reported in the literature so far are restricted to

three [Ben99] and four bits [Zeb01], [Zeb03]. The former experiments are based on simulations using

a generic SPICE 3 model called from a genetic programming algorithm. It took approx. 4.5× 107

155
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evaluations to find the best-of-run solution, which uses bipolar transistors as well as resistors and

capacitors. Since some of these possess values down to 1Ω and up to 100µF, a direct implementation

of the circuit to one piece of silicon would be impractical.

The latter work by Zebulum et al. presents different divide and conquer approaches yielding 3

and 4-bit DACs. While the 4-bit DAC obtained in [Zeb01] possesses a current mode output and

was tested using SPICE simulations, the circuit proposed in [Zeb03] was evolved using the field

programmable transistor array (FPTA-2) chip described in [Sto02b] and produces an output voltage.

In addition to facilitating artifical evolution by using a hierarchical approach, a total of four human

designed operational amplifiers are included in the circuit. The work presented in this section focuses

on designing unipolar digital-to-analog converters with a voltage mode output and a target resolution

of six bits. All evolution runs were allowed to freely explore the used analog substrate, i.e. the FPTA,

without any form of human guidance.

In order to be useful in real world applications a digital-to-analog converter must not rely on the

exact voltage levels of its inputs. Hence, a number of experiments are devised to the problem of

evolving circuits that are robust against those input voltage variations. Since this task turns out to

be too difficult to be solved with the given setup, another series of experiments investigates if this

obstacle can be remedied by human intervention, i.e. by inserting digital buffers at each of the six

digital inputs.

6.1 Experimental Setup

6.1.1 Problem Definition

Digital-to-analog converters come in a large variety of architectures. First, they can be divided into

serial and parallel DACs. The parallel architectures can be subdivided into voltage, charge and current

scaling DACs as well as multistage implementations that may employ mixtures of the different scaling

mechanisms. As can be seen from Fig. 6.1, a complete parallel DAC implementation comprises -

besides the actual scaling network for the conversion - a digital interface, a reference voltage generator

and an output stage.

Scaling Network

for Digital−to− 

Analog conversion

Reference

Current / 

Voltage

Generator

Output

Amplifier

(S&H)

Digital Control Logic and Interface

Clk

Digital Input

Analog 

Output

Figure 6.1: Implementation of a parallel DAC.

For a multiplying DAC, the output is given as the product of the digital input code and the input

reference range (either in- or external). The output stage could be used to buffer the output of the

scaling network, avoid glitches at the output during code transitions, transform the output to the

desired quantity (i.e. voltage or current), or to change sign or scale of the output. The experiments

presented within this chapter focus on the artificial evolution of a voltage scaling network in that,

on one hand, no reference voltages were provided and, consequently, no multiplying abilities of the
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candidate solutions were tested, and on the other hand, neither a load impedance was applied to the

output, nor a glitch measurement was carried out. The evolved unipolar DACs were targeted to exhibit

a resolution of six bits; no measures to encourage the evolution of multi-staged DACs were taken.

6.1.2 Overview of the Experiments

Altogether five series of eight experiments, each featuring 20 runs, were carried out, as summarized

in Table 6.1. For the series FW1, FW4 and FWB4 the task was to map the digital words to analog

voltages in an unsigned binary encoding, where the lowest word (all inputs low) corresponds to the

lowest output and the highest word (all inputs high) to the highest output voltage (see Fig. 6.2). In the

remaining two series INV1 and INV4 the encoding is inverted, that is, the output voltage should be at

its maximum for the lowest input word and vice versa.

Series Input Encoding Number of Curves Input Voltage Level VI in V

FW1 Forward 1 0, 5

FW4 Forward 4 0, 5 ; 0.5, 4.5 ; 1, 4 ; 1.5, 3.5

INV1 Inverse 1 0, 5

INV4 Inverse 4 0, 5 ; 0.5, 4.5 ; 1, 4 ; 1.5, 3.5

FWB4 Forward Buffered 4 0, 5 ; 0.5, 4.5 ; 1, 4 ; 1.5, 3.5

Table 6.1: The five different experiment series.

Since in initial experiments the output of the evolved DAC circuits was found to strongly depend

on the input voltage levels, series FW4 and INV4 were designed to evolve circuits that rely only on

the digital information present at the inputs. This is achieved by testing each candidate circuit with

four different input voltage levels as described in Table 6.1.

Assuming a dependency of the output on the input voltage level, it is interesting to investigate

whether the task is more difficult for a reversed encoding scheme: The reverse encoding might bias

artificial evolution to use inverters at the digital inputs, thereby gaining robustness against the input

voltage variations. This should be observable by a comparison of series INV4 and FW4. Finally, in

the experiments of series FWB4 digital buffers are inserted at the inputs of the circuit under test to

restore the analog voltage level of the input signals (cf. Fig. 6.3). Thereby, evolution of DACs robust

against input voltage level variations should be significantly facilitated.

0

5

0 63 Input Code

Output Voltage

0

5

0 63 Input Code

Output Voltage

Figure 6.2: Ideal voltage mode DAC output: Left: Forward response Right: Inverse response.
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For each series of experiments, three parameters of the setup are varied as shown in Table 6.2.

First, the desired output voltage range is varied between the intervals 0 to 5 V and 1 to 4 V, where

Experiment Number Output range Used Cell Array Dimensions Input Order

1 0...5V 14×14 forward

2 1...4V 14×14 forward

3 0...5V 10×10 forward

4 1...4V 10×10 forward

5 0...5V 14×14 reverse

6 1...4V 14×14 reverse

7 0...5V 10×10 reverse

8 1...4V 10×10 reverse

Table 6.2: Experiments carried out for each experiment series.

the former one corresponds to the power supply range of the programmable transistor array. Second,

two differently sized areas were made available to the GA. The according locations used for inputs

and output are depicted in Fig. 6.3. The upper row contains the geometrical setups for all series of

experiments except for those of series FWB4, which is depicted in the lower row. The setups for

experiments 1,2,5 and 6 are shown in the left column of Fig. 6.3, whereas those for experiments 3,4,7

and 8 are illustrated on the right hand side of the figure. Assuming the GA uses a resistive network

to solve the DAC design problem, the task intuitively appears easier for a setup that places the more

significant bits close to the circuit’s output, because they are expected to influence it more directly.

Accordingly, this reversed input order is used for experiments 5 to 8 to test the above hypothesis.

6.1.3 Fitness Function

The fitness function used throughout all experiments is simply the sum of the squared errors

SSE =
63

∑
j=0

(Vout( j)−Vtar( j))2 (6.1)

with regard to the target function

Vtar( j) =

{
Vlow +(Vhigh−Vlow) j

63
for FW1, FW4, FWB4

Vhigh− (Vhigh−Vlow) j
63

for INV1, INV4
, (6.2)

where the integer input code j is calculated from the inputs VIi by

j =
5

∑
i=0

Ii ·2i with Ii =

{
0 if VIi < 2.5V

1 if VIi > 2.5V
, (6.3)

and Vlow and Vhigh are the boundaries of the output ranges listed in Table 6.2. Accordingly, this sum

of squared errors has to be minimized by means of the used algorithm. This choice of fitness function

aggregates the different objectives high linearity, exact gain and minimal offset, but does not allow to

control the weight of their contributions to the total fitness.
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Figure 6.3: Geometrical setup for experiments 1,2,5 and 6 (upper left corner), 3,4,7 and 8 (upper right corner)

for all series, except for FWB4: Experiments 1,2,5 and 6 (lower left corner) and 3,4,7 and 8 (lower right corner).

For the experiments 5 to 8 the order of the input bits is reversed (6 to 1 from left to right instead of 1 to 6).

6.1.4 Test Patterns

For series FW1 and INV1 all of the 64 input codes are tested exactly once resulting in one output

curve. In case of the other series (FW4, INV4 and FWB4) each input code was tested for all different

input voltage levels yielding a total of four output curves. In order to prevent artificial evolution from

abusing information from the timing/order of the test pattern, one out of ten different random orders

is chosen randomly for each fitness test. In addition, this ensures that varying input code transitions

are used for the fitness evaluations in the course of the evolution process.

Due to the fact that the FPTA has only one single analog input, the input voltages have to be

written sequentially to the IO cells of the chip. During evolution the time between the application of

two successive input voltages is 167 ns. The output voltage is sampled approximately 1.27 µs after

the first input and 0.47 µs after the last input voltage is applied to the transistor array. Thus the sample

frequency with which the different input codes are tested amounts to 750 kHz. The values of the test

pattern timing are summarized in Table 6.3.

In order to test whether the evolved converter circuits are also working on a different time scale,

verification tests were done at the sample rate of 750 kHz used during evolution as well as at 12.4

kHz, where the latter timing is referred to as slow. A complete run featuring 10,000 generations and

a population size of 50 took between 15 and 20 minutes depending on the number of different input

voltage levels.
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Time Parameter Normal Test Slow Test

settling time for last input 0.47 µs 13.4 µs

settling time for first input 1.27 µs 80.6 µs

system clock fsys 36 MHz 18 MHz

sample frequency high fS 750 kHz 12.4 kHz

time per run: FW1, INV1 ≈ 15min -

time per run: FW4, INV4, FWB4 ≈ 20min -

Table 6.3: Time and Timing considerations for the DAC experiments.

6.1.5 GA Parameters

Throughout all 40 experiments a simple genetic algorithm was used in conjunction with truncation

selection. As can be seen from Table 6.4, a large fraction of 20% was directly promoted to the next

generation in order to prevent the algorithm from loosing an already good solution due to noise in

the measuring process. The individuals taking part in crossover were chosen from the best 60% and

GA Parameter Value

population size 50

number of generations 10000

selection scheme truncation selection

reproduction fraction 0.2

mutation fraction 0.4

mutation rate Terminal Connection 3%

mutation rate Width, Length 2%

mutation rate Routing 3%

crossover fraction 0.6

crossover rate 30%

crossover block size 2

Table 6.4: Genetic algorithm parameters used for the presented DAC experiments.

the ones undergoing only mutations from the best 40% of the current generation, respectively. Since

the crossover block size is limited to two, the genetic differences between two generations are fairly

small and mutation was probably the driving force in the evolution process. For each experiment a

total of 20 runs has been performed.

6.2 Results for Series FW1

The best genotypes of the last generation of all evolution runs are taken as the result of the experiment.

After all runs had been finished, the phenotypical behavior of all these genotypes was verified by

testing the according circuit response for 100 times using the same test patterns as during the evolution

process. On one hand, the resulting data is compared to the fitness achieved during evolution, and

on the other hand, it is used to calculate the derived quality measures offset, gain, differential and

integral nonlinearity.

Since the sum of squared errors defined in (6.1), which is used for the fitness evaluation during

evolution, is not an intuitive quality measure, it is converted to the root mean square error per data
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point in lsb1 by

F = RMSE =

√
SSE
NIC

1lsb
with NIC =

{
64 for FW1, INV1

256 for FW4, INV4, FWB4
, where (6.4)

1lsb =
Vtar(63)−Vtar(0)

63
(6.5)

corresponds to 79.4 mV for an output range of 0 to 5 V and 47.6 mV for one of 1 to 4 V, respectively.

Equation (6.4) is used to calculate the fitness values throughout the remainder of this chapter.

6.2.1 Root Mean Square Error

The influence of the eight different experimental setups listed in Table 6.2 is studied exemplary for

series FW1. In Fig. 6.4 the results of all experiments are plotted as eight histograms. For each run
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Figure 6.4: Fitness Histograms for all experiments

for the experiment series FW1.

the worst fitness value out of 100 verification measurements is used for the plot. Apparently, the runs

targeted at an output range of 1 to 4 V performed significantly better than their counterparts required

to cover the full power supply range with their outputs. In contrast, neither the geometrical setup nor

the size of the transistor array available to the EA influences the evolution results significantly, except

for the combinations chosen for experiments 1 and 2: Evolving on the large array of 14×14 cells (see

Fig. 6.3) together with having the less significant bits closer to the output edge yields worse results

than all other combinations, independent of the output voltage range.

6.2.2 Nonlinearity, Offset and Gain Error

One of the most important measures to evaluate the quality of digital-to-analog converters are their

INL2 and DNL3. They are defined as

DNL( j) =
Vout( j)−Vout( j−1)

Vlsb
−1 for j = 1,2, . . . ,63 (6.6)

INL( j) =
Vout( j)− (Vout(0)+Vlsb · j)

Vlsb
for j = 0,1, . . . ,63 , with (6.7)

1lsb = least significant bit
2Integral NonLinearity
3Differential NonLinearity
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Vlsb =
Vout(63)−Vout(0)

63
. (6.8)

Differential as well as integral nonlinearity are plotted in Fig. 6.5 for the best circuit of series FW1,

where best refers to the lowest RMS error achieved. This circuit was found among the runs of ex-

periment four. The INL and DNL values are averaged over 100 verification tests, and the error bars
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Figure 6.5: DNL (left) and INL (right) for the best evolved DAC of series FW1 (experiment 4).

indicate the according standard deviations. As can be seen from Fig. 6.5, both, INL as well as DNL

amount to less than ±0.5 lsb, error bars included. It is thus save to say, that the linearity of this DAC,

on average, complies with the full target resolution of six bits.

However, the histograms of Fig. 6.6 illustrate that this does not hold for worst case conditions:

For each of the 100 verification tests the absolute maximum DNL/ INL value is determined. The

maximum of the resulting 100 values is taken as the result for one run and appears in the according

histogram. The bin size was set to 0.25 lsb for all X-Axes. While a considerable amount of evolved

DACs manage to achieve maximum nonlinearities of less than 1 lsb for experiments 4,6 and 8, no

single circuit was found to have a nonlinearity of less than 0.5 lsb. Using the definition of the DNL

given in 6.6, it can be deduced that a DAC’s output is bound to be monotonic if |DNL|< 1 is satisfied.

Hence, the histograms in Fig. 6.6 indicate that for experiments 3 to 8 in the order of five to ten evolved

DACs possess a monotonic output characteristic.

Since differential as well as integral nonlinearity, defined in (6.6) and (6.6), respectively, disregard

offset OS and gain error GE inherent to the measured output characteristic, these criteria also have to

be taken into account. They are calculated from the following equations:

OS =
1

lsb
· (Vout(0)−Vtar(0)) (6.9)

GE =
1

lsb
· [(Vout(63)−Vout(0))− (Vtar(63)−Vtar(0))] . (6.10)

It should be mentioned, that the four characteristics INL, DNL, offset and gain error and the fitness

measure sum of squared errors (SSE) from (6.1) are not independent. Solving (6.7) for

Vout( j) = INL( j) ·Vlsb +Vout(0)+Vlsb · j . (6.11)

and inserting the result into (6.6) yields:

DNL( j) = INL( j)− INL( j−1) . (6.12)
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Figure 6.6: Histograms for all experiments in the category FW1 for the four different criteria: Upper left:

INL, upper right: DNL, lower left: Offset and lower right: Gain error. For all four measures the absolute

maximum of 100 verification tests is plotted. In case of the DNL and INL the maximum nonlinearity with

respect to all input codes is used. The last bin contains all runs exceeding an error of 5 lsb for the respective

property.

Similarly, the sum of squared errors SSE given in (6.1) can be expressed by means of INL, offset and

gain error. Therefore (6.5) and (6.8) are used to rewrite (6.10)

Vlsb = lsb ·
(

GE

63
+ 1

)
(6.13)

and (6.9) is solved for

Vout(0) = lsb ·OS+Vtar(0) . (6.14)

Thus, inserting (6.13) and (6.14) into (6.11) yields

Vout( j) = Vtar(0)+

[
INL( j)

(
GE

63
+ 1

)
+ OS

]
· lsb+ lsb ·

(
GE

63
+ 1

)
· j , (6.15)
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Finally, equation 6.15 can be utilized to replace Vout in (6.1) to obtain the desired formula for the sum

of squared errors:

SSE =
63

∑
j=0

[
(Vtar(0)+ INL( j)+

(
GE

63
+ 1

)
+ OS) · lsb+ lsb ·

(
GE

63
+ 1

)
· j−Vtar( j)

]
, (6.16)

which depends only on the three derived quantities INL, GE, and OS and a few constants. Accord-

ingly, minimizing the fitness function used during evolution described by (6.1) minimizes all of the

four objectives used to characterize the evolved circuits, namely offset, gain error and both nonlinear-

ities. However, the weighting of the different criteria is fixed in the evolution process and the values

of these derived objectives can not be obtained from the fitness criterion.

In addition to INL and DNL, offset as well as gain error of the evolved DACs of series FW1 are

depicted as histograms in Fig. 6.6. Again, the largest values obtained from 100 verification tests are

used. In general, the results for the nonlinearities, offset and gain error are similar to those of the

fitness histogram depicted in Fig. 6.4. The more detailed analysis, however, reveals that the worse

results for DACs covering the full power supply range are due to their larger INL, offset and gain error

and not to larger DNL values. The – on average – larger values for offset and gain error suggest, that

the evolved circuits fail to reach the boundaries of the power supply range, which causes the output

curves to deviate more severely from the ideal linear output characteristic as indicated by the INL

histograms. The fact, that the results achieved for the larger output voltage range are inferior to those

for the smaller range of 1 to 4 V may be either caused by the increased problem difficulty, or by

deteriorations of the analog in-/output signal present in the vicinity of the power supply rails. The

former argument would e.g. be plausible if the algorithm chose to create a resistive voltage scaling

network to solve the conversion task that contains an additional biasing network connected to power

and ground, in order to fine tune the output range.

As already mentioned in the discussion of Fig. 6.4, geometrical setup of the inputs affect the

results most significantly in combination with the large array size used in experiments 1 and 2. How-

ever, Fig. 6.6 indicates that this is rather caused by larger INL (exp. 2) and DNL (exp. 1, 2) values.

The combination of the enlarged search space and the counterintuitive geometrical input order seems

to either cause the algorithm to get stuck in local optima or to decelerate its convergence.

6.3 Comparison of the Five Different Series of Experiments

The results presented in the previous section (6.2) look promising. Unfortunately, the obtained DAC

circuits are found to strongly rely on the analog voltage level of their digital input signals. This section

compares the results of different attempts to account for those dependencies to each other as well as

to the results obtained for series FW1.

6.3.1 Root Mean Square Error

In order to compare the overall fitness given as the root mean square error (RMSE) of the five different

series of experiments, the mean as well as the minimum RMSE is calculated for the best, mean, and

worst fitness value obtained from 100 verification tests, respectively. Accordingly, if

Frt t = 1 . . .100 , r = 1 . . .20 (6.17)

denotes the fitness of run r and test t, the minimum and mean fitness values referred to in Fig. 6.7

are calculated as indicated in Table 6.5. These fitness values are compared to the minimum and

mean fitness achieved at the end of the evolution runs in Fig. 6.7. First, it can be observed that
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Name Mathematical Expression

Min. Last min
r=1...20

(Flastr))

Mean Last mean
r=1...20

(Flastr))

Min. Best min
r=1...20

( min
t=1...100

(Frt))

Mean Best mean
r=1...20

( min
t=1...100

(Frt))

Name Mathematical Expression

Min. Mean min
r=1...20

( mean
t=1...100

(Frt))

Mean Mean mean
r=1...20

( mean
t=1...100

(Frt))

Min. Worst min
r=1...20

( max
t=1...100

(Frt))

Mean Worst mean
r=1...20

( max
t=1...100

(Frt))

Table 6.5: Mathematical meaning of the different minima and averages in Fig. 6.7.

minimum of the last, best, mean, and worst fitness values per experiment do not differ significantly.

This also holds for the according averages, with four exceptions: In series FW1 the mean last fitness

value differs considerably from the remaining best, mean, and worst ones for experiment 7. Similar

deviations occur in series FTB4 for experiments 2,3 and 4. These differences between the mean
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Figure 6.7: Comparison of the minimum and

mean fitness values per experiment for experiment

series FW1, INV1, FW4, INV4, and FWB4 (read

from left to right, top to bottom). Minimum and

mean values are calculated from the last fitness

value obtained during the evolution process and

from the best, mean, and worst fitness values ob-

tained in verification tests. The legend imprinted

to the last graph (FWB4) is used for all graphs.
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last fitness measured at the end of each run and the according mean fitness values obtained from the

verification tests can be understood by means of Fig. 6.8:
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Figure 6.8: Comparison of the last fitness achieved during evolution with the best, mean, and worst fitness

values measured in 100 verification tests: Upper left: series FW1, experiment 7, upper right: series FWB4,

experiment 2, lower left: series FWB4, experiment 3, lower right: series FWB4, experiment 4, The best,

mean, and worst are obtained from 100 measurements for each run.

The four graphs show the last, best, mean, and worst fitness for each run of the aforementioned

experiments of series FW1 and FWB4 as well as the according averages with respect to all 20 runs.

In all four cases, exactly one evolved circuit exhibits a performance during verification tests that is

not anywhere near its fitness obtained at the end of the evolution run, while for all other runs the last

fitness values are in close vicinity of their counterparts measured for verification. The malfunctioning

of DACs tested outside the evolution loop may be due to a change of environmental conditions between

evolution and verification test. For instance, the circuit may strongly depend on global conditions like

temperature of supply voltage or may have exploited the charge distribution left on the FPTA by the

previously tested candidate solution.

In summary, Fig. 6.7 and 6.8 prove that the performance of almost all of the evolved analog to

digital converters is reproducible on the chip they are evolved on. The width of the remaining distri-

bution of measured fitness can, for instance, be caused by the limited precision of the measurement
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itself and/or the variation among the ten different randomly chosen random orders. The different ran-

dom orders mentioned in the latter argument contain different input code transitions, which require

different lower bounds to the slew rate inherent to the circuits under test.

In principle, the results shown in Fig. 6.7 agree with those discussed in section 6.2: The best as

well as the average fitness achieved in experiments requiring the smaller output voltage range usually

outperforms that of the according experiments asking for the larger output range. The dependency on

geometrical input order and array size available to the EA is less unique. On average, the experiments

requiring the smaller output range yield slightly better results for the reverse input order. Except

for series FTB4 a reduced design space of 10× 10 cells seems to improve the average fitness per

experiment. Presumably, this does not hold for series FWB4, because the design space is reduced too

severely by inserting the input buffers (cf. Fig. 6.3). However, the best runs are found for the settings

of experiment four throughout all series except for series FW4.

The plots of Fig. 6.7 as well as the histograms of Fig. 6.4 and 6.9 show that it is significantly

harder to find digital-to-analog converters that use an inverse encoding as required in series INV1 (cf.

section 6.1.2). The results for the two series FW4 and INV4, in which the output characteristic is

tested for four different input voltage levels, are even worse. This indicates that the EA strongly relies

on the analog voltage level of the digital inputs instead of extracting the digital information included.

As was expected, the circuits produced in series INV4 behave – on average – slightly better than

their counterparts of series FW4. The necessary inversion of the input signals seems to be helpful

in abstracting the digital information from the analog input signals. Moreover, the histograms for

series INV1 and INV4 in Fig. 6.9 show that the final fitness values are spread out more broadly than

those obtained for series FW1 and FW4 (Fig. 6.9 and 6.4). Either the used algorithm ends up in

a larger variety of different local optima for this task, or an increase in the number of generations

would considerably improve the obtained results. However, as can be inferred from the graphs for

series INV1, the algorithm did never choose to place inverters at the inputs, because this would have

resulted in circuits with fitness values similar to those of the runs in series FW1. It is worth noting

though, that the gain of one stage inverters realizable with the FPTA’s transistor cells is not sufficient

to restore all four different input voltage levels to exactly 0 and 5 V. Hence, inverting the input signals

once does not solve the problem entirely.

Finally, a comparison of the histograms for series FWB4 in Fig. 6.9 with that of series FW1

shown in Fig. 6.4 proves that the desired robustness against variations of the input voltage levels can

be achieved by inserting buffers (two inverters in series) at the inputs of the prospective DAC circuits.

Thereby, the total number of used transistor cells was almost preserved, as can be seen from Fig. 6.3.

Thus, the resources available to the EA for implementing the digital-to-analog converter are reduced

accordingly; in fact, for the setup using the smaller array size, they are actually halved. This and/or

the harder timing constraints caused by the additional two gate delays of the input buffers may be

responsible for the fact, that the circuits evolved in FWB4 perform slightly worse than those from

series FW1.

6.3.2 Offset, Gain and Nonlinearities

As already explained in section 6.2.2, the quality of the evolved DACs can be further appraised by

means of the measures INL, DNL offset and gain error defined in (6.6), (6.6)), (6.9) and (6.10), respec-

tively. In case of the series FW4, INV4 and FWB4, all of the four derived measures are calculated

separately for each of the four curves first; afterwards the maximum of all four curves is used for

the remaining calculations. In order to survey the results of all runs, DNL and INL, as well as offset

and gain error, are combined as described in Table 6.6. The resulting maxima of all experiments are

shown in five scatter plots for the different series in Fig. 6.10.
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Figure 6.9: Fitness histograms for all experiments for the experiment series INV1, FW4, INV4 and FWB4

(read from top to bottom, left to right). For series FWB4, the histograms for experiments 2 and 3 neglect one

outlying run each. The fitness value is taken as the worst of 100 verification tests.

It is worth while noting that neither do the chosen measures conflict nor is the mapping from

the fitness defined in 6.4 to those measures bound to preserve the rank of the according solutions.

For instance, the triangle in the lower left corner of the scatter plot for series INV1 possesses both,

the lowest nonlinearity as well as the lowest maximum of gain error and offset. Nevertheless, as

can be seen from Fig. 6.12, it is by no means the best DAC in terms of the fitness criterion used

during evolution. This is due to the fact that the original fitness function defined in 6.1 sums up all

INL errors without an offset correction, whereas the scatter plots use the maximum offset/gain error

and nonlinearity. Thus, it may be beneficial to use another fitness function if the maximum gain

error/offset/INL/DNL shall be minimized.

The plots for series FW1 and FWB4 illustrate that for both series a few runs ended up with non-

linearities and offsets/gain errors smaller than 1 lsb. Thus, the according analog to digital converters

are verified to possess a true resolution of five bits under all tested conditions. Moreover, in case of

series FWB4, the successful circuits are proven to be robust against variations of the analog input

voltage level. The comparison of the graphs for both series reveals that most of the evolved solutions
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Figure 6.10: Scatter plots depicting the maximum

nonlinearity and the maximum of offset and gain er-

ror for all eight experiments of each series. The five

graphs illustrate the results of series FW1, INV1,

FW4, INV4, and FWB4 (from left to right, top to

bottom). For all four measures the absolute maxi-

mum of 100 verification tests is used. In case of the

DNL and INL the maximum nonlinearity with re-

spect to all input codes is chosen. The scatter plots

for series FW1 and FWB4 are cut off at 4 lsb to

obtain a higher resolution.
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Name Mathematical Expression

Max. of offset and gain error max( max
t=1...100

(OSt), max
t=1...100

(GEt))

Max. of DNL and INL max( max
t=1...100

(DNLt), max
t=1...100

(INLt))

Table 6.6: Mathematical meaning of the measures used in Fig. 6.10.

for series FWB4 are clustered around nonlinearity/offset,gain error value pairs of (1.4/1.6) lsb, while

their counterparts of series FW1 are rather accumulated around two different points at (0.7/0.7) and

(2/2.5) lsb nonlinearity/offset,gain error. Therefore, both series exhibit similar results on average, but

series FW1 produced a larger number of good solutions.

While the distribution of the nonlinearity/offset,gain error values resemble blurred lines in case

of series INV1 and INV4, they are more spread out for the series demanding a non-inverted input

output mapping. In the latter case, the lower bounds of the ensemble of data points are formed by

one line almost parallel to the nonlinearity axis and second line forming an acute angle with the first

line. Therefore, the minimum nonlinearity depends on the maximum of offset and gain error but not

vice versa. This is due to the fact that the fitness function 6.1, used for the artificial evolution process,

penalizes a global offset more severely than narrow spikes causing larger nonlinearities. Hence,

evolution falls short of providing the necessary selection pressure for removing large nonlinearities

in the presence of large offsets. Moreover, a large fraction of the evolved DAC circuits of series

FW4 exhibit a maximum offset/gain error of about 38 lsb featuring different maximum nonlinearities.

Since the gain error is taken as the maximum gain error for all four output curves, this behavior can be

explained by converters that do not suppress the influence of the input voltage levels at all: The input

voltage range stretches from 2V to 5V. Thus, the gain differs by a factor of 3
5
∗63lsb = 37.8lsb. As

can be seen from the scatter plot for INV4 in Fig. 6.10, evolution does not get stuck in this type of

local minimum here. Again, Fig. 6.10 illustrates that the results for series INV4 outperform those for

FW4. However, the influence of the input voltage level deteriorates offset and gain more severely than

the nonlinearity of the evolved DACs for series FW4 as well as for INV4, which can be explained by

a relatively smooth output characteristic, whose slope depends on the input voltages used. Therefore,

this is another hint for the EA’s inability to abstract the digital information from the analog input

voltages.

6.3.3 Best per Series Results

To further illuminate the differences between the five different series of experiments, the output char-

acteristic of the best of series DACs are plotted in Fig. 6.11. Each plot shows the mean voltage

characteristic averaged over 100 consecutive measurements. For series FW1 and INV1 the error bars

indicate the according standard deviation; this is omitted for the remaining three graphs for clarity,

since they contain four curves each. The graphs contain information about the best, mean, and worst

fitness value calculated from the 100 verification tests as well as the fitness achieved during evolution.

The proximity of these four values proves the underlying circuits to be stable.

While the output characteristic of the best circuit of series FW1 looks almost perfect, the corre-

sponding curve for the best DAC of series INV1 does not form a perfectly straight line. Moreover,

both ends resemble the characteristic curve of an inverter. The situation is worse for series FW4 and

INV4: The four characteristic curves exhibit large nonlinearities and differ significantly in offset and

gain. Finally, the four curves shown for the best individual found for series FWB4 compare well with

that belonging to FW1 and perfectly coincide.
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Figure 6.11: Output characteristic of the best

evolved DAC for series FW1 (exp. 4, upper left),

INV1 (exp. 4, upper right), FW4 (exp. 8, middle left),

INV4 (exp. 4, middle right) and FWB4 (exp. 4, lower

left). The plot shows the mean voltage characteristic

of 100 consecutive measurements and the error bars

indicate the according standard deviation.

Finally, the INL and DNL of the best evolved DACs are plotted in Fig. 6.12 for all series of

experiments except for FW1 (shown in Fig. 6.5). Similar to Fig. 6.5, DNL and INL are calculated

from the averages of 100 verification tests. For clarity, the errors bars denoting the according standard

deviation are omitted for all series for which four different output curves are measured. Please note,

that all INL curves are zero at both ends of the input codes by definition. Mean gain error as well as

mean offset are shown in the inset of the INL graphs. In accordance with the histograms of Fig. 6.6

the mean gain error exceeds the mean offset for all best of series DACs. The counterparts of the
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Figure 6.12: Left: DNL, right: INL for the best evolved DAC of series INV1 (exp. 4), FW4 (exp. 8), INV4

(exp. 4), and FWB4 (exp. 4) (from top to bottom). The data is averaged over 100 verification measurements,

the error bars indicate the according standard deviations.
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histograms of Fig. 6.6 for the remaining series – omitted here for brevity – show that this is a general

trend.

The four curves in the graphs for series FWB4 lie almost perfectly on top of each other, which

confirms the impression from Fig. 6.11. Although the absolute maxima of INL and DNL are slightly

higher compared to those obtained for the best solutions of series FWB4, they are of similar quality.

The INL of the best DAC found in series INV1 reflects the smoothness of the according output

characteristic as well as its bending at both ends of the input code axis. In contrast to the four

different nonlinearity curves of series FWB4, those for series FW4 and INV4 differ considerably

depending on the input voltage level. For the best DAC of series FW1 smaller input voltage ranges

cause larger nonlinearities and vice versa for series INV4. While the maximum nonlinearities of the

best solutions of series FW1, INV1 and FWB4 are comparable to their offsets and gain errors, the

gain error exceeds the maximum nonlinearities exhibited by the best circuits of series FW4 and INV4

by far, which coincides with the observations from Fig. 6.10.

6.4 Generalizability of the Results of Series FW1 and FWB4

In section 6.3 the evolved circuits were found to respond with reproducible output characteristics in

100 verification tests as well as for their last test during the evolution process. This section answers

the question, whether the evolved circuits still work under different conditions, namely a different

sampling rate, and on another FPTA chip. Since the DACs obtained for series INV1, FW4, INV4

badly fail to meet the desired specifications, the analysis is restricted to the circuits evolved in series

FW1 and FWB4. For all four comparisons, mean and worst fitness, as well as DNL and INL, as

well as offset and gain error are compared. More precisely, if one denotes differential and integral

nonlinearity of run r, test t and input code j as

DNLrt j j = 1 . . .63 , t = 1 . . .100 , r = 1 . . .20 (6.18)

INLrt j j = 1 . . .63 , t = 1 . . .100 , r = 1 . . .20 (6.19)

and refers to offset and gain error of run r and test t as

OSrt t = 1 . . .100 , r = 1 . . .20 (6.20)

GErt t = 1 . . .100 , r = 1 . . .20 (6.21)

and uses 6.17 for the definition of the fitness of run r and test t, then the used measures utilized for

the comparisons are defined in Table 6.7

6.4.1 Verification at a Second Time Scale

As already explained in section 6.1.4, special precautions were taken to prevent the algorithm from

abusing temporal correlations in the test pattern: For each fitness test, the input codes were applied in

fixed random orders. Since the exploitation of temporal information was observed in prestudies for

other experiments as well as in the work reported in [Zeb01], the functionality of the evolved digital-

to-analog converters of series FW1 was nevertheless tested on a different time scale. Table 6.3 sums

up the larger settling times and lower sample frequencies of the cross-check as well as those used for

all other verification tests and during evolution; they are referred to as slow and normal, respectively.

The settling times differ by a factor of 63 for the first and 28 for the last input.

The fitness values achieved under the two different timing conditions are plotted in Fig. 6.13 and

Fig. 6.14 for series FW1 and FWB4 respectively: For each experiment of series FW1 (Fig. 6.13) and
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Name Mathematical Expression

Mean fitness mean
r=1...20

( mean
t=1...100

(Frt))

Max. abs. DNL mean
r=1...20

( mean
t=1...100

( max
j=1...63

(|DNLrt j|)))

Max. abs. INL mean
r=1...20

( mean
t=1...100

( max
j=1...63

(|INLrt j|)))

Max. abs. offset mean
r=1...20

( mean
t=1...100

(|OSrt |)))
Max. abs. gain error mean

r=1...20
( mean
t=1...100

(|GErt|)))

Table 6.7: Mathematical meaning of the fitness, nonlinearity, offset and gain error values used for the perfor-

mance comparison under different time scales and on different chips.

FWB4 (Fig. 6.14) the averages defined in Table 6.7 are used to create five different graphs comparing

the according results obtained at a sample rate of of 750kHz – the same rate that was used during

evolution – and for the sampling rate of 12.4kHz used for cross-checking. For series FW1, the

resulting curves do not differ significantly, neither for the derived measures nor for the mean fitness

(less than a tenth of an lsb !). The same observation applies for the results of experiments 5 to

8 of series FWB4. Thus, the evolved converters of the aforementioned experiments can be said

to work well on both time scales and can be expected to do so for the whole frequency range in

between. However, in case of the experiments 1 to 4 of series FWB4, the results for both time

scales do differ noticeably, in a way that sometimes the performance of the evolved DACs is even

improved for the lower sample rate not used during evolution. First, if the evolved circuits were

successfully prevented from abusing timing information from the test pattern, the conversion task

should be simpler for a more relaxed timing. Second, experiments 2 to 4 contained one run each that

suffers from a performance break-down between the end of the artificial evolution process and the

verification tests, which may be partly remedied by the lower timing requirements.

In order to appreciate the timing constraints imposed on the evolved circuits, it is instructive to

compare the time scale inherent to the FPTA with that of its fabrication process, namely a 0.6µm

CMOS technology. As shown in [Lan01], the gate delay of the programmable transistor cells is larger

by a factor of 100 to 150 compared to that of equally dimensioned standard cells implemented in

the same process. Thus, if the evolved DACs could be translated to this 0.6µm CMOS process,

the sampling rate achieved would amount to approximately 100MHz. In fact, this is unlikely to be

achieved, because most probably the GA extensively exploited the parasitic resistances present in the

chip. Therefore, simulation of and insight in the evolved circuits are some of the most urgent research

avenues to be followed in this project.

6.4.2 Performance on a Second Chip

An important issue in the field of hardware evolution is whether the evolved solutions can be gener-

alized to work under realistic conditions, or if they are bound to the particularities of the very special

substrate/model they are evolved on: While simulation based approaches may produce circuits that

rely on the special models and parameters of the used simulator, circuits found on one particular die

may rely on its exact electrical qualities and fail to work on another die. Therefore the performance

of the circuits evolved in the two series FW1 and FWB4 was tested on a second chip. The results are

plotted in Fig. 6.15 and 6.16 for series FW1 and FWB4, respectively. Again, the measures defined in

Table 6.7 are used to compare the performance of the evolved circuits on both chips. On first sight,



6.4. Generalizability of the Results of Series FW1 and FWB4 175

the plots suggest that most circuits of both series work properly on the second die, too, but that their

analog performance may be slightly degraded.

As can be seen from the plot on the lower left of Fig. 6.15, the mean fitness of the tested DACs is

slightly increased when measured on chip 2. The effect is more distinct for the experiments requiring

the smaller output voltage range of 1 to 4 V. Similarly, for these experiments offset and gain error

are increased, when they are measured on the second chip. Surprisingly, the opposite is true for the

experiments demanding the DACs’ outputs to cover the full power supply range. While the integral

nonlinearity is also slightly degraded when the designs are migrated from their native die to the

second one, the average DNLs do not differ significantly, if all experiments are taken into account.

The abovementioned observations can be explained if the tested DACs undergo a global shift of

offset and gain when they are tested on the second FPTA chip. This shift may be traced back to two

different origins: First, the used transistor cells on the two different dice may not perfectly match.
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of the evolved DACs of series FW1 operated

at two different frequencies, where fast refers

to the sample frequency used during evolu-

tion, namely 750kHz, and slow corresponds to

12.4kHz. Read from left to right and top to bot-

tom the graphs compare the results of the abso-

lute maximum of the DNL and INL values, as

well as the absolute maximum offsets and gain
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of the evolved DACs of series FWB4 oper-

ated at two different frequencies, where fast
refers to the sample frequency used during evo-

lution, namely 750kHz, and slow corresponds

to 12.4kHz. Read from left to right and top to

bottom the graphs compare the results of the ab-

solute maximum of the DNL and INL values, as

well as the absolute maximum offsets and gain

errors, and the mean fitness.

This could either be due to die to die variations of global process parameters, as e.g. threshold voltage

or transistor gain, or be caused by local variations of the transistor cell characteristics in the form of

fixed pattern noise. Since the obtained measures used for the comparison represent averages over 20

different DAC circuits, the effect of the spread of transistor characteristics due the fixed pattern noise

should cancel. This hypothesis is confirmed by the close vicinity of each of the two DNL and INL

curves. Second, the global shift of offset and gain can be inherent to the system: As explained in

sections 4.2.3 and 3.5, the analog input signals as well as the analog output signal are buffered several

times after or respectively before their conversion, such that this analog path has to be calibrated.

Accordingly, the shift in offset and gain may be due to imperfect calibrations in conjunction with

different power supply voltages delivered by the PCI interface of the different computers used.

The mean performance of the DACs of series FWB4 tested on the two different FPTA chips is

captured in Fig. 6.16: Apart from experiment 4, which contains the worst outlier (cf. section 6.3.1),

the results resemble those obtained for the circuits of series FW1: The averaged fitness values are
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Figure 6.15: Comparison of the performance

of the evolved DACs of series FW1 on two

different chips, where chip 1 denotes the chip

used during evolution. Read from left to right

and top to bottom the graphs compare the re-

sults of the absolute maximum of the DNL and

INL values, as well as the absolute maximum

offsets and gain errors, and the mean fitness.

slightly worse, when the converters are tested on the second chip, INL and DNL values are almost

identical for both tests. Yet, the differences of the measured offsets and gain errors are smaller than in

series FW1. While the offsets for DACs with the larger output range are still smaller and vice versa,

this is not true for the gain errors in series FWB4 any more. The fact that the global shift in offset and

gain observed for the circuits of FW1 is hardly to be seen for their counterparts of series FWB4 is

probably due to the buffers inserted at the inputs of the latter circuits. Thereby, the susceptibility to the

nonidealities of the input signals is eliminated; the performance differences on the different dice are

reduced to variations in the output voltage processing and the programmable transistors themselves.

6.5 Discussion

First, the proposed experiments demonstrate that the evolution system described in chapters 3 and 4

is capable of processing problems requiring multiple input signals. Second, the analysis of different

series of experiments targeted at finding digital-to-analog converters with six bits resolution revealed
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Figure 6.16: Comparison of the performance

of the evolved DACs of series FWB4 on two

different chips, where chip 1 denotes the chip

used during evolution. Read from left to right

and top to bottom the graphs compare the re-

sults of the absolute maximum of the DNL and

INL values, as well as the absolute maximum

offsets and gain errors, and the mean fitness.

the following: Choosing an output range of 1 to 4 V in conjunction with a suited geometrical setup

allows to evolve DAC circuits with an effective resolution of five bits working at a sample rate of 750

kHz. This raises the question whether it is possible to increase the effective resolution by using more

sophisticated fitness functions and optimized algorithms.

Further analysis yields that the evolved DACs fail to provide a digital interface, i.e. strongly rely on

the analog voltage level of their inputs. It is demonstrated that this flaw can be remedied by inserting

buffers at the circuit’s inputs. Future experiments should thus provide a pair of reference voltages to

the candidate solution, which define the output voltage range. On one hand, this may aid the EA in

abstracting from the analog voltage of the input signals, on the other hand it supports the evolution of

multiplying DACs. Moreover, the evolving DACs have not been exposed to a resistive load, which will

have to be included to find circuits useful in real world applications. A randomly varied resistive load,

however, will further constrain the design space to solutions that do not rely on the analog voltage

level of the inputs. Since these additional constraints increase the problem difficulty, they may raise

the need for more elaborate methodologies, as for example hierarchical approaches.
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The average performance of the evolved circuits gracefully degrades when they are tested on a

second chip. Moreover, they are believed to work well in a large range of sampling frequencies,

because their performance was only slightly deteriorated, when tested at a much larger time scale.

In order to get circuits working well on different dice, they could either be fine tuned to the specific

electrical properties of the particular die, or be evolved to work equally well on different dice. The

latter goal could be achieved by aggregating the fitness values achieved on different dice during the

process of artificial evolution, as e.g. done in [Tho98b].
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Chapter 7

Evolution of Filters

Time is an illusion perpetrated by

the manufacturers of space.

GRAFFITI, ANONYMOUS AND

UNKNOWN

In the previous two chapters time as a parameter played only a minor role in
that compliant circuits had to reach the desired output voltage within the spec-
ified settling time. However, many types of analog circuits are characterized to
large extents by their dynamic properties defined in the time and/or frequency
domain. Prominent examples are the frequency response of operational ampli-
fiers, which is usually captured by means of its Unity Gain Bandwidth ( UGB)
and Phase Margin (PM), or the frequency dependency of gain and phase of fil-
ter circuits. Accordingly, the purpose of this chapter is to study different means
of evaluating the magnitude response in the frequency domain and its effect on
the artificial evolution process. The experiments are targeted at the automatic
synthesis of MOSFET-only linear filters using the FPTA-based evolution system.
More concretely, the evolution experiments are targeted at lowpass filters (LPFs)
characterized by different corner frequencies and widths of their respective tran-
sition regions as well as highpass filters (HPFs). In case of the latter ones, only
the desired width of the transition region is varied.

7.1 Introduction

Linear frequency selective filters1 are of utmost importance in any kind of signal processing task.

Their ability to filter out the particular part of the frequency spectrum interesting to the subsequent

1In the remainder of this chapter, linear frequency selective filters will be simply referred to as filters – as is common

practice throughout the literature.
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processing stage and suppress the rest of the spectrum is widely used in telecommunication as well as

data acquisition and control systems. The list of applications utilizing linear filters includes but is not

limited to all sorts of parts in hifi systems, speech recognition, cordless and wireless telephony and

industrial control systems.

During the last decades, many signal processing tasks were shifted from the continuous-time

analog to the digital domain. Given unlimited resources and moderate requirements in terms of the

signal bandwidth digital signal processing offers a higher degree of flexibility and precision and thus

is often considered the better choice. Nevertheless, if die area and power consumption are an issue,

analog-to-digital and digital-to-analog conversion are unnecessary and increase the design complexity

and/or further impair the signal at hand, or if pre- or post-processing of the signal is a necessity,

analog solutions are favorable or even the only possible choice. The importance of analog filters is

reflected in recent publications covering a wide variety of applications and frequency domains: Abidi

[Abi96] and Kuhn et al. [Kuh03] describe filter circuits for single chip radio transceivers that use spiral

inductors. Baki et al. [Bak03] report a 7th order LPF for hard-disc drive read channel recovery with a

tunable corner frequency fc of 5 to 70MHz. While Willingham et al. [Wil93] proposed a monolithic

anti-aliasing filter with 10-bit linearity at around 8MHz for HDTV2, ADSL3 codecs utilizing analog

filters were reported by Phelps et al. [Phe00b] and Siniscalchi et al. [Sin01]. Finally, Murakawa et

al. ([Mur03]) describe an intermediate frequency bandpass filter (BPF) with a corner frequency of

455kHz for cellular phones and Python et al. [Pyt01] report an anti-aliasing lowpass filter with a

cutoff frequency of 45kHz targeted at the DECT4 standard.

Although "Filter design is one of the very few areas of engineering for which a complete design

theory exists, starting from specification and ending with a circuit realization" [Sed91a], these the-

ories neither necessarily lead to optimal filter designs nor are they easy to realize without profound

expertise. In other words, the design of high performance analog filters is a difficult and tedious

task, which could be facilitated considerably by proper design automation procedures. It is thus an

intriguing idea to shortcut the elaborate conventional design process by directly synthesizing analog

filter circuits on the transistor level by means of evolutionary techniques. In accordance with the

two long-term goals that have been specified in the introduction to this thesis, an improved successor

of the proposed FPTA-based evolution system may serve either in finding new, more efficient filter

architectures or may be used as a versatile piece of hardware that can be automatically configured

(e.g. via artificial evolution) to approximate the desired filter specifications for the task at hand. The

final configuration may also take into account or even exploit the nonidealities of the actual die that is

used as well as the electrical conditions the chip is to be used in, as for instance the output impedance

of the incoming signal or the load impedance the filter circuit is to drive. In order to appreciate the

difficulties inherent to such an endeavor as well as its potential impact, the two subsections of this in-

troduction will on one hand briefly summarize the conventional methodology for analog filter design

and on the other hand give a comprehensive overview of related work.

7.1.1 Conventional Design of Analog VLSI Filters in a Nutshell

7.1.1.1 LTI Systems

Formally, linear filters can be treated as LTI systems. Following the ideas presented in [Fli91a], an

LTI system can be described mathematically by an operation that transforms an input signal x(t) into

an output signal y(t) by means of

y(t) = T {x(t)} . (7.1)

2High Definition Television
3Asymmetric Digital Subscriber Line
4Digital European Cordless Telephone
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LTI system
h(t)δ (t)

(a)

LTI system: h(t)
x(t) y(t)

(b)

Figure 7.1: LTI system with (a) impulse and (b) arbitrary excitation.

This situation is also depicted in Fig. 7.1. While the linearity of this transformation allows one to

write

T

{ ∞∫

−∞

k(τ)x(t,τ)dτ

}
=

∞∫

−∞

k(τ)T {x(t,τ)}dτ , (7.2a)

for any suited real-valued function k(τ), the time-invariance is defined by the follwing equivalence:

y(t) = T {x(t)} ⇔ y(t− τ) = T {x(t− τ)} ∀ t,τ ∈ R . (7.2b)

If one denotes the impulse response of the LTI system by

h(t) = T {δ (t)} (7.3)

as is illustrated in Fig. 7.1(a), and expresses the input signal x(t) in terms of Dirac’s delta distribution

x(t) =

∞∫

−∞

x(τ)δ (t− τ)dτ , (7.4)

the following equation holds:

y(t) = T {x(t)} L
=

∞∫

−∞

x(τ)T {δ (t− τ)}dτ TI
=

∞∫

−∞

x(τ)h(t− τ)dτ = x(t)∗h(t) . (7.5)

It is worth noting that once the impulse response h(t) is known, the output of the LTI system can be

calculated for any input signal x(t).
Although (7.5) describes the behavior of the LTI system in the time domain, in which any physical

measurement is bound to take place, it is more convenient and natural for the analysis of frequency

selective filters to describe the system in terms of its frequency response. Adopting the notation of

[Lak94c], the output can be written in terms of the imaginary angular frequency jω5 by means of a

Fourier transform:

Y ( jω) = F{y(t)} =

∞∫

−∞

y(t)e− jωt dt . (7.6)

Exchanging y(t) by the convolution expression on the right hand side of (7.5) yields

Y ( jω) = F{y(t)} = F{x(t)∗h(t)} = X( jω)H( jω) , (7.7)

where the transfer function H( jω) is defined as the Fourier transform of the impulse response h(t):

H( jω) = F{h(t)} =

∞∫

−∞

h(t)e− jωt dt . (7.8)

5Following the conventions used in electrical engineering j ≡
√
−1 is used instead of i.
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Thus the transfer function can be calculated from the complex frequency response of the LTI system

and the spectral input signal:

H( jω) =
Y ( jω)

X( jω)
= M(ω)e jϕ(ω) with (7.9)

M(ω) = |H( jω)| and ϕ(ω) = arctan

(
ℑ[H( jω)]

ℜ[H( jω)]

)
. (7.10)

Typically, the magnitude response M(ω) is measured in dB:

G(ω) = 20 log10 M(ω)dB . (7.11)

Although the work presented in this chapter is restricted to the automatic synthesis of gain-shaping
filters, i.e. filters characterized by their magnitude response G(ω), the phase response ϕ(ω) or its

derivative the group delay

τ(ω) =
dϕ(ω)

dω
(7.12)

must be taken into account for many applications (see e.g. [Bak03]).

7.1.1.2 Abstract Filter Specification

The target specifications for the magnitude response of a filter can be formulated by a couple of

constants, whose meaning is illustrated in Fig. 7.2 for two types of filters, a lowpass and a highpass

filter (nomenclature and illustration follow those found in [Lak94c]). The frequency spectrum is

divided into the pass-, transition and stopband by means of fPB and fSB, where the former one is

identical to the corner frequency fc alias f-3dB if the allowed passband ripple δ amounts to 3dB. The

magnitude response of the filter is only allowed in regions shaded in white, i.e. must not deviate from

0dB6 by more than δ in the passband and must be attenuated by at least ASB dB in the stopband.

G(f) [dB]

f [Hz]fPB fSB

0

APB

ASB

Passband Stopband

Attenuation (ASB)

Transition

Band

ripple (δ )

(a) lowpass filter

G(f) [dB]

f [Hz]fPBfSB

0

APB

ASB

PassbandStopband

Attenuation (ASB)

Transition

Band

ripple (δ )

(b) highpass filter

Figure 7.2: Gain G( f ) specifications for (a) lowpass and (b) highpass filters.

6Without loss of generality a gain G( f ) = 1 is assumed for the desired filter.
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7.1.1.3 The Transfer Function and its Approximations

The design of an analog filter starts with translating the abstract set of specifications described above

into a suited transfer function H( jω). For ease of mathematical treatment, the complex angular

frequency jω is thereby generalized to the complex number s = σ + jω . Throughout the literature

(see e.g. [Gre86a], [Gei90b], [Mil87b], [Lak94d], [Fli91b], [Sed91b], [Mat]) the transfer function is

assumed to be a rational function7

H(s) =

M

∑
i=0

ais
i

sN +
N−1

∑
i=0

bisi

=

aM

M

∏
i=1

(s− zi)

N

∏
i=1

(s− pi)

, (7.13)

which is often restricted further by requiring M ≤ N. In this latter case, the filter order is defined by

N. Because of the fundamental theorem of algebra, the enumerator and denominator polynomials can

also be expressed by means of their complex roots allowing to write H(s) in terms of the rightmost

expression of (7.13). Accordingly, H(s) is fully characterized by the gain factor aM and its zeros

{z1, . . . ,zM} and poles {p1, . . . , pN}.
The designer now has to find a tradeoff between different possible design goals of the target filter.

Those goals are e.g. attenuation slope steepness, pass- and stopband ripple, phase linearity and filter

order. Since the latter one is strongly related to the resources needed to implement the filter, one

usually tries to minimize the filter order. Unfortunately it is impossible to find transfer functions

that satisfy/optimize all of the above requirements. Fortunately however, the designer can choose

from a large variety of tradeoffs between the different design goals. These filter approximations,

specified e.g. as rules to determine the necessary set of coefficients for the polynomials constituting

H(s), are compiled to tables found in the literature. Since the filter coefficients obtained from the

literature usually have to be adapted to the corner frequency and filter type of the problem at hand,

it is nowadays more convenient to access the filter approximations through software tools as for

instance MATLAB [Mat]. The most common filter approximations are listed in Table 7.1. Their

Attenuation slope Group Delay
Approximation Passband

in Trans. Region
Stopband

in Passband

Butterworth maximally flat modest steepness -20N dB/decade varying

Chebyshev equi-ripple steep -20N dB/decade varying

Inv. Chebyshev flat steep equi-ripple varying

Cauer (Elliptic) equi-ripple maximally steep equi-ripple varying

Bessel flat gradual slope -20N dB/decade maximally flat

Table 7.1: The most common filter approximations. The criteria they are optimized for are printed in bold.

respective benefits are a flat magnitude response in the passband (Butterworth), a steep attenuation

in the transition band (Chebyshev and Cauer) and a maximally flat group delay (Bessel). To further

illustrate the differences of these different filter approximations, their magnitude response and group

delay are depicted in Fig. 7.3 for the case of an LPF. The target specifications – fPB = 80kHz,

7While Oppenheim et al. (section 4.11.1 in [Opp83]) demonstrate that all systems characterized by linear constant-

coefficient differential equations possess a rational transfer function by means of a Fourier or Laplace transform, Fliege

[Fli91b] claims that this comprises most systems of technical relevance and Gregorian and Temes [Gre86a] argue that

as RLC networks are naturally described by such differential equations they in particular are included in the class of LTI

systems described by rational transfer functions.
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Figure 7.3: (a) magnitude response G( f ) and (b) gate delay for the five filter approximations enlisted in Table

7.1. The target specifications, which are indicated by the forbidden regions shaded in grey, are similar to

those of experiment 5 in section 7.3. The frequency range of the gate delay depicted in (b) is restricted to the

passband.

fSB = 200kHz, δ = 1dB, ASB = 40dB – are similar to those used for experiment 5 of the series of

LPF evolution experiments presented in section 7.3. The allowed region for the magnitude response of

Fig. 7.3(a) is colored in white The transfer functions of the Butterworth, Chebyshev and Cauer filter

approximations were calculated from the abstract specifications mentioned above using MATLAB

[Mat]. Thereby, the lowest possible filter order was used. For the calculation of the transfer function

of the Bessel filter, the same order and corner frequency as for the Butterworth filter are used. Note

that its magnitude response does not comply with the target specifications at the boundary between

pass- and transition band. The differences in the attenuation slopes can be seen from the different filter

orders required for the respective approximation characteristic. Due to the very gradual attenuation in

the transition band exhibited by Bessel filters, it is often beneficial to use a cascade of gain and phase

shaping filters to achieve the desired attenuation and phase linearity (cf. [Lak94c]).

7.1.1.4 VLSI Realizations

In order to realize the chosen transfer function as an analog circuit the designer must first decide

upon a viable implementation scheme and second find a suitable filter topology. Laker and Sansen

[Lak94c] identify three different implementation schemes, namely switched capacitors (SC), active

RC and Gm-C circuits. Recently, a fourth type referred to as Q-enhanced LC filters has been developed

to design analog monolithic RF8 filters using planar spiral inductors (see e.g. [Kuh03]). Important

criteria for the decision upon the best implementation scheme are the frequency band and corner

frequencies of interest, the versatility of the realized filter in terms of tunability of corner frequencies,

quality factors, filter type and approximation, the precision with which the target filter specifications

are likely to be met, the sensitivity to device variations and the set of analog performance goals defined

8Radio Frequency
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by THD9, noise figures, DR10, power consumption and dc offset. Some of the features, merits and

disadvantages of SC11, active RC and Gm-C filters are summarized below (cf. [Lak94e]):

Switched capacitor filters are best suited for general purpose applications in the lower frequency

range, as their power consumption increases with frequency and the necessary op amps need

a considerably higher UGB as the maximum bandwidth ( BW) of the filter because of their

oversampling nature. Since resistors and capacitors are composed of capacitors, the filter can

be designed such that its transfer function is only dependent on ratios thereof, which can be

designed to match well and should be insensitive to temperature variations. Thus, SC filters

can precisely match the desired transfer function without tuning and are relatively insensi-

tive to device-to-device variation. Moreover, they are not (significantly) impaired by parasitic

impedances of the utilized switches and capacitors. However, the limited UGB of the employed

op amps as well as clock feedthrough effects must be considered in the design of SC filters.

Finally, because of their sampling, time-discretizing nature, SC filters are infeasible for some

applications, as for instance for anti-aliasing or reconstruction filters.

Active RC filters are networks of op amps, capacitors and resistors. For commercially available

filter chips that use external resistors to program the filter functionality and define the transfer

function they may yield lower THD and noise figures than their SC counterparts, but are less

conveniently and flexibly configured (as can be seen from a comparison of the data sheets for

[Max96] and [Max02]). For monolithic CMOS implementations the main difficulty is to realize

resistors in the range of 10kΩ to at least tens of MΩ that are linear over a wide range of input

signals. In order to deal with the poor matching of capacitors and resistors, it is desirable to

retain a possibility of adjusting the resistor values. This can either be done by laser trimming

of resistors laid out in an extra resistive layer (e.g. polysilicon), or by using MOST-Rs12 as

resistors that can be auto-tuned by means of a bias voltage. While the former implementations

should achieve higher linearity, the latter ones can be stabilized against environmental changes

as e.g. that of temperature. Compared to the SC scheme, active RC realizations are better suited

to achieve a higher BW cost-effectively in terms of area and power consumption. Yet, they

are more sensitive to component variations and parasitics inherent to the used resistors and

capacitors and in case of using MOST-Rs are likely to exhibit higher nonlinearities.

Gm-C filters are usually composed of OTAs and capacitors. Here, the problem of linearity and match-

ing is shifted from the MOST-Rs to the transconductance amplifiers. Similar to the case of active

RC implementations, the poor matching of the OTA’s transconductances and the respective ca-

pacitor values requires auto-tuning schemes to achieve the desired transfer function. This can

be achieved by adjusting the transconductance values of the OTAs by changing their bias cur-

rents. Although Gm-C filters are sensitive to parasitics of the transconductance amplifier as

well as to component variations, they seem to be best suited if either high bandwidth, or low

power consumption or both is required ([Bak03], [Pyt01], [Mur03]), especially in low voltage

designs.

Circuit Topology. Once the implementation scheme is determined, the transfer function H(s) must

be translated into a suitable circuit topology. According to Laker and Sansen [Lak94c], [Lak94e]

there are two alternatives, namely cascades of biquadratical and bilinear (for uneven filter orders)

9Total Harmonic Distortion
10Dynamic Range
11Switched Capacitor
12Resistor implemented by means of MOS Transistors
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filter stages and active ladder topologies. A cascade of first and second order stages, if need be, further

connected by additional feedback loops, can be used to realize any filter characteristic ([Lak94c]). As

first and second order filter stages for all three of the abovementioned implementation schemes are

discussed in quite a few text books (see e.g. [Lak94c], [Sed91a], [Mil87c], [Gre86b]), the design

of cascaded topologies is considered to be easier and faster, albeit inferior to active ladder filters

([Lak94e]). Active ladder topologies are derived from passive, resistor terminated LC ladder filters by

exchanging the inductors with active components. Typically, a passive LC ladder filter must be chosen

from or designed with the aid of principles found in the literature first; subsequently, this LC ladder

topology has to be translated into an active circuit, which is often achieved using an intermediate type

of description referred to as SFG13. According to Laker and Sansen [Lak94e] active ladder filters are

less sensitive to device variations compared with cascaded designs and therefore recommended for

high performance implementations.

7.1.1.5 Overall Methodology

The overall methodology of active filter design may look similar to the following procedure:

Step 1 Define the filter design task in terms of an abstract magnitude and phase response and if

applicable further design goals as e.g. quality factor and overshoot in the step response.

Step 2 Determine a suited transfer function in terms of filter order and approximation.

Step 3 Use global constraints, such as target frequency range, power and area consumption as well

as analog performance goals such as noise, THD and DR to determine a suited implementation

scheme.

Step 4 Choose a topology (e.g. cascade/ladder, type of ladder, etc. ).

Step 5 Determine the necessary component values for passive components and derive the necessary

specification for active components as e.g. UGB of op amps or transconductance (range) of

OTAs.

Step 6 Specify necessary design support functions as for instance a clock generation subsystem and

anti-aliasing and signal reconstruction filters in case of an active SC implementation or the

auto-tuning system in case of the continuous time filter alternatives.

Step 7 Verify/optimize the overall system performance using abstract active building blocks.

Step 8 Design the low level active components.

Step 9 Verify/optimize system performance in a fully analog simulation including the analog perfor-

mance goals.

Step 10 Design the layout of the system.

Step 11 Verify the filter performance including the parasitic capacitances extracted from the layout.

Step 12 Verify/optimize yield and analog precision, for instance by means of Monte-Carlo simula-

tions.

13Signal Flow Graphs
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In addition to this already impressive list of design tasks, it is most likely that design goals are not

met in the first approach taken for some of the steps such that decisions taken earlier in the design

procedure have to be changed requiring to perform some of the steps more than once. With respect

to the complexity of the analog active filter design task it is an intriguing idea to directly exploit

the richness of a given analog substrate in an evolutionary loop to sidestep the various levels of

optimization necessary in conventional filter design. On the other hand, this complexity also renders

the task difficult and the emergence of near optimal filters based on transistor-level artificial evolution

rather unlikely.

7.1.2 Related Work

As frequency selective filters are amongst the most important analog circuits and as their design is

quite tedious, the spectrum of work related to the automatic synthesis thereof as well as to devices

programmable to host a variety of filtering and signal processing circuits is wide. The following

comprehensive collection is not meant to be exhaustive, but tries to present an overview pointing out

some of the achievements as well as shortcomings of the work reported to date with a twofold purpose:

First, it provides the context for the attempts presented in the remainder of this chapter; second, it may

be useful to guide future research in the field of automatic filter synthesis. Owing to the variety of

scopes, attempts and techniques presented a quantitative comparison is forgone. The publications

discussed here are (somewhat arbitrarily) organized in three main categories, namely more traditional

contributions from the field of analog design automation, work related to the hardware evolution

community using evolutionary techniques, and configurable frequency selective filter chips that can

be used to realize different filter types and responses.

7.1.2.1 Design Automation Tools Supporting Analog Filter Design

Owing to the complexity of the task that requires design decisions and optimization at different levels

of abstraction, three different approaches are summarized ranging from optimizing the transfer func-

tion to the synthesis of SPICE-simulatable netlists from an abstract set of specifications. Yet, none of

the approaches can be considered as the ultimate solution to the filter design problem.

In [DV99] Damera-Venkata and Evans report a framework of Mathematica and MATLAB code

that can be used to find near optimal transfer functions via SQP14. In their examples the authors

start from well-known filter approximations as for instance Butterworth filters and find new transfer

functions that trade off magnitude, phase and step response as well as the quality factor against each

other according to the user’s target specifications.

Doboli and Vermuri [Dob03] present a high-level synthesis method to create sized active RC filter

networks from SFGs. More precisely, the output is given as a netlist of resistors, capacitors and op

amps, together with the respective R and C values and a list of specifications that must be achieved by

the op amps. Thereby the ac behavior as well as the total silicon area consumption are optimized. The

authors claim that a combination of the proposed high-level synthesis and techniques for transforming

abstract filter specifications into a the necessary SFGs as e.g. presented by [Ant95] and of tools for the

automatic synthesis and layout of op amps resulted in a fully automated synthesis of analog filters.

Nevertheless, the proposed method is limited to the design of active RC filters, forgoes a minimization

of component/parasitic sensitivities, necessitates the design of suitable resistors and is also limited by

the fact that not all filter structures can be described in terms of SFGs.

Ray et al. [Ray02] propose a more comprehensive tool (BECAS 1.0) for the synthesis of Gm-C
filters: Taking abstract filter specifications, transfer functions or passive RLC prototypes as an input,

14Sequential Quadratic Programming
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the tool synthesizes a netlist consisting of standardized OTAs and sized capacitors and computes the

necessary bias currents for the OTAs. The synthesis is achieved by cascading elementary integrator

stages that possess a low component sensitivity and minimize the THD of the resulting filter. The

synthesis results are verified by means of SPICE simulations. The proposed tool offers the complete

synthesis from abstract specifications to a fully specified circuit. Yet, the procedure is restricted to

the synthesis of Gm-C filters, in particular to one type of Gm-C filter topologies and to the usage of

one special type of transconductance amplifiers. Moreover, the tool does not provide the possibility

to optimize for some of the second layer analog design goals as e.g. offset, noise, power and area

consumption. In this vein the distance to the optimal solution is not clear and depends largely on the

chosen topology and OTA circuit.

7.1.2.2 Hardware Evolution of Filters

Passive (RLC) Filters. Although passive RLC networks are not exactly active filters, they are of

interest in that they can be used for deriving active ladder topologies. Moreover, to date, the most

impressive results in hardware evolution of both, topology and component sizes for analog filters

are reported for RLC filters. This is due to the fact that the task of finding an RLC network to

satisfy a given filter task in an ideal simulation is easier than synthesizing an active circuit for the

same task for the following reasons: First, resistors, capacitors and inductors are ideally suited for

frequency selective filtering applications in that they are (in the simulation model) perfectly linear

and form exactly the small set of components to create any passive filters of. Second, their linearity

implies that candidate circuits can be evaluated quickly and precisely by means of an ac-analysis

and/or the computation of an analytical expression. Probably the first successful artificial evolutions

of RLC filters are reported by Koza et al. (see e.g. [Koz96c], [Koz96d]) [Koz99b], using genetic

programming. Further attempts based on GAs differing in their circuit representations are found in

[Loh99] and [Zeb98b], whereas Grimbleby ([Gri99], [Gri00]) employs a GA to generate new circuit

topologies in conjunction with a quasi-Newton optimization algorithm to determine the component

values. Using this hybrid approach, Grimbleby was able to find a solution to an asymmetric BPF

problem stated by Nielsen [Nie95] that is composed of less components than the solution reported

by Koza et al. in [Koz99c], [Koz96c] and [Koz96d] and even requires one component less than the

human design proposed by Nielsen.

Despite their success, all of the abovementioned approaches ignore the following problems in-

herent to the design of real discrete RLC filters: First, real RLC devices are restricted to a discrete

set of values. Second, for the design of real RLC filters, the parasitic capacitances (R,L) and resis-

tances (C,L) must also be taken into account. Finally, a realistic optimization must also include the

device-dependent spread and the different prices for different passive components to find cost and

performance optimal designs. The restriction to a discrete set of component values is taken into ac-

count by Zebulum et al. [Zeb00a] and Horrocks and Khalifa [Hor94]. In [Hor96] they extend this

concept to include parasitics ascribed to the different types of components. Yet, in both papers Hor-

rocks and Khalifa restrict the task to finding a set of suited component values for a given topology,

which severely facilitates the task.

Extrinsic Hardware Evolution of Active Filters. Opposite to the evolution of passive RLC filters,

none of the experiments targeted at the synthesis of topology and sizing of active filters that are

presented below achieves a transfer characteristic of industrial strength. Nevertheless, the evolution

of useful transfer characteristics for band amplifiers for AM radio receiver application are reported in

[Zeb99], [Zeb00b] and [Key00a]. The first publication by Zebulum et al. differs from the latter ones

from the group of Adrian Stoica in that the algorithm is allowed to use RLC components and BJTs and
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in that a linear unconstrained circuit representation is chosen. Conversely, the experiments presented

in [Zeb00b] and [Key00a] provide one to four cells of their FPTA-0 chip (cf.section 3.11) plus one

or more capacitors and feedback paths to the algorithm, which thusly has to deal with a constrained

genotype representation. Similar experiments aiming at the artificial evolution of BPFs are published

in [Sto01d] and [Sto02a], again by Stoica et al.. All of the abovementioned experiments solely base

their fitness evaluation on an ac-analysis.

Extrinsic Hardware Evolution of MOSFET-only Active Filters. The experiments published in

[Bot03] and [Vie04] relate even more closely to those presented in the remainder of this chapter, in

that they also restrict the set of possible components to CMOS transistors with in- and output resistors

being the exception. In the realm of analog filter design , this adds the principal difficulty of realizing

capacitors by CMOS transistors. As explained in section 1.2.2, a sufficiently large capacity can be

realized between gate and channel of the transistor if the voltage difference between gate and channel

keeps the transistor in strong inversion. This can be achieved by choosing a circuit topology that

requires only grounded capacitors (see e.g. [Hua97] or [Pav00]) or by explicitly biasing the voltages

across the MOS capacitor as for instance reported in [Lin00a]. Nevertheless, as the abovementioned

solutions require complex implementation schemes (active-RC and Gm-C), the restriction to MOSFET-

only circuits adds a severe complication to the task. For instance, the simplest way for an EA to

implement a lowpass behavior should be to use the resistive and capacitive features of the available

transistors to form an nth order passive RC filter as depicted in Fig. 7.4(a). In case of the highpass
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Figure 7.4: Schematic of an nth order passive RC LPF (a) and HPF (b).

filter equivalent illustrated in Fig. 7.4(b), this cannot be realized as easily since the transistor’s gate

capacity cannot be used without proper biasing.

Botelho et al. [Bot03] report the artificial evolution of an LPF and an HPF with a corner fre-

quency of 10 and 100kHz and a rolloff of about −40 and −20dB per decade, respectively. Vieira

et al. [Vie04] present similar experiments focusing on the artificial evolution of LPFs with different

passband gains of 0 and 40dB respectively. A filter circuit perfectly matching the 40dB of passband

gain could only be evolved by including a macromodeled 2-terminal amplifier, which lead to an LPF

with a rolloff of 20dB per decade. Yet, LPFs with passband gains of 22 and 37dB are reported to

have been found without any predefined amplifier. Botelho et al. as well as Vieira et al. verify their

LPF circuits to be linear in a range of almost 2V by means of a dc-analysis. On one hand, the results

are remarkable, as they require active amplification in case of the LPFs and to overcome the floating

capacitor problem. On the other hand, all the evolved active filters cited within this section share one

fundamental problem: In order to ensure their linearity over a finite range of input signals, a transient

analysis is mandatory. An ac-analysis linearizes the given circuit at an operation point established by

means of a dc-analysis, i.e. any nonlinearities are discarded and the input signal is assumed to be of

infinitesimal amplitude. The additional dc-analysis used to ensure the linearity of the evolved LPFs

published in [Bot03] and [Vie04] ignores any capacitive coupling and thus is likely not to hold for

any realistic time scale within the passband.
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Intrinsic Hardware Evolution of Active Filters. Most of the work published on intrinsic hard-

ware evolution ( HWE) of analog filters is restricted to parameter optimization. In their ground-

breaking work Murakawa et al. ([Mur98] and [Mur03]) successfully replace the common laser trim-

ming method typically used for calibrating high-performance IF15 BPFs by a GA-based calibration

procedure. Thereby, a total of 39 bias currents are fine-tuned with a precision of 3 bits to compensate

the device variations inherent to the production process. The calibration procedure has to be done

once for every produced die, takes a few seconds and uses an LSI16-tester. In comparison, the in-

trinsic HWE experiments reported by Sheehan et al. ([Flo00], [She02]) and Greenwood et al. [Gre04]

are less ambitious; both groups use commercial FPAAs as their hardware platform to evolve a given

filter behavior. Thereby, the role of the EA is restricted to controlling a few component values, like

resistances (Sheehan) or two gain factors and a capacitance (Greenwood). More precisely, Sheehan

et al. use a 2nd order Tow-Thomas architecture implemented on a TRAC chip (see [Zet99]) to find a

BPF characterized by its transient response. Greenwood et al. on the other hand, evolve the param-

eterization for a compensator that aims at restoring the original frequency response of a third order

LPF after an emulated degradation by a fault or aging process. Compensator as well as the actual

filter are implemented on a ispPAC10 chip (see [Lat00]). The fitness is evaluated by taking the mag-

nitude response at five different frequencies; the necessary test is supported by a signal generator and

a spectrum analyzer connected to the host PC via a GPIB17 interface and takes around 5sec.

To date18, experiments on the intrinsic evolution of analog filters including topology synthesis

have only been published by Stoica et al.. The experiments reported in [Key04], [Sto04] and [Zeb04]

aim at the intrinsic synthesis of LPFs and HPFs (the latter ones are only reported in [Zeb04]) on 10 cells

of the group’s FPTA-2 chip. Although not very carefully documented, the reader can conclude that the

fitness evaluation is based on the deviation of the magnitude response from the target specification,

where the magnitude response is measured at 1 and 10kHz. All frequency components above 1kHz

or below 10kHz are to be suppressed for the LPF and HPF task, respectively. The evolved filters are

reported to possess a maximum gain of 3.6dB and −3dB and a rolloff of about ∓14dB per decade

for the LPF and HPF, respectively. It is interesting to note that the frequency responses in terms of

rolloff and attenuation of the extrinsically evolved BPFs reported by Stoica’s group look much more

promising than those of the groups’s intrinsically evolved low- and highpass filters.

7.1.2.3 FPAAs Dedicated to Analog Filter tasks

The related work section closes with a small compilation of chips that can be used as analog frequency-

selective filters for a variety of specifications. This set, summarized in Table 7.2, can be divided into

three groups: Off-the-shelf programmable general purpose filters, commercially available FPAAs for

signal processing, and research prototypes of configurable filters and FPAAs published in the litera-

ture.

The first two examples from the group of off-the-shelf programmable filters are among those

offered on the website of Maxim19 [Max] that feature the largest corner frequencies. While the

MAX274 [Max96], an active RC filter, needs to be configured by four external devices, the SC-based

MAX262 [Max02] can be configured more conveniently by a microprocessor. As expected, the SC

based filter is not only more conveniently programmed, but also more versatile in terms of realizable

filter types and characteristics. However, the active RC filter on the other hand yields the better noise

15Intermediate Frequency
16Large-Scale Integration
17General Purpose Interface Bus
18and to the author’s knowledge.
19Maxim Integrated Products, Inc. is one of the leading vendors of analog devices.
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Group/ Filter Charac- Max. Max. Max. Operation

Part Types teristic Order f0[Hz] BW Principle
Remark Reference

Maxim LPF, active contin.

MAX274 BPFa variousb 8 100–150k 10 MHz
RC time

[Max96]

Maxim 4 per Switched can be

MAX262
All variousc

chip
1–140kd 1 MHz

Capacitor cascaded
[Max02]

chips [AND04],
Anadigm

All variousf 8 per ≤ 2Mg 2 MHz
Switched

can be [Ana],
AN221E04e chip Capacitor

cascaded [AN203]

Pankiewicz several

et al.
Allh varioush > 10

k–M
20 MHz Gm-C 40 CABsi [Pan02]

Pavan Butter- 60 M – cont.&

et al.
LPF

worth
4

350 Mj ???j Gm-C
time

[Pav00]

aBSF requires an additional external op amp.
bprogrammed by 16 external resistors.
cFor each second order section, Q and f0 can be selected with a resolution of 7 and 6 bits respectively.
d f0 is mainly defined by the external clock; fine tuning is possible by choosing the fclk/ f0 ratio.
eThe ANx2xE0x series available from Anadigm Inc. is not limited to conventional filtering tasks, but can be used for a wide

variety of analog signal processing applications.
fThe software AnalogDesigner2 allows to configure e.g. Butterworth, Chebyshev, inverse Chebyshev, Elliptic and Bessel

filters.
gThe corner frequency f0 can be varied from fclk/500 . . . fclk/10, with fclk ≤ 20MHz.
hThe actual limits and precision of approximations to the transfer function and filter types are not discussed in [Pan02].

However from the structure of the chip i, a wide variety of filter types and approximations is conceivable.
iA CAB consists of 1 programmable OTA (5 bits), one programmable capacitor (5 bits) and 12 switches.
jThe authors identify bandwidth with the f-3dB of their LPF. They present measurements up to 500MHz; Yet, any system

tends to exhibit a lowpass-like behavior for frequencies exceeding its bandwidth. It is not clear, if the concept yielded the

same bandwidths for other filter types as e.g. HPFs.

Table 7.2: A small selection of chips suited for filter applications.

and THD performance as well as a higher BW and is free of the artifacts inherent to discrete time

architectures.

The Anadigm AN221E04 [AN203] is among the best (in terms of analog performance and variety

of realizable circuits) commercially offered FPAAs dedicated to signal processing tasks. It is also

based on SC technology and like the MAX262 can be cascaded to form higher order filters. In

comparison to the MAX262 the AN221E04 seems to be more versatile, because apart from filtering

it also lends itself to a variety of signal conditioning and processing tasks. Maxim and Anadigm

offer software tools to support the designer in finding the best configuration for the filter task at hand.

The software offered for the Anadigm AN22XE0X series [AND04] is probably most convenient and

allows to configure the chip directly in the field.

Finally, Pankiewicz et al. [Pan02] and Pavan et al. [Pav00] propose an FPAA for filter applications

and an example implementation for a widely programmable high-frequency filter concept. Both im-

plementations are targeted at high bandwidths and thus are based on the Gm-C principle. The FPAA

reported in [Pan02] can in principle be configured to host any filter type and approximation. It con-

sists of 40 CABs20, which contain a programmable OTA, capacitor and 12 switches. The authors

claim that the BW of 20MHz could be considerably increased by migrating the design to a state of

the art submicron process technology. Another Gm-C-based FPAA concept featuring techniques and

20Configurable Analog Blocks



194 Chapter 7. Evolution of Filters

circuits similar to those proposed in [Pav00] is proposed by Becker et al. [Bec04]. The prospective

FPAA is dedicated to continuous-time filter applications with BWs up to 200MHz. Yet, this being a

concept at the time of writing, a verification in terms of concrete simulations or measurements of a

first prototype have to be awaited. The 4th order Butterworth LPF reported by Pavan et al. [Pav00] on

the other hand offers even higher BWs and can be configured to corner frequencies between 60 and

350MHz. Yet, filter type and characteristic are fixed.

In summary, field evolvable hardware chips for filter applications featuring BWs of around 1MHz

are not desperately needed, as commercially available FPAAs can be easily configured to a wide

variety of filter types and approximations with a precision and analog performance that seems to be

out of reach on medium time scales for FPTA-based solutions. For filter applications requiring a

BW of hundreds of Mega-Hertz, on the other hand, dedicated architectures based on a suited set of

building blocks seem to be unavoidable. The related work summarized above suggests that Gm-C
based CABs are to date the best technology for field programmable/evolvable high-frequency filter

chips. According to the detrimental parasitic effects introduced by analog switches it should be

beneficial to minimize the number of switches in such an FPAA design. This may be achieved by

realizing large parts of the configurability through programmable bias currents of generalized OTAs.

7.2 Evaluation of the Magnitude Response

One of the central issues of this chapter is to establish a method of evaluating the magnitude response

for a candidate filter circuit. Throughout all extrinsic HWE experiments cited in the above section,

the magnitude response has been realized by means of an ac-analysis, whose possible shortcomings

have already been discussed above. In case of intrinsic HWE different test methods are used: While

Sheehan [She02] directly extracts two parameters from the step response that sufficiently character-

ize his second order BPF, Greenwood et al. [Gre04] employ a sine wave generator together with a

spectrum analyzer to measure the attenuation for five different frequencies. The former approach is

not only inconvenient in terms of the statement of the problem, but also infeasible for unknown filter

orders. The latter approach, that is taking the Fourier transform of the filter’s response to a sinusoidal

input signal to find the magnitude response for the according frequency and that is not using exter-

nal devices connected via the prohibitively slow GPIB interface, bears some similarities to the third

method discussed below. Stoica et al. [Zeb04] also attain the magnitude response by using sine waves

of different frequency as an input; yet, they restrict their number to two and do not detail how the

magnitude is calculated from the filter’s output.

As it is not entirely clear which way of determining the magnitude response yielded the highest

analog precision or was suited best to support the success of the artificial evolution process, a total

of three different methods are proposed in the remainder of this section and their influence on the

results achieved for evolving different LPFs is studied in section 7.3. While the first approach utilizes

the Fourier transform of a step response, the second and third one excite the input with sine waves

of different frequencies. The according output is then either integrated over an integer number of

periods or Fourier transformed to determine the magnitude response.

7.2.1 M1: Transfer Function from the Step Response

Within the theoretical framework of LTI systems sketched in section 7.1.1.1, the transfer function

H( jω) can be calculated from the impulse response defined in (7.3) by means of the Fourier transform

of (7.8). However, since delta pulses are difficult to produce in reality, one has to resort to the step

response

g(t) = T {θ(t)} (7.14)
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to calculate the impulse response h(t):

h(t) = T {δ (t)} = T

{
d

dt
θ(t)

}
=

d

dt
T {θ(t)} =

d

dt
g(t) . (7.15)

Here, θ(t) denotes the Heaviside step function, whose relation to the delta distribution can be de-

scribed by:

δ (t) =
d

dt
θ(t) . (7.16)

As both, the input stimulus as well as the measured output voltage are sampled for N times in equidis-

tant time intervals of length T , one needs to find the discrete-time analogon to (7.15). For the tran-

sition from continuous time to discrete time systems, the following transformations for time t, fre-

quency f , Heaviside function θ(t) and delta distribution δ (t) are used:

t→ tn = nT → n and f → fk =
k

NT
with ω → ωk = 2π fk (7.17a)

θ(t)→ θ(n) =

{
1 if n≥ 0

0 if n < 0
(7.17b)

δ (t− τ)→ δ (n−m)≡ δnm =

{
1 if n = m

0 if n 6= m
. (7.17c)

Thus, again following the arguments of Fliege [Fli91c], the discrete version of the step response g(n)
can be written as

g(n) = θ(n)∗h(n) =
∞

∑
k=−∞

h(k)θ(n− k) =
n

∑
k=−∞

h(k) , (7.18)

which is derived from the discrete analogon to (7.5). In order to calculate the desired impulse response

h(n), we can rewrite (7.18) as

h(n) = g(n)−g(n−1) . (7.19)

In order to obtain the desired (discrete) transfer function HD( fk), the impulse response h(n) must be

transformed into frequency space. For the discrete and finite set of N output voltages {X0, . . . ,XN−1}
the Fourier transform of (7.8) thus has to be replaced by the DFT21 defined in appendix D.1 (cf.

[Fli91d]):

HD( fk)≡H( jωk) = FD(h(n)) =
N−1

∑
n=0

h(n)e−2π jk n
N for k = 0,1, . . . ,N−1 . (7.20)

The magnitude response in dB, MD( fk), is then obtained from (7.20) by:

MD( fk) = |HD( fk)| for k =

{
1,2, . . . , N

2
N even

1,2, . . . , N−1
2

N uneven
(7.21a)

GD( fk) = 20log10 MD( fk)dB . (7.21b)

In accordance with the Nyquist Theorem, the magnitude response is sampled at the frequencies fk =
0,1/(NT ), . . . ,1/(2T ) (if N is even), where MD( f0) denotes the dc component of the magnitude

response.

21Discrete Fourier Transform



196 Chapter 7. Evolution of Filters

Implementation. Since pre-studies revealed that the magnitude response obtained from the step

response is quite sensitive to high frequency noise, the software DarkGAQT allows to average h(n)
for M times before the Fourier transform is applied. Throughout all the experiments presented in

the remainder of this chapter M was set to 3. In order to allow the circuit to settle to its dc output

voltage, the step in the input voltage is applied approximately in the middle of the recorded sampling

time and all input samples before the input step are overwritten by zeros. A total of 3N zeros are

appended to the resulting vector of output voltages before it is transformed by means of (7.20), which

is achieved by means of the FFTW22 package [Fri03]. Here, this technique called zero-padding
effectively increases the density of frequency samples fk by a factor of 4 (see e.g. [But00] section 4.6

for an introduction to zero-padding). Only the first half of the resulting output vector of 2N frequency

components fk satisfying fk ≤ fNyquist ≡ 2/T are used to visualize GD( fk) and calculate the according

fitness contribution. Thus, the number of input samples equals that of the number of outputs and the

output signal is oversampled with a factor of 2 to suppress high-frequency noise and stay away from

possible artefacts close to the Nyquist frequency fNyquist.

The fitness belonging to the magnitude response obtained from the step response is calculated by

Fstep = POS +
N−1

∑
k=0

fk /∈ transition band

(GD( fk)−Gtar(k)
)2

w(k) with w(k) =
1

k + 1
. (7.22)

The weight factors w(k) are hard-coded and chosen to counterbalance the increasing density of sample

points relative to the absolute frequency fk. In order to force the prospective filter circuits to settle

their outputs to the input voltage in the dc case, (7.22) contains an additional penalty term

POS = 10

Nstep−1

∑
n=Nstep−50

(
Vout(n)−Vin(n)

)2
(7.23)

that quantifies the offset between in- and output voltage for the last 50 time steps before the actual

position of the input step, Nstep.

7.2.2 M2: Magnitude Response from the Mean Signal Power

In the last section the square root of the power spectrum was used to evaluate the magnitude response.

As will be shown below, this evaluation can also be approximated by calculating the ratio of the mean

power of the in- and output signals for sine wave inputs of different frequencies fk. Since the sine and

cosine functions are eigenfunctions of LTI systems that possess a real-valued impulse response h(t),
the response of such an LTI system can be described by a change in amplitude and phase. Thus, for

an input signal xk(t) with an offset xk = 〈xk(t)〉, described by

xk(t) = xk + Asin(ωkt) , (7.24)

the output of the LTI system can be written as

T {xk(t)} = yk(t) = yk + M(ωk)Asin(ωkt + φ(ωk)) , (7.25)

where yk denotes the dc offset: yk = 〈yk(t)〉= T {xk}. For the proof within the theoretical framework

developed so far, the reader is referred to appendix D.3, otherwise to chapter 3, pp. 99–103 in [Rup93].

22Fastest Fourier Transform of the West
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Now, integrating the ac contribution of the in- and output over one period of time Tk and calculating

the ratio thereof leaves one with:




Tk∫
0

(yk(t)− yk)
2 dt

Tk∫
0

(xk(t)− xk)2 dt




1/2

=




M2(ωk) A2
Tk∫
0

sin2(ωkt + φ(ωk))dt

A2
Tk∫
0

sin2(ωkt)dt




1/2

≡ MD(ωk) , (7.26)

where the subscript D is added to distinguish the measured, discrete set of points from the magnitude

itself as a property of the filter at hand. Being restricted to a finite set of N sampled data points,

MD(ωk) can be approximated by a summation and substituting t→ n
N Tk :

MD( fk) =




M2(ωk) A2
Nk−1

∑
n=0

sin2(ωk
n
N Tk + φ(ωk))

A2
Nk−1

∑
n=0

sin2(ωk
n
N Tk)




1/2

=




Nk−1

∑
n=0

(yk(n)− yk)
2

Nk−1

∑
n=0

(xk(n)− xk)2




1/2

. (7.27)

In the first step, the following relation is used to cancel the sums in the nominator and denominator:

N−1

∑
n=0

sin2
(

2π
n

N
+ φ

)
=

N

2
for {N |N ∈ N ∧ N > 2} . (7.28)

The derivation is given in section D.2 of the appendix.

Implementation. The data acquisition procedure used for this type of magnitude response evalu-

ation is illustrated in Fig. 7.5. For each frequency fk, k ∈ {1, . . . ,K}, m = 2 periods of a sine wave

Time [µs]

A
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p
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u
d
e
 [
V

]

← start measure ← new f measure ← new f measure
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1
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Figure 7.5: Principal idea of the stimulation for the ac-sweep based analyses: While the first period for each

sine wave featuring a new frequency f is provided for the filter circuit under test to tune in, the output is only

measured during the second period, shaded in gray.

are applied to the input. For the experiments presented in the remainder of this chapter, the sample

frequencies fk are logarithmically spaced spanning a range from 1kHz to 1MHz. For each decade

10 frequencies are tested resulting in a total of K = 31 different sine waves. The different sine waves

are concatenated in ascending frequency order such that the resulting input signal is continuous at the

frequency transition, albeit not differentiable. In order to allow the circuit under test to adapt to and
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process the new input signal, the output is recorded only during the second half (i.e. the second period

in this case) of the input pattern. The fitness according to the response to this logarithmic ac-sweep is

again calculated from the sum of squared deviations from the target behavior:

Facs =
K−1

∑
k=0

fk /∈transition band

(
GD( fk)−Gtar( fk)

)2
, (7.29)

where GD( fk) is again defined as the magnitude response MD( fk) in dB.

7.2.3 M3: Magnitude Response from Fourier Analyzed Sinusoidal Stimuli

Another way of analyzing the filter response to the sinusoidal input stimulus xk(t) of (7.24) is to apply

a Fourier transform and analyze the resulting frequency spectrum. With an additional phase offset ϑk

introduced for generality, the Fourier transform of the input signal is calculated to

Xk( jω) = F{xk(t)− xk} = A

∞∫

−∞

sin(ωkt + ϑk)e
− jωt dt

=
πA

j

[
e jϑk δ (ωk−ω)− e− jϑk δ (ωk + ω)

]
.

(7.30)

According to (7.7) the Fourier transform of the response of the LTI system can therefore be expressed

for the complex frequencies ± jωk by :

Yk(± jωk) = H( jω)Xk(± jω) = H( jω)
πA

j
e± jϑk δ (ωk∓ω) = ±πA

j
e± jϑk H(± jωk) . (7.31)

Again, assuming the transfer function h(t) to be real, one can use H(− jω) = H∗( jω) (see appendix

D.3) to find Yk(− jω) = Y ∗k ( jω). Hence, taking the absolute value of both sides of (7.31) yields

identical equations for both signs, namely

|H( jωk)| =
1

πA
|Yk( jωk)| , (7.32)

if one solves for |H( jωk)| to obtain the desired magnitude response.

Again, this theoretical result has to be transferred to the discrete world to be accessible by digital

computation. The input signal xk0
(n) then is described by

xk0
(n)−xk0

= Asin(ωk0
tn +ϑk0

) = Asin
(

2π
n

Nk0

k0 +ϑk0

)
with k0,Nk0

∈N ,
k0

Nk0

≪ 1 (7.33)

for n = 1, . . . ,mNk0
with m ∈N. That is, data is sampled for m periods of length Nk0

with a resolution

rk = Nk0
/k0. Accordingly, the Fourier transform of (7.30) is exchanged by a discrete one such that

the kth Fourier component Xk0
(k) can be written as

Xk0
(k) = Xk0

( fk) = F{xk0
(n)− xk0

} = A

mNk0
−1

∑
n=0

(xk0
(n)− xk0

)e
−2π jk n

Nk0

=
AmNk0

2 j
(e jϑk0 δ (k− k0)− e− jϑk0 δ (k + k0)) ,

(7.34)
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where the following relation is used:

1

Nk0

Nk0
−1

∑
n=0

e
2π jn k

Nk0 =

{
1 if k = 0,±Nk0

,±2Nk0
, . . .

0 otherwise

= δ (k) for 0≤ k < Nk0
.

(7.35)

Since both k and k0 ∈ {0, . . . ,Nk0
}, the discrete analogon to (7.31) becomes:

Yk0
(k) =

AmNk0

2 j
H(k)e± jϑk0 δ (k± k0) =

AmNk0

2 j
H(±k0)e

± jϑk0 , (7.36)

which collapses to one single equation if the absolute value is taken on both sides for any real h(t)
(with (D.15) in appendix D.3). Solving for |H(k0)| finally yields:

M(k0) = |H(k0)| =
2

AmNk0

|Yk0
(k0)| . (7.37)

As was already mentioned in section 7.1.1.1, the above relations only hold for LTI systems. In

other words, the above calculation is only valid insofar as the filter circuit under test indeed is linear.

As the components available on the FPTA are in general highly nonlinear, candidate circuits are

likely to show some nonlinear behavior. While the first two methods for evaluating the magnitude

response presented above fall short of quantifying this nonlinearity, the third method allows to do so

by taking into account the frequency components M(k), k 6= k0, which would ideally be equal to zero

for a perfectly linear circuit. Typically these harmonics are analyzed by means of the THD, which is

defined as the RMS sum of all harmonics divided by the RMS amplitude of the fundamental frequency

M(k0) (see [All02d], pp. 221):

THD =
1

|M(k0)|

Nk0
/2

∑
l=2

√
M2(lk0) , (7.38)

where M(k0) represents the fundamental component of the sinusoidal input. Practically, only the first

4 to 9 harmonics are included in the THD of (7.38) (see e.g. [Max01], [Kes03], [Jou03]), which reflects

the observation that harmonics of higher orders do not contribute significantly for systems, which

closely resemble their linear ideal. A more thorough account of all recorded Fourier components

except the dc one is given by the THD+N23 (cf. e.g. [Kes03], [Car01]):

THD+N =
1

|M(k0)|

mNk0
/2

∑
k=1
k 6=k0

√
M2(k) . (7.39)

The distinction between THD and THD+N is based on the assumption that the noise is present in

all frequency components, whereas the distortion effects are only exceeding the noise level by a

significant amount for the first couple of harmonics of the input tone.

Implementation. The test pattern used for the Fourier-analyzed sinusoidal response resembles that

one for the analysis of the mean signal power described in section 7.2.2: The input tone is applied for

2m periods, of which only the last m periods are used for the Fourier analysis. Yet, each frequency fk0

is tested in a separate test mode. Moreover, the number of fundamental frequencies is reduced to six

23THD + Noise
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(instead of 31), half of which are distributed logarithmically spaced in the pass- and in the stopband,

respectively. The number of periods subject to the Fourier analysis is kept to a minimum satisfying

the condition mNk0
≥ 100. The constraint k0/Nk0

≫ 1 for the number of samples per period in (7.33)

is satisfied as k0/Nk0
≥ 20, where ’=’ is reached only for fk0

= 1MHz and k0/Nk0
≥ 100 is sought for

all fk0
for which the maximum sampling rate of 20MHz suffices.

The resulting fitness criterion

Facs+d = Pdist +

Kk0
−1

∑
k0=0

(
G(k0)−Vtar(k0)

)2
w(k0) (7.40)

consists of two main parts, namely a penalty term Pdist that captures the amount of harmonic distor-

tion and dc-offset and the sum of quadratic deviations from the desired magnitude response. Again,

w(k),k ∈ {0,1, . . . ,mNk0
} denote a set of weight factors. Apart from the way the magnitude responses

are obtained and the number thereof, the second summand is identical to the fitness functions Fstep of

(7.22) and Facs of (7.29). The penalty term is based on the expression for THD+N in (7.39), albeit, in

its general form, includes the dc component of the Fourier transform:

Pdist =

Kk0
−1

∑
k0=0

mNk0

∑
k=1
k 6=k0

θ
(
G(k)−Vtar(k)

)(
G(k)−Vtar(k)

)2
w(k) . (7.41)

The penalty distortion term Pdist differs in two additional regards from the expression for THD+N in

(7.39): First, opposite to the definition of THD+N, Pdist is based on the magnitude response in dB,

G(k0). Second, only those contributions are added that exceed a predefined target distortion Vtar(k),
which is set to −40dB for the experiments presented below, and third, only the deviation from this

target distortion suppression is regarded, such that the Pdist = 0 if all but the fundamental frequency

component remain below Vtar.

In order to quantify distortion and magnitude response separately by means of M3 in a unique

fashion for filter circuits evolved with either of the three proposed methods M1 to M3, two additional

test modes are derived from M3 and added to the verification tests. Both test modes are based on the

same test pattern used for evaluating Facs, which is described in section 7.2.2. The fitness contribution

Facsf capturing only the quality of the magnitude response is described by

Facsf =

Kk0
−1

∑
k0=0

(
G(k0)−Vtar(k0)

)2
w(k0) , (7.42)

which possesses the same structure as Facs+d defined in (7.40), except for the missing penalty term

Pdist. The values for the magnitude response in dB, G(k0), are again taken as the according frequency

components of the Fourier transform of the input tone of frequency fk0
. The expression for the addi-

tional distortion measure is related more closely to the THD+N defined in (7.39) and hence different

from the penalty factor Pdist used in (7.40):

Fdist =
K0−1

∑
k0=0

θ
(
THD+N(k0)−Vtar(k0)

)
THD+N(k0) with (7.43)

THD+N(k0) = 10log10

(Nk0
/2

∑
k=1
k 6=k0

|Hk0
(k)|2

)
, (7.44)

where only those terms contribute that exceed the target maximum THD+N that can be tolerated. In

the according experiments presented in the remainder of this chapter, Vtar(k0) is set to −40dB.
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7.2.4 Noise Floor

The evolution and test of filter circuits requires the correct determination of the magnitude response

in both, the pass- and the stopband. The maximum stopband attenuation that can be measured for

real circuits depends on the amount of noise and distortion introduced by the measurement system.

However, as will be shown below, the noise floor varies for the three different methods of establishing

the magnitude response. In order to simplify the analysis, the discussion is restricted to white noise

r(t) with a mean 〈r(t)〉 = 0. After the analog to digital conversion, the noise is given as a discrete

time series r(n),n = 0, . . . ,N−1. Thus its power density is approximated by

r0
2 ≡

〈
r2(n)

〉
=

1

N

N−1

∑
n=0

|r(n)|2 ≈ 1

T

T∫

0

|r(t)|2 dt =
〈
r2(t)

〉
. (7.45)

In order to compare the mean noise contribution to each of the frequency components in the recorded

spectrum, Parseval’s relation, defined in (D.2) in section D.1.1, can be used to calculate the mean

noise power in frequency space:

R0
2 ≡

〈
R2(k)

〉
=

1

N

N−1

∑
k=0

|R(k)|2 Parseval
= N · 1

N

N−1

∑
n=0

|r(n)|2 = N
〈
r2(n)

〉
, (7.46)

where R(k) denotes the discrete Fourier Transform of r(n) at frequency fk. Due to the linearity of

the Fourier transform, the frequency spectrum of the measured output signal y(n) = s(n)+ r(n) – the

sum of noise r(n) and ideal signal s(n) – can be written as:

F{y(n) = s(n)+ r(n)} = S(k)+ R(k) for n,k = 0, . . . ,N−1 . (7.47)

Therefore, the noise contributions encountered in the applications of methods M1 and M3 can be

studied independently of the actual desired signal. Since R(k) is independent of frequency, its expec-

tation value defined in (7.45) can be used to describe R(k) and due to its probabilistic nature, it must

be used in (7.47).

For the quantitative analysis, the noise r(n) is assumed to be uniformly distributed with a max-

imum amplitude of ±1/2 ·VLSB and VLSB = 5V/2neff , where the effective number of bits neff is

bound to lie between the effective number of bits measured for the respective sample frequency

ENOBS( fsample)
24

and the resolution of the conversion device, that is neff = 16 for the noise generated at the input

of the circuit rin and neff = 12 for the quantization noise encountered in the final analog-to-digital

conversion. According to Allen and Holberg ([All02b], chapter 10.1, pp. 616) the mean noise power

for a uniform distribution is described by:

rRMS =
√

r2 =
√
〈r2(t)〉 =


 1

T

T∫

0

|r(t)|2 dt




1
2

=
VLSB√

12
=

5V√
12 neff

. (7.48)

7.2.4.1 Noise for Method M1

The evaluation procedure of method M1 is illustrated in the block diagram of Fig. 7.6: The ideal input

step u(n) = θ(n) is deteriorated by the input noise rin(n) generated in the digital-to-analog conversion

and the analog input circuitry used for its further preparation. The step response of the filter circuit

24Between 7.5 and 8.8 ENOBS have been measured for sufficiently low frequencies depending on the system
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h(n)
u(n)

rin(n)

hz’’(n)
g’’(n) + 0...0

rout(n)

u’(n) g’(n) g’’(n) h’’(n)
e(n) = δ (n) − δ (n−1)

filter

under test
discrete filtering zero−padding

Figure 7.6: Data path for experiments using method M1 to establish the magnitude response.

under test is sampled and buffered by the analog output circuitry before it is finally converted back

to the digital domain. The accompanying noise contribution are summarized by rout(n). This proce-

dure is repeated three times and the resulting step responses g′′(n) are averaged, which is omitted in

Fig. 7.6. The discretized signal is then subjected to the operation described by (7.19), which can be

treated as a discrete linear filter with an impulse response

TE{δ (n)} ≡ e(n) = δ (n)−δ (n−1) . (7.49)

Finally, 3N zeroes are appended at the resulting impulse response h′′(n) before it is Fourier trans-

formed to yield the transfer function H ′′z (k).
Mathematically, the above procedure can be described by the following equation:

y(n) ≡ h′′(n) = e(n)∗
[
rout(n)+ h(n)∗

(
x(n)+ rin(n)

)]
, (7.50)

where the averaging over three measurements and the zero-padding are omitted. To obtain the sought

transfer function, the Fourier transform is applied to (7.50), . If the input is excited by a step function

this results in:

H ′′(k) = F{h′′(n)}
= F{e(n)∗ rout(n)}+F{e(n)∗h(n)∗ x(n)}︸ ︷︷ ︸

H(k) for x(n)=θ (n)

+F{e(n)∗h(n)∗ rin(k)}

x(n)=θ (n)
= H(k)+ E(k)Rout(k)+ E(k)H(k)Rin(k) .

(7.51)

Compared to the output noise contribution E(k)Rout(k), the contribution stemming from the noise

affecting the input signal E(k)H(k)Rin(k) is weighted with the according frequency component of the

filter under test H(k). Therefore, in the critical frequency regime of the stopband, in which the small-

est frequency components of the transfer function have to be detected, the input noise is suppressed

by the attenuation ASB, such that its contribution to H ′′(k) is negligible compared to that one caused

by the noise encountered in sampling the circuit’s output. Thus, (7.51) can be approximated by:

H ′′(k)≈ H(k)+ E(k)Rout(k) ≡ H(k)+ R′′out(k) . (7.52)

To further qualify the noise contribution R′′out(k), the magnitude response of the digital post-

processing operation TE has to be calculated. Therefore, a DFT is applied to the impulse response

e(n) defined in (7.49):

E(k) = F{e(n)} = F{δ (n)−δ (n−1)}

=
N−1

∑
n=0

(
δ (n)−δ (n−1)

)
e−2π j kn

N

= 1− e−2π j k
N = e−2π j k

2N
(
e2π j k

2N − e−2π j k
2N

)
= 2e−2π j k

2N sin
(

2π
k

2N

)
,

(7.53)
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which yields the following formula for the magnitude response of the post-processing filter:

|E(k)| = 2sin
(

2π
k

2N

)
. (7.54)

The magnitude response |E(K)| is plotted twice in Fig. 7.7: For one, against a normalized frequency

k/(N/2) in Fig.7.7(a) and for the other against a logarithmic axis denoting the real frequencies fk

in Fig.7.7(b). The latter plot contains the values of |E(K)| at four particularly interesting frequen-

Frequency k/(N/2)

|E
(k

)|

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

(a) linear

|E(10 k)|=0.03 →

|E(80 k)|=0.25 →

|E(200 k)|=0.62 →

|E(500 k)|=1.41 →

Frequency f
k
 [kHz]

|E
(k

)|

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

(b) logarithmic

Figure 7.7: Magnitude response |E(k)| of the digital post-processing applied to the step response recorded for

method M1. (a) depicts (7.54) on a linear normalized frequency axis and (b) plots |E(k)| versus the correspond-

ing real frequency fk.

cies fk, namely at 10kHz and 80kHz, which span the range of passband edges used for the different

LPF experiments, at the stopband edge located at 200kHz and at 500kHz, the end of the frequency

spectrum considered. The discrepancy between the plot stretching to 1MHz and the maximum fre-

quency used for the evaluation is due to the fourfold zero padding indicated in Fig. 7.6: The N = 500

samples are inflated to 2000 by appending 1500 zeros and Fourier transformed to yield 4N/2 = 1000

frequency samples below the Nyquist frequency. These H ′′z (k) are finally truncated after the 500th

sample. Accordingly, |E(k)| does not exceed
√

2 for all frequencies considered and amounts to about

1 on average throughout the stopband. In the passband on the other hand the magnitude of the post-

processing filter is bound to be less than 0.25.

Due to the highpass characteristic of E(k), the output noise R′′out(k) this is more harmful for the

evaluation of the magnitude response of LPFs than for that of HPFs. In case of HPFs, the smallest

frequency components of H(k) occur at low frequencies, where the noise contribution of Rout is also

suppressed by E(k). For the experiments presented in section 7.5 the stopband edge is set to 10kHz,

such that E(k) < 0.03. For LPFs on the other hand E(k) ranges from 0.62 to
√

2. In the latter case,

the noise floor in the stopband can thus be estimated by:

R′′out = E(k)
1√
3

Rout ≤
√

2

3

√
N 〈r2(n)〉 =

√
2

3

√

N
V 2

LSB

12

=

√
N

18

5

2neff
=

{
−43.83dB for neff = 12

−19.75dB for neff = 8
,

(7.55)

where N = 500 is used, because the zero-padding does not affect the result except for the scaling of

E(k) already accounted for in the factor
√

2. The mean output noise power Rout is weighted by a
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factor of
√

3, because the step response is averaged over three measurements. As small signals of the

order of R′′out and below cannot be resolved, the stopband attenuation ASB = 40dB sought in the LPF

experiments is on the edge of the theoretically achievable accuracy that is only limited by the finite

resolution of the analog-to-digital conversion. For the stopband of the prospective HPF evolved in

section 7.5, the mean noise contribution R′′out improves by at least 20 · log10(0.03/
√

2) = −33.47dB

such that R′′out ≤ 53.22dB is achieved for an effective resolution of only neff = 8 bits.

7.2.4.2 Noise for Method M2.

The situation for evaluating the magnitude response according to either of the methods M2 and M3 is

illustrated in Fig. 7.8; in both cases the input signal x(n) is described by (7.24). For method M2 the

h(n)
x(n)

rin(n) rout(n)

x’(n) y’(n) y’’(n)

Figure 7.8: Data path for experiments using method M2 or M3 to establish the magnitude response.

magnitude response is calculated by (7.27), which can be simplified to

M′′D
2
( fk0

) =




Nk0
−1

∑
n=0

ỹ′′k0

2
(n)

Nk0
−1

∑
n=0

(xk0
(n)− xk0

)2




1/2

=

√√√√ 2

NA2

Nk0
−1

∑
n=0

ỹ′′k0

2
(n) , (7.56)

by means of (7.28). Here, the measured output voltages consist of the following contributions:

ỹ′′k0
(n) = y′′k0

(n)− y′′k0
= yk0

(n)− yk0
+ rk0

(n)− rk0
= yk0

(n)− yk0
+ rk0

(n)

= h(n)∗ (xk0
(n)− xk0

)+ h(n)∗ rin(n)+ rout(n) = ỹk0
(n)+ h∗ rin(n)+ rout(n) .

(7.57)

Inserting ỹ′′k0
(n) from (7.57) into (7.56) yields:

M′′D
2
( fk0

) =
2

NA2

Nk0
−1

∑
n=0

ỹ2
k0

(n)+
2

NA2

[
Nk0
−1

∑
n=0

(
(h∗ rin(n))2 + r2

out(n)
)

(7.58a)

+

Nk0
−1

∑
n=0

2 ỹ2
k0

(n) h∗ rin(n)

︸ ︷︷ ︸
≈0

+

Nk0
−1

∑
n=0

2 ỹ2
k0

(n) rout(n)

︸ ︷︷ ︸
≈0

+

Nk0
−1

∑
n=0

2h∗ rin(n) rout(n)

︸ ︷︷ ︸
≈0

]

If rout and rin is noise with a uniform or Gaussian distribution and a vanishing mean, the three sums of

the second line will converge to zero for taking Nk0
to infinity. Though this does not hold for finite Nk0

in a strict sense, the summands are nevertheless assumed to be small enough to be neglected. (7.58a)

can be simplified by using (7.27) for the first summand and Parseval’s relation (D.2) for the second

one:

M′′D
2
( fk0

) ≈M2
D( fk0

)+
2

N2A2

Nk0
−1

∑
k=0

|H(k)|2 |Rin(k)|2 +
2

NA2

Nk0
−1

∑
n=0

r2
out(n) . (7.58b)
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Replacing |Rin(k)|2 and r2
out(n) by their expectation values and again obeying Parseval’s relation from

(D.2) leads to

M′′D
2
( fk0

) ≈M2
D( fk0

)+
2

A2

〈
r2

in

〉 1

N

Nk0
−1

∑
k=0

|H(k)|2 +
2

A2

〈
r2

out

〉
(7.58c)

= M2
D( fk0

)+
2

A2

〈
r2

in

〉〈
|H(k)|2

〉
+

2

A2

〈
r2

out

〉
. (7.58d)

Due to the integrating nature of (7.27), which defines the components of the magnitude response,

input noise Rin(k) is not suppressed by the according component of the filter’s transfer function H(k)
as found for method M1, but rather weighted by its mean energy density

〈
|H(k)|2

〉
. The latter one

however can only exceed one, if the filter is to amplify the frequency components in the passband. For

the proposed fitness criteria used for the LPF and HPF experiments described below, the filter’s mean

energy density
〈
|H(k)|2

〉
is bound to be smaller than one. Since the mean input noise power

〈
r2

in

〉
is

expected to be of the same size25 as the output noise power r2
out, the total noise can be estimated as

follows:

Rk0
=

√
M′′D

2( fk0
)−M2

D( fk0
) =

√
2

A2

〈
r2

in

〉
〈|H(k)|2〉 + 2

A2

〈
r2

out

〉

≤ 2

√〈
r2

out

〉
= 2

√
V 2

LSB

12
=

1√
3

5

2neff
=

{
−38.96dB for neff = 8

−63.04dB for neff = 12

. (7.59)

7.2.4.3 Noise for Method M3

Since Method M3 uses the same input stimulus for evaluating the magnitude response as method M2,

the block diagram of Fig. 7.8 as well as (7.57) apply in this case, too. Therefore, to estimate the noise

floor present in the magnitude response spectra obtained by method M3, one has to plug the Fourier

transform of (7.57)

Ỹ ′′k0
(k) = Ỹk0

(k)+ H(k)Rin(k)+ Rout(k) , (7.60)

into (7.37):

M̃′′k0
(k) =

2

AmNk0

|Ỹ ′′k0
(k)| =

2

AmNk0

|Ỹk0
(k)+ H(k)Rin(k)+ Rout(k)| , (7.61)

where (7.37) is evaluated for all k = 1, . . . ,Nk0
and not only at k0 to account for the noise in the

harmonics of fk0
used to evaluate the THD. Being interested in the noise floor only, the further

analysis is restricted to the latter two summands in (7.61) constituting the total noise contribution

R′′k0
(k) in frequency space:

R′′k0
(k) =

2

AmNk0

|H(k)Rin(k)+ Rout(k)| , (7.62a)

where the total number of regarded samples amounts to m periods of Nk0
samples. The above expres-

sion can be evaluated by replacing Rin(k) + Rout(k) by their respective RMS averages

R′′k0
(k) =

2

AmNk0

∣∣∣∣H(k)
√〈

R2
in

〉
+

√〈
R2

out

〉∣∣∣∣ , (7.62b)

25Actually, the quantization noise of the 12-bit ADC clearly exceeds that one of the 16-bit DAC; the analog circuitry used

to sample and amplify the signal on the chip consists of similar circuits for the in- and output signal and the differences

in the off-chip analog circuitry are not as severe as to justify a separate treatment of in- and output noise.
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which are subsequently replaced by their counterparts in the time domain by means of Parseval’s

relation defined in (D.2):

=
2

AmNk0

∣∣∣∣H(k)
√

mNk0

〈
r2

in

〉
+

√
mNk0

〈
r2

out

〉∣∣∣∣ (7.62c)

=
2

A
√

mNk0

∣∣∣∣H(k)
√〈

r2
in

〉
+

√〈
r2

out

〉∣∣∣∣ . (7.62d)

Similar to method M1, but unlike method M2, the input noise 〈r2
in〉 is suppressed with the magnitude

of the according frequency component of the transfer function of the filter under test, H(k). However,

in the experiments presented in the remainder of this chapter |H(k)| can be assumed to be smaller

or equal to 1, and is thus approximated by 1, because (7.62d) is used to estimate the noise floor for

all frequency components fk, independent of the fundamental frequency fk0
of the input tone. To

quantify the total noise R′′k0
(k), the mean in- and output noise power are estimated by rRMS defined in

(7.48):

R′′k0
(k) ≤ 2

A
√

mNk0

√
2

VLSB√
12

=

√
2

3

1

A
√

mNk0

5V

2neff

≤
{
−48.96dB for neff = 8

−73.04dB for neff = 12
,

(7.63)

7.2.4.4 Comparison of the Different Noise Floors for Methods M1-M3

The results of the noise floor calculations are summarized in Table 7.3. First, a comparison of the

Meth. Equ. RMS noise power neff = 8 neff = 12

M1 (7.55) R′′out ≈ E(k) 1√
3

√
N 〈r2(n)〉 −19.75dB −43.83dB

M2 (7.59) Rk0
≈

√
2

A2

〈
r2

in

〉
〈|H(k)|2〉 + 2

A2

〈
r2

out

〉
−38.96dB −63.04dB

M3 (7.62d) R′′k0
(k) ≈ 2

A
√

mNk0

∣∣∣H(k)
√〈

r2
in

〉
+

√〈
r2

out

〉∣∣∣ −48.96dB −73.04dB

Table 7.3: Comparison of the noise floor equations and values achieved by the three different methods of

establishing the magnitude response, M1–M3. The numerical values for different ENOBS can be calculated by

adding 6.02dB for each additional bit.

formulas for the RMS noise power reveals that the noise picked up in the procedure M1 increases

with
√

N, that of M2 is independent and that of M3 decreases with
√

mNk0
. Therefore, the noise floor

can be lowered by decreasing the sample size for method M1 and increasing the number of sampled

periods m in case of method M3. While the latter one can easily be realized by spending more time

for the evaluation of the filter’s magnitude response, the former decrease in sample size necessarily

reduces the bandwidth of the measured frequency spectrum at the lower end. Considering that because

of the magnitude response of E(k), the noise floor of M1 is fairly good, the measurement could be

divided into two parts to account for the higher frequencies with a smaller number of samples. Second,

the noise floor for the situation at hand is considerably lower for methods M2 and M3 compared to that

of M1, which is due to the abovementioned dependencies on the number of samples. In principle, this

implies that – at least for LPFs – M3 is the method of choice to obtain a reliable magnitude response at
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higher frequencies. However, the net-effect may be less significant as the numbers suggest: Methods

M2 and M3 employ sine tones sampled at frequencies up to fsample = 20MHz for the components

beyond 200kHz. This certainly entails a decrease in the precision of the analog in- and output circuitry

neff, which increases the according noise floor values. For instance, for a decrease of neff by 2 bits,

the distance between the noise floor of M1 and M3 would decrease from about 29dB to only 17dB.

7.2.5 List of All Test Modes

While the third method M3 for evaluating the magnitude response of the circuit under test offers

a possibility to quantify its nonlinearities in terms of its harmonic distortion, the methods M1 and

M2 are merely based on the assumption that the evaluated filters are (sufficiently) linear and time

invariant, they do not provide any means of measuring or even controlling linearity. Therefore, an

additional test mode is added for the experiments based on method M1 and M2: A simple transient

analysis of a sinusoidal input tone

Vin(n) = 2.5V + Asin
(

2π f
nT

N

)
with 0≤ n < N (7.64)

with frequency f = 1.67kHz and amplitude A = 1.5V is used to test in how far the filter under test

deteriorates the output signal compared with the (ideal) input signal in the passband. The test pattern

is restricted to one period, sampled in N = 100 time steps, only, but a total of 20 time steps is used to

allow the circuit to adapt to the mean input voltage level of 2.5V. The amplitude A of the input tone

is chosen to be larger than the excursion used for the ac-sweep and the step response (1.5V instead of

1V) to force the filter to be linear over a larger range of input voltages in the passband. The according

fitness contribution is simply described by the sum of squared deviations

Ftrans =
Ntrans

∑
n=0

(
Vout(n)−Vtar(n))2 , (7.65)

where Vtar(n) = Vin(n) describes the target response of the filter in the passband, namely a gain of

0dB and no phase shift.

The complete set of test modes used in the experiments presented below are summarized in Table

7.4. The 20 test modes can be divided into three classes by their purpose indicated by the according

column. While only a fraction of them is used during the evolution, others are used to further specify

the circuits in the verification test and enable comparisons between different experiments and experi-

ment series. Although not all of the test modes labeled with illustration are used for the plots shown

in the results sections, they are all included in the table for reasons explained in the next section.

In case of evaluating the magnitude response by means of a step response (method M1), two

test modes are used to provide steps from 2.5V down to 1.5V as well from 2.5V up to 3.5V. On

one hand, this increases the sampled input compliance, on the other hand it imposes further pressure

on the linearity of the prospective circuits under evolution. In general, if not stated otherwise, the

amplitude of all sinusoidal input tones is set to 1V and the starting and mean dc voltage is always

kept at 2.5V.

Opposite to the abstract filter specification in section 7.1.1.2, the fitness criteria evaluating the

magnitude response do not allow any passband ripple δ . However, for small values, say δ ≤ ±1dB,

the according error contributions are small and thus not expected to mislead the EA. The exact

composition of fitness criteria and figures of merit from the ensemble of test modes as well as a further

motivation of those not yet discussed are delayed to the description of the respective experimental

setups.
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No. Description Name Equation Purpose Weighta Ntotal

1 Distortion: Fourier-analyzed ac-sweep Fdist (7.43) verification 0.5 24693

Magnitude response: Fourier
2

analyzed ac-sweep
Facsf (7.42) verification 0.5 24693

M2: Magnitude response: mean
3

signal power, ac-sweep
Facs (7.29) evolution 0.5 24693

4 Trans. resp. for ac sweep – illustration – 24693

Magnitude response: mean signal
5

power, criterion of experiment 5b Facs (7.29) verification 0.5 24693

6 Transient response, 625kHz sine tone – illustration – 201

7 Transient response, 822Hz sine tone – illustration – 201

8 Transient response, 1.67kHz sine tone Ftrans (7.65) evolution 10 20+100

9 M1: Step response: 2.5V→ 1.5V Fstep↓ (7.22) evolution 1 500

10 M1: Step response: 2.5V→ 3.5V Fstep↑ (7.22) evolution 1 500

Step response: 2.5V→ 1.5V
11

criterion of exp. 5b Fstep↓ (7.22) verification 1 500

Step response: 2.5V→ 3.5V
12

criterion of exp. 5b Fstep↑ (7.22) verification 1 500

13 Trans. resp. for step: 2.5V→ 1.5V – illustration – 500

14 Trans. resp. for step: 2.5V→ 3.5V – illustration – 500

M3: Magn. resp. + distortion: Fourier
15-20

analyzed ac-sweep, 6 different fk0

Facs+d (7.40) evolution 1 201-331

aWeight refers to the global weight/scaling of the respective fitness contribution. Test modes 9-12 and 15-20 possess

additional weights for their different frequency components as discussed above and below, respectively.
aThe transition band is the narrowest for experiments of type exp. 5. It stretches from 80 to 200kHz (cf. section 7.3.1).

Table 7.4: List of all test modes used during the artificial evolution and/or for verification tests.

7.2.6 Randomization for Time-Dependent Experiments

For quasi-dc hardware evolution experiments it has been demonstrated in 5.3 on page 141 that the

unwanted exploitation of the temporal order of the test pattern can be avoided by randomizing the

input data. This, of course, is impossible for time-dependent tasks. Nevertheless, the optimization

algorithm may find fake solutions that rely on a particular state of the circuit – e.g. a special type

of charge distribution – produced by a previously test or tested circuit that will not automatically

emerge or be sustained by the desired operation of the circuit itself. To overcome this problem, two

mechanism are incorporated in the DARKGAQT software. First, the order of executing the different

test modes can be randomized; throughout the experiments of this chapter, ten random orders are

used. Second, the analog substrate can be reset by different mechanisms selectable for the user. This

substrate reset is achieved by downloading a special type of genotype either after each test mode or

after each complete test of one individual. The type of reset is determined by means of the reset-

genotype. The following substrate reset alternatives currently available are listed in Table 7.5.

The first six reset-types can be grouped into three pairs that only differ in the parts of the config-

urable transistor cells that are included: In the respective last transistor variant, the genotype described

in the according column of Table 7.5 is downloaded only once using the transistor dimensions of the

previous individual. If the all transistors option is selected, all transistors forming the configurable

transistor cell are activated by downloading the gene five times for each different transistor length and

setting the transistor width to the maximum of 15µm. Since the evolving circuits shall be independent

of the actual state of the substrate, i.e. are not to depend on any floating charges left on the PTA, the
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No. Name Description of the reset genotype

1 last transistor only

2 all transistors
all switches closed; all transistor terminals→ gnd

3 last transistor + routing all switches closed; NMOST: all terminals→ gnd
4 all transistors + routing PMOST: Gate/Drain→ gnd, Source→ South

5 last transistor only all terminals of each transistor→ gnd or vdd
6 all transistors only randomly chosen

7 complete random gene completely randomized genotype

Table 7.5: Seven different genotypes for a substrate reset of the FPTA.

download of a randomly generated genotype is used to approximate a random charge distribution on

the chip. Therefore, in all experiments of this chapter as well as those presented in section 8.4 on

page 257 the substrate reset number seven is applied after each complete test of an individual.

7.3 Evolving Low Pass Filters

The three different methods of measuring and evaluating the magnitude response of a candidate circuit

are applied to the problem of evolving an analog linear lowpass filter. Thereby these methods can be

compared to each other in their ability to quantify the circuit’s frequency behavior as well as in their

impact upon the success of the evolutionary process. The target filter specifications are given in

terms of the abstract description presented in section 7.1.1.2. Therefore, Table 7.6 summarizes the

Parameter fstart fstop fPB fSB APB δ ASB

Target Value 1kHz 0.5 . . .1MHz 10 . . .80kHz 200kHz 0dB 0dB 40dB

Table 7.6: . Parameter set describing the LPF-task. These parameters are defined in Fig. 7.2(a).

parameters that are used to define the magnitude response in the sense of Fig. 7.2(a): The candidate

circuits are tested in a frequency band ranging from 1kHz to 500kHz or 1MHz for the step response

based method M1 and the ac-sweep based methods M2,M3, respectively. The transition band starts

at 10− 80kHz depending on the experiment and ends at 200kHz. Samples in the transition band

are ignored in evaluating the magnitude response. As was already indicated in the description of

the respective implementations of method M1 to M3, the experiments sought a passband gain of

APB = 0dB and a stopband attenuation of ASB = 40dB.

7.3.1 Experimental Setup

7.3.1.1 Overview of the Experiments

The difficulty of the LPF-evolution task is varied by means of the passband edge PPB. Table 7.7 lists

the resulting five experiments that solely differ therein. The increasing level of difficulty caused by

the increase in the passband edge frequency is demonstrated by means of the minimal filter orders

required to comply with the target magnitude response for different filter approximations. The mini-

mal filter orders are obtained from MATLAB for an allowed passband ripple of 1dB. Accordingly, the

requirements of experiments 1 to 5 necessitate Butterworth filters of the orders 2 to 6. As the minimal

order for all filter approximations is found to be ≥ 2, the problem is – at any rate – non-trivial.
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Exp. No. 1 2 3 4 5

Transition band fPB- fSB [kHz] 10-200 20-200 40-200 57-200 80-200

Min. order: Butterworth 2 3 4 5 6

Min. order: Chebyshev I 2 2 3 4 4

Min. order: Chebyshev II 2 2 3 4 4

Min. order: Elliptical 2 2 3 3 3

Table 7.7: Transition band ranges for the five different experiments of each series listed in Table 7.8. The last

four rows denote the minimal orders for the four different filter approximations Butterworth, Chebyshev I and

II and Elliptical that are necessary to satisfy the specifications defined by each of the five experiments. The

filter orders are based on a maximum passband ripple δ ≤ 1dB.

The five experiments of Table 7.7 are carried out five times in five different series of experiments,

which are detailed in Table 7.8. The paramount difference between the five series is given by the

No. Gen. size Geometry Fitness criterion

1 10,000 I (Fig. 7.9(a)) Fstep↓+ Fstep↑+ Ftrans

2 50,000 II (Fig. 7.9(b)) Fstep↓+ Fstep↑+ Ftrans

3 10,000 I (Fig. 7.9(a)) Facs + Ftrans

4 10,000 I (Fig. 7.9(a)) Facs+d : w(k) = 1 ∀ k

5 10,000 I (Fig. 7.9(a)) Facs+d : w(k) =





0.1 if k < k0 and fk0
∈ PB

0 if k < k0 and fk0
∈ SB

1.0 if k = k0

0.01 if k > k0

Table 7.8: The five experiment series for the evolution of LPFs.

method of establishing the magnitude response. While series 1 and 2 rely on method M1, the analysis

of a step response, series 3 is based on computing the magnitude response from the mean signal power,

i.e. method M2. In both cases, the fitness is calculated as the sum of the magnitude and transient

response(s). In series 4 and 5 on the other hand, the magnitude response is evaluated by means of a

Fourier analysis of the circuit response to six sinusoidal input tones of different frequencies. Since

the resulting frequency spectrum contains additional information on the dc component as well as on

the harmonic distortions caused by the circuit under test, a transient test in the manner of TM 8 has

been forgone.

Series 4 and 5 only differ in the weight factors that are used in (7.40) and (7.41) for the differ-

ent frequency components obtained from the Fourier transform. Therefore, and in accordance with

Table 7.8, the resultant spectrum is divided into three types of components: Those fk that are below

the fundamental frequency fk0
defined by the input tone, the fundamental frequency itself, and all

components exceeding the fk0
. In series 4, all w(k) are set to 1, which greatly overemphasizes the

dc and distortion terms at the expense of neglecting the desired magnitude response itself. Thus, a

more appropriate set of weight factors w(k), which accounts for the different component numbers and

importance of the three frequency domains, has been employed in series 5; it is detailed in respec-

tive entry in Table 7.8. As a further improvement, the Fourier components below the fundamental

frequency fk0
are only considered for those input tones taken from the passband. This constraint is

imposed by the actual realization of the test procedure: Each of the six input tones is encapsulated

in an own test mode. As the order of test mode application is randomized and the substrate is reset
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between subsequent candidate circuits (cf. section 7.2.6), the time granted to the potential lowpass
filters to settle to their desired dc output (2.5V) is not sufficient for the shorter measurement times

inherent to the test for higher fundamental frequencies, especially those from the stopband.

7.3.1.2 Geometrical setup

The two types of geometrical setups that are used for the five series of experiments summarized in

Table 7.8 are depicted in Fig. 7.9. They differ in the fraction of the array of programmable transistor

Vout

Unused Cells

Active Array:

8 x 8 

Transistor Cells

Vin

(a) Geometry I

Unused 

Cells

Active Array:

8 x 8 

Transistor Cells

Vin

Vout

(b) Geometry II

Figure 7.9: Geometrical setup for the evolution analog filters: Geometry I (a) allots a quarter and geometry II

(b) half of the PTA to the EA.

cells granted to the EA and in the direction of the signal flow. The larger active array provided by

geometry II is only used for series 2, which differs from series 1 solely in the resources allowed to the

EA: By allowing the EA to use twice the number of transistor cells in conjunction with running it for

five times the number of generations alloted to the experiments of series 1, the influence of available

resources can be estimated from a comparison of both series.

7.3.1.3 Genetic Algorithm

Throughout all series of experiments, the same type of genetic algorithm has been used that has

already been used for the experiments presented in Chapter 5 and 6, the only difference being the

selection scheme: Here, a linear rank based selection scheme is employed instead of the truncation

selection favored in the preceeding chapters. Using (2.2a) for s = 2, the probability for an individual

with rank r to be selected for a mutation or crossover operation is given by

pr =
2r

µ(µ−1)
for 0≤ r < µ , (7.66)

where µ−1 denotes the size of the population and higher ranks are assigned to individuals with higher

fitness. Accordingly, the worst individual of each generation will be precluded from any participation

in the creation of the next generation.

The parameters customizing the GA are summarized in Table 7.9. While the second and third
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column refer to the experiments targeted at LPF circuits, those employed for the evolution of HPFs

presented in section 7.5 are listed in the remaining columns. Differences are only found in the number

of generations, the number of runs, and the fraction of best individuals directly promoted to the next

generation.

7.3.1.4 Analysis and Verification Tests

For each of the five experiments of each of the five different series, 30 runs have been carried out. The

fitness results have been re-evaluated outside the evolution loop using the complete set of 14 (20) test

modes listed in Table 7.4. Thereby, each evolved circuit was tested 100 times. In order to visualize

the actual circuit response to the different test stimuli, the according results are recorded for the first,

50th and last of the test. If not denoted otherwise, the results obtained during the first test are used

for plotting these circuit responses. The candidate circuits are characterized by the fitness measures

defined in Table 7.4 as well as by partial summations thereof, as e.g. the fitness criteria used during

the evolution process listed in 7.8. The definitions of Table 6.5 on page 165 are applied to these

different figures of merit to define the min last, min mean and min worst fitness values, where in this

case the run index r takes on the values 1 to 30 and the index of tests t runs again from t = 1, . . . ,100.

7.3.2 Illustration and Discussion of the Different Test Modes

To further explain the different types of test modes used to test the evolved circuits in general and

to compare the different methods of establishing the magnitude response in particular, the output

behavior for all non-redundant test modes of Table 7.4 are plotted in Fig. 7.10 and 7.11 for the min

best circuit of experiment 5 of series 1. The different magnitude responses obtained from test modes

2,3,9 and 10 are depicted in Fig. 7.10(a). In this plot, as well as in all of the plots depicting a

filter circuit’s magnitude response that follow until the end of this chapter, the target specifications

are visualized by gray-shading the regions the magnitude response is to avoid. This, in principle,

resembles the presentation chosen for Fig. 7.3, yet illustrates the passband by Gtar( f ) = 0± 1dB

instead of the interval [Gtar( f )−δ ,Gtar( f )] used in Fig. 7.3.

GA Parameter LPF LPF, var. f HPF: Exp. 1-2 HPF: Exp. 3 HPF: Exp. 4

population size 50 50 50 50 50

# of generations 10,000 50,000 100,000 100,000 100,000

# of runs 30 10 20 20 20

selection scheme rank-based rank-based rank-based rank-based rank-based

reprod. fraction 0.1 0.1 0.04 0.2 0.1

mut. fraction 0.9 0.9 0.9 0.9 0.9

mut. rate Term. Con. 1% 1% 1% 1% 1%

mut. rate W,L 2% 2% 2% 2% 2%

mut. rate Routing 1% 1% 1% 1% 1%

X-over fraction 0.9 0.9 0.9 0.9 0.9

X-over rate 1% 1% 1% 1% 1%

X-over block size 4 4 4 4 4

Table 7.9: Genetic algorithm parameters used for the evolution of analog filters. Only the lines printed in bold

contain parameters varied in the course of experiments.
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Figure 7.10: Output behavior of the best filter circuit of series 1, experiment 5 for all non-redundant test modes

characterizing the frequency response and the transient analysis used during the evolution process. Here, best
refers to the fitness criterion used during evolution listed in Table 7.8, that is the sum of the error contributions

of test modes 8-10.

Firstly, it can be observed that the four magnitude responses deviate only little from each other.

Thus it can be inferred that the three different ways of establishing the magnitude response of the filter

circuits are consistent. Secondly, the step-based magnitude responses obtained from test modes 9 and

10 exhibit a noise level of up to−30dB, which may prevent the GA from achieving a higher stopband

attenuation. In accordance with the results of the noise analysis presented in section 7.2.4.4, the

magnitude response curves attained from test modes 2 and 3 corresponding to methods M3 and M2,

respectively, exhibit a considerably smaller noise level. A comparison of the input signals fed into

the Fourier transform for methods M1 and M3 depicted in Fig. 7.11(f) and Fig. 7.11(c), respectively,

impressively illustrates that this is due to the different SNRs26: While the derivative of the step

response shown in Fig. 7.11(e) obtained from the post-processing operation TE defined in (7.49)

reveals a clearly visible noise contribution, the response to the ac-sweep of Fig. 7.11(c) is practically

free of noise on the plotted scale. Thirdly, the plots of Fig. 7.10 show that the best circuit evolved for

series 1, experiment 5 does work properly as a LPF, albeit with an imperfect frequency response: On

one hand, the evolved filter does not meet the desired target attenuation for all of the tested frequencies

in the stopband. On the other hand, it cuts corners in the vicinity of the transition band, because it

fails to achieve the necessary steepness in the rolloff.

The set of non-redundant test modes not used during the evolution of series 1–3 is visualized for

the best circuit of experiment 5 of series 1 in Fig. 7.11. Test mode 1 captures the nonlinearity of

the transfer function of the filter under test according to (7.43) and (7.44). The measured magnitude

responses for all of the 31 fundamental frequencies fk0
are depicted in Fig. 7.11(a), where the dc

component of the respective Fourier transform is arbitrarily set to −100dB for better readability. The

resulting magnitude response as well as the first four harmonics are also shown in Fig. 7.11(b): While

the first harmonic exceeds the threshold of −40dB, the harmonics 2 and 4 get close to −40dB within

the transition band. It is left to the third harmonic to rest almost flatly at −60dB, which may indicate

the underlying noise floor. According to section 7.2.4.4, this would suggest a relative precision of

approximately 10 ENOBS.

26Signal to Noise Ratios
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Figure 7.11: Output behavior of the best filter circuit of series 1, experiment 5 for the non-redundant test modes

not contained in Fig. 7.10. Again, best refers to the sum of the error contributions of test modes 8-10. In (a),

the dc components of all magnitude responses are set to −100dB for better readability.
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Fig. 7.11(c) and Fig. 7.11(d) visualize the transient response of the evolved filter for the full

frequency sweep used for test modes 1–5 and for a sinusoidal input tone of 1MHz, respectively. In

case of the sweep, the expected output behavior can be observed: Signals of lower frequency pass the

filter, whereas those of higher frequency are attenuated, while the output is kept at a dc-level of 2.5V.

In case of the 1MHz sine wave, the output of the filter does correctly suppress the input signal and

slowly converges to the desired dc-level.

The transient responses to similar input steps as those used for test modes 9 and 10 are illustrated

in Fig. 7.11(e). The steps are applied after 100 and 125µs for the down- and upward step, respec-

tively to allow the circuit under test to settle to the desired dc-level beforehand. Taking into account

the different time scales, the exponential-like changes of the output resembles that one observed in

Fig. 7.11(d). In order to demonstrate the lower SNR inherent to the procedure M1 of establishing the

magnitude response compared to method M3, the discrete derivative according to TE from (7.49) is

applied to the step responses shown in Fig. 7.11(e) to obtain Fig. 7.11(f).

7.3.3 Reproducibility

In the preceeding chapters 5 and 6 it was pointed out that the performance of the evolved circuits could

be reproduced within the 100 verification tests for the majority of evolved circuits. As can be seen

from Fig. 7.12(d), this is not necessarily the case for the evolved LPFs. Fig. 7.12(a) and Fig. 7.12(b)

compare the output characteristics for the first, 50th and last of the 100 verification tests for the min

best circuit obtained from experiment 5 of series 3. Apparently, the according min worst circuit,

whose output characteristic is depicted in Fig. 7.12(c) and Fig. 7.12(d) is a different one, because the

worst fitness of the min best circuit amounts to more than a hundred times the best fitness value, as

indicated by the imprints of Fig. 7.12(a) and Fig. 7.12(c); the worst fitness of 4615 corresponds to

almost completely failing the desired filter task, as the average fitness of a random circuit amounts

to approximately 9540. Yet, this discrepancy can not be explained by the three different output

characteristics plotted, since both the according magnitude and transient responses differ only little

from each other (and despite the offset in the transient response would rather attain fairly low fitness

values).

Finally, it has to be pointed out, that the min best circuit of experiment 5, series 3 reliably manages

to solve the filtering task defined by experiment 3, that is to achieve a transition from ≥ −1dB to

≤ −40dB within the frequency range of 40− 200kHz. According to Table 7.7, this requires at

least a 3rd order filter for the classical filter approximations and even a 4th order filter in case of the

Butterworth approximation. The only drawback of the evolved circuit is given by its degree and

range of linearity: From Fig. 7.12(d) the filter can be expected to be almost linear only in the range

of 2−4V.

In order to obtain a more comprehensive account of the stability of the evolved LPF circuits, the

distribution of the percentage deviation of the last from the best fitness (a), the worst from last fitness

(b) and the worst from the best fitness (c), (c) are presented by means of histograms in Fig. 7.13.

Therefore, the relative deviations of all experiments of one series are aggregated to form one his-

togram per series that comprises a total of 150 runs. Please note, that for the remainder of this chapter,

all histograms are organized such that their rightmost bin gathers all runs exceeding the value of the

second highest bin. Fig. 7.13(a) to 7.13(c) use the native fitness criterion of the respective series, that

is, the fitness criterion used during the evolution process.

The deviation of the last from the best fitness values basically complies with the expectation in

that most of the runs perform better than at the end of the evolution process at least once, if tested 100

times. Only a small fraction degraded between the time of evolution and that of the verification tests,

of which most runs deviate only by less the tens of percent. Interestingly, the distribution of fitness
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Figure 7.12: Comparison of the frequency (a), (c) and transient (b), (d) response for three different measure-

ments, namely the first, 50th and last of 100 verification tests. (a) and (b) depict the behavior of the circuit with

the minimum error among the best results for all runs; for (c) and (d) those runs possessing the minimum error

in a comparison of the worst results of the 100 verification tests are chosen.

deviations are wider for series 1-3 than for series 4 and 5. A large fraction between appoximately 40

and 70% of the evolved circuits attain a worst fitness exceeding the last or best one by more than a

factor 5, i.e. sort of fail to reliably reproduce their desired behavior. For the runs of series 4 and 5 this

situations dramatically changes, if the best and worst fitness are calculated as the sum of test modes 1-

3 and 9-10 27 , which includes all types of measures for the magnitude response plus the evaluation of

the distortion by test mode 1: Here, for more than 70% of the evolved circuits the difference between

the best and the worst fitness measured within the 100 verification tests amounts to less than 20%.

First, this suggests that the filter circuits evolved by means of method M3 work more reliable. Second,

the different behaviors between the native fitness and that used in Fig. 7.13(d) must be explained: As

was observed from Fig. 7.11(d), the dc level of the output of the circuit under test and therefore of at

least some of its inner nodes may be changed between two subsequent test modes by the analog reset

27A transient analysis with a sine wave stimulus taken from the passband as e.g. test mode 7 or 8 could not be included,

because some of the evolved filters obtained from series 4 and 5 invert the polarity of the input signal at the output; a

transient response to penalize this was forgone in the design of the experiment and for the evolution of the magnitude

response only, an additional phase shift of 180◦ does not matter, but increases the feasible design space.
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Figure 7.13: Histograms for the deviations of the best from the last fitness values (a), the worst from the last (b)

and the worst from the best (c) based on the native fitness criterion use for the respective series of experiments.

In contrast, (d) illustrates the fitness deviations of the worst fitness values from the last ones expressed by the

fitness criterion of series 1.

and/or a drift effect. For fundamental frequencies fk0
taken from the stopband, it takes more than 1

cycle of the sinusoidal input to recover from this excitation due to the intrinsic lowpass behavior of

the filter under test. Thus, the circuit may not be able to reach a proper operation point necessary to

perform the desired task correctly and hence may be misevaluated. Since the above scenario exactly

describes the situation created for the evaluation of the magnitude response according to method M3,

i.e. by test modes 15-20 in Table 7.4, the EA may be deluded by bad evaluation results, and verification

tests may fail to determine the correct fitness of the circuit under test. This problem could be avoided

most thoroughly by using a sweep similar to test mode 2 instead of test modes 15-20, because a sweep

starting at low frequencies fk0
would allow the circuit to settle to its operation point within one cycle

of the lowest frequency chosen from the passband.

Despite all efforts to prevent the EA from abusing the initial state of the FPTA substrate prior to

the evaluation measurements, namely the substrate reset and the randomization of the test mode order

(see section 7.2.6), a large number of evolved filters are found to be unstable. However, the effect is
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more severe for series 1–3 than for series 4 and 5. Different arguments lend themselves to a possible,

albeit not finally conclusive, explanation: First, Fig. 7.13 does not contain any information about the

absolute fitness values achieved by the respective runs. The differences between the distribution of

deviations of series 1–3 and 4–5 therefore may be due to the fact that the circuits evolved in series

4 and 5 are inferior to those of series 1–3. Accordingly, the better circuits of series 1–3 possess a

higher potential to fail. In fact, as will be discussed in section 7.3.5, this is indeed the case and may

explain at least some of these differences. Second, the circuits evolved in series 2, which differs from

series 1 solely by the increased number of generations alloted to the EA, seem to be even more likely

to unstable behavior. This phenomenon may be explained by an increase in premature convergence,

where large parts of the population are genetically similar and phenotypically identical, which implies

that the dominating genotype is evaluated many times within one generation. Thus, a failure in coping

with some initial states of the substrate is masked by the large number of trials, of which at least some

are allowed to start with more favorable conditions. The fairly large number of 5 individuals that are

promoted into the next generation (cf. Table 7.9) accelerates and supports this decrease in selection

pressure towards stable filter circuits. In this vein, the higher likeliness of circuits evolved within

series 4 and 5 to be forced to a detrimental operation point in between two consecutive test modes

may increase the selection pressure towards being more independent thereof.

7.3.4 Comparison of Different Experiments

Within the previous two sections Fig. 7.10(a) and Fig. 7.12(d) indicated that even the best filters

evolved in series 1 and 3 did not meet the specification of experiment 5. This raises the question, to

which extent the actual specification of the higher passband edge influences the resulting performance

of the evolved circuits. In order to attain a qualitative impression thereof, the output behavior of the

best-of-experiment solution is compared for series 1,3 and 5 in Fig. 7.14 (the according plots for series

2 and 4 are omitted for brevity; the actual selection covers experiments carried out for all three types

of the evaluation methods M1 to M3.). The best circuits are determined with regard to the min worst

native fitness attained within the 100 verification tests. The plots on the left hand side of Fig. 7.14

present the magnitude responses of the best-of-experiment circuits evaluated according to test mode

1, that is by means of the Fourier analyzed ac-sweep. The plots on the right hand side of Fig. 7.14

illustrate the transient response to a sinusoidal input tone with a frequency taken from the passband.

In case of series 1 and 3 (plot (b) and (d)) test mode 8 is utilized; for the transient response of the

according circuits of series 5 test mode 7 is preferred, since the circuits evolved within series 4 and 5

were only required to be linear in the input voltage range of 1.5−3.5V.

First, all of the 15 output characteristics plotted in Fig. 7.14 are indeed viable LPFs, which are

almost linear over at least a large fraction of the desired range of 1−4V. Second, throughout all three

series, the magnitude responses obtained for the best solutions of the respective experiments differ

only little, especially for experiments 3–5. In greater detail, experiments 1–3 of series 1 comply

most closely with the expected behavior, in that their magnitude response starts to drop at higher

frequencies and with a steeper rolloff for the higher passband edges located at higher frequencies. A

similar trend can be seen for series 3. In case of series 5, the magnitude responses look even more

alike and seem to be merely shifted downward for wider transition bands. In conclusion, the best-

of-experiment solutions of series 1,3 and 5 are phenotypically very similar. Yet, the more ambitious

specifications seem to be more likely to yield better results in terms of a steep rolloff.

Quantitative Comparison of Different Experiments. For a more quantitative analysis of the evo-

lution results for the different task difficulties, the data of all runs is summarized in the histograms

depicted in Fig. 7.15 for series 1 and in Fig. 7.16 for series 2, 3 and 5. Again, series 4 is omitted for
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(f) Series 5: TM 7

Figure 7.14: Comparison of the output behavior of the best filter circuits of all five experiments of series 1,3,5

(from top to bottom). Here, best refers to the fitness criterion used during evolution listed in Table 7.8, that is

the sum of the error contributions of test modes 8-10. (a) shows the magnitude response determined according

to method M3 and (b) the transient response to a sine wave according to test mode 8.
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brevity, since its evaluation method is similar to that of series 5 and the according evolution results are

inferior to those of series 5, as will be discussed in section 7.3.5. In Fig. 7.15 the histograms on the
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Figure 7.15: Fitness histograms for all experiments of series 1. While the histograms (a) and (b) are based

on the fitness criterion used in the course of the experiments, the fitness criterion describing experiment 5 is

applied for the generation of those shown in (c) and (d). (a) and (c) display the best fitness value attained in

100 verification tests, whereas (b) and (d) account for the respective worst values.

left hand side contain the results for the best and those on the right hand side those of the worst fitness

obtained from the 100 verification tests. While Fig. 7.15(a),(b) use the fitness criterion native to each

of the experiments, the data plotted in Fig. 7.15(c),(d) uses the fitness measure native to experiment

5.

Besides the awaited discrepancy between the best and worst fitness values, the histograms in

Fig. 7.15(a),(b) reveal that better results are obtained for the simpler tasks. On the contrary, evaluated

by the standards of experiment 5, the circuits evolved with the more ambitious fitness criterion tend

to perform better, as can be observed from Fig. 7.15(c),(d). Yet, the effect is stronger for experiments

1–3 than for a comparison of experiments 3–5.

Each row of Fig. 7.16 corresponds to the second row of Fig. 7.15. While Fig. 7.16(a)–(d),



7.3. Evolving Low Pass Filters 221

0

5 Exp. 1

0

5 Exp. 2

0

5

R
u

n
s
 [

#
]

Exp. 3

0

5 Exp. 4

0 100 200 300 400 500
0

5

Fitness

Exp. 5

(a) series 2: best fitness

0

5

10 Exp. 1

0

5

10 Exp. 2

0

5

10

R
u

n
s
 [

#
]

Exp. 3

0

5

10 Exp. 4

0 500 1000 1500 2000 2500
0

5

10

Fitness

Exp. 5

(b) series 2: worst fitness

0

5
Exp. 1

0

5
Exp. 2

0

5

R
u

n
s
 [

#
]

Exp. 3

0

5
Exp. 4

0 100 200 300 400 500
0

5

Fitness

Exp. 5

(c) series 3: best fitness

0

5 Exp. 1

0

5 Exp. 2

0

5

R
u

n
s
 [

#
]

Exp. 3

0

5 Exp. 4

0 500 1000 1500 2000 2500
0

5

Fitness

Exp. 5

(d) series 3: worst fitness

0

5 Exp. 1

0

5 Exp. 2

0

5

R
u

n
s
 [

#
]

Exp. 3

0

5 Exp. 4

0 1000 2000 3000 4000 5000
0

5

Fitness

Exp. 5

(e) series 5: best fitness

0

5 Exp. 1

0

5 Exp. 2

0

5

R
u

n
s
 [

#
]

Exp. 3

0

5 Exp. 4

0 1000 2000 3000 4000 5000
0

5

Fitness

Exp. 5

(f) series 5: worst fitness

Figure 7.16: Fitness histograms for all experiments of series 2,3,5 (from top to bottom). The fitness criterion

describing experiment 5, that is the sum of TM 8,11,12 for series 2, and that of TM 5,8 for series 3 are applied

for the generation of those shown in (a) to (d). (e) and (f) are obtained from the sum of the test modes 1,5,11,12,

which are all compatible with the experiment 5 specification.
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which contain the according histograms for series 2 and 3, are based on the native fitness criterion

of experiment 5 used during the evolution process, Fig. 7.16(e)–(f) employ the sum of test modes

1,5,11 and 12 to compare the results achieved for the five different experiments, where the latter

test modes also capture the problem definition described by experiment 5. The native criterion is

discarded because of its unnecessary low reliability identified in section 7.3.3.

For series 2 and 3, the results are similar to those obtained for series 1. The only exception being

that for series 2 the best fitness values are attained for experiment 4 rather than for experiment 5.

Here, the increased number of generation allotted to the EA seemed to be helpful to evolve better

circuits for the task defined experiment 4, but did not help to find perfect solution satisfying the

problem described by experiment 5. Unlike for all other series, for series 5, there is only a slight

difference between the results obtained for experiments 1–3 and those obtained for experiment 4 and

5. In conclusion, however, the hypothesis that tighter constraints for the allowed magnitude response

create better results in terms of the criterion of experiment 5 does hold up to a certain level of difficulty.

In case of series 1, that is given by the specifications of experiment 3, for series 2 this is extended to

those of experiment 4.

7.3.5 Comparison of Different Series of Experiments

To gain some insight into the influence of the evaluation method used to establish the magnitude

response of the circuit under test, the data discussed above is analyzed a second time to allow for

a comparison of the results of different series for the problem definition of each experiment. First,

this comparison shall be done by means of the histograms of Fig. 7.17, which are similar to those of

Fig. 7.16, yet with exchanged roles of series and experiments. According to section 7.3.3, the fitness

for series 4 and 5 cannot be evaluated using any of the transient analyses of test mode 7 or 8, such that

none of the native fitness criteria of either series 1,2 or 3 can be used for a fair comparison. Hence,

the quality of the evolved circuits is again, as for Fig. 7.13(d) determined by the sum of test modes

1-3, 9 and 10. The plots on the left hand side of Fig. 7.17 depict the according histograms for the best

and those on the right hand side those for the worst fitness values gained from this sum for the task

definition of experiment 1, 3 and 5.

With regard to the best fitness, series 2 yielded – on average – the best results, followed by series 1

and 3 throughout all of the considered experiments. As expected from the preceeding sections, series

5 yields the second worst and series 4 the worst results if best fitness is concerned. The according

histograms for the worst fitness confirm the general impression generated by their best fitness coun-

terparts; yet, the differences between the different series prove to be smaller. The dominance of series

1 ,for instance, is reduced to the task described by experiment 5, and the results of series 1,3 and 5

move closer together, so that for experiment 1 the circuits evolved by series 5 seem to outperform

those of series 1 and 3 on average. However, series 4 can still easily be distinguished as yielding the

worst results.

Relation of Magnitude and Linearity. The histograms presented in Fig. 7.17 aggregate the quality

of the magnitude response and the linearity of each circuit into one criterion, which overemphasizes

the meaning of the magnitude response. The scatter plots shown in Fig. 7.18, however, relate these

two qualities to each other.

Therefore, the fitness attained from test mode 1 – quantifying the distortion caused by the respec-

tive circuit – is plotted against that of test mode 2 – accounting for the magnitude response in one

scatter plot per experiment. Each of the five plots of Fig. 7.18 gathers the data of all series for one

experiment; yet, only those runs are considered whose penalty for the magnitude response does not

exceed a value of 1250. The five plots correspond to experiments 1 to 5 when read from left to right,
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Figure 7.17: Comparison of the best (a),(c),(e) and worst (b),(d),(f) fitness values attained for the target speci-

fications of experiment 1 (a),(b), experiment 3 (c),(d) and experiment 5 (e),(f) in all 5 different series. To allow

for the comparison, the fitness is evaluated as the sum of the test modes 1-3, 9 and 10.
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Figure 7.18: Scatter plots relating the achieved dis-

tortion values from TM 1 to the according quality of

the magnitude response evaluated by means of TM 2.

The plots are based on the highest (worst) values for

the respective test modes within the 100 verification

tests and depict the results for the 5 different experi-

ments (to be read from left to right, top to bottom).
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top to bottom. The actual fitness values ascribed to the two test modes are taken as the worst of 100

verification tests for each test mode.

The two opposite poles of the five distributions visualized in the five scatter plots of Fig. 7.18

are represented by those of the runs evolved within series 3 and 4. All of the runs plotted for series

4 exhibit very low, if not the lowest distortion values, albeit large penalties for their bad magnitude

response. As many of them are not contained in the scatter plots, they are bound to possess an

even worse magnitude response. All but one of the runs plotted for series 3, on the other hand,

possess relatively high distortion values, where the run on the Pareto front of the plot of experiment

4 represents the exception. Yet, a large fraction of the run evolved in series 3 exhibits a very good

magnitude response. In comparison, the runs of series 1,2 and 5 are scattered over the five plots more

evenly. In most cases, the runs that are closest to the origin of the respective plot, stem from either of

these three series, with series 1 and 2 being more successful than series 5.

The fact, that the circuits evolved in series 4 are spread out more evenly than those of series 5 can

be explained by the different weights assigned to the different frequency components obtained from

test modes 15-20, which are stated in Table 7.8. In case of series one, all components, including those

below the fundamental frequency fk0
and all measured harmonics thereof, are weighted equal. Thus,

the meaning of the non-fundamental frequency components is gravely overemphasized. In contrast,

the weighting scheme chosen for series 5 seems to trade off of magnitude response and distortion in

a more suitable fashion. Together with the fitness boost expected from a more reliable sweep-type

measurement, the possibility of a user-defined trade-off between distortion and magnitude response,

makes evaluation method M3 an ideal candidate for future experiments. Since both, series 1,2 and

series 3 evaluate the transient response in addition to the different ways of establishing the magnitude

response, it is rather surprising that their distributions differ so strongly. On the other hand, it is by all

means conceivable that any nonlinearity in the voltage range covered by the two step responses will

cause a detectable change in the frequency spectrum of the magnitude response. This would explain

the difference in the distributions generated by methods M1 and M2 in terms of a selection pressure

towards linear circuits in case of method M1.

Output Behavior of the Best of Series Solutions. Finally, the output characteristics of the five

different series shall be compared exemplary for the best runs of experiments 1,3 and 5. Therefore,

the according output responses for test mode 2 and test mode 7 are depicted on the left and right hand

side of Fig. 7.19, respectively. The best circuits are determined by their min worst native fitness for

series 1–3 and by the min worst result for the sum of test modes 1 and 2 in case of series 4 and 5.

The best-looking magnitude response are obtained from series 3, whose best runs outperform

those of all other series for the more difficult tasks described by experiments 3 and 5. Yet, in case

of experiment 5, this is paid for by severe nonlinearities in the transient response for signals below

2V (the output response of the best filter of series 3, experiment 5 was already detailed in section

7.3.3). Except for the latter circuit, all of the presented best-of-experiment solutions exhibit an almost

perfectly linear transient response. Generally speaking, the best runs of series 1 and 2 perform second

best in terms of the magnitude response, with a slight advantage for series 2, manifesting in experi-

ments 1 and 5). The best runs of series 4 and 5 are the least successful in complying with the desired

magnitude response specifications: First, they fail to reach the required passband gain by approxi-

mately 6 and 3dB for series 4 and 5, respectively. Second, they show the least steep rolloff within

the transition band in comparison with the best runs of the other 3 series. Nevertheless, a significant

advantage in linearity cannot be observed from their transient responses, either.
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(a) experiment 1: magnitude response
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(b) experiment 1: transient behavior at 822Hz
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(c) experiment 3: magnitude response
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Figure 7.19: Left: Magnitude response (TM 2) and right: Transient response to a sinusoidal input stimulus

(TM 7) for the specifications of the experiments 1,3 and 5 (top to bottom). Each plot illustrates the behavior of

the best-of-series filter circuits. In case of series 1–3 best refers to the min worst native fitness obtained from

100 verification tests. For series 4 and 5 the minimum worst result for the sum of test modes TM 1,2 are used.
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7.3.6 Migration to a Second Chip

The comparison of different methods of evolving LPFs concludes with a comparison of the test results

achieved on a second chip with those obtained from the chip used during the evolutionary circuit

synthesis itself. The latter one will henceforth be referred to as chip 1, while the former one is

denoted as chip 2. The accomplish this, the average performance of the evolved circuit on both chips

is compared for four different figures of merit, namely the magnitude response (test mode 2), the

distortion penalty (test mode 1), the native fitness criterion, and the sum of test modes 1,5,11 and 12;

the according results are depicted in Fig. 7.20(a) to (d), respectively. For each performance measure,

the worst value obtained from the 100 verification tests is used. Since the fitness evaluation of
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Figure 7.20: Comparison of the performance on two different FPTA chips, where chip 1 denotes the die

used during the evolution process. For each series, the results for the frequency response (a), distortion (b),

native fitness (c) and fitness in terms of the specifications of experiment 5 (d) are averaged over all runs of all

experiments whose worst fitness deviates less than 100% from its best fitness. The number of circuits taken

into account is denoted at the top of each plot for the respective experiment.

many circuit was found to be unreliable in section 7.3.3, the respective performance measures are

averaged over all those runs of all experiments of one series, for which the deviation of the worst and

best fitness values did not exceed 100% on chip 1. The number of runs considered for each series

depends on the actual figure of merit; they are imprinted at the top of each of the four plots. While

the last fitness criterion used for Fig. 7.20(d) applies the problem definition inherent to experiment 5

to all of the evolved circuits, the other three measures are unfair in that they overemphasize the fitness
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contribution of the experiments describing the more difficult tasks, because these on average obtain

higher error values.

First, the averages depicted in Fig. 7.20 confirm two previous observations: The performance

differences described in the above section reveal themselves in the presented averages, too. For

instance, it is again observed that series 4 excels by a low distortion, but exhibits a prohibitively

bad magnitude response on average. The second observation relates to the number of circuits whose

worst fitness deviates by less than 100% from its best fitness: Except for the native fitness criterion

the reliability inherent to this number is significantly higher for series 4 and 5 than for the other series.

Second, it is important to note that the performance differences between the two chips are in general

fairly small and in particular much smaller than the variations encountered within the 100 verification

test on chip 1. Third, the deviations between the performance on chip 1 and 2 are most significant

for series 3, whose circuits seem to be somewhat less robust against migration to a second chip. The

large differences observed in Fig. 7.20(c) for series 4 may be solely due to the unreliable means of

fitness evaluation chosen here. The difference for series 5 observed in Fig. 7.20(d) on the other hand

must be taken more seriously and probably stems from a performance degradation in test modes 11

and or 12.

The histograms in Fig. 7.21 display the distribution of percentage performance differences yielded

by the test on the different dice. They are based on the sum of test modes 1,2,3,9 and 10, where the
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Figure 7.21: Percentage performance difference between the fitness values achieved on a second chip to those

measured on the chip 1 used for the artificial evolution thereof. The fitness values are taken as the worst values

measured in 100 verification tests for the sum of test modes 1,2,3,9 and 10, that is all types of evaluations of

the magnitude response plus the distortion penalty from test mode 1. While (a) considers all 150 runs of each

series, (b) rejects all those runs, for which the worst and best fitness values differ by more than 100%.

worst sum out of 100 verification tests is used. From the different histograms illustrating either

all runs, or only those with a limited deviation between worst and best fitness values depicted in

Fig. 7.21(a) and Fig. 7.21(b), respectively, it can be concluded that most of the circuits of series 1–3

that seem to fail on chip 2 in fact behave unreliable on chip 1, too. Moreover, the vast majority of

circuits attains similar fitness values on both chips, with only a small fraction of outliers, especially

in case of series 4 and 5.
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7.4 Evolving LPFs on Different Frequency Scales

The experiments presented in the previous section are confined to the same frequency range. The

FPTA chip, as probably any other piece of (electronic) hardware, features a set of time scales inherent

to it. For instance, any resistor-capacitor pair defines such an intrinsic time scale. Therefore, this

section tries to shed light on the question, in how far the desired corner frequency influences the

success of the FPTA based evolution experiments targeted at the synthesis of LPFs.

7.4.1 Experimental Setup

In principle, exactly the same experimental setup that was used for the experiments of series 1 de-

scribed in the previous section is used for the experiments described below. In particular, during the

evolution process the fitness is evaluated by Fstep↓ + Fstep↑ + Ftrans, as described in the second line of

Table 7.7, while the full set of test modes 1–14 of Table 7.4 is applied in the verification tests. The

difference to the experiments of the previous section are the smaller number of runs used for each

experiment (10 instead of 30) and the actual task described by the different experiments. Instead of

varying the distance of upper pass- and lower stopband frequency fPB and fSB, the five experiments

listed in Table 7.10 are used to vary the overall frequency scale. Thereby, the range of the transition

Experiment fstart fstop fPB fSB

1 3.33kHz 1.67MHz 133.33kHz 666.67kHz

2 1kHz 500kHz 40kHz 200kHz

3 526.32Hz 263.16Hz 21.05kHz 105.26kHz

4 270.27Hz 135.14kHz 10.81kHz 54.05kHz

5 136.99Hz 68.5kHz 5.48kHz 27.40kHz

Table 7.10: Five experiment series for the evolution of LPFs.

band limited by the upper passband frequency fPB and the lower stopband frequency fSB is scaled

such, that the ratio of fSB and fPB remains constant, that is equal to 5, which corresponds to the task

difficulty defined by experiment 3 of the previous section. In fact, experiment 2 of Table 7.10 is iden-

tical to experiment 3 of series 1 in the previous section and consequently uses the same set of evolved

circuits.

7.4.2 Output Behavior for the Best-Of-Experiment Circuits

The output behavior of the best-of-experiment solutions are presented in Fig. 7.22 and Fig. 7.23 for

experiments 1–3 and 4–5, respectively. Here, best refers again to the min worst values achieved

for the native fitness criterion. Analog to Fig. 7.10, the plots on the left hand side depict the mag-

nitude responses determined by test modes 2,3,9 and 10 and the plots on the right hand side show

the transient response according to test mode 8. As this test mode uses a sinusoidal input with a

frequency of 1.67kHz irrespective of the frequency scale of the target corner frequency determined

by the experiment, the distance of this input tone to the upper passband edge fPB varies for different

experiments. Although always located within the passband, an input stimulus closer to the passband

edge will cause a higher penalty in the transient analysis for imperfect, but viable LPFs, which may

hinder the EA in finding good filter circuits.

The best solutions obtained from experiments 1–3 look like such viable, albeit imperfect, LPFs,

similar to those presented in section 7.3: They show good linearity for at least an input voltage range
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Figure 7.22: Comparison of the output behavior of the best filter circuits for experiments 1-3 (from top to

bottom). Here, best refers to the fitness criterion used during evolution listed in Table 7.8, that is the sum of the

error contributions of test modes 8-10. The plots on the left hand side illustrate the frequency response in terms

of the test modes 2,3,9 and 10. The right hand side depicts the transient responses to a sine wave according to

test mode 8.
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Figure 7.23: Comparison of the output behavior of the best filter circuits for experiments 4-5 (from top to

bottom); refer to Fig. 7.22 for details.

of 1.5 to 3.5V and a magnitude response that, in principle, complies with the desired specifications,

yet cuts off some of the forbidden regions in the pass- and stopband. However, from the imprinted

numbers for their best and worst fitness scores as well as from the plots themselves, the best-of-

experiment solution can be observed to decrease in quality with a decreasing corner frequency.

The best solutions attained in experiments 4 and 5 suit this scheme well by exhibiting an even

worse output behavior: while the magnitude response of the best circuit of experiment 4 fails to

achieve the desired attenuation of ASB = 40dB even worse than its counterpart of experiment 3, the

best filter obtained from series 5 shows a less steep rolloff rendering it a simple first order filter. Both

filter circuits reveal severe nonlinearities, which cause their respective magnitude responses from the

up and down step responses to fall apart.

7.4.3 Statistical Analysis

The above observations must be backed up with an overview over the distribution of fitness scores

obtained for the different experiments. This is done by means of the histograms in Fig. 7.24(a) and

7.24(b), which are based on the best and worst min worst native fitness, respectively. Both of these

fitness comparisons indeed confirm the decrease in performance with decreasing corner frequencies
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Figure 7.24: Histograms for the best (a) and worst (b) native fitness obtained for experiments 1–5.

that was already seen for the best-of-experiment solutions. The effect is more pronounced for the

comparison of the best fitness values than for those of the worst ones. However, in both cases the

average fitness scores increase monotonically with the experiment number, and the difference between

the results of experiment 5 and experiments 1–4 is most significant. As expected from the results of

section 7.3.3, there is an enormous discrepancy between the distribution of worst and best fitness

scores.

Most probably, the correlation of evolution results and frequency scale must be mainly ascribed

to the time scales inherent to the FPTA substrate. Given that the typical capacities available on the

transistor array amount to something like 100fF, a corner frequency of f−3dB ≈ 10kHz necessitated

by the target criterion of experiment 5 leads to a resistance in the order of R = (2π · f−3dB ·C)−1 =
160MΩ to realize a simple RC lowpass filter stage with the desired corner frequency. Although the

possibility to split the capacitor as well as the resistor into a bunch of some ten devices brings the

necessary resistance value down to about 1MΩ, such resistors are still hard to implement with only

CMOS transistors, when their linearity is required over a macroscopic voltage range. However, in

case of series 4 and 5 the relatively high frequency used for the transient analysis may have further

impeded the successful synthesis of good LPFs. Finally, it should be noted that from the results

presented in Chapters 5 and 6 any influence of the bandwidth of the analog measurement system can

be ruled out to play a role in the evolved circuits.

7.4.4 Migration to a Second Chip

The ability of the evolved circuits to work on a second FPTA chip is verified by means of 7.25(a) and

7.25(b) which are based on the mean and worst scores obtained for the native fitness criterion. Analog

to Fig. 7.20(c), the performance of all runs of one experiment is averaged over all those circuits whose

best and worst fitness deviate by less than 100%. First, the monotonic increase of fitness scores with

increasing experiment number or rather target corner frequency is indeed observed for the according

averages, too. Second, the performance on both chips is – on average – almost identical for the

reliable circuits evolved.
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Figure 7.25: Comparison of the performance attained on two different FPTA chips, where chip 1 denotes the

die used during the evolution process.

7.5 High Pass Filter

While the preceeding two sections focused on the evolution of LPFs, this section presents four exper-

iments dedicated to the evolution of HPFs. Since other types of filters targeted at certain magnitude

responses can in principle be thought of as combination of these two archetypes, this section therefore

completes this chapter.

7.5.1 Experimental Setup

In principle, the experimental setup chosen for the HPF experiments closely follows that one used

for the LPF experiments of series 1 presented in section 7.3. The particular choices as well as all

difference to LPF settings are described below.

7.5.1.1 Task Description

As was already hinted in section 7.1.2.2, the evolution of LPFs is expected to be more difficult than that

of LPFs. Hence, a relatively easy task whose difficulty corresponds to that described by experiment

2 of section 7.3 is adapted to define the target specifications by exchanging the roles of pass- and

stopband. Again, the filter task is described by the abstract set of parameters defined in Fig. 7.2(b).

The concrete values for those parameters are summarized in Table 7.11, the analogon to Table 7.6.

On one hand, the parameters are chosen such, that the task is not too difficult. On the other hand, any

Parameter fstart fstop fSB fPB APB δ ASB

Target Value 1kHz 0.5 . . .500kHz 10kHz 100kHz 0dB 0dB 40dB

Table 7.11: . Parameter set describing the HPF-task. These parameters are defined in Fig. 7.2(b).

of the traditional filter approximations that is to perfectly meet these filter specifications must be at

least of second (Chebyshev I,II or Cauer filter) or even third (Butterworth filter) order (cf. Table 7.7).
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7.5.1.2 Fitness Measures

All of the experiments presented below rely on establishing the magnitude response by means of

a Fourier transform of a step response as described by method M1 in section 7.2.1. For one, this

method proved to be helpful in generating circuits that achieve a good compromise between a good

magnitude response and high linearity. For the other, their main disadvantage, namely the high noise

floor encountered for high frequencies shall not be detrimental to the proper evaluation of HPFs,

since they possess a large amplitude in the frequency range in question. Therefore, the SNR remains

uncritical throughout the whole frequency range of interest (cf. section 7.2.4.1).

Overview of the Experiments. The differences characterizing the four different experiments pre-

sented in this section are summarized in Table 7.12. Apart from the differences in the GA-parameter

Experiment reproduction fraction Fitness Criterion

1 0.04 F2.5→1.5 + F2.5→3.5

2 0.04 F2→3

3 0.2 F2→3

4 0.1 F2→3 + F3→2

Table 7.12: Four experiments for the evolution of HPFs.

reproduction fraction, the fitness criterion used to evaluate the prospective HPF circuits during the

evolution process represents the more interesting variation. First, it is important to note, that there

is no need for a transient analysis at low frequencies, as they would fall into the stopband. A tran-

sient analysis at high frequencies located in the passband, on the other hand, could be advantageous

to give the evolutionary loop some feedback about the linearity of the hopefully undistorted signals

in the passband. Yet, such a transient response is hard to evaluate, since the phase shift between

the input sine wave and the output of the candidate circuit are neither known in advance nor helpful

to prescribe. Second, the fitness measures used for all of the experiments are all based on the step

responses described by test mode 9 and 10 of Table 7.4. In fact, while F2.5→1.5 and F2.5→3.5 are iden-

tical to Fstep↓ and Fstep↑, F3→2 and F2→3 merely differ from those by a shifted input voltage of ±0.5V,

respectively.

The particular composition of step responses is motivated as follows: The sum of test modes used

for experiment 1 is basically identical to that one used for series 1 and 2 of section 7.3 freed of the

transient analysis. Experiments 2 and 3 try to answer the question, whether it is sufficient, beneficial

or detrimental for the quality of the evolved circuits to use only one type of step, which happens to

point upward here. With regard to the difficulty of the task, this implicit reduction in evaluation time

would suit the synthesis of HPF well. Finally, the fitness criterion used in experiment 4 simplifies

the task defined in experiment 1 by reducing the in- and output range the candidate circuits have to

comply with.

List of all Test Modes. The complete list of test modes used in the verification tests is presented

in Table 7.13. It is the analogon to Table 7.4 on page 208 used for the experiments on LPFs. Apart

from the slightly changed target parameters contained in Table 7.11, the set of HPF test modes differs

from its HPF counterpart in the following aspects: The analoga to the former test modes 5 and 8 are

discarded. The new versions of test modes 9 and 10 take on a similar role to the former test modes

11 and 12 in that they account for the shifted step responses F3→2 and F2→3 used in experiments 2–4.

There are no correspondents to the former modes 15–20.
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No. Description Name Equation Purpose Weighta Ntotal

1 Distortion: Fourier-analyzed ac-sweep Fdist (7.43) verification 0.5 24693

Magnitude response: Fourier
2

analyzed ac-sweep
Facsf (7.42) verification 0.5 24693

M2: Magnitude response: mean
3

signal power, ac-sweep
Facs (7.29) evolution 0.5 24693

4 Trans. resp. for ac sweep – illustration – 24693

5 Transient response, 625kHz sine tone – illustration – 201

6 Transient response, 822Hz sine tone – illustration – 201

7 M1: Step response: 2.5V→ 1.5V F2.5→1.5 (7.22) exp. 1 1 500

8 M1: Step response: 2.5V→ 3.5V F2.5→3.5 (7.22) exp. 1 1 500

9 M1: Step response: 3V→ 2V F3→2 (7.22) exp. 4 1 500

10 M1: Step response: 2V→ 3V F2→3 (7.22) exp. 2-4 1 500

11 Trans. resp. for step: 2.5V→ 1.5V – illustration – 500

12 Trans. resp. for step: 2.5V→ 3.5V – illustration – 500

aWeight refers to the global weight/scaling of the respective fitness contribution. Test modes 9-12 and 15-20 possess

additional weights for their different frequency components as discussed above and below, respectively.
aThe transition band is the narrowest for experiments of type exp. 5. It stretches from 80 to 200kHz (cf. section 7.3.1).

Table 7.13: List of all test modes used during the artificial evolution and/or for the verification tests of HPFs.

7.5.1.3 GA and Other Parameters

The genetic algorithm parameters have already been stated in Table 7.9. Apart from the different

reproduction fractions applied in the four different experiments, the main difference is given by the

increased number of generations. The tenfold increase compared to most of the LPF experiments

shall account for the increased difficulty of the task at hand. As this implies a significant increase in

the necessary computation time, the number of runs per experiments is reduced to 20. Finally, the

smaller geometry I depicted in Fig. 7.9(a) is utilized throughout all four experiments.

7.5.2 Output Behavior for the Best-Of-Experiment Circuits

To get an impression of the quality of the evolved HPF filters, the output behavior of the best circuit

of each experiment is plotted in Fig. 7.26 and Fig. 7.26 for experiments 1–3 and experiment 4 re-

spectively. Here best refers to the min worst native fitness achieved within the 100 verification tests.

While the magnitude responses of the respective filter determined by test modes 2,3 and 7–10 are

depicted on the left hand side of Fig. 7.26, the plots on the right hand side present the circuits’ output

for a sinusoidal input stimulus of frequency 625kHz as described by test mode 5.

In general, all of the best magnitude responses that are determined by test modes also used during

the evolution meet the desired specifications fairly well, although they usually fall short of perfectly

keeping out of the forbidden regions of the pass- and stopband as well as of realizing a flat response of

approximately 0dB attenuation in the stopband. The respective transient responses are fairly linear;

yet, they are attenuated in comparison with the input signal. Please note, that the output signal of

highpass filters in general has to undergo some transient period and experiences a phase shift with

respect to the phase of the input signal.

A comparison of the magnitude responses of the best circuits of the four different experiments

reveals the following: First, from the results of experiments 2 and 3, it can be observed that it is not

sufficient to evaluate the magnitude response for only one input step direction. Second, a comparison

of the consistence of the magnitude responses determined by different test modes for the best circuit
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Figure 7.26: Comparison of the best output behavior of the best HPF filter circuits for experiment 1-3. Here,

best refers to the fitness criterion used during evolution as listed in Table 7.12. The plots on the left hand

side illustrate the frequency response in terms of the test modes 2,3 and 7–10. The right hand side depicts the

transient responses to a sine wave at f = 625kHz according to test mode 5.
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Figure 7.27: Continuation of Fig. 7.26 for best circuit of experiment 4. The same conditions as in Fig. 7.26

apply.

of experiments 1 and 4 indicated that the reduced input voltage range is not a sufficient fitness criterion

either if the evolved filters are to work on the larger input voltage range. However, the deterioration

caused for the full fitness criterion of experiment 1 is less severe as for the single step criterion.

Conversely, the EA could take advantage of the simpler fitness criterion in case of experiments 3 and

4, as the best overall magnitude responses are obtained for their native test modes.

Although the magnitude responses obtained for test modes 9 and 10 depicted in Fig. 7.27(a)

almost perfectly match the target specifications, the fitness attained by the best circuit of experiment

4 exceed the fitness values achieved by all other best-of-experiment solutions. This is due to a flaw in

the fitness criterion of experiment 4: According to (7.23) the step-response based fitness evaluations

contain a dc penalty for the last 50 samples before the step position. Therefore, the two test modes

F3→2 and F2→3 require successful filter circuits to adapt to the input level of either 3 or 2V. But on

the other hand, by definition, an ideal HPF possesses a dc gain of zero. Consequently, the best a HPF

under evolution can do is to force its output to a dc level of 2.5V, which results in an offset penalty of

2 · 10 · 50 · 0.52 = 250. Therefore, the evaluation by means of experiment 4’s fitness criterion carries

a fitness offset of at least 250. However, since the selection is performed in a rank based scheme and

all other fitness criteria also force the circuits under test to a prescribed dc output level, this does not

discriminate the evolution process itself.

7.5.3 Statistical Analysis

The histograms of Fig. 7.28 display the performance of all runs of all experiments. Fitness values are

taken from the native fitness (Fig. 7.28(a) and (b)), the fitness criterion of experiment 1 (Fig. 7.28(c)

and (d)) and the criterion used for experiment 4 (Fig. 7.28(e) and (f)) for the best and the worst fitness,

respectively. In order to allow for a fair comparison of the results attained for experiments 2 and 3,

which use only one single step response, with those of experiments 1 and 4, the fitness values of the

former ones are doubled before they entered Fig. 7.28(a) and (b).

Firstly, the histograms for the native fitness criterion reveal that most of the runs are confined to

a fairly narrow region, i.e. perform similarly well, while the rest clearly fails to come close to the

target specifications. Secondly, the deviations between the best and worst fitness results seem to be

less dramatic than for the LPFs. Thirdly, Fig. 7.28(a) and (b) indicate that the easier task described by

the single step response F2→3 lead to better fitness scores. Finally, a comparison between the results
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Figure 7.28: Histograms comparing the results for the different experiments. The plots on the left hand

side account for the best and those on the right hand side for the worst fitness values attained within the 100

verification tests. From top to bottom, the native fitness criterion, that for experiment 1 and that for experiment

4 are used. The histograms for experiments 2 and 3 of Fig. (a) and (a) are doubled to allow a fair comparison

with the respective histograms for experiments 1 and 4.
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for experiments 2 and 3 suggests that a higher reproduction fraction is beneficial to the success of the

EA for the given problem formulation.

In accordance with the observations for the best-of-experiment circuits, the histograms for the

fitness criteria of experiment 1 and 4 prove the circuits evolved in experiments 2 and 3 incapable

of fulfilling the more general tasks involving two step responses in opposite directions. Here, the

increase in the covered input voltage range makes things even worse. The circuits evolved in experi-

ment 4 outperform those of experiment 1 when compared in their native fitness criterion, but most of

them falls short of reproducing their good results for the criterion of experiment 1. Thus, once again,

the presumably easier task allows for the evolution of better circuits that in general to not generalize

to the more complex problem.

The statistical analysis of the ensemble of HPF experiments shall be concluded with a scatter plot

relating the quality of magnitude response and linearity of the evolved circuits with each other. The

graph in Fig. 7.29 is equivalent to the plot for experiment 2 in Fig. 7.18. A comparison between
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Figure 7.29: Scatter plot relating the achieved dis-

tortion values from TM 1 with the according quality

of the magnitude response evaluated by means of TM

2. The plots are based on the highest (worst) values

for the respective test modes attained within the 100

verification tests.

these two graphs reveals that the best of the evolved HPF possess a rather small distortion penalty in

comparison with the LPFs, but perform worse in terms of the magnitude response. As expected, the

best tradeoffs between distortion and magnitude response are achieved by the circuits evolved with

the combination of test modes 7 and 8, whereas those using only test mode 10 perform relatively bad.

However, it is interesting to note, that the better circuits evolved in experiment 4 perform almost as

well in terms of the magnitude response of those evolved in experiment 1, but exhibit a considerably

higher amount of distortion.

7.5.4 Reproducibility

The reliability of the evolved HPFs is analyzed by means of the histograms depicted in Fig. 7.30(a) and

Fig. 7.30(b), which are the equivalents of Fig. 7.13(a) and Fig. 7.13(c). In comparison, the distribution

of deviations between the best and the last fitness is more confined for the evolved HPFs compared

with their LPF counterparts from series 1 and 2, at least for experiments 1,2 and 4. Furthermore, the

fraction of HPFs whose worst fitness deviates by less than 100% from their best fitness is considerably

larger than the respective fraction obtained for the evolved LPFs presented in section 7.3. A compari-

son of the deviation for the circuits of experiments 2 and 3 reveals that the larger reproduction fraction

tends to cause the evolved circuits to perform less reproducible. This confirms the hypothesis stated

in section 7.3.3 that an increased number of phenotypically (and here also genotypically) identical

individuals per generation reduces the selection pressure towards reliable circuits.
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Figure 7.30: Histograms for the deviations of the best from the last fitness values (a) and the deviation of the

worst from the best fitness values (b).

7.5.5 Migration to a Second Chip

Analog to section 7.3.6 the ability to work on a second FPTA chip is tested for different figures of

merit. The average performance on both chips are depicted in Fig. 7.31, the equivalent to Fig. 7.20.

Here, only those runs are considered whose deviation between best and worst fitness does not exceed

25% instead of 100%, because they were found to perform more reliably in the preceeding section.

While the performance losses in terms of test modes 1 and 2 are negligible, they are significant

in terms of the native fitness criterion as well as for that of experiment 4, which are both based

on a step response rather than a Fourier analyzed ac-sweep. In the latter cases, the performance

differences on both chips are larger than for their LPF counterparts. Opposite to the evolved LPFs,

the average performance differences between two chips are of similar magnitude as those between

the best and worst fitness scores obtained within the 100 verification tests. One possible reason for

the dependency of the performance loss experienced on a second chip on the actual figure of merit

would be a difference in the dc output voltage level resulting in an increased penalty POS described

by (7.23), since this only affects the step-based fitness criteria.

7.6 Summary and Discussion

In the course of this chapter, different types of experiments have been presented that are aimed at the

intrinsic evolution of transistor level low- and highpass filters.

Thereby, the experiments targeted at the automatic synthesis of LPFs addressed the comparison

of three different methods of evaluating the magnitude response of the circuit under test as well as the

dependency of the evolutionary success on the target corner frequency. The experiments aimed at the

evolution of HPFs, which turned out to be more difficult to synthesize, focused on possible reductions

and simplifications of the fitness measure. In the section below, the most important findings are

summarized. In a second step, the results are compared to related work found in the literature, which

eventually leads to an outlook to possible future work.
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Figure 7.31: Comparison of the performance on two different FPTA chips, where chip 1 denotes the die used

during the evolution process. For each experiment, the results for the frequency response (a), distortion (b),

native fitness (c) and fitness in terms of the specifications of experiment 4 (d) are averaged over those runs of

each experiment, for which the percentage difference of best and worst fitness did not exceed 25% within the

100 verification tests. . The fitness values attained for experiment 2 and 3 in (c) are doubled to allow for a fair

comparison with the remaining two experiments.

7.6.1 Lessons Learned

Noise The three proposed methods evaluate the magnitude response of a candidate circuit either by

taking the Fourier transform of a step response (M1), calculating the mean signal power of

the response to a set of sinusoidal input tones (M2), or by taking the Fourier transform of

the response to such a set of sinusoidal input tones of different frequencies (M3). For the

same analog accuracy of the IO system, they differ considerably in their inherent noise floor

that defines the maximum possible attenuation that can be reliably measured. The noise floor

associated with M3 exceeds that of M2 by 19dB and that of M1 even by 29dB for the settings

used in the presented experiments. Though the latter difference is likely to be reduced at high

frequencies, it is possible to lower the noise floor even further for method M3 by increasing

the number of cycles measured for each of the input tones. Since the noise floor inherent to

method M1 increases for higher frequencies, this method is better suited for testing HPFs. In the

proposed experiments and for an effective number of bits equal to 12 – the nominal resolution
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of the used ADC – the noise levels amount to −44dB, −63dB and −73dB for methods M1,

M2 and M3, respectively.

Consistency of M1–M3 The magnitude responses obtained from the three different methods M1–

M3 are found to be consistent, as long as the circuits under test are sufficiently linear. A signif-

icant distortion of the filter’s output manifests itself in deterioration of the step-response based

magnitude responses, which can be exploited to guide the EA towards more linear solutions.

Evolutionary Success for M1–M3 In the presented experiments, method M2, which bases the eval-

uation of the magnitude response on the mean signal power of the response to a set of sine

waves, led to the best magnitude responses, but in general also to higher levels of nonlinear-

ity. A better compromise between these two goals was usually obtained from the experiments

using the step-response based evaluation of method M1. Here, fivefold increase of the num-

ber of generations only led to a very modest performance improvement. Finally, the concrete

implementation of method M3, the Fourier analyzed sine response, is found to produce unreli-

able fitness scores and can therefore be expected to perform better for a more consistent setup.

Method M3 stands out in that it offers the possibility to choose the tradeoff between linearity

and magnitude response by means of a small set of weighting factors. Together with its low

noise floor, this suggests M3 to be the method of choice.

Task Difficulty The difficulty of the LPF task has been varied by choosing five different ratios of

stop- and passband frequencies. For the first three ratios of 20,10 and 5, the more difficult

task on average led to better filter circuits. The further decrease to ratios of 3.5 and 2.5 did

not improve the set of evolved filters significantly. Thus, the latter tasks are inferred to be too

difficult for the given experimental setup, including the EA.

Corner Frequency The success in automatically synthesizing LPFs on the proposed evolution sys-

tem decreases with decreasing target corner frequencies. For the two lowest stopband frequen-

cies fSB of 54 and 27kHz the chosen setup seems to be relatively impractical.

HPFs versus LPFs In general, the evolution of HPFs turned out to be more difficult. In spite of a

tenfold increase in the number of generations used per EA run, the evolved HPFs do not match

the performance attained by their LPF counterparts. For instance, for the analogon to the LPF

task, the best filter circuit achieves a rolloff of only slightly more than the 20dB encountered

for a first order filter.

HPFs: Reduction of Fitness Criteria The HPFs have been evolved for three variations of the step-

response based fitness criterion. Thereby, the difficulty of the task was decreased either by a

decrease in the required in- and output compliance or by reducing the evaluation to only one

upward step. The task simplification did indeed help to evolve circuits that perform better at

this respective task. However, the according circuits fail in solving the original, more difficult

task.

Reliability Despite the introduction of an analog substrate reset and a randomization of the test mode

order, a large fraction of the evolved LPFs prove unable to reproduce their best output perfor-

mance throughout a series of 100 subsequent verification tests. This flaw is much more severe

for the circuits attained by means of methods M1 and M2, where more than 40% exhibit a

deviation between the best and worst fitness scores of more than 100%, than for those evolved

using method M3. In the latter case, only about 10–15% of the circuits vary by more than 100%

in their fitness score. In fact, the spread of fitness scores for method M1 and M2 significantly

exceeds that observed for the evolved circuits presented in the previous two chapters. Although



7.6. Summary and Discussion 243

the experiments targeted at the synthesis of HPFs also rely on the step-response based evaluation

of the magnitude response, the fraction of circuits that fail in at least one of the verification tests

amounts to approximately 20%, which is significantly lower than for their HPF counterparts.

The presented experiments suggest that a larger number of phenotypically identical individu-

als present in one generation, as e.g. caused by a higher reproduction fraction or a premature

convergence, decreases the selection pressure towards reliable filter circuits and thus results in

a higher fraction of unreliable filters.

Migration to a Second Chip While the evolved LPFs experience only a very small performance loss

when operated on a different FPTA chip, the performance of the evolved HPFs decreases more

severely on this second chip. In the latter case, the performance variations within the 100

verification tests and those between the two dice are of comparable magnitude.

7.6.2 Comparison with Related Work

Automated Filter Synthesis. The results presented are not in the least anywhere close to the per-

formance reported for tools from the automatic design community or the artificial evolution/synthesis

of passive RLC filters. This does not come as a surprise, as both problems are less difficult than the

one tackled here. While the former task is usually reduced to parameterizing a given well suited, al-

beit universal, filter architecture and does not include transistor level circuit optimization or synthesis,

the latter ones restricts its allowed devices to a set ideally suited for filter applications and moreover

can rely on ac-analyses or even analytical calculations, because the according transfer functions are

assumed to be perfectly linear.

The best magnitude response presented for the LPFs belongs to experiment 5 of series 3 and is

depicted in Fig. 7.12(c). According to Table 7.7, the according filter operation is of order 3 or 4. Yet,

the circuit is only linear in a restricted input voltage range of 2− 3.5V. Apart from this particular

circuit, there are quite a few LPF filter circuits which are supposed to be at least of second or third

order and are almost linear of the full input range of 1.5− 3.5V. Examples are found for series 3,

experiment 2 and 3 in Fig. 7.19(c), or for series 1 and 2 in Fig 7.14(a). While the best HPF found for

a restricted input range of 2− 3V exhibits a second to third order characteristic, its counterpart for

the larger input compliance of 1.5−3.5V achieved only a first order rolloff and fails to provide a flat

response throughout the passband.

Although these results are far from relevant to any possible application and clearly lack an indus-

trial strength, they compare remarkably well to those reported for similar types of problems: Most

of the intrinsic HWE experiments targeted at automatic filter design are restricted to tuning a few

passive component values of an otherwise predefined topology, as e.g. described in [She02], [Flo00],

[Gre04]. Even though the approach proposed by Zebulum et al. [Zeb99] does include topology selec-

tion to find a second order SC LPF, it does only generate the switching network and thus cannot be

said to work on the transistor level. Nevertheless, the LPF reported in [Zeb99] provides a rolloff of

less than −20dB per decade.

To the author’s knowledge, the results that have been published on transistor level intrinsic HWE

of analog frequency selective filters to date are restricted to the group of Adrian Stoica. In [Sto04],

[Key04], and [Zeb04] Stoica et al. report the evolution of an LPF and HPF with a rolloff of±14dB per

decade and a corner frequency f-3 dB of 1 and 10kHz, respectively, which is verified over a frequency

range of little more than a decade. In their experiments, the EA was allowed to use 10 of their FPTA-2

cells, which include linear capacitors.

In contrast to these indeed moderate results, in [Key00a], [Sto01d] and [Sto02a] Stoica et al.

report the successful extrinsic evolution of several BPFs with passbands located between 1 and 25kHz

whose rolloffs are of the order of ±40dB. Thereby, one or two of their FPTA-0 cells together with
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some additional linear capacitors are used. This strongly suggests that the intrinsic approach is far

more difficult than the extrinsic one. A possible explanation may on one hand point to capacitor

values that are prohibitively large for a VLSI28 integration ([Sto01d]) and on the other hand may

object against restricting the fitness evaluation to an ac-analysis in the simulation based experiments.

As an ac-analysis linearizes all devices by assuming infinitesimally small signals, circuits that are

solely tested by such an ac-sweep are likely to fail for any realistic conditions.

Finally, Botelho et al. [Bot03] and Vieira et al. [Vie04] propose experiments on the extrinsic
transistor-level HWE of low- and highpass filters using only MOS transistors. Their respective filters

are also targeted at corner frequencies between 10 and 100kHz and achieve between 20 and −40dB

rolloff together with linear output voltage range of almost 2V. On one hand, both publications report

between 20.000 and 50.000 necessary fitness evaluations, which is significantly less than were used

in the experiments presented in this chapter. On the other hand, in [Bot03] the EA can use tran-

sistor lengths and widths between 0.6 and 600µm, which greatly facilitates the task. Moreover, the

fitness evaluation is restricted to ac- and dc-analyses. Hence, without a transient analysis, it remains

questionable, whether the proposed filters would work as real circuits.

Configurable Devices for Filtering Applications. The presented filter experiments reveal that the

feasible range of corner frequencies as well as the available bandwidth for evolved filters is similar to

or rather a subrange of that of today’s commercial FPAAs, as e.g. offered by Anadigm (cf. [AN203]

or [Ana03a]). In terms of feasible filter orders, range of corner frequencies, precision, possible at-

tenuation or variety of realizable filter types and approximations, such chips will be hard to top with

an evolutionary approach. As such FPAAs are supported by software that lets the user conveniently

configure the desired filters from abstract specifications, there seems to be no need for evolved filters

operating in the frequency regime below 1MHz.

Conversely, even most recent publications (see for instance [Pan02], [Bec04] or [Pav00]) on con-

figurable filters allowing for corner frequencies beyond 100MHz have not arrived at such full flexibil-

ity, ease of programming or such low noise and distortion levels as the abovementioned low frequency

FPAAs. Hence, to allow for a higher bandwidth, higher corner frequencies, and to facilitate the syn-

thesis task, future HWE experiments targeted at filter applications should resort to a different type

of hardware substrate, which is based on recent techniques used for filter implementations. From

the author’s point of view, a chip based on Gm-C cells that are programmed mainly by varying the

necessary bias currents and to a lesser extend by programmable capacitors should be most promising.

In the best case, the configuration can be shifted from digital switch information to quasi-continuous

time constants, which does not only smooth the fitness landscape but also reduces the parasitic effects

introduced by the configuration switches.

28Very Large-Scale Integration



Chapter 8

Evolution Using Human Made Building

Blocks

We must either find a way or make

one.

HANNIBAL

While the previous result chapters focused on different types of target behaviors
and thereby different types of test modes, the following three case studies intro-
duce a new methodology to facilitate the analog circuit synthesis based on the
proposed FPTA evolution system: Instead of restricting the automated circuit
design to using only plain transistors, a library of simple user defined build-
ing blocks is provided to the genetic algorithm. While the first two case stud-
ies employ a library consisting of the simple logic gates NOR, NAND, NOT

and a buffer to evolve the more complex gates XOR and XNOR as well as a
tone discriminating circuit, a larger library of more analog circuit primitives is
used for the third case study that is aims at the synthesis of comparator circuits.

The results presented in the previous three chapters, especially in Chapter 5, indicate that a simple

GA implementation fails to produce human competitive solutions with an acceptable yield rate – even

for relatively small problems. Basically, there are two ways to overcome this problem: By improving

the search algorithm in general so that it is better suited for the class of problems to be solved, and/or

by including human domain knowledge in the algorithm. The latter approach will reduce the search

space and preclude solutions that are too different from those created by humans. In other words,

introducing human design knowledge sacrifices some of artificial evolution’s ability to explore the

design space beyond conventional design rules and methodologies.

Nevertheless, a trend away from the credo of unconstrained evolution towards search strategies

guided by human design principles can be observed in recent publications in the field of evolvable

hardware: The advantages of an unconstrained artificial evolution process over conventional digital

design were first proposed and demonstrated by Adrian Thompson ([Tho98a]), [Tho97], [Tho99],

245
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[Tho00]) during the late 90s. This approach was adopted by a number of researchers, whose work is

accounted for e.g. in [Lay01], [Mil97], [Hue99], [Hol00]. Although recently Julian Miller extended

the idea of unconstrained evolution insofar as to claim that it should be applied to other physical media

that are better suited for this purpose than the typical primitives realized in today’s silicon technology

[Mil02], a growing number of publications regard the allowance of human domain knowledge as

necessary or at least beneficial for the progress of artificial hardware evolution. Prominent examples

in the field of analog synthesis are documented in [Koz04c] and [Zeb03], [Zeb01].

Parallel to this trend, a series of experiments employing human designed building blocks have

been performed with the proposed evolution system. Thereby, three different problems, namely the

synthesis of XOR/ XNOR gates, of tone discriminators and that of comparators have been tackled

using two different types of building block libraries. Similar material to that concerning the former

two topics has already been published in [Lan04].

8.1 Methodology

8.1.1 Rationale

The usage of human designed building blocks (BBs) can be viewed in three different ways: First,

utilizing higher level building blocks facilitates the task at hand by narrowing down the design space.

Instead of having to reinvent the wheel in every single run, evolution is free to take advantage of

circuit primitives that have been proven successful numerous times in human designs. In this vein,

the success rate of the automatic design process and the quality of the evolved solutions as well as its

convergence speed should be considerably enhanced.

Second, the results presented within the previous three chapters as well as those found in the

literature render the success of a direct flat artificial evolution of more complex systems improbable;

evolutionary algorithms in general and hardware evolution in particular scale badly with the size of the

system to be synthesized. Moreover, regarding current search techniques together with the amount of

parallelization and circuit evaluation times feasible with today’s technologies, one would not expect

to evolve a CPU from scratch. Accordingly, the automatic design of complex systems either requires

the usage of high level building blocks or techniques to automatically divide the problem into sub-

problems. The proposed approach can thus be viewed as a first step towards the evolution of more

complex systems by means of problem decomposition. It should be noted though, that the automatic

decomposition itself represents the more difficult problem.

Third, the concept of human-designed building blocks allows to incorporate some a priori problem

specific knowledge into the search process. For one, the building blocks themselves usually are

chosen to be practical for the design task to be accomplished, while the other senseless or redundant

circuit primitives of this complexity are discarded. For the other, the approach taken here suggests a

signal flow from left to right and a current flow from top to bottom to the automated design process,

where the latter direction is actually more important for case study III than for cases I and II. Since this

complies with the conventions for illustrating circuit schematics, the generated circuits are hoped to

be easier to understand than those evolved with the plain transistor level genotype described in section

4.4.3. Finally, taking into account some conventional design principles may bias artificial evolution

to create circuits that are more robust against variations in environmental conditions like temperature,

the exact die, or its position thereon compared to circuits found in a completely unconstrained search.
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8.1.2 Related Work

This work was inspired by the cell-structured current-path based synthesis described in chapters 3 and

4 of [Shi01]. In the current-path based synthesis Shibata uses a representation consisting of several

sequences of meta structures in which a current flows from the positive power supply voltage vdd to

ground or vss. The meta structures are either current sources, transistors or transistor pairs. Crossover

is restricted to the exchange of integer current-path forming sequences. Beside the usual mutation

operator acting on the properties of each meta structure another mutation operator adds/removes meta

structures to/from one of the current paths. This concept is transferred to a cell-based approach which

utilizes a stack of 4 transistors connected in series between the power supply voltages augmented

with a number of switches to configure the cell. Finally, in [Shi02] the cell-based representation

is applied to an array of 9 such cells to intrinsically evolve 3 different computational circuits. The

proposed building block concept adopts the idea of meta structures and extends it to allow for user-

defined building block libraries and geometries. The topological configuration of Shibata’s meta

structures are realized by choosing different BBs from the library. Thereby, the user can design

building block libraries which strongly suggest the use of distinct directions of signal and current

flow to the evolutionary algorithm or constrain the design to be strictly symmetrical. With regard to

the crossover operation, existing current paths are preserved by preserving all BBs.

In principle, the FPTA1 and FPTA2 chips designed by Stoica et al. (cf. e.g. [Sto01c], section 3.11)

are arrays of configurable cell structures. In this vein, all experiments that utilize more than one of

these FPTA cells for the description of their genotype are also closely related to the work proposed

here. In fact, in [Zeb01] and [Zeb03] both, human designed as well as evolved building blocks are

used as substructures to compose a 4-bit DAC.

In a broader sense, the use of analog building blocks in intrinsic hardware evolution experiments

is reported in a variety of publications: First, high level building blocks, i.e. typically operational

amplifiers, are frequently combined with passive circuitry to evolve signal processing circuits like

filters. The restricted variety of different building blocks may be due to the limited resources offered

by the typical off-the-shelf FPAA devices available. While the work found in [Gre03], [Gre04],

[Her04] and [She02] focuses on the optimization of a few size parameters of the passive devices in an

(almost) fixed topology, the genotypical representation described in [Ozs98] consists of a mixture of

higher level functions, topology describing information and sizing parameters and thus includes the

evolution of new topologies.

In the world of digital substrates the reported publications on intrinsic hardware evolution range

from gate level synthesis of analog circuits ([Hue99], [Tho97] and [Tho00]) to the synthesis of dig-

ital signal processing systems by means of parameterized functional building blocks (e.g. [Sek03],

[Zha04]). It should be noted though, that the variety of logic functions available in the FPGA cells

used as building blocks in the former examples is still richer than that used in the case studies I and II

described below. Moreover, the analog behavior of the gates available to the experiments presented in

[Hue99], [Tho97] and [Tho00] is probably much closer to that of the simple gates used in experiments

documented below.

Finally, the concept of building blocks also plays a role in the following publications based in

the field of analog design automation. In [Sri02] the authors report the usage of a small library

consisting of two different gain stages in a GP-based evolution of an analog amplifier. Graeb et al.

([Gra01]) on the other hand, facilitate three types of parameter optimizations for a given topology

of an analog circuit by their sizing rule method. Thereby the circuit is divided into human defined

building blocks ranging from 1 to 4 transistors. The channel dimensions of the transistors forming the

identified building blocks are then calculated according to a set of sizing rules derived from human

design knowledge. The relation to the work presented here is twofold: For one, some of the sizing
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rules established by Graeb et al., as e.g. to choose the identical channel length for certain transistor

pairs can also be implemented in the current evolution framework, while the inclusion of others may

be realized fairly easily. For the other, the circuit primitives that make up the building block library

employed in case study III are possess similar if not identical functionality in many cases.

8.1.3 Building Block Concept

The general idea of the building block concept is to allow artificial evolution to synthesize circuits

from user defined building blocks. The implementation shall be based on the cell based genotype

representation described in section 4.4.3, which is closely related to the FPTA’s structure itself. The

user defined building blocks are stored in a library and inserted into the actual genotype. The principal

issues that have to be dealt with are where to place and how to connect the building blocks as well as

how to determine their channel dimensions.

For the sake of simplicity, the locations where building blocks are placed are kept fix. The con-

nections necessary between the building blocks can in principle be realized in two different ways:

Either the ensemble of building blocks must be designed such, that all possible BB combinations can

emerge from the synthesis process, or the BBs must be embedded in a layer of extra cells that can

host the necessary connections and are themselves subject to the evolutionary process. The former

approach gives rise to two objections: First, the need to include all necessary routing capabilities as

BBs enlarges the BB library unnecessarily. Second, depending on the size of the building blocks the

routing blocks may either consume unreasonably large areas or, if the routing capability is mixed with

functionality, will complicate and enlarge the building blocks themselves. Hence, the availability of

routing cells is considered desirable.

The channel dimensions of the transistors of the BBs can be determined with different degrees

of flexibility. The extremes would be either to let the user define the sizing of the building blocks

and keep the according values fixed throughout the evolutionary process, or to let the transistor chan-

nel geometries be evolved totally freely by the EA. The sizing rules described in [Gra01] constitute

a compromise between flexibility and the consideration of prior design knowledge. So far, the im-

plementation of the building block idea is only capable of fixing either the width or length of all

transistors in all building blocks. Finally, while place and route as well as the sizing of the building

blocks relate to the mutation operators, the crossover operation is required to preserve the building

blocks.

8.1.4 Implementation

The concept sketched above is implemented by introducing further attributes to each of the 256 FPTA

transistor cell equivalents constituting the genotype: To account for the placement and routing of

the building blocks, a numeric cell key is assigned to each cell; cells that possess the same key are

treated as one building block. The upper left quarter of the cell keys used for case studies I and II

are visualized in Fig. 8.1(a). The cutout shows 4 quadratic building blocks of edge length 3 that are

labeled with the cell keys 1 to 4 and 28 single cells labeled with the cell keys 5 to 32.

A set of eight attributes referred to as genetic access rights defines which genetic operators are

allowed to access the respective cell. Again, the upper left quarter of the configuration for case studies

I and II is used as an example to illustrate the genetic access rights; they are depicted in Fig. 8.1(b) and

further explained in Table 8.1. For each of the single cells the genetic operations allowed to the EA

are restricted to mutations of the routing bits and the building block based crossover explained below.

Cells belonging to one of the 4 building block sites on the other hand can be altered by mutations

of the transistor’s width and length, the building block based crossover operator and the exchange
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Figure 8.1: Genetic access rights for a subarray of 8× 8 cells: (a) shows the cell keys used to identify cells

belonging to the same BB. (b) illustrates the genetic access rights for different variation operators. A ’1’

signifies that the genetic operator can access the according cell.

building block mutation also explained below. In this way, four building blocks that can be sized

freely by the EA are embedded within 28 routing cells that can be used by the EA to connect the

building blocks with each other and to the in- and outputs.

Please note that the same arrays of cell keys and genetic access rights are applied to all individuals

of one generation. In the current state, this building block configuration has to be defined by the user

and remains fixed for the whole evolution run. Nevertheless, it is conceivable to hand part of the

control over to the EA itself, e.g. the placement of building blocks and routing cells, which could be

used to minimize the number of routing cells.

The building block structure of the genotype requires new mutation and crossover operators: The

new mutation operator exchanges an existing building block with another one randomly chosen from

the building block library. On insertion, a new building block possesses the channel dimensions

defined in the building block library. It is only in subsequent generations that these values can be

changed by the according mutation operators – unless the building block is not exchanged again. This

type of sequence guarantees that the newly inserted building blocks possess the functionality intended

abbreviation description

exchange BB choose a BB from the library to exchange the existing BB with

mutate routing flip one of the routing bits of the cell

mutate terminal choose a new terminal for one of the transistor terminals of the cell

mutate W choose a new channel width for the transistor of the cell

mutate L choose a new channel length for the transistor of the cell

crossover BB use the crossover operator that preserves BBs

crossover cell use the cell based crossover

Table 8.1: The genetic access rights.
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by their designer until their respective genotype is evaluated for the first time. Further optimization

can be achieved in subsequent generations.

The natural extension of the crossover operator defined for the plain genotype (cf. 4.4.3) would

be to extend the rectangular array destined to be exchanged in the crossover operation such, that all

building blocks touched by the original rectangle are completely included. Unfortunately, the current

implementation of the BB crossover is restricted to exchanging complete building blocks or single

cells depending on the cell key configuration for the respective cell. However, since mutation is

believed to be much more important for all the experiments presented within this thesis, this should

not affect the success of the following evolution experiments too severely. The initialization of the first

population is similar to the procedure for the plain genotype (see 4.4.3), in that all initial values are

set randomly. Concretely, this means that all building block sites are filled with BBs randomly chosen

from the BB library and that the routing of all single cells is determined randomly, too. However, the

channel dimensions of all transistors remain unchanged from their values specified in the BB library.

8.2 Experimental Setup for Case Studies I and II

Case study I and II share the same building block library as well as the same genetic algorithm

including most of its parameters. Furthermore, their geometric setups are almost identical. In contrast,

the respective parts of the experimental setup applied in case study III differ substantially from those

used in case studies I and II. Hence, these similar aspects of the setup for case studies I and II are

summarized in this section.

8.2.1 Geometrical Setup for Case Studies I,II

For all three case studies the results obtained by using the above building block concept are cross-

checked against similar experiments based on the plain cell genotype. The main difference between

those two types of experiments is the geometrical setup of building blocks and cells on the FPTA chip.

The geometrical setups for case studies I and II are depicted in Fig. 8.2 and Fig. 8.3, respectively.
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Figure 8.2: Geometrical setup for case study I: (a) is used to host the building block experiments. R denotes

routing cells. (b) illustrates the setup for experiments utilizing the plain genotype.
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Figure 8.3: Geometrical setup for case study II: (a) is used to host the building block experiments. R denotes

routing cells. (b) illustrates the setup for experiments utilizing the plain genotype.

For both case studies the complete area of the chip is used by 16 building blocks that can be

connected via 112 routing cells as shown in Fig. 8.2(a) and Fig. 8.3(a). The building blocks are

squares of an edge length of 3 transistor cells. In accordance with the explanations in section 8.1.3

and Fig. 8.1, all cells denoted with an R are restricted to their routing capabilities and all 16 building

block sites allow the GA to exchange BBs from the library as well as to change the channel geometry

of the transistors therein. Since the inputs are located at the left hand side of the chip and the outputs

on the right hand side, the macroscopic signal flow is forced to be horizontally from left to right.

The geometrical setup for the reference experiments based on the plain genotype is illustrated in

Fig. 8.2(b) and Fig. 8.3(b) for case study I and II, respectively. The active chip area that can be used

by the GA is limited to a square of 8×8 cells to constrain the design space to a size more comparable

to that of the building block experiments but still large enough to allow for the emergence of good

solutions. While the overall signal flow for the reference experiments for case study I is still directed

from left to right, the output for the reference experiments of case study II is positioned on the upper

side of the chip for the sake of simplicity. Although this represents a slight inconsistency, experiences

gathered in other experiments suggest that this should not affect the results too badly.

8.2.2 Building Block Library for Case Studies I,II

Digital gates have proven of great value in countless designs, which to some extent is due to their high

level of abstraction from the actual device behavior as well as to their good encapsulation. That is,

digital gates possess few well-defined in- and outputs. In particular, CMOS implementations of digital

gates operate only in the voltage regime so that one does not have to worry about current flows yet.

These advantageous properties render digital gates as ideal candidates for a first proof of principle

test of the proposed building block concept. With this in mind, a small library of 4 of the most simple

digital gates, namely an inverter, a buffer, a NOR and a NAND gate, has been composed. Fig. 8.4

illustrates the according circuit schematics as well as their building block implementations by means

of the FPTA’s transistor cells.

Due to the limited routing capabilities available on the FPTA, the NOR and NAND gates are

impossible to implement using only 2× 2 transistor cells. Hence, a square of 3× 3 cells is allotted
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Figure 8.4: Building block library used for case studies I and II. The second row shows the schematics of the

used circuits and the third one displays their implementation as a block of 3×3 transistor cells. PMOS transistor

cells are shaded in darker, NMOS transistors in lighter gray .

to all of the building blocks. According to the global signal flow defined by the geometrical setup

shown in Fig. 8.2(a) and Fig. 8.3(a), the two inputs A and B are located at the left hand side of each

building block and the output Q at its respective right hand side. In case of inverter and buffer, the two

inputs are short-circuited and the output Q is available at 5 cell borders for all gates to facilitate the

evolution of the necessary connections between the building blocks. Please note that apart from these

in- and outputs, no further signals are accessible at the boundary of the building blocks to restrict the

EA to using only their pure functionality. The channel dimensions of all transistors are set to medium

values of W = 4µm and L = 2µm for all building blocks. This choice leaves some head room for

optimization, especially for the evolution of tone discriminators in case study II. For the evolution of

X(N)OR gates in case study I, a shorter gate length and a more balanced switching point for the NOR

would probably be a better starting point.

8.2.3 Evolutionary Algorithm for Case Studies I,II

For case studies I and II the same straightforward genetic algorithm is used as in the previous three

chapters. Analog to chapters 5 and 6 truncation selection is employed. The GA parameters, which are

summarized in Table 8.2, are similar to those applied in 6 (compare Table 5.6) except for a decrease

in the reproduction fraction and an increase in the crossover and mutation fraction; this should cause

a slight drop in selection pressure. The number of mutation rates has grown by one to account for the

new building block exchange operator. The small crossover block size of 3×3 (for a building block)

and 1 (for a single cell) transistor cell stems from the unfinished crossover operator.

8.3 Case Study I: XOR/XNOR Gate

The building block concept and its implementation are first tested by synthesizing the two most com-

plex symmetric 2-input gates XOR and XNOR. On one hand, theses types of gates proved to be

difficult to evolve with the plain cell genotype as is described in section 5.4. On the other hand, the
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GA Parameter X(N)OR: BB X(N)OR: Cell TD: BB TD:Cell

population size 50 50 50 50

reprod. fraction 0.1 0.1 0.1 0.1

mutation fraction 0.8 0.8 0.8 0.8

crossover fraction 0.8 0.8 0.8 0.8

crossover rate 0.2 0.2 0.2 0.2

mut. rate routing 3% 3% 3% 3%

mut. rate W/L 3% 3% 3% 3%

mut. rate term. con. – 3% – 3%

mut. rate BB 2% – 2% –

no. of used blocks 16 – 16 –

no. of used cells 112 64 112 64

crossover block size 3/1 6 3/1 6

no. of generations 5000 5000 10000 10000

Table 8.2: Genetic algorithm parameters used for case studies I and II.

synthesis of XOR/XNOR gates should be significantly alleviated by the support of a building block

library of simpler logic gates. In other words, this first case study is rather a test whether the proposed

methodology can be beneficial than a proof that it will facilitate the synthesis of more interesting

circuits.

Altogether 4 experiments featuring 30 runs each are presented in this first case study. For each

of the 2 gate types 2 experiments are performed, one based on the proposed building block concept

and the other employing the plain cell genotype. The results presented in section 5.4 are not taken

into consideration as reference experiments, because they were attained with a different experimental

setup: Apart from GA parameters and test pattern the external analog circuitry as well as the timing of

the analog stimuli have been changed. Nevertheless, both of these plain cell experiments are believed

to produce similar results.

8.3.1 Problem definition

Target Behavior. The dc output characteristic at which the artificial evolution of this case study is

targeted is identical to that defined in section 5.2.1: The truth table for the XOR and XNOR gate are

specified in Table 5.3. As described in Table 5.4, the inputs are considered a logic zero, if Vin1,2 ≤ 2V

and a logic one, if Vin1,2 ≥ 3V, whereas the outputs are required to match the power supply rails or

0V and 5V for a logic zero and one, respectively.

Fitness Function. The only difference to the fitness functions defined in section 5.2.1 refers to the

number of test points, which is reduced from 512 to 256. Therefore the fitness function used during

evolution – again taken to be the sum of squared errors (SSE) – is given by:

SSE =
256

∑
i=0

(Vtar(i)−Vout(i))
2 , (8.1)

whereas the root mean square error per data point in mV is used for the presentation of the results:

F = RMSE =

√
SSE

256
· 1000 . (8.2)
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Test Pattern. The test pattern shown in Fig. 8.5 is identical to that shown on the left hand side of

Fig. 5.2, except for four differences: First, the range covered by the input voltages Vsweep and Vset
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Figure 8.5: Pattern to test the candidate X(N)OR circuits during evolution and in the verification tests.

stretches from 0 to 2V and 3 to 5V. Second, the number of different Vsweep voltages is reduced from

64 to 32 for each of the 8 Vset values. Third, the voltages are applied by choosing randomly from 10

random orders instead of choosing each voltage randomly; in particular, no input voltage is applied

twice for one test of one candidate circuit. Finally, the settling time – the time between the application

of the second input voltage and the readout of the output voltage – is fixed to exactly 4.825µs instead

of being subject to variations caused by the operating system. The total sampling time thus amounts

to 5.7µs instead of 10 to 15 µs on average.

8.3.2 Results

The results are analyzed in the same manner as in the previous chapters: The fitness is calculated as

the root mean square error per data point in mV by means of (8.2). The RMS error is determined

for 100 verification tests; if not denoted otherwise, the highest of these error values is used for the

analysis.

8.3.2.1 Comparison of the Results of the Different Experiments

The results for all runs of all four experiments are compared in the histograms shown in Fig. 8.6.

The difference in the success of the artificial evolution experiments that do and do not use building

blocks is enormous: While the experiments based on the plain cell genotype fail to produce any circuit

that comes close to satisfying the target specifications, the experiments based on the building block

concept excel with yield rates of 50 and 90% for the XNOR and XOR, respectively (where a solution

with an average RMS error of less than 50mV is considered perfect).

The distribution of fitness values attained for the plain cell experiments looks similar to that shown

on the left hand side of Fig. 5.5. Actually, the results seem to be slightly worse than those presented

in chapter 5. Apart from the smaller number of samples, this may be due to the differences in the test

patterns and the timing schemes as well as to the different GA parameters. The fairly large difference

in the yield rates achieved for the XOR and XNOR gate in case of the building block base experiments

are believed to be of statistical rather than systematic nature. While similar experiments using another

set of GA parameters produced yield rates of 80 and 83% for the XNOR and XOR gate respectively, a

series of experiments that required the gates to settle in 3.23 instead of 4.825µs resulted in a yield of

73% for the XNOR and only 50% for the XOR.
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Figure 8.6: Worst fitness obtained from 100 verification tests for all 4 experiments. The bin size amounts to

50mV.

8.3.2.2 Voltage Characteristics of the Evolved Logic Gates

For each experiment the output characteristic of the best evolved circuit is shown in Fig. 8.7. Both,

the XOR as well as the XNOR circuit synthesized by means of the building block methodology exhibit

a perfect quasi-DC response. The solutions found without building blocks classify most of the input

voltages correctly, but fail to reach the power supply rails for some of the four input cases. That is, for

a relaxed specification, in which the input voltages are guaranteed to be outside the interval between

1 and 4 V and in which VOL ≤ 1V and VOL ≥ 3V would be sufficient, these solutions would work as

the XOR and XNOR gates. As was already mentioned in section 5.4, the target specification is overly

ambitious in that even the XOR’s and XNOR’s standard cell implementations of the FPTA’s fabrication

process do not satisfy it (for simulation results refer to 5.8). The fact that circuits that fulfill these

strict requirements can be synthesized by the proposed building block concept underlines its potential

to enhance the evolution of analog circuits.

8.3.2.3 Test on a Second Chip

In order to test to what extent the evolved circuits rely on the exact conditions present on the very

die they are evolved on, the verification tests are repeated on a second FPTA chip for all best-of-run

solutions. Table 8.3 summarizes the mean RMS errors averaged over all runs as well as the percentage

deviation of the errors measured on chip 2 from those measured on chip 1 (the chip used during the

evolution experiments).

The mean RMS errors for the experiments abstaining from the building block concept are practi-

cally identical on both chips. In contrast, the circuits synthesized from building blocks perform 30 and

59% worse for the XOR and XNOR respectively. Since the absolute errors are considerably smaller in

these cases, expecially for the XOR experiment, the question arises whether this performance degra-

dation is due to offset and gain differences between the two evolution systems, or if the performance

of single circuits breaks down on the second chip. In order to answer this question, the correlation
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Figure 8.7: Performance of the best-of-series runs, where best refers to the worst value obtained from 100

verification tests evaluated in terms of the fitness criterion used during the evolution process.Upper left: XOR

evolved using building blocks. Lower left: XOR evolved using plain Genotype. Upper right: XNOR evolved

using building blocks. Lower right: XNOR evolved using plain Genotype. The legend imprinted in the graph

in the top left corner is used for all four plots.

coefficient R defined in appendix C is given in the last row of Table 8.3. The fact that R is close to

one for the XOR evolved with building blocks indicates that the performance of all these circuits is

evenly degraded on the second chip. For the building block based XNORs R equals 0.7; hence the

degree of malfunctioning on the second chip is believed to be distributed more inhomogeneously.

In conclusion, the circuits incorporating building blocks seem to be less robust than their coun-

terparts evolved from scratch. This is a surprising result, because logic gates are designed to abstract

from the physical nonidealities of the underlying substrate. However, since the absolute performance

Experiment XOR: BB XOR: Cell XNOR: BB XNOR: Cell

F1: RMS error chip 1 101.36 1740.42 366.81 1741.89

F2: RMS error chip 2 131.57 1745.30 581.36 1734.63

Deviation [%] 29.81 0.28 58.49 -0.42

R(F1,F2): Correlation coefficient 0.989 0.998 0.700 0.960

Table 8.3: Comparison of the worst RMS errors obtained in 100 verification tests on two different dice.
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of the building block based circuits exceeds that of the circuits evolved without building blocks, the

former ones possess a higher chance of failing than the latter ones, which thus puts the above state-

ment into perspective.

8.4 Case Study II: Tone Discrimination

In this second case study the synthesis of circuits that distinguish between square waves of different

frequency, so-called tone discriminators, is sought. Several reasons lead to the consideration of this

kind of problem: First, the tone discrimination task is meant as a reminiscence to the work of Adrian

Thompson [Tho97], [Tho00]), who introduced and solved the problem by means of intrinsic hardware

evolution on an FPGA. Second, test pattern, fitness function and analysis of the problem are naturally

situated in the time domain. Thus, this case study also serves as a demonstrator for the ability of the

proposed evolution system to perform transient analyses, as was already advertised in section 4.3.2.

Third, in the absence of an external clock, the problem is inherently analog; this naturally raises

the question whether artificial evolution will benefit from using digital building blocks. Finally, the

problem of discriminating square waves of different frequencies suits hardware evolution well: On

one hand, the problem definition in terms of test patterns and fitness function is relatively simple; on

the other hand, the design of an analog tone discriminator is a nontrivial (and uncommon) task.

Apart from Thompson who sought the discrimination of 1 and 10 kHz tones, the problem was

recently tackled by Harding et al. ([Har04a]) using a completely different hardware: A liquid crystal

display is connected to 64 lines that can be driven or read out by 8 channels, to which they are

connected via multiplexers. One channel each is used for the ground potential, the input stimulus and

the output monitoring. The remaining 5 channels are set to a static voltage between -10 and 10 V.

The way the 8 channels are multiplexed to the 64 LCD1 terminals as well as the 5 analog voltages are

controlled by the GA. The authors claim to reach a useful tone discrimination after as little as 6,000

circuit evaluations.

8.4.1 Problem Definition

8.4.1.1 Test Pattern

In contrast to the original experiment, the frequencies to be distinguished were shifted to 40 and

200kHz in order to decrease the time necessary for one fitness evaluation. As can be seen from

Fig. 8.8 the input is stimulated with a sequence of 200 and 40 kHz tones. Both frequencies are

applied twice in an interchanging order. The bursts last 100 µs each resulting in 20 periods per burst

for the higher and 4 periods for the lower frequency. The output is sampled with a frequency of

2MHz, resulting in 800 test points equally distributed in the total testing time of 400µs. As a measure

to prevent successful candidate solutions from exploiting the charge distribution left from the test of

its predecessor, a randomly created gene was written to the chip before the next candidate solution

was downloaded and tested. This procedure was introduced in section 7.2.6 on page 208 as a substrate
reset2.

1Liquid Crystal Display
2Actually, for the BB-based experiments (7–11) the substrate reset does not make much of a difference: The building blocks

themselves are well defined without any floating components. The routing cells, on the other hand, do not provide any

active components anyway. Thus, there should not be any special charge distribution left over from the previously tested

circuit. Moreover, due to a software flaw, the substrate reset was only allowed to download changes to the width and length

of the BBs’s transistors and the routing itself. In fact, it was verified experimentally that the effects of this kind of substrate

reset are negligible
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Figure 8.8: Pattern to test the candidate tone discriminators during evolution and in the verification tests.

8.4.1.2 Fitness Function

During the evolution process the fitness is evaluated by

Fitness =
800

∑
i=1

(Vtar(i)−Vout(i))
2 + w

800

∑
i=2

(Vout(i)−Vout(i−1))2 , (8.3)

with the target voltage defined as

Vtar =

{
0,5 for f = 200kHz

5,0 for f = 40kHz
. (8.4)

The actual Vtar( f ) is chosen to minimize the fitness value; thereby the GA is relieved of the constraint

of finding a solution with a prescribed output polarity. While the left term of (8.3) yields the sum

of squared deviations from the target voltage (8.4), the right sum penalizes unwanted glitches and

oscillations of the output. The weighting factor w was varied between 1 and 10 to investigate its

influence on evolution’s success.

However, for the analysis of the results the fitness is again calculated as the root mean square

error per data point given in mV:

RMS Error [ mV] =

√
∑800

i=1(Vtar(i)−Vout(i))2

800
·1000 . (8.5)

8.4.1.3 Overview of the Experiments

All in all 11 experiments were carried out that are grouped into 2 series of experiments in Table

8.4. Thereby two different parameters are varied. First, the experiments 1 to 6 belonging to series

1 are based on the plain cell genotype, whereas evolution was allowed to use building blocks in the

remaining experiments of series 2. Second, the weighting factor w for the second term in the fitness

function (8.3) that is meant to penalize unwanted glitches and oscillations is varied from 0 to 10 in

series 1 and varied from 1 to 10 for series 2 as stated in Table 8.4. One may object that the variation

of the penalty factor w is slightly off-topic; nonetheless, its inclusion lends more statistical weight to

the presented results, as the experiments are otherwise identical and its effect rather subtle.
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Series No. Experiment No. BBs used Penalty Factor # of Experiments

1 1 – 6 no 0,1,2,3,5,10 6

2 7 – 11 yes 1,2,3,5,10 5

Table 8.4: Summary of the 2 series of tone discriminator experiments.

8.4.2 Results

8.4.2.1 Comparison of the Different Experiments

Fig. 8.9 displays the histograms for all 11 experiments. For each run the RMS error is calculated to

be the maximum error of 100 verification tests using 8.5. None of the experiments produced a perfect

solution to the discrimination task; the best-of-series solutions typically achieve RMS errors around

750mV regardless of the used methodology. Nevertheless, the experiments relying on the building

block concept (7–11) produce circuits of this medium quality with RMS errors ranging between 600

and 1200mV at a much higher rate than those based on the plain cell genotype (1–6). In contrast,

at least a third of the runs of the non-BB experiments end up with error values around 2500mV. As

an RMS error value of 2500mV per data point is easily achieved by clamping the output to 2.5V

independent of the input signal, this accumulation is likely to be caused by a local minimum. While
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Figure 8.9: Worst fitness obtained from 100 verification tests for all 11 experiments. Bin size = 100 mV
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many of the non- BB runs get trapped in this local optimum, this is hardly ever the case for the

building block based experiments. In this sense, the proposed building block concept again leads to a

significant performance increase.

Since the local optimum at 2500mV can be found so easily, it can be inferred that the performance

of the evolved circuits exhibiting error values beyond 2500mV is severely degraded in at least one of

the verification tests, i.e. they are unstable. In fact the RMS error of only one out of the 480 best-of-run

solutions exceeds 2500mV for the error values recorded at the end of the evolution process. Although

this performance break-down can be observed BB-based as well as for non-BB experiments, it seems

to occur more frequently for the non-BB experiments.

Throughout both series of experiments, a larger weighting factor w for the glitch and oscillation

penalty term in (8.3) tends to slightly decrease the achieved RMS errors. This can be explained as

follows: Unfortunately, the penalty addend does not only penalize unwanted glitches and oscillations

but also the desired transitions between the logic high and low states discriminating the different

frequencies. Thus, the fitness criterion of (8.3) may sometimes lead to counterproductive selections.

More generally speaking, the additional penalty term changes the fitness landscape such, that the

evolutionary search process is rather complicated than facilitated.

8.4.2.2 Best-of-Series Solutions

In order to convey an impression of the quality of the attained tone discriminators the actual output

behavior of the best-of-series solutions is investigated in two regards: First, the circuit response to the

test stimulus used during evolution is shown on the left hand side of Fig. 8.10. A second test mode is

used to analyze whether the best-of-series solutions are able to solve the actual question underlying

the target description of (8.4), i.e. to distinguish between low and high frequency tones. Therefore,

the successful circuits are tested with square waves of different frequencies that range from 1kHz

to 1MHz. The test frequencies are logarithmically spaced with a density of 10 samples per decade.

Each frequency is applied for 4 periods to comply with the number of periods used for the 40kHz

tone test pattern during evolution. During the first two cycles of the square wave the circuit is allowed

to adapt to the new frequency; its response is then integrated over the last two cycles. The sampling

frequency is varied to minimize the size of the test pattern while satisfying the constraint that for

each period of a square wave at least 100 sampling points are used. Since the sampling frequency is

limited to 20MHz this constraint cannot be met above 200kHz. The response to this frequency sweep

is displayed on the right hand side of Fig. 8.10 for the best-of-series solutions.

As can be seen from the left hand side of Fig. 8.10 both best-of-series solutions do clearly dis-

criminate the two different input frequencies. However, the circuit responses reveal the following

imperfections: For the higher frequency of 200kHz, the output is close to the desired 5V, but both

circuits fail to completely suppress the feedthrough of the input signal. In case of the lower test fre-

quency, the glitches impair the output signals that are otherwise close to the gnd potential even more

gravely, especially for the best of the non-BB series solution. In fact, the evolution experiments pro-

duced solutions that outperform the circuits shown in terms of the minimum distance of the output

voltages for the different frequencies; their respective output signals just happened to be farther away

from the power supply rails on average and thus attained a higher RMS error value. Accordingly,

the chosen fitness criterion seems to be a suboptimal formulation of what the circuits actually have

been expected to do. It should be noted though, that in principle the presented solution should easily

be extended to perfectly solve the posed discrimination task by adding an inverter or buffer to the

output whose switching point is adjusted to the gap between the output voltages for the respective

input frequencies.
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Figure 8.10: Performance of the best-of-series runs, where best refers to the worst value obtained from 100

verification tests evaluated in terms of the fitness criterion used during the evolution process. From top to

bottom, the best results for series 1 to 2 are plotted. Left: Output characteristic used for the fitness tests during

evolution. Areas shaded in gray denote input frequencies of 40kHz. Right: Output characteristic for the

frequency sweep test. The areas shaded in gray mark the intermediate frequency interval from 40 to 200 kHz

in which a transition is expected to occur.

The integration of the output voltages over two periods of the square wave is more closely related

to the used fitness criterion defined in (8.4); the glitches seen in the graphs on the left hand side

of Fig. 8.10 are averaged out in the resulting curves for the frequency sweep displayed on the right

hand side of the figure and the resulting curves thus look more encouraging. Both best-of-series

solutions generalize well to the tested frequency range of 1kHz to 1MHz. It is interesting to note,

that the transition from low to high is a) sharper than necessary and b) occurs closer to the higher

of the two test frequencies, a behavior that is not observed for all of the proper circuits evolved,

but for their majority. The latter observation may be explained qualitatively by the fact that the

tone discrimination involves some sort of lowpass filtering, which is easier to achieve for higher

frequencies in the respective frequency band, as was already shown in section 7.4.

8.4.2.3 Verification Tests

Finally, stability as well as portability of the attained tone discriminators shall be analyzed to account

for their expected reliability and robustness. The stability of the evolved circuits is again studied

on the basis of the spread among the RMS errors taken from the 100 verification measurements. In

principle, analogous definitions of equation (6.17) and Table 6.5 used in section 6.2.1 are applied to

the data recorded for the tone discriminators3 . Since the last value obtained at the end of the evolution

3The only difference being that r here takes on values from 1 . . .30 instead of from 1 . . .20 as in the original definition.
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of each run includes the penalty term as defined in (8.3), the results are once presented as the RMS

error defined in (8.5) forgoing the unavailable last values and once in terms of the full fitness criterion

used during evolution, thus including these last values. In order to allow for a comparison with the

plain RMS error values, the fitness values obtained from (8.3) are converted to the root mean square

fitness per data point in mV:

F = RMSF =

√
Fitness

800
· 1000 . (8.6)

Although the resulting RMS fitness values can easily be compared to the plain RMS error values used

beforehand, they lack a physical meaning because they nonlinearily incorporate the additional glitch

penalty addend.

While Fig. 8.11(a) illustrates the minimum and mean best, mean and worst RMS errors obtained

from the verification tests according to (8.5), Fig. 8.11(b) displays those computed by means of (8.6)

plus the two additional curves for the minimum and mean last values obtained at the end of the

respective evolution runs. Although throughout all experiments a considerable amount of spread
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Figure 8.11: Comparison of the minimum and mean last, best, mean and worst fitness values. While last refers

to the last fitness value measured at the end of the evolution process, best, mean and worst denote the minimum,

mean and maximum RMS error values obtained from the 100 verification measurements. Minimum and mean

are then calculated from the ensemble of those according 10 values for each evolution run. For (a) the fitness

was reduced to the RMS error, for (b) the fitness criterion used during evolution was utilized.

between the last/best and the mean and worst error and fitness values can be observed, the better

circuits can be expected to maintain a satisfactory functionality within the 100 verification tests. In

particular, all of the best-per-experiment solutions except for those of experiments 2 and 4 exhibit a

virtually constant performance in all of the 100 verification tests. On average, the circuits of series

2 – the BB-based experiments – manage to reproduce their performance more reliably than those of

series 1 (experiments 1–6). This may be caused by the higher chances of encountering the FPTA in

an unfavorable condition introduced by the substrate reset. On the other hand, in case of the BB-

based experiments 6–11, the last fitness value is considerably smaller than the best mean fitness value

averaged over all runs of the respective experiment, an absolute novelty within the results presented

so far. Is this a harbinger of lacking robustness? Finally, the graphs shown in Fig. 8.11 confirm a) that

the fraction of the glitch and oscillation penalty addend in the fitness criterion of (8.5) is relatively

small and b) that it nonetheless is detrimental to the success of the evolution experiments.
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All the evolved circuits are tested on a second FPTA chip to investigate to which extent they rely

on the actual conditions present on the very die they were optimized for. The results are presented in

terms of the worst mean RMS error per experiment calculated from (8.3). Fig. 8.12(a) compares the

according RMS error values obtained on the two different dice. In order to account for the distribution

of the performance differences, Fig. 8.12(b) shows the correlation coefficient R(RMSE1,RMSE2),
where RMSE1 and RMSE2 denote the worst mean RMS errors obtained on chip 1 and 2, respectively

and R is defined in appendix C.
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Figure 8.12: Comparison of the RMS errors measured on two chips: In (a) the RMS error measured on chip

1 (chip used for evolution) is compared to that one measured on a second chip (chip 2) . (b) accounts for the

correlation between the two sets of fitness values obtained for all runs of each experiment.

The average performance of the circuits of all non-BB experiments (1–6) is virtually identical. In

contrast, the average performance of the BB-based circuits (experiments(7–11) is seriously degraded

when they are tested on a different die. The performance loss is so large, that the BB-based circuits

are – on average – not significantly better on the second FPTA chip than the non-BB solutions. The

magnitude of this performance degradation is the more remarkable as it is unrivaled throughout all

experiments previously described in this thesis. As expected, the linear correlation between the RMS

errors achieved on the different chips is low for the BB-based experiments (7–11), that is, not all of

the evolved circuits suffer the same relative increase in their respective RMS errors.

Apparently, the usage of the library of four digital gates on one hand boosts the yield of satisfac-

torily working circuits compared to evolution based on the plain cell genotype. On the other hand,

this performance gain is lost when the circuits are tested on another chip. Naturally, the question

arises why the building block based solutions are so much more susceptible to the particularities of

the substrate they are evolved on than the non-BB solutions. The building block library consists of

logic gates that, from an analog designer’s point of view, possess fairly high gains. In absence of an

external clock, however, artificial evolution is more or less forced to find an analog circuit solution to

the problem. Since the resulting analog circuits are supposed to be composed of the high gain stages

offered by the building block library, they are likely to metastable with regard to the actual parameters

of the utilized transistors.

Similar difficulties in finding a robust solution composed of logic gates have been reported by

Thompson in [Tho97] (circuits susceptible to variations of temperature) and [Tho98b] (an attempt to

evolve robust circuits that work on different dice of different foundries at different temperatures in

different packages and locations in the lab (e.g. in- and outside a computer).). The task has never

been shown to be perfectly solved. Instead, in [Tho00] Thompson had to introduce a 6 MHz clock as
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an additional input in order to find a circuit working rather in a digital fashion to robustly solve the

problem under a wide variety of environmental conditions.

8.4.2.4 Reconsider and Repent

A comparison with the two4 different attempts to automatically synthesize tone discriminators re-

ported by Thompson and Harding et al. reveals the following: First, both attempts use substrates

that are completely different from the substrate used in the proposed case study. Moreover they also

differ in the considered frequency range as well as the formulation of the fitness criterion. Hence, a

quantitative comparison is virtually impossible.

Second, the tone discrimination device reported by Harding in [Har04a] exhibits a similar quality

in that it clearly distinguishes the different frequencies but only produces an output voltage that is

neither free of feedthrough nor spans the full power supply range (0.6 Vout of 10 V). However, this

solution is achieved after only 6000 circuit evaluations. Two possible explanations apply: On one

hand, the LCD used in conjunction with the five analog input voltages may be extremely well suited

to distinguish frequencies in the considered range. On the other hand, the Harding’s fitness function

rewarding every sample that is correctly responded to with a voltage below or above a threshold volt-

age of 0.1V may have been a more clever choice than the one defined in (8.5). However, the approach

of Harding and Miller proposed in [Har04a], [Har04b] and [Mil02] to date has two drawbacks: For

one, it requires a large amount of external circuitry to provide the analog voltage, namely 5 16-bit

DACs. For the other, it cannot rely on a matured technology that would allow the integration of an

LCD together with the additional circuitry necessary on one single chip.

Third, Thompson used a similar number of circuit evaluations in his original experiment reported

e.g. in [Tho97] or [Tho98a], but obtained a circuit that is reported to perfectly discriminate the two

frequencies. Here too, a variety of differences between Thompson’s evolution system and that one

used here may be responsible for the different quality of the respective results: On one hand, the

FPGA hosting Thompson’s candidate circuits provides a larger amount of resources in at least two

regards: The logic cells contain a richer set of logic functions compared to the small set of building

blocks used in this case study. Moreover, in Thompson’s experiment the GA controlled an array of

100 logic cells exceeding the 16 BB sites provided here. On the other hand, instead of measuring

the deviation of a target function, Thompson used a fitness function that rewarded the differences

between the output voltages for the different frequencies. This choice of fitness function supposedly

helps to prevent the GA from being trapped in a local optimum.

In conclusion, a more sophisticated design of the fitness function can be hoped to alleviate the

evolution of tone discriminators based on the plain cell genotype, which seem to be intrinsically less

susceptible to variations of the particularities of the respective die they are bred on.

Noch’n Gedicht

HEINZ ERHARDT

8.5 Case Study III: Comparators

Comparators. Although not as versatile as operational amplifiers, comparators are of great impor-

tance in analog circuit design. A comparator is typically used whenever a decision must be made

4The author is aware of the publication of Raichman, Segev and Ben-Jacob that appeared in Physica A 326 (2003) pages

265–285. However, as the reported experiments are mainly a remake of Thompson’s research, they are intentionally left

out of consideration here.
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based upon an analog signal level. This situation could e.g. arise in the readout electronics of high

energy physics experiments, where a signal passing an analog threshold voltage can be used to trig-

ger further readout circuitry ([Bau03]) or in high dynamic range image sensors, where the reset of

individual pixels depends on the charge already accumulated by the photo current to be measured

([Bre04]). Comparators form the basis of any analog-to-digital conversion; in fact they can them-

selves be considered as a 1-bit analog-to-digital converter. A special type of comparators known as

sense amplifiers are used to restore the digital information contained in a bit of e.g. random access

memory in the read or refresh process.

According to [All02e] three basic types of comparators can be distinguished:

a) Open-loop comparators.

b) comparators with hysteresis.

c) discrete-time (regenerative) comparators.

The former type can be considered the step brother of an operational amplifier in that it lacks the

necessity of frequency compensation but, on the contrary, is rather targeted at larger bandwidths

and therefore small propagation delays. The latter two types encourage the application of positive

feedback. In case of the regenerative comparators, this requires a reset after each comparison. The

designs of high speed comparators usually mix uncompensated op amp input stages of type a) with

latch type output stages found in the designs of regenerative comparators.

The experiments discussed within this section aim at the synthesis of open-loop comparators,

which is fostered by the following properties of the experimental setup:

• The absence of an external clock signal makes the evolution of discrete time comparators im-

probable.

• The fitness criterion penalizes any hysteretic behavior

• In case of the BB based experiments, the artificial evolution of regenerative comparators is not

explicitely supported in that no latch type building blocks are provided in the BB library.

Open-loop comparators were intentionally chosen as a test case for intrinsic hardware evolution exper-

iments because of their close relation to operational amplifiers, which are frequently used to evaluate

parameter optimization tools within the analog design automation community. Although the particu-

lar requirements with regard to the dynamic characteristics of op amps and comparators are somewhat

different, their desired output behavior has a lot in common, e.g. static behavior, high gain, low input

voltage offset and a high slew rate. In other words, from an evolution experiment’s point of view,

the requirements that have to be satisfied by a comparator form a subset of those imposed on an op-

erational amplifier. Hence, the ability to automatically synthesize comparator circuits is a necessary

condition for the successful synthesis of operational amplifiers. On the other hand, forgoing tests con-

cerning linearity and ac behavior of the candidate comparator circuits significantly reduces the time

needed for the test of each individual. In conjunction with the reduced problem difficulty compared

to the operational amplifier task, the time necessary for an artificial evolution is drastically decreased

and thorough studies of the subject matter become feasible. Consequently, the lessons learned from

the comparator experiments can subsequently be applied in the design of experiments targeted at the

evolution of operational amplifiers.
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Related Work. To the author’s knowledge, the only experiments on transistor level artificial evo-

lution of comparators reported in the literature to date are those described by Trefzer, Langeheine

et al. in [Tre04]; these experiments are carried out with the same type of evolution system proposed

within this thesis. From the definition of open-loop comparators stated above, however, it can be

concluded that operational amplifiers can be used as comparators and hence should be considered

in this section. To account for the recent progress achieved in this subject matter as well as for its

difficulty, Table 8.5 summarizes some of the most recent attempts to the automatic synthesis – in the

sense of topology design and sizing – of amplifiers in general. Apart from the op amp synthesis tool

design Used No. of
Group type analyses

objectives
Comment

Devices Eval.

Kruiskamp op equation-based PM, UGB, GBP 34 predefined CMOS,

[Kru96] amp (HSPICE) IC, OC, Rout topologies 2.4µm
O(10 k)

Koza et al. dc AOL R,C,

[Koz99d] amp −10,5, . . . ,10mV VOS
test bench:

BJT 19 M

[Koz96b] (ac, transient) linearity
8.13(b)

diode

Koza et al. dc AOL R,C,

[Koz99e] amp −10,5, . . . ,10µV VOS
test bench:

BJT 70 M

[Koz96a] (ac, transient) linearity
8.13(b)

diode

dc AOLLohn et al.
amp −10,5, . . . ,10µV VOS

test bench: R,C,
6 M

[Loh99]
(ac, transient) linearity

8.13(b) BJT

dc AOLZebulum et al.
amp −10,5, . . . ,10mV VOS

test bench:
R,BJT 8 k

[Zeb00a]
(dc in HW, failed) linearity

8.13(c)

dc
Zebulum et al.

amp −10,5, . . . ,10mV max(|VS|) test bench:
R, BJT 8 k

[Zeb98a]
(dc in HW, O. K. )

8.13(c)

Sripramong AOL, VOS, test bench:

and dc GBP, PM, 8.13(c) R,C,T 5 . . .
Toumazou

amp
ac PD, VS, in CMOS 50k

[Sri02] linearity

AOL,VOS, 5 test benches: R,C,BJT,

Koza et al. diff
dc

PM, GBP, VS, 2 × ac, diode,

[Koz04b] amp
ac

linearity, 2 × dc, current
–

transient
Itot, Ibias 1 × transient source

dc: V+,V− AOL, PM, target transistors,
Shibata op ∈ [−0.5,0.5] Itot, process: current
[Shi01] amp

ac dc functionality 0.35µm CMOS sources
30 k

Table 8.5: Related work concerning the artificial evolution of amplifiers. In the third column, the analysis

modes in brackets denote additional tests applied to the evolved circuits reported. HW here indicates a test in

hardware. The unusual abbreviations in the first cell of the design objectives column IC and OC refer to In- and

Output compliance of the amplifier under test. In the same column, the output Voltage Swing is abbreviated to

VS.

DARWIN reported by Kruiskamp [Kru96], which approximates each candidates’ characteristics by a

set of closed equations, all other approaches use circuit simulators as e.g. SPICE (see e.g. [Qua94]) for

fitness evaluation. While the DARWIN synthesis tool first reduces the search space to an approxima-

tion of the feasible subspace by using polytopes and subsequently uses a GA to navigate through the

resulting subspace, all the other referenced synthesis tools use EAs as the main optimization engine.

In the latter group, prior domain or task dependent knowledge is included in the circuit representation



8.5. Case Study III: Comparators 267

used for the genotype. In case of [Sri02] this is accompanied by a new technique referred to as current
flow analysis to enhance artificial evolution and guide the search towards more human-like circuits.

Strictly speaking, the approach described by Kruiskamp is not exactly an unconstrained search for

op amp topologies, because it is restricted to a total of 34 feasible combinations of four input, two

intermediate and 3 output stages. The abovementioned search-space reduction uses the target spec-

ifications and process parameters at hand to restrict the choice of transistor dimensions for each of

the nine different stages. The small set of available topologies ensures that some design goals are

inevitably met, as for instance the absence of an input offset, if one assumes the transistors to be

ideal.

Although the experiments reported by Koza, Lohn and Zebulum in [Koz99d],[Koz96b],[Koz99d],

[Koz96a], [Loh99] and [Zeb00a], respectively, differ in algorithm, representation and details of the

target specification they all employ a similar test setup. During evolution a dc sweep small in voltage

range and number of test points is used to infer the dc open loop gain AOL, the input offset voltage VOS

and the linearity of the candidate circuits. A schematic of the test bench is depicted in Fig. 8.13(b),

where the circuit under test is marked by the op amp symbol. In effect, this setup probes the candidate

Vin2 

Vout
Vin1 

(a) Op amp with differential in-

puts

Vout
Vin

R1

R2

(b) Op amp: inverting configuration

Vin 
Vout

(c) Amplifier: single

ended

Figure 8.13: Different amplifiers: (a) shows the symbol of an op amp. (b) displays the inverting configuration,

which amplifies signals with respect to the gnd potential. This configuration is used as a test bench in some of

the referenced publications on the automatic design of op amps. (c) summarizes the grey shaded part of (b) in

a symbol: an amplifier with one single in- and output terminal, not an op amp anymore.

circuit’s ability to invert and amplify an input signal with respect to the gnd potential (bipolar power

supplies are used in the reported test setups) as illustrated in Fig. 8.13(c). Moreover, the feedback

included in the test bench of Fig. 8.13(b) ensures that the input voltages stay most closely around the

ground potential for any circuit exhibiting the desired amplifying behavior. Thus, the task defined by

this setup is considerably easier, since the evolving circuits are freed from the symmetry constraint

inherent to any amplifier with differential inputs as well as from the necessity to work at a large range

of input voltages. The authors of [Koz99d],[Koz96b],[Koz99d], [Koz96a],[Loh99] do not analyze,

neither during evolution nor in any verification test, the PM of the prospective amplifiers, which

renders them useless for applications requiring a smaller voltage gain, which is another property

of operational amplifiers that makes them so useful in analog design. The experiments described

by Zebulum et al. in [Zeb00a] and [Zeb98a] basically suffer from the same shortcomings as those

described above and mainly differ in that they use the test bench depicted in Fig. 8.13(c) and employ

a different fitness criterion. The former publications address another problematic issue of insufficient

testing: The best hardware realization of the evolved circuit fails to meet the objective that it was

supposed to fulfill according to simulation.

The more recent publications by Sripramong, Koza and Shibata found in [Sri02], [Koz04b] and

[Shi01], respectively, are more promising in that they combine refined techniques with a larger set

of test objectives compared to the previously discussed experiments. Yet, they still fall short of

generating operational amplifiers that would satisfy industrial standards: In [Sri02] Sripramong and
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Toumazou also use the one-input test bench shown in Fig. 8.13(c), i.e. synthesize an inverting ampli-

fier. Furthermore, their fitness criterion omits a transient analysis that would analyze the slew rate of

the amplifier. Although Koza et al. in [Koz04b] include a transient analysis in their fitness evaluation

and ensure that successful amplifiers do possess truly differential inputs, they restrict their evaluations

to one operation point defined by input voltages that are virtually set to zero. The ac analysis is bound

to use a small signal analysis; the transient analysis used by Koza et al. is restricted to small signals:

the according input voltages allow for a maximum voltage across the inputs of 20µV translating to

an output voltage of 2mV when the target AOL is met. Because of this lacking large signal analysis

and test of input compliance, the resulting amplifiers are denoted as differential, but not operational
amplifiers. Finally, in [Koz04b] Shibata successfully evolved op amps that satisfy the required large

signal dc behavior and achieve reasonably good values for UGB, PM and the total current consumption

Itot. Even though Shibata omits a transient analysis and disregards many typical op amp specifications,

he includes the most preeminent features making a circuit an op amp, that is those that according to

the author’s experience a human designer is most concerned about at first: While the dc test, which

resembles the test pattern proposed below (Fig. 8.21), in conjunction with the AOL and UGB ensure

the principal functionality of the emerging op amp, the PM guarantees its stability under all feasible

negative feedback conditions.

In summary, apart from the DARWIN synthesis tool the operational amplifiers found by Shibata are

those the author trusts most to be useful as real amplifiers in general and henceforth as comparators

in particular. However, none of the referenced publications considers things like load dependency,

susceptibility to variations in the design or process parameters or yield rate. On the other hand, none

of these publications reports the usage of more advanced techniques for multi-objective optimization.

The best evolved circuit reported in [Shi01] achieves a dc gain of 72 dB, possesses a UGB of

15MHz, and a PM of 49◦ it was found after only 30k circuit evaluations. Key elements to this

success are supposedly:

• the current-path based representation already sketched in section 8.1.2

• the inclusion of current sources into the meta element library.

• the small input compliance range described by V+,− ∈ [−0.5,0.5]

• the further restriction of the design space to 2 to 4 current paths featuring 2 or 3 meta elements.

• fixed power supply connections at the top and bottom ends of each current path for vdd and vss

respectively

• the much simpler routing as compared to cell based approaches on reconfigurable devices: just

pick the correct circuit node in the net list at random.

8.5.1 Geometrical Setup

The geometrical setup for this third case study is depicted in Fig. 8.14. Since two different array sizes

are used in different experiments and the results shall be compared to experiments achieved without

using BBs a total of four different setups is required. Analog to the experiments of case studies I and

II, the signal flow is supposed to be directed from left to right. Unlike the above scenario of case

studies I and II, a current is likely to pass the BB borders. In accordance with the conventions used

for the illustration of circuit schematics, this current is supposed to flow through the BBs from top to

bottom.

In order to accommodate subcircuits of typically 2 transistors, the size of the BBs was set to 2×2

transistor cells. The building blocks are stacked directly on top of each other in order to minimize any
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Figure 8.14: Geometrical setup for case study III: (a) and (c) are used to host the building block experiments.

(b) and (d) illustrate the setup for experiments utilizing the plain genotype. R denotes the routing cells.

waste of area and possible operation speed. Thus, the necessary routing resources must be provided

by the BBs themselves. However, to allow for more complex routing scenarios, the building block

library discussed below contains several blocks that are exclusively devised to routing tasks. Adjacent

columns of BBs are glued together by two columns of routing cells to allow for a flexible routing

between these columns. The reason for the choice of two columns is twofold: First, in symmetric

designs it is likely that two signals have to be passed in parallel from one BB column to the next.

Second, the underlying checkerboard pattern of the PTA limits the translation invariance to a step

size of two cells. Hence, either all BBs must be placed on a grid spaced two transistor cells apart or

must be adequately transformed. Although the latter procedure should usually be feasible it takes up

precious computing time and adds another potential source of errors.
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8.5.2 Building Block Library

8.5.2.1 Contents of the Building Block Library

The entire building block library consists of a selection of subcircuits frequently encountered in ana-

log CMOS designs that are believed to be useful in the design of a comparator or other analog tran-

sistor level circuits. In order to provide sufficient routing resources, in many cases several implemen-

tations are included for the same subcircuit. The resulting library of 124 building blocks is symmetric

with respect to the MOS flavors PMOS and NMOS. Due to its size its illustration is distributed over four

figures: Current mirrors, level shifters and the like are shown in Fig. 8.15, output stages in Fig. 8.17

and a variety of blocks featuring 22 transistor pairs, two bias generators and ten routing blocks in

Fig. 8.17. The largest variety of implementations is created for blocks containing a single transistor

only. The implementations for the single NMOS transistor are depicted in Fig. 8.18; those for the

single PMOS transistors are equivalent to their NMOS counterparts and therfore not shown.
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Figure 8.15: Building Block Library: Current mirrors and the like.

8.5.2.2 Structure of the BBL Figures

Fig. 8.15 to 8.18 on pages 270–273 are organized as follows: The first two rows contain name and

schematic of the respective subcircuit. The rows below depict the implementation as blocks of 2×2

transistor cells, where PMOS cells are shaded in darker gray than the NMOS ones. The terminal

names in the schematic match those in their transistor cell implementations. The only exception are

the routing cells that are presented in the two rightmost columns of Fig. 8.17, where they are located

below all entries belonging to the two bias generators. In Fig. 8.15 and 8.18 the abbreviation power

supply (PS) is used to indicate that these subcircuits possess a connection to either one of the power

supplies – to vdd for PMOS and to gnd for NMOS transistors. The numbers next to the transistors

in the schematic views denote the initial gate width and length used on insertion of the respective

building block.
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Figure 8.16: Building Block Library: Output stages.

8.5.2.3 Critique of Pure Building Block Library

In [Gra01] Graeb et al. identify seven useful 2-transistor combinations, which are referred to as current

mirror, level shifter, current mirror load, differential pair, flip flop and two voltage references. Of these

seven subcircuits, the current mirror and the level shifter are directly implemented in the building

block library. Since the prospective comparators are supposed to work continously in time without

hysteresis, the meta-stable flip-flop is discarded. The two voltage references and the current mirror

load are combinations of two transistors in series. Except for the output stages and bias generators,

the building blocks included in the proposed library do not contain stacked transistors, but are to be

stacked to series connections by the GA. Nevertheless, the inclusion of these three stacked subcircuits

may be a beneficial option for future experiments, because it makes it easier to provide better current

mirrors or the necessary biasing for cascode elements in the circuit. It should be noted, however that

principally it is possible to realize all four forgone transistor pairs by means of the existing building

blocks and some additional routing.

Finally, no direct implementation of the differential pair is provided in the BB library to limit the

number of necessary BBs. Since differential pairs are used in virtually any input stage of an op amp,

this deliberate non-consideration seems rather perfidious. On the other hand, in the vast majority of

cases, differential pairs are used in series with a current sink/source to form a differential stage; this

in turn can be realized by stacking a transistor pair and one of the single transistor building blocks,

which shorten the two source/drain terminals of the transistor pair, on top of each other.

The building block library at hand contains two additional types of 2-transistor subcircuits not

considered by Graeb et al., namely the current sink/source load, which e.g. can be used as a passive

part of a current mirror bank (which actually is considered by Graeb et al. as a higher level BB) and a

selection of transistor pairs. The current sink/source load are not implemented in a floating version,

a flaw that must be compensated by using a transistor pair with shortened inputs. Since the tran-

sistor pairs are completely uncorrelated, they are no real subcircuits themselves, which is why they

are disregarded by Graeb et al.. Within the building block library, however, they are believed to be
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beneficial, because they suggest the formation of useful subcircuits, as e.g. the abovementioned com-

position of floating current sinks/loads or differential pairs. Moreover, even without being connected

to each other, they may be an important part of a differential twofold current-path.

In accordance with Graeb et al., the most simple building block is represented by a single tran-

sistor. Although the library at hand contains many implementations thereof, the size of the feasible

design space is considerably reduced, for instance because the current flow is restricted to the north-

south direction and the signal flow strongly biased into the east west direction. In contrast to Graeb

et al., no larger – second level – subcircuits, as for example 4 transistor or cascaded current mirrors

or banks of level shifters or current mirrors, are employed. These substructures are not realizable

with 2×2 transistor cells and their inclusion therefore would break the symmetry, homogeneity and

simplicity of the chosen methodology.

So far, only subcircuits restricted to the same type of MOS transistors have been considered. In

addition to these, the proposed library contains subcircuits that mix P- and NMOS transistors. For one,

these are the bias generators illustrated in Fig. 8.17, that can be used to create static voltages that can

e.g. bias current sink/source loads or cascodes. For the other, Fig. 8.16 depicts three different output

stages, namely active load circuits, inverters and a combination thereof called active load buffer. The

latter one can be transformed into a real buffer by shortening its inputs in the routing cell columns left

to it. The active loads are often used as output stages in simple op amps like the Miller operational

amplifier.

8.5.2.4 Critique of Practical Building Block Library

The selection of layouts for each subcircuit tries to capture all useful routing options that are feasible.

Thereby the necessities arising from the geometrical structure of the prospective circuits (cf. Fig. 8.14)

shall be taken into account:

1. The current is flowing vertically within each building block layout. For all building blocks

containing connections to either of the power supply voltages, it is necessarily directed from

top to bottom. A signal flow directed from left to right is sustained by connecting the input

terminals – which happen to be gate terminals only – of the respective subcircuit to the western

side of the block. In order to insert a current from a prior stage located to the west of the block

at hand, it must either be inserted at the top of the building block, or an appropriate routing

block must be used.

2. The only means to connect the evolving circuits to the power supply voltages is through the

building blocks themselves. Thus, whenever applicable, the proposed subcircuits are realized in

two versions, a floating one, and another one connected to either of the power supply voltages

(vdd in case of P- and gnd in case of NMOS transistors). The location of the power supply

connections complies with the desired top-to-bottom current flow as was explained above.

3. The principle of directly stacking the BBs on top of each other (as shown in Fig. 8.14) requires

the implementation of all necessary vertical routing within the building blocks. For instance,

the single NMOS-transistor layouts must contain a version that merges the two northern termi-

nals of the block before feeding it in the actual transistor in order to allow for the composition

of differential NMOS stages from transistor pair BBs and single NMOS-transistors. Moreover,

it may prove successful to allow vertical routing to pass the actual subcircuit implementation

where applicable (i.e. in active loads and single transistors). Yet, this may in other situations

create rather detrimental effects. Hence, wherever applicable, two layout versions are provided,

one with and one without the extra vertical connection.
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4. Due to the direct stacking of BBs all signals must be routed horizontally through the building

blocks. Since building blocks of different columns are connected via two columns of routing

cells, the terminals to the east- and western side of the building blocks are usually fully con-

nected. In the layouts of the active loads as well as the single transistors additional east-west

connections are provided whenever possible.

5. Even within the constraints imposed by the routing capabilities of the transistor cells, the de-

scribed building block library is far from being complete:

(a) For some circuits it could be beneficial also to provide versions where the position of

the outputs on the eastern side is swapped, because it is impossible to cross two signal

running in horizontal direction within two rows. Since this is not possible for all circuits,

this possibility was discarded for symmetry reasons, which is not to severe a limitation,

as signals can very well be crossed in 90◦ turns.

(b) In some cases, certain choices of output signal combinations have been discarded because

they are not in compliance with the experience and conventions present in traditional

human designs. For instance, it seems to make little sense to propagate the source terminal

of one and the drain terminal of the other transistor of a transistor pair to the BB’s eastern

output side.

(c) Some combination may just have been believed to be of little value, easily synthesized

otherwise or have been forgotten.

Nevertheless, even though probably suboptimal, the library is believed to be well suited for the

task at hand and a reasonable choice for other transistor level synthesis experiments.

On insertion into a genotype under evolution, the transistor gates of the building blocks possess

the initial values denoted in their schematic views in Fig. 8.15 to 8.18 on pages 270–273. Except for

the output stages and the bias generators, the transistor lengths of all BBs are set to 2µm, which is

the median of the five available lengths and a reasonable value to start with, since it presents a good

compromise between high transconductance and a low channel length modulation parameter λ . In

case of the output stages the tradeoff is shifted in favor of a higher transconductance parameter to a

channel length of 1µm. The dimensioning of the bias generators simply aims at providing useful bias

voltages. Again with the exception of the bias generators, the gate widths of all PMOS transistors

are initially set to 12 and those of the NMOS transistors to 4µm. The factor three by which the

PMOS transistors are wider than their NMOS counterparts is used to compensate for the difference in

their respective transconductance parameters (see [Aus97c]). Satisfying this constraint, the transistor

initial widths are rather on the larger end of the scale to provide sufficient transconductance to the

prospective subcircuits. Please note that according to these initial transistor dimension all current

mirrors process a current gain of (approximately) one.

A Hand-Designed Comparator as an Illustrative Example. In order to illuminate the way the

proposed building block methodology can be used to compose transistor level circuits, a simple 2-

stage comparator composed of building blocks provided by the described BB library is fitted into the

geometrical arrangement depicted in Fig. 8.14(a). While the circuit schematic including transistor di-

mensions and terminals is shown in Fig. 8.19(a), the building blocks the comparator can be composed

of are identified in Fig. 8.19(b). Fig. 8.19(c) illustrates the implementation in terms of building blocks

and additional routing that is compatible with the BB-based genotype. Please note that the transistor

dimensions annotated in Fig. 8.14(a) differ slightly from the initial values defined for the BBs above.
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Figure 8.19: Hand-made 2-stage open loop comparator: (a) shows the schematic view with terminal definitions

and the used transistor dimensions. (b) identifies the different BBs by shading them in gray. (c) shows how the

comparator is assembled using BBs from the proposed library.

Comparison to the Current-Path based synthesis proposed by Shibata. As stated above, the

proposed building block methodology was inspired by Shibata’s work on current-path based synthesis

described in [Shi01]. Analog to the current-path based synthesis, the chosen combination of BBs

and the geometrical structure of the genotype suggests a current flow from top to bottom through

columns of single or pairs of transistors. Nonetheless, a closer look also reveals a bunch of subtle

features included in the current-path based synthesis that may result in a considerable performance

enhancement:

1. The proposed meta-elements can take on the functionality of ideal current sources. Though

a straight-forward task for an engineer, the effort of realizing such a current source can be

immense for an EA, especially with a cell based genotype representation (see below).

2. The connections to the power supply are bound to occur at the correct ends of the current path.

To achieve this using the BB concept, the algorithm must try and err until an appropriate BB is

chosen from the library.
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3. A twofold current path is automatically merged into a single one, where it is connected to a

1-device element. In comparison with spending precious time waiting for the right BB to come,

this renders the composition of a differential stage child’s play.

4. The gate(s) of one meta-element are connected to exactly one node chosen from the entire cir-

cuit. In case of a two transistor meta-element these nodes are selected from one meta-element;

in case the target meta-element possesses two transistors as well, the analog nodes in the differ-

ent current paths are chosen, in case of a one-device meta-element, the gates are shortcircuited.

Thus, the connectivity of the circuit is easily changed and bound to a restricted subset of rea-

sonable routes. In contrast, the emergence of the correct signal routing is much more tedious

for any cell-based genotype in that it usually involves a large number of routing switch ma-

nipulations. Moreover, in areas of unconstrained routing a lot of unwanted effects as e.g. the

shortcircuiting of signals can happen. In case of the BB concept, a change in routing may also

require the exchange of one or rearrangement of more than one BB, where especially the latter

situation is very unlikely to happen. These difficulties are typical for cell based genotype rep-

resentations in which the logic functionality and geometric layout of the circuit are inextricably

mixed.

5. In its current implementation, the crossover operator is restricted to the exchange of BBs. In

the particular setup proposed in this third case study, a crossover that preserves the current-flow

oriented column structure of the genotype in a similar way as the crossover used by Shibata

may prove successful.

The above arguments indicate that the current-path based synthesis proposed by Shibata may be

better suited fo finding comparator-like circuits than the proposed building block concept. A direct

adaptation of this method to the proposed evolution system however, necessitates the separation of the

logical circuit from its realization on the FPTA chip. This in turn requires an efficient way of mapping

the logical circuit onto the chip, which itself is a nontrivial task that may prove to be computationally

expensive. Yet, the philosophy of intrinsic hardware evolution adopted for the scope of this thesis

suggests to use a rather simple genotype that adds little computation time to the processing of an

individual such that the relatively fast fitness evaluation achieved in hardware can be fully exploited

to run the experiments for a larger number of generations. On the other hand, the proposed building

block concept is more flexible and versatile in that the geometrical structure of the genotype as well

as the building block library can be defined by the user.

Concluding Remarks. Aside from the problem of which subcircuits to implement in which layout

versions discussed above, another problem arises in automatically composing circuits by inserting

BBs of the respective library: How to distribute the probabilities for inserting a particular BB. In

the current implementation, for each BB exactly one instance is a member of the BB library and the

probability of being chosen for insertion is uniformly distributed among all BBs. This may very well

be a suboptimal choice, because subcircuits for which more layout alternatives are implemented, as

e.g. single transistors, are chosen more frequently than others. To improve the situation one could

either adapt the number of copies of each building block present in the library, or allow a partial

reconfiguration of the routing in the building blocks themselves.

In [Gra01] Graeb et al. use the concept of BBs to facilitate the sizing of the circuit at hand by means

of sizing rules applicable to the different BBs. Many of their sizing rules require a precise knowledge

of the operation region of the respective transistor. Though at least all of the node voltages can be

made available in the FPTA chip (see section 3.6), this would gravely increase the testing time for

each candidate circuit. Thus, the application of such – more elaborative – sizing rules would naturally
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lend itself to ex- or mixtrinsic hardware evolution. Nonetheless, in the realm of intrinsic hardware

evolution the application of simple sizing rules relating the feasible subset of transistor dimensions

to the respective building block may be beneficial. In its current state, the used software restricts this

method to fixing the transistor’s gate length and/or width to its initial value depending on the BB’s

location on the genotype. A desirable extension thereof would allow to define independent sizing

rules for each BB separately, such that width and/or length as well as the aspect ration W/L could be

fixed for all transistors of one BB.

The current implementation of the BB concept is hampered by the fact that each BB is dimensioned

according to the initial values specified in the BB library. Since the BB insertion operation is applied

in the same step as the other mutation operators, the transistor dimensions have little time to evolve

before they become meaningless due to a new BB insertion. Thus, it may pay off to split the topology

altering variations and the parameter optimization. Viable techniques for splitting the population into

subpopulations have been sketched in 2.5.1. In this context, the hierarchical fair competition scheme

proposed by Hu et al. [Hu02a], [Hu03a], [Hu03b] seems very promising, as it may lend itself to

distinguishing between levels which are limited to breeding new topologies and others that focus on

parameter optimization.

8.5.3 Experimental Setup

Similar to the previous chapters and case studies, the problem is specified in terms of a target be-

havior, a fitness function and a test pattern that defines where the behavior of the candidate circuit

is measured. The synthesis algorithm used for this case study is refined in three regards pointed out

below and otherwise specified in terms of the used GA parameters.

8.5.3.1 Fitness Function

A comparator possesses two analog inputs and one output whose voltage is usually interpreted by

further digital circuitry. Hence, the desired functionality of a comparator is usually described by

Vtar ≥ VOH if VP > VN

Vtar ≤ VOL if VP < VN
, (8.7)

where VOH and VOL denote the higher and lower threshold for the output voltage, respectively. The

thresholds must be chosen such, that the subsequent digital circuitry is bound to interpret the output

correctly under all possible conditions. According to [All02e] the thresholds VOH and VOL are usually

taken as 70% and 30% of the power supply voltage, which results in VOH = 3.5V and VOL = 1.5V

for the FPTA’s fabrication technology. For the fitness criterion used during evolution however, the

thresholds are set to 4.5V and 1.5V, respectively. For one, solutions satisfying this criterion do exist,

as will be shown in section 8.5.5; for the other, defining VOH and VOL closer to the power supply rails

increases robustness and usefulness of the successfully synthesized comparators. Unlike all other

experiments of this thesis, the fitness criterion used for the evolution process is not based on the sum

of squared errors (SSE), but employs a penalty scheme described by the following equation:

penaltyi =





0 if |Vtar−Vout| < 0.5V

1 if 0.5 ≤ |Vtar−Vout| < 1V

2 if 1 ≤ |Vtar−Vout| < 2V

3 if 2 ≤ |Vtar−Vout| < 3V

4 if 3 ≤ |Vtar−Vout| < 4V

5 if 4 ≤ |Vtar−Vout| < 4.9V

6 if |Vtar−Vout| ≥ 4.9V

for i = 1 . . .462 , (8.8)
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which is visualized in Fig. 8.20. The fitness is then defined by the sum of penalties for all 462 input

voltage pairs:

Fitness =
462

∑
i=1

penaltyi . (8.9)

A similar penalty scheme was shown to outperform the SSE fitness function, when applied to the

comparator problem using a similar setup and the same type of evolution system by Trefzer in [Tre03].

A possible explanation may be given in terms of the fitness landscape. Compared with the SSE based

fitness evaluation the penalty scheme has a looser grip on the evolving genotypes, in that a larger

variety of circuits happens to attain the same fitness value. Hence, a larger variety of changes in the

genotype is reachable for a given circuit without becoming extinct due to a decrease in fitness. With

this larger variety of equally rated starting points in reach, an improving genetic alteration is more

likely to occur. The importance of such neutral networks is e.g. discussed in [Har97] and [Shi00].

Since, on the other hand, the artificial evolution process must be guided by the fitness criterion, the

granularity with which a performance decrease is measured is bound to be a tradeoff whose optimum

is likely to vary depending on the task at hand. Yet another aspect of the proposed fitness scheme is

its ability to suppress some of the noise inherent to the – randomized – measurement, which may also

prove beneficial for a hardware-in-the-loop system.
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Figure 8.21: Test Pattern used during evolution.

8.5.3.2 Test Pattern

The candidate comparator circuits are tested in quasi-dc mode, similar to the test of the XOR/XNOR

circuits of section 8.3. Here, the seven Vset voltages are chosen to be 1.5,2.0, . . . 4.5V. For each

Vset the other input Vsweep is swept through 66 voltages. In a small interval of 380mV around the

respective Vset the test points are spaced 20mV apart. The rest of the power supply range is covered

in a coarser resolution of 100mV. Thereby, the region around the target trip points is sampled with a

relatively high resolution, whereas the remaining test points ensure the correct large signal behavior

while maintaining a moderate test length. The test pattern is visualized in Fig. 8.21. Analog to the

test patterns used in chapter 6 and section 8.3, the order in which the input voltage pairs are applied

to the circuit’s input are chosen randomly from ten random orders for each test to sustain the quasi-dc

character of the test mode (the importance of which was discussed in chapter 5).

In order to account for the totally antisymmetric nature (with regard to the polarity of the input

voltage difference) of ideal comparators, the test pattern described above is applied for two different

mappings of Vset, Vsweep to VP, VN. For the first test mode, the positive input of the prospective

comparators VP is stimulated by Vsweep; for the second test mode, the role of VP is switched to the set

voltage Vset.
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In addition to the two input voltages VP and VN a third voltage Vbias is offered to the candidate

circuits as shown in Fig. 8.14. This bias voltage is kept constant at 1.6V and may be used by the

comparator circuits e.g. for biasing one or more NMOS current sinks, which would be required for

the 2-stage comparator design shown in Fig. 8.19. For each input voltage pair, the inputs are set in

the order Vbias, VP and VN. The output is sampled 1.075µs after the second and 0.825µs after the first

input voltage is set. The settling time is conservatively estimated to be the former of those two times.

Hence, a successful comparator can be said to settle in less than 1.075µs. Since this time comprises

the comparator’s propagation delay as well as the time to slew its output, the SR must5 amount to

at least 3.72 V
µs

. With regard to the intrinsic speed of the FPTA that is decreased by the combination

of parasitic capacitances and resistors, this represents a remarkably ambitious timing constraint. In

summary, the times necessary for the test of one input voltage pair add up to 1.35µs resulting in a

sampling rate of 741kHz.

8.5.3.3 Verification Tests

Analog to the experiments of the previous chapters and case studies, all of the evolved circuits are

tested for 100 times outside of the evolution loop. Thereby, the comparators are also tested in two

additional test modes featuring a finer but evenly spaced resolution of 5mV. Since the same seven

set voltages Vset voltages are used, each of this test modes samples a total of 7 · 1001 = 7007 input

voltage pairs. The reason for these additional test modes is twofold: First, their high resolution allows

to measure offset and gain of the evolved comparators with high accuracy. Second, the fact that they

are evenly spaced can be exploited to derive the root mean square deviation from the target behavior

per data point in mV for each or the two test modes:

RMSEtm[mV] =

√
∑7007

i=1 (Vtar(i)−Vout(i))2

7007
·1000 , (8.10)

where the target output voltages VOL and VOH where chosen as 0V and 5V, respectively. The final

root mean square error is then calculated as the mean of the RMSE for both test modes:

RMSE[mV] =
RMSEtm1 + RMSEtm2

2
. (8.11)

Although this measure is unfair in that the target output voltages differ from the output voltage thresh-

olds VOL and VOH used in the original fitness criterion, it is the natural way of providing a quality

measure for the evolved circuits that allows for a comparison with other results.

8.5.3.4 Genetic Algorithm

In principle, the same GA as for case studies I and II is employed for the automated synthesis of

comparators. However, besides being run with slightly different parameters as summarized in Table

8.6, the algorithm is altered in three regards:

1. The linear rank based selection scheme proposed in section 7.3.1.3 on page 211 is employed

instead of the truncation selection favored in the preceeding case studies.

5Actually, this condition only occurs if two subsequent input voltage pairs force the output to change its polarity. For each

test pattern this is guaranteed to happen at least once, but due to the randomization of the input order it is likely to occur

much more frequently.
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2. The four mutation rates listed in Table 8.6 are controlled in a deterministic adaptive manner

(following the terminology of [Eib03b]), namely by being multiplied by a fitness dependent

factor called multiplication rate multiplier (MRM) defined as:

MRM =

{
3 · (log(Fitness)− log(70))+1 if Fitness > 70

1 if Fitness ≤ 70
. (8.12)

The fitness dependency of MRM is illustrated in Fig. 8.22. As long as the fitness attained by the

best individual of the last generation exceeds a threshold – set to 70 here – the mutation rate is

divided by three for a fitness drop of one decade. This mutation rate adaptation is motivated by

the supposed course of a successful evolution run: During the first phase, the EA is to explore
the search space at hand; in the second phase, the algorithm is to exploit the raw solution

present in the population in the sense of fine-tuning. Hence, for large fitness values indicating

the exploration phase, a larger number of mutations per individual is desired to sample a larger

portion of the design space, while for smaller fitness values a smaller number of alterations

per individual is more likely to preserve the successful part of the genome. Due to the discrete

nature of the genotype, however, too small a mutation rate prevents mutation from happening

at all; hence the threshold of 70 that avoids a further decrease of the mutation rate.

3. A fraction of the population referred to as mutants receives a special genetic treatment, which

was introduced by Trefzer in [Tre03]. In the current case study, a fraction of 20% of the popu-

lation is chosen as a mutants, which are mutated with a mutation rate that is five times higher

than the nominal one (the rate itself, excluding the adaptively defined MRM). Moreover, mu-
tants undergo the crossover operation twice: Once they may be recombined with an individual

taken from the whole population and once with an individual chosen from the mutants only.

As can be seen from Fig. 8.22, the mutation rates for mutants and the rest of the population are

almost the same at the beginning of an evolution run. Later on, however, the small fraction of

mutants keeps exploring the design space, while the rest of the population is designated to be

fine-tuned. Thus, the mutants can help to overcome local optima.

GA Parameter Comp: BB Comp: Cell

population size 20 20

reprod. fraction 0.1 0.1

crossover rate 0.4 0.4

mut. rate routing MRM ·1% MRM ·1%

mut. rate W/L MRM ·1% MRM ·1%

mut. rate term. con. – MRM ·1%

mut. rate BB MRM ·1% –

mutants fraction 0.2 0.2

MRM for mutants 5 5

no. of used blocks 6/15 –

no. of used cells 24/60 48/120

crossover block size 2/1 6

no. of generations 10,000 10,000

Table 8.6: Genetic algorithm parameters used for case stud-

ies I and II.
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Figure 8.22: Fitness dependency of the muta-

tion rates. The fitness regime encountered in

the described experiments is shaded in gray.

The most important difference with regard to the GA parameters is the small population size of

only 20. This number is inspired by an empirical analysis of the performance dependence on mutation
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rate and population size done by Hohmann et al. published in [Hoh02b]. Hohmann concluded, that in

training a hardware neural network to solve the 4-bit parity problem by means of an EA, a population

size between 15 and 20 would be ideal. Though different in task and hardware, the system used by

Hohmann et al. and that one proposed here are both believed to mainly mainly on mutation as the

dominant variation operator rather than on recombination. Hence, a number of 20 individuals seemed

a good choice.

8.5.4 Overview of the Experiments

This third case of BB-based evolution of comparators is studied by means of 8 different experiments

whose distinguishing features are summarized in Table 8.7. These are the type of and restrictions im-

Experiment Genotype W L # of BBs (X ×Y ) Geometry in Figure

1 plain free free 2×3 8.14(b)

2 BB fixed fixed 2×3 8.14(a)

3 BB free fixed 2×3 8.14(a)

4 BB free free 2×3 8.14(a)

5 plain free free 3×5 8.14(d)

6 BB fixed fixed 3×5 8.14(c)

7 BB free fixed 3×5 8.14(c)

8 BB free free 3×5 8.14(c)

Table 8.7: Overview of the 8 different experiments.

posed on the genotype as well as the size of the array available to the artificial evolution process. The

latter one distinguishes experiments 1 to 4 from experiments 5 to 8, which are identical otherwise.

The two different array sizes refer to the four different geometries displayed in Fig. 8.14. While ex-

periments 1 and 5 utilize the plain genotype, the remaining six experiments rely on the building block

library described above. They merely differ in the freedom of (re-) sizing the gate dimensions of the

transistors the BBs are composed of. While experiments 2 and 6 guarantee the genuine functionality

of BBs containing more than one transistor, the freedom to change the respective gate dimensions

granted to the algorithms in the experiments 3,4 and 5,6 may lead to more unconventional usage of

the subcircuit topologies offered by the BB library. On the other hand, the GA can optimize the cir-

cuit’s performance by tweaking the transistor dimensions. The compromise of fixing the transistor

lengths corresponds to the unrealistic hope that the algorithm may be able to define current mirrors

with different gains, but sticks to identical aspect ratios where necessary, e.g. in case of differential

pairs. Since the smaller geometrical setup of experiments 1 to 4 is considered almost minimal for a

useful comparator design (compare the hand-designed comparator of Fig. 8.19(c)), the second group

of experiments is meant to investigate whether a larger number of BB sites would be beneficial. The

larger geometry could ideally be used to construct three current conducting stages featuring up to 5

transistors or transistor pairs stacked onto each other, allowing for fully cascaded stages.

8.5.5 Test of the Hand-Designed Comparator

In order to set the scene for the results achieved for the different experiments, the 2-stage open loop

comparator depicted in Fig. 8.19 has been subjected to the same verification test procedure as the

evolved circuits. The resulting output characteristics are shown in Fig. 8.23. The tests were carried

out using two different timing schemes: While Fig. 8.23(a) and 8.23(b) show the results for the test
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Figure 8.23: Output characteristic of the hand designed comparator. The legend imprinted in Fig. (a) is used

throughout all four plots. The plots on the right hand side contain some information about the measured fitness,

RMS error, offset and gain.

pattern timing discussed in section 8.5.3.2, the settling time between the sampling clock for the first of

the two input voltages (VN) and that one sampling the output is raised from 1.075µs to 5.275µs for the

test pattern underlying the results presented in Fig. 8.23(c) and 8.23(d). In the latter case, the desired

output behavior of a comparator can be observed. In the former case this is not true for the region

close to the trip point, which is due to the small settling time: For large input voltage differences,

the circuit is still fast enough to achieve the desired output voltage transition if necessary; for smaller

input voltage differences, the circuit is not fast enough anymore.

The plots (b) and (d) of Fig. 8.23 contain some information about the fitness and RMS error

defined in (8.9) and (8.11) as well as the achieved gain and offset. The definitions for the latter ones

as well as for the overall offset R are given in section 8.5.6.3. As can be seen from those values as

well as from the plots themselves, the hand-designed comparator is not perfect even for the slower

timing, but rather exhibits a mean offset of about 45mV. This surprisingly high value may either

be caused by the transistor cell implementation on the PTA itself or by errors introduced by external

circuitry. The former source of errors is likely to contribute significantly stronger; they could either be

caused by device to device variations between the used transistor cells, or by differences in the source

potential of the differential pair that receives the input signals VN and VP. The latter condition can

be caused by a different number of switches connecting the source terminals to a common potential,

because all switches create a voltage drop according to their on-resistance.
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It is instructive to contemplate the large RMS error per data point in mV, which even for the

slower timing amounts to almost 500, although the circuit works fairly well. Let us assume a mean

offset per curve of 50mV to investigate its impact on the RMSE. Since the resolution of test points is

set to 5mV and the curve belonging to one Vset contains 1001 test points, the resulting error can be

computed by

RMSE [ mV] =

√
10 · (5V−0V)2

1001
·1000 ≈ 500mV . (8.13)

Accordingly, the large RMSE of the hand-designed comparator is mainly due to its offset, as could

be expected from the plots (c) and (d) in Fig. 8.23 that render its output behavior almost flawless

otherwise.

8.5.6 Evolution Results

8.5.6.1 Comparison of the Different Experiments: Histograms

The results of all 40 runs of all 8 experiments are summarized in the respective histograms of Fig. 8.24.

In order to allow for their comparison with results attained in experiments using a different fitness
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Figure 8.24: (a) worst fitness and (b) worst RMS error obtained from 100 verification tests for all 8 experiments.

The bin size is set to 100mV in all histograms.

criterion, the results are plotted in terms of the fitness criterion of (8.9) used during the evolution

process as well as in terms of the RMS error per input voltage pair in mV, which is defined in (8.11)

and (8.10).

In both histogram stacks, the non-BB experiments possess a very different signature compared

with the BB-based experiments: While most of the runs of the latter ones are confined to fitness

values between 300 and 500 (RMS errors between 400 and 1000 mV), those of the former ones are

distributed much more uniformly along the plotted fitness (RMS error) range. In fact, none of the

BB-based experiments produced a circuit with a fitness worse than 1000. On the other hand, the best

solutions of experiment 5 fall into the same fitness bin as those of experiments 2-4 and 6,7; a fitness

of less than 200 is achieved by more runs of experiment 1 than for all BB-based experiments together.
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In summary, the experiments based on the building block concept generate good solutions (in all BB-

based experiments more than half of the 40 runs finish with a fitness of less than 300) much more

frequently and reliably than the experiments employing the simple genotype; however, the best runs

of both experiments are of comparable fitness.

With regard to experiments 1 and 5, the larger geometry of 10 transistor cells turns out to be

unfavorable for the evolution of comparators with the given GA and its parameters. Supposedly, the

search space is simply too big for the number of circuit evaluations granted to the algorithm. In

comparison with the results concerning the evolution of comparators using the basic GA reported in

[Tre04], the RMS errors achieved in the runs of experiment 1 are of similar quality, albeit slightly

inferior. Apart from a variety of small differences between the two experiments – including, but

not limited to fitness function, test pattern, settling time, electrical test modes, parsimony pressure,

number of transistor cells available to the algorithm – Trefzer et al. used five times as many circuit

evaluations per run. Accordingly, the evolution runs of experiment 1 possibly could have gained from

a larger number of circuit evaluations, too. Hence, this indicates that the GA parameters summarized

in Table 8.6 are not a particular bad choice for evolving comparators with the transistor cell based

genotype.

The differences between the six experiments employing the BB methodology are almost negli-

gible. If at all, the confinement of the fitness values slightly increases with ascending experiment

number, that is for higher degrees of freedom in sizing the BBs’s transistors and a larger number of

BB sites; the effect turns out even more subtle for the RMSE values.

The best results of the presented experiments compare well with the hand-designed comparator

discussed in section 8.5.5, even if one compares their performance with that of the hand-designed

comparator measured for the larger settling time: In terms of fitness values, most of the best-of-

experiment runs are slightly worse, but in terms of RMS error they usually fall into the same fitness

bin, and can thus be considered of higher value, because they are tested using the smaller settling

time.

8.5.6.2 Comparison of the Different Experiments: Convergence

The convergence speed with which the best-of-generation solutions improve is investigated by means

of Fig. 8.25. In (a), the mean fitness averaged over all 40 runs of each experiment is plotted for

multiples of 500 generations; (b) presents a close-up into the first 500 generations on the basis of the

average fitness taken every 25 generations. Please note that fitness here, unlike all other utilizations

of this term within this section, refers to the fitness values measured during the evolution process.

First, it can be observed that the average fitness values obtained for generation 10,000 – at the

end of each evolution run – are consistent with the histograms shown in Fig. 8.24. Second, the

convergence speed for all of the BB-based experiments exceeds that of the experiments restricted

to pure transistor cells by far. In fact, the average fitness has already dropped to approximately

130% of its final value for all BB-based experiments, whereas the plain genotype experiments – at

least on average – are not anywhere near the synthesis of useful comparators. In case of the BB-

based experiments, evolution seems to switch from the exploration to the exploitation phase after

approximately 500 generations. A closer look reveals that it is beyond generation 500, where the

experiments allotted a larger design space in terms of the number of BBs, routing and transistor sizing

overtake those restricted to a smaller design space. In summary, the runs relying on the building

block concept converge faster and more reliably than non-BB runs. Moreover, their fitness curves are

surprisingly smooth and almost monotonically decreasing.
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Figure 8.25: Mean fitness averaged over all 40 runs of each of the 8 experiments for selected generations. (a)

displays averages for the full length of the runs, (b) zooms into the first 500 generations.

8.5.6.3 Comparison of the Different Experiments: Gain and Offset

Calculation of Gain and Offset. Comparators that, in principle, accomplish the desired function-

ality can be characterized by their offset and gain as well as their dynamic properties, as for instance,

their propagation delay and slew rate. Due to the nature of the fitness test, all of the evolved com-

parators exhibiting the principal functionality must satisfy the timing constraints inherent to the test

pattern set forth in section 8.5.3.2. Hence, the evolved circuits are further characterized by their gain

and offset, whose computation is sketched in Alg. 8.1. The procedure is applied to the output char-

acteristics measured in the verification tests described in section 8.5.3.3. Gain and offset are first

calculated for all 14 curves, that is for the output characteristics of the comparator measured when

Vset is fixed to one of seven values for both test modes. From these 14 gain and offset values the

statistical parameters minimum, mean and maximum gain are calculated for each comparator.

The computation of the offset and gain of each curve features the following useful properties:

First, for a principally correct output behavior, the offset is approximated well, whereas the gain

may be underestimated for higher values. For instance, comparator curves exceeding the maximum

detectable gain, which amounts to approximately 800 . . .1000, may be measured such, that one of

the Vsweep values falls into the transition region. As a result, the gain would be computed to a value

between 400 and 500. Second, comparator curves that exhibit oscillatory behavior in the vicinity of

the transition region are assigned a reasonable estimation of offset and gain; the larger the region of

oscillations, the smaller their gain6. The most likely source for such oscillations is the inability of

the comparator to decide upon the correct output voltage within the allowed settling time. Finally,

curves that do not possess a transition between the two threshold voltages VOH and VOL at all or

whose overall transition possesses the wrong polarity receive a gain of zero and an offset that is large

enough to clearly distinguish the corresponding circuit by means of the according mean or maximum

offset value. Since those circuits fail to produce the desired output functionality, their mean offset and

gain values are not properly defined. Therefore, they are discarded from the following analyses that

involve the computation of gain and offset. It should be noted, though, that comparators that perform

6Usually one is rather interested in the resolution [V] = VOH−VOL

gain than the gain of a comparator. In this vein, the definition

of gain is well chosen.
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Algorithm 8.1: Computation of offset and gain

for all test modes do // All 2 test modes (tm)
for all Vset do // All 7 curves

if test mode == 1 then // transition from high to low
Vsweep l ←max{Vsweep|Vout(Vin) > VOH ∀Vin ≤Vsweep};
Vsweeph←min{Vsweep|Vout(Vin) < VOL ∀Vin ≥Vsweep};

else // transition from low to high
Vsweep l ←min{Vsweep|Vout(Vin) < VOL ∀Vin ≤Vsweep};
Vsweeph←max{Vsweep|Vout(Vin) > VOH ∀Vin ≥Vsweep};

end if

if ∃Vsweeph,Vsweep l && Vsweeph > Vsweep l then

offset←
∣∣∣∣Vset−

Vsweeph +Vsweepl

2

∣∣∣∣ ;

gain← Vout(Vsweeph)−Vout(Vsweep l)

Vsweeph−Vsweepl

;

else

offset← 70V;

gain← 0;

end if

end for

end for

// Calculate statistical information
min offset ←mintm,Vset

(offset); max gain ←maxtm,Vset
(gain); // best case

mean offset←meantm,Vset
(offset); mean gain←meantm,Vset

(gain); // mean condition
max offset ←maxtm,Vset

(offset); min gain ←mintm,Vset
(gain); // worst case

well for five or six of the Vset voltages while failing to produce a transition for the remaining one or

two curves are evolved quite frequently; in fact, the best circuit of experiment 8 exhibits this behavior,

as can be seen from Fig. 8.28.

Results for Gain and Offset. The number of circuits that are found to accomplish the comparator

functionality in principle for all Vset and both test modes are presented in Fig. 8.26(d). In accordance

with the fitness results summarized in Fig. 8.24, the BB-based experiments produced more feasible
comparators than experiments 1 and 5 that employed the plain transistor cell genotype. The second

trend recognizable from Fig. 8.26(d) is rather surprising: Additional freedom in resizing the BBs

seems to reduce the yield of feasible solutions. Fig. 8.26(a)-(c) show offset and gain of the feasible
comparators accounted for in (d). Thereby, three cases based on the statistical information extracted

from the offsets and gains belonging to the 14 tested curves are distinguished: While (a) illustrates

the best case, i.e. minimum offset and maximum gain recorded for the 14 Vset, (b) accounts for the

mean offset and gain values and (c) captures the worst case, i.e. the maximum offset and the minimum

gain. In order to increase the information in the scatter plots of Fig. 8.26(d), a few points exceeding

the offset scale of the respective graphs are omitted; all of them possess a relatively very low gain. In

particular, these are 2 runs of experiment 5 in (a), 1 run of experiment 5 in (b) and 1 run for each of

the experiments 3,5,6,7 in (d).

As can be seen from Fig. 8.26(a), the vast majority of evolved circuits possesses a maximum gain

of 100 or less. Maximum gains exceeding 100 exclusively emerge from experiments employing the

BB concept, gains exceeding a threshold of 200 are all ascribed to runs using 3× 5 BBs. The latter
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statement also holds true for the mean gain values exceeding 100 and the minimum gains exceeding

a value of 40. The smallest mean and minimum offsets, on the other hand, are attained by a group

of 4 runs obtained from experiment 1. Thus, the best runs of experiment 1 seem to excel by their

low offset, whereas those of experiments 6 to 8 are characterized by their relatively large gain; this

perception is sustained by the examination of the best-of-experiment circuits in section 8.5.6.4. Both,

offset and gain values exhibit a fairly large spread in terms of their minimum, mean and maximum

values, i.e. many comparators seem to work fairly well only for a subset of the chosen Vset values

and/or test modes.

From an application engineer’s point of view, a circuit is best characterized by the minimum

performance that can be guaranteed for the desired operation region. In this case, this would be the
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Figure 8.26: (a)-(c) Scatter plots of offset and gain for all the best-of-run solutions of all 8 experiments that

exhibit the principle comparing functionality for all Vset . (d) accounts for the number of runs per experiment

considered in (a)-(c).
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overall resolution with which two signals can be guaranteed to be correctly compared for all Vset of

both test modes. Thereby, the overall resolution can be defined as

R[mV] = max
tm,Vset

(Offset)+
1

2
· 5000mV

min
tm,Vset

(gain)
, (8.14)

where the second addend accounts for half of the interval in which the comparator does not produce

a unique decision due to its finite gain. Since a value outside the interval [VOL,VOH] is considered

sufficient for a correct decision, the maximum value of 5000mV ensures that the second addend of

R can only be overestimated. For input voltage differences larger than this overall resolution, the

circuit is bound to produce the correct output voltage exceeding the respective thresholds VOL and

VOH. The according regions in the offset-gain space satisfying an overall resolution of R < 100,

100 ≤ R < 200 and 200 ≤ R < 300mV are highlighted in different shades of gray in Fig. 8.26(c).

While only 10 runs exhibit an overall resolution of R < 200mV, a larger fraction of the 154 evolved

comparators accomplishes at least a resolution of less then 300mV. To be useful in a real world

application however, an overall resolution of at least less than 20mV would be needed; high-precision

applications may even demand resolutions below 1mV.

8.5.6.4 Best-of-Experiment Output Characteristics

The output behavior of the best comparators evolved for each of the 8 experiments is visualized in

Fig. 8.27 (experiments 1-4) and 8.28 (experiments 5-8). Here best refers to the worst fitness attained

within the 100 verification tests for the criterion used during evolution described by (8.9). The plotted

data is taken from the first of the 100 verification tests. The output behavior measured for test mode 1

is depicted on the left hand side and that for test mode 2 on the right hand side of Fig. 8.27 and 8.28,

respectively. Analog to the corresponding plots for the hand-designed comparator in Fig. 8.23(b) and

(d), the graphs for test mode 2 contain additional information about fitness and RMS error values as

well as for offset, gain and the overall offset R.

All of the output characteristics presented in Fig. 8.27 and 8.28 approximate the desired compara-

tor functionality relatively close, at least for most of the Vset voltages. Moreover, the corresponding

best-of-experiment comparators respond symmetrically to the two different input patterns of the two

test modes. While the largest offsets for the comparators of experiments 1 and 5 (composed of simple

transistor cells) are due to the deterioration of the curves corresponding to the outmost set voltages

Vset, the maximum offset of the comparators evolved in experiments 2-7 (assembled from BBs) is

dominated by the offset obtained for the curves with Vset = 1.5V and in experiment 8 by the failure

to produce and output transition at all for Vset = 4.5V. Yet, the affected curves of experiments 2-7 are

not deteriorated in shape compared with the rest of the curves. Unlike the hand-designed comparator,

the comparators synthesized in experiments 2-7 do not exhibit a unique offset for all curves (or at

least all in a presumably feasible connected operation region), but rather significant offsets for one or

two of the inner set voltages, most often for Vset = 4V. The only – unsatisfactory – explanation is that

those circuits are unconventional in the sense of being very different from human designs.

As could have been expected from the analysis of offset and gain in section 8.5.6.3, the gain

achieved by the circuits synthesized on the basis of the 3×5 BBs geometry significantly exceeds that

achieved by all of the other presented comparators: While the according curves of the latter ones all

resemble the output characteristic of an inverter, those of the former ones exhibit a steep and narrow

transition between the low and high output voltages. Yet, these high gain values achieved for the best

comparators of experiments 6 to 8 are countervailed by maximum offsets that are at least twice as

high as those of the other best-of-experiment solutions.
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Figure 8.27: Output characteristic for best-of-experiment solutions for experiments 1 . . .4. The data is ob-

tained from the first of 100 verification tests, where best here refers to the worst fitness value obtained in 100

verification tests evaluated by means of (8.9), the fitness criterion used during evolution. Left: Output behavior

for test mode 1. Right: Output behavior for test mode 2. Read from top to bottom the plots correspond to

experiments 1 to 4.
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Figure 8.28: Output characteristic for best-of-experiment solutions for experiments 5 . . .8. The data is ob-

tained from the first of 100 verification tests, where best here refers to the worst fitness value obtained in 100

verification tests evaluated by means of (8.9), the fitness criterion used during evolution. Left: Output behavior

for test mode 1. Right: Output behavior for test mode 2. Read from top to bottom the plots correspond to

experiments 5 to 8.
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In summary, all of the presented best-of-experiment solutions are most severely flawed at one or

both ends of the range of set voltages. Yet, while for the BB-based circuits the according output curves

mainly suffer from a displacement of the transition region, i.e. an offset, those of the comparators

synthesized from plain transistor cells are mainly deteriorated in shape, i.e. suffer from a loss of gain.

Finally, the relatively small spread in the last, minimum, mean and maximum fitness reported for the

circuits presented in Fig. 8.27 and 8.28 proves their performance to be reproducible and thus renders

them robust against at least the smallest of environmental changes.

8.5.6.5 Test on a Second Chip

Analog to all previous case studies, the verification test procedure is repeated on a second evolution

system. The values obtained for the worst fitness according to (8.9) as well as for the worst RMS

error described by (8.11) are averaged over all 40 runs of each experiment. The resulting means

for both chips are compared to each other in Fig. 8.29. The average performance of the runs of all
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Figure 8.29: Comparison of the performance achieved on chip 1 and 2 in terms of (a) the fitness criterion used

during the evolution process described by (8.9) and (b) of the RMS error according to (8.11).

experiments but experiment 5 is slightly decreased. The effect is more significant for experiments 6

to 8, i.e. the experiments employing the 3× 5 BB geometry. On average, the BB-based experiments

using the larger geometry exhibit a slightly better fitness and an almost equal RMS error, albeit clearly

outperform the results gained for the evolution experiments restricted to pure transistor cells.

The verification test data obtained on the two different chips is further analyzed with regard to

offset and gain: From the first output characteristic measured in the 100 verification tests the mean

gain and offset with regard to all Vset and test modes are calculated as described in section 8.26.

The according gain and offset values are averaged over all runs that achieve a syntactically correct

comparison (feasible comparators) for all 14 curves on both chips. The number of circuits that proved

feasible on the chip used during evolution but infeasible when tested on the second chip is annotated

at the top of graph (a) in Fig. 8.30 for each experiment. The according averages for the comparator’s

gain are depicted in Fig. 8.30(b).

The offset and gain differences between the different chips look slightly larger than those for

fitness and RMS error. Moreover, they vary stronger between the 8 experiments; yet there is no

direct correlation for larger differences in mean offset and mean gain. The percentage of circuits

achieving syntactically correct comparisons for all Vset on chip 1, but not on chip 2 is below 10% for

all experiments but 1,2 and 5. Nevertheless, on average approximately 50% of the circuits evolved
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Figure 8.30: Comparison of the performance achieved on chip 1 and 2 in terms of (a) offset and (b) gain of the

evolved comparators.

using the BB concept achieve such syntactically correct comparisons on both chips. In summary, the

interesting circuits that approximate the desired comparator behavior closely for most of the 14 Vset

and test mode combinations are believed to do so on both chips and probably even on other dice of

the FPTA.

8.5.7 Summary of the Comparator Results

Results for a Larger Settling Time. Another series of experiments has been carried out which is

identical to the one presented here (compare Table 8.7) in all parameters but the timing scheme used

for the application of the test pattern. This timing scheme is the same as that one used for the second

test of the hand-designed comparator whose results are given in Fig. 8.23(c) and (d). The preeminent

difference between the two timing schemes is the almost 5 times larger settling time between the

application of the first input voltage and the sampling of the output, that amounts to 5.275µs instead

of the 1.075µs used for the experiments presented so far. The results are presented in appendix E

based on the same type of plots used in the previous section and shall be briefly summarized below.

Generally, the results obtained from the new series of experiments using the larger settling time are

indeed very similar to the experiments presented before; yet, a few differences apply: The experiments

restricted to the plain genotype produce even less circuits that exhibit a relatively good performance,

hence, the gap between the non- BB-based experiments and the BB-based ones is even larger. In

contrast, some of the runs of the BB-based experiments are found to be superior to the best-of-

experiment solutions found for the smaller settling time. The highlights among these outperformers

include worst fitness values of 54 and 79 as well as four cases of an overall resolution R < 100mV;

the two best of which achieve an R of 48 and 75. In general, the same picture for the distribution of

gain and offset emerges for the experiments of both settling times. Nevertheless, the distribution of

the comparators’ gains is shifted and stretched to considerably higher values. Finally, the results for

the migration to a second die mainly differs in that the increase in offset is more evenly distributed,

so that it looks like a systematic effect.

Comparison with the Hand-Designed Comparator. In terms of the overall resolution R the best

solutions evolved for both settling times can compete with the hand-designed comparator: In case of

the larger settling time, 47 out of 320 evolved circuits accomplish an overall resolution R < 269mV,

that is 14.7% of the evolved circuits outperform the hand-designed comparator. Though the dynamic
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behavior exhibited by the hand-designed comparator renders it useless for applications in which a

comparison must be reached within the smaller of the two settling times, the comparator’s failure

in satisfying this timing constraint qualifies the chosen design problem as nontrivial. In this vein,

the performance of the automatically synthesized circuits is remarkable. In case of the smaller set-

tling time, only the best of the 320 automatically synthesized comparators achieves a smaller overall

resolution than the 61mV measured for the hand-designed one. Another three evolved comparators

accomplish an R < 100mV and thus can be considered of almost equal quality. In this sense, one

could look at the automatically synthesized circuits as being human-competitive, albeit with a mod-

est yield rate. Yet, though being briefly optimized for speed, the hand-designed comparators do not

necessarily establish a lower bound for the overall resolution achievable with the chosen topology,

let alone for the set of topologies that can be implemented on the chosen array of transistor cells: At

least the offset of the hand-designed circuit should be easily compensated by some small adjustments

in the aspect ratios of the input stage.

In addition, there is also a much more fundamental difference between the hand-made compara-

tor and the evolved ones: The two stage comparator of Fig. 8.19(a) is primarily a concept for a

comparator that can be adapted to the circuit technology at hand. For substrates that provide tran-

sistors approximating the underlying ideal behavior sufficiently close, a suitable dimensioning of the

circuit will yield predictably good results. Besides the general suspicion against evolved designs,

two observations concerning the evolved circuits decrease the confidence to find concepts of simi-

lar quality: First, the evolved circuits suffer from a loss of performance when migrated to a second

FPTA. An increase in offset alone could probably be fixed easily by some adjustments in some of

the transistor sizes, but the decrease in gain is likely to resist any simple repair mechanism. Second,

many of the best-of-experiment circuits depicted in Fig. 8.27-8.28 and Fig. E.4-E.4, exhibit offsets

depending strongly on the different Vset values. Hence, they are not believed to be amenable to simple

offset minimization techniques feasible for the hand-designed comparator, as those are restricted to

compensating global offsets.

Future Work. As has already been mentioned above, the high offset of the hand-designed com-

parator as well as its consequential mediocre performance in terms of fitness and overall resolution R
defined in (8.14) are surprising and disenchanting. Thus, it deems necessary to investigate the actual

causes of those offsets as well as to characterize the precision that can be achieved with the current

evolution system in terms of offset, deterioration and noise. On one hand, the subsequent insights can

then be used to improve the existing system – e.g. by a better calibration of the external analog test

circuitry – and to define maximum specifications feasible for circuits implemented or evolved on the

FPTA. On the other hand, these insights may lead to modifications of the external test system as well

as to a redesign of the FPTA chip itself.

The final comment addresses the fitness criterion. In the course of presenting the evolution results,

the overall resolution R was identified as a viable means to capture the quality of potential comparator

circuits. By definition (see (8.14)) the overall resolution emphasizes the worst case performance

the circuit is guaranteed to satisfy. On the contrary, the fitness criterion used during evolution (cf.

(8.9)) encourages the development of circuits that perform well on average. Though a fitness of zero

ensures the minimal overall resolution that can be enforced with the applied test pattern, low but

finite fitness values may very well lead to circuits failing to compare voltages from a subinterval of

the input voltage range. Hence, the fitness criterion does not exactly describe the desired behavior.

On the other hand, the last argument implies that the overall resolution R can only be established as

a criterion for candidate circuits that already achieve a syntactically correct comparison over the full

range of set voltages Vset. Hence, it may be a good idea to design a hierarchical fitness criterion that

prefers circuits for which R can be calculated to those where this is not possible, and otherwise decides
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in favor of the minimum R or the minimum penalty-based fitness of (8.9), whichever is applicable.

Further sophistication of the testing procedure may include an adaptive (fitness dependent) schedule

for the required thresholds VOL and VOH, the number and range of the Vset voltages and the resolution

of the input voltages Vsweep.

8.6 Discussion

Two different types of building block libraries were used to tackle three different tasks: A small library

of the most simple logic gates boosted the yield of perfect XOR/XNOR gates from 0 to over 50%. The

same library, although unlikely to be a particular good choice for this task, substantially increased the

yield of medium quality tone discriminators. Finally, the evolution of comparator circuits was greatly

enhanced in terms of convergence speed and yield of good solutions by means of a more elaborate

BB library of 124 subcircuits composed of 1 to 3 transistors. Coarse-grained, these results can be

summarized as follows: The application of the proposed building block concept can significantly

accelerate the evolution process, which must be attributed at least partially to the inherent reduction

of the feasible search space. However, a quantum leap for the best circuits evolved can only be

achieved if the BB library is well suited to the problem and the problem is sufficiently facilitated by

the usage of the BB library. Moreover, the usage of a presumably inappropriate ensemble of BBs

may affect the transferability to other FPTA chips, as was observed in case of the tone discrimination

circuits.

Although the analog BB library deployed in the third case study was meant to bias evolution

towards more human-like designs, the attained comparator circuits are found to behave differently

from a manually implemented bread-and-butter comparator. A possible reason for the limited success

of the BB concept may be the large number of building blocks implementing different routing variants

of essentially the same functionality. The different degrees of freedom in resizing the current BBs of

the genotype had little effect on the success of the automatic synthesis. This may be due to the fact

that a topological change of a building block can only be achieved by reinserting a new one into the

according BB site, thus overriding any previously evolved transistor dimensions.

Both of the above problems can be addressed by smoothing the mutation operator: The first of two

approaches to be sketched here transfers the genetic access rights from the genotype-template to the

implementations of the BBs. Thereby, the user could define a restricted set of operations allowed for

a particular BB, which thus may truly represent one subcircuit in all necessary routing variants. Apart

from the exchange of whole BBs, a set of different mutation operators can be used to change certain

properties of the respective BB as e.g. the way it is connected to the rest of the circuit, if it possesses

a connection to either of the power supplies or even change the polarity of its transistors. The price

for this advanced BB concept is an increased difficulty and maybe even a loss in versatility as it may

require to hard-code the building blocks. The second approach would be to split the BB exchange

operator into one that can exchange the BBs on a global scope and another one that is restricted to

replacing the current BB with one of the same family of BBs, which would probably comprise all BBs

that provide different routing variants of the same electrical subcircuit. The latter operator may even

be enhanced by allotting different probabilities to the prospective exchange candidates depending on

their distance to the original BB measured in the number of one point mutations to morph one into

the other. Last, but not least, an advanced crossover operator is definitely necessary to complete the

proposed BB concept. In case of the geometry chosen in case study III, the obvious choice would be

to restrict the crossover operator to the exchange of parts of or even entire columns of BBs. Thereby,

the column structure and hence also the current path structure of the genotype would be preserved.
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Finally, the current-path based synthesis proposed by Shibata in [Shi01] has been shown to be

most promising in comparison with the concepts proposed by other researchers in the field. It may

thus be rewarding to grapple with the inevitable difficulties of automatically mapping a schematic

circuit to the FPTA chip and aim at a direct implementation of this current-path based synthesis

method.

8.7 Disclaimer and Acknowledgment

First it should be noted, that material and experiments similar to those presented within case studies I

and II are published in [Lan04]. Since the experimental setup closely resembles that used in [Lan04]

the results are similar. Yet, the experimental data presented here is completely disjunct from that

published in [Lan04] and all of the presented experiments were run by the author. Nevertheless, the

author is indebted to his coworkers whose work entered into this section: The genetic access rights
concept was developed and implemented by Martin Trefzer, who also helped in implementing the

necessary functionalities of the BB concept, especially to adapt it to the genetic access rights. The

implementation of the BB concept including the BB library editor was primarily worked on by Daniel

Brüderle. The beginnings of his student’s project are summarized in [Brü02]. Finally, the author

adopted the following of the algorithmic sophistications described in section 8.5.3.1 and 8.5.3.4 of

case study III: The concept of mutants as well as the penalty based fitness function of Equ. 8.9 were

introduced by Martin Trefzer. The choice of GA parameters was also inspired by previous work done

by Martin Trefzer. A similar fitness function as well as some of the abovementioned GA parameters

are published in [Tre04]. The idea for the implementation of the fitness-dependent mutation rate

together with a slightly different implementation was contributed by Miguel Garvie.



Conclusion

A Journey of a Thousand Miles

begins with a Single Step.

LAO TZU

In this thesis a novel approach to the automatic synthesis of analog circuits on the transistor level

has been presented. An evolutionary algorithm is employed as an invention machine that creates

new candidate circuits based on the information gathered from the performance of their predeces-

sor. The evaluation of new candidate circuits uses a dedicated analog substrate, that is, an array of

programmable transistors implemented as CMOS VLSI chip. It is the combination of a hardware-

in-the-loop approach and the particular implementation of the analog substrate realized as a field

programmable transistor array (FPTA) that renders the proposed approach (almost7) unique.

The project underlying this thesis produced two types of results. First, the approach sketched

above has been realized as a hardware evolutions system, which consists of the software front-end

DarkGAQT, a library of different experimental setups stored as configuration files, a mixed signal

test environment realized as a PCI board8, and the FPTA chip itself. Besides the three versions of this

research tool that are in use at the University of Heidelberg, one version of this research tool has been

made available to another research group at the University of Sussex, where it has been successfully

used in different hardware evolution experiments [Gar04]. Second, the hardware evolution system

has been applied to a variety of different circuit design problems yielding a vast amount of results.

The suite of different experiments can be used as a benchmark for new algorithmic solutions whose

results can be compared with those results that have been presented here. Both, the hardware evolution

system as well as the experimental results will be summarized and discussed below:

Hardware Evolution System

Summary. The evolution system combines flexibility in the design of the evolutionary algorithm

with the capability to test the evolving candidate circuits on the FPTA chip while allowing for fast

circuit evaluation9. This is achieved by the following system architecture: An IBM compatible general

purpose computer is used to accommodate the evolutionary algorithm itself, which is written in the

C++ programming language. The candidate circuits are tested on the field programmable transistor

array (FPTA) chip and the measurement results are evaluated by the host computer. The hardware

7As has been discussed in chapter 3, a very similar concept emerged independently in the research group of A. Stoica at the

JPL.
8The PCI-based mixed signal test board Darkwing has actually been developed by other members of the Electronic Vision(s)

group. Yet, the system has been adapted to the hardware evolution system in terms of an additional daughter board and

further hardware control software within the scope of this thesis.
9The time needed for processing one individual is usually dominated by the hardware test itself and thus is largely problem

specific.
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test of candidate circuits is supported by a mixed signal test environment centered around the FPGA-

based PCI board Darkwing [Bec01]. In particular, this test environment is used to enable real-time

measurements, which are the prerequisite or evolving circuits featuring a desired temporal behavior.

The FPTA chip itself consists of an array of 16×16 transistor cells. Each cell can be either used

as a P- or as an NMOS transistor whose channel dimensions can be chosen from 75 different W/L
combinations. P- and NMOS cells are arranged in a checkerboard pattern. All of the boundary cells of

the PTA are accessible for analog signal I/O through 64 configurable S/H cells. These provide ample

means to generate complex analog test patterns from one single analog input as well as to sample

any desired number of outputs that can subsequently be read out from the analog output of the chip.

The PTA configuration comprises a total of 256× 22 = 5632 coding bits and is stored in embedded

SRAM cells to allow for fast unlimited reconfiguration. The chip was fabricated in a 0.6µm double

poly triple metal CMOS process.

Discussion. Most of the experiments on intrinsic hardware evolution rely either on commercially

available FPAAs [She02], [Gre04], [Zeb99] or on custom-made platforms that are restricted to con-

necting discrete devices via an analog switch matrix [San01]. Although usually providing good ana-

log performance, FPAAs are usually to coarse-grained in that they allow only a limited number of

configurations of higher level CABs and thus preclude the synthesis of transistor level circuits. On the

other hand, hardware evolution platforms realized on the board level can, in principle, be designed to

host any, not necessarily homogeneous, set of devices. Yet, on one hand, the implementation of large

complex substrates is tedious. On the other hand, board level evolution platforms cannot be used

to directly evolve monolithic CMOS circuits, which currently is the technology of choice for most

applications. In contrast, the proposed FPTA lends itself to intrinsic hardware evolution experiments

targeted at the transistor level synthesis of analog circuits. This outstanding feature is shared with a

family of FPTA chips developed by the group of A. Stoica at the JPL (cf. section 3.11). In contrast to

these FPTAs featuring cells that provide between 8 and 12 transistors, the cells of the chip presented

here do not contain an inner structure that may bias artificial evolution towards conventional designs.

Moreover, only the FPTA proposed here allows to choose different gate dimensions for each transis-

tor. In this vein, the FPTA proposed in this thesis models the substrate available in the analog design

process more closely.

In contrast to most of the reported intrinsic hardware evolution platforms, the evolution system

proposed here combines high test rates with the ability to perform complex circuit test. While the

utilization of dedicated test equipment like signal generators or spectrum analyzers is typically hard

to integrate into a fast evolutionary loop due to a lack of a fast communication protocol ([Gre04]),

the utilization of custom-made hardware may offer only limited analog precision or bandwidth. For

instance, analog IO of the SABLES test environment used by Stoica et al. was limited to 100kHz

in 2002 [Fer02]. In summary, to the author’s knowledge, the test sequences utilized in the hardware

evolution experiments presented within this thesis are probably the most comprehensive ones reported

from the evolvable hardware community. However, the current implementations of the hardware test

system allows for processing over 550 individuals per second for simple circuit tests (cf. section

6.1.4).

Inherent Limitations. So far, the advantages of circuit evaluations performed directly in hardware

in comparison with circuit simulations have been emphasized in this thesis. Nevertheless, the hard-

ware also entails some disadvantages: First, physical measurements usually cannot provide the same

precision as simulations. In case of the proposed hardware evolution system, the nominal analog

precision is limited to 12 bit by the ADC used for converting the measured voltages. However, pre-

liminary system tests revealed that the effective number of bits of the complete analog signal path
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described in section 4.2.3 amounts only to 8.5 bits for moderate frequencies, for rail-to-rail signals10.

This limited precision significantly aggravates — and in some cases will even impede — the correct

evaluation of circuits featuring a high dynamic range, as e.g. high performance filters. Thus, for some

classes of circuits, analog hardware evolution seems to be infeasible or at least impractical, as the

effort to provide the necessary analog precision would be unjustifiable.

Second, programmable transistor cells are not transistors. As has been detailed in section 3.3.5,

the configuration circuitry accounting for the ’programmable’ in FPTA introduces parasitic resistors

and capacitors. While the parasitic resistors deteriorate the dc behavior of the transistor cells com-

pared to the behavior of genuine transistors, the parasitic capacitances change its dynamic behavior.

Accordingly, the transistor ’model’ used is wrong, where the deviations get worse for larger currents

and frequencies. This raises the utterly important question if it is indeed possible to migrate the

evolved circuits to their genuine fabrication processes. Yet, the answer to this question is beyond the

scope of this thesis. Nevertheless, the parasitic effects have been discussed in greater detail in [Lan01].

An important result of which has been the observation that in some sense11 the programmable tran-

sistor cells provided by the FPTA are approximately a factor of 100 slower than genuine transistors of

the same geometry fabricated in the same fabrication process.

Probably the most severe implication of the finite on-resistance of the configuration switches on

circuit performance is that it may effect matched pairs in the following way: Consider a matched

transistor pair as ,for example, in a current mirror or differential pair. In order to attain equal cur-

rents through both transistors, the respective gate source voltages VGS must be the same. If, however,

the source terminals of both transistors are connected to a common potential via different number

of switches, the currents of both transistors will differ. Thus the finite on-resistance of the configu-

ration switches may hinder the evolutionary algorithm in finding solutions that employ the concept

of matched transistor pairs that is of great importance for most analog circuits designed by humans.

On the other hand, the evolutionary algorithm may also make use of the switches to compensate

the device mismatch inherent to the programmable transistors. The situation could be mitigated by

providing matched pairs to the evolution process, either as predefined building blocks encoded in

software, or by direct integration into a second generation FPTA.

Experiments and Results

Within this thesis, a variety of different analog circuit design problems has been tackled. They can

be classified by the prevailing type of circuit behavior that was sought. The design tasks can then

be described as circuits whose analog dc behavior is prescribed as a function of the input voltage(s)

(logic gates, Gaussian function circuit), circuits whose output must settle to a value determined by

the input signal(s) within a given time (DACs, comparator), circuits featuring a prescribed transient

behavior (tone discriminator), and circuits that are to meet a certain frequency behavior (LPF, HPF).

For most of the experiments, a GA-like simple algorithm has been used in conjunction with

either truncation or rank-based selection. However, for the synthesis of XOR/ XNOR gates, tone

discriminators, and comparators, two different user-defined building block libraries have been used.

In general, the GA parameters have slightly been adapted to the problem based on pre-studies, but are

far from being thoroughly optimized, where the parameters and fitness function are chosen somewhat

more carefully in case of the comparator experiments. Except for the comparators, the primary fitness

criterion was usually evaluated as the root means square deviation of the respective target behavior.

For each type of experiment — describing a particular experimental setup — between 10 and 100

10However, in a restricted voltage range between e.g. 1 and 4V the relative precision is believed to be higher.
11Actually for ring oscillators composed of inverters with specific channel dimensions.
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evolution runs have been carried out to obtain insight into the statistical distribution of the resulting

fitness values. The results accomplished for different experiments are usually compared for the best

solutions evolved and with respect to the fitness distribution of the ensemble of evolution runs. For

all experiments, the best circuit of each run was subsequently tested for 100 times outside of the

evolutionary loop to verify that its performance is reproducible. Typically, the results are reported for

the worst performance values attained within these 100 verification tests to account for the worst case

scenario.

Summary of the Evolution Results

Logic gates For the possibly over-ambitious dc target specifications only few (5%) perfect solutions

have been found for the NOR and NAND and even fewer (2%) for the AND and OR gates. None

of the XOR and XNOR gates could match the target specifications; however, the XOR and XNOR

implementations typically used in standard cell libraries would not have either. The difficulties

encountered in synthesizing the different types of two-input symmetric logic gates reflect the

complexity of their conventional CMOS implementations.

Gaussian function circuit Typically, the evolved solutions approximate the target output curve quite

well. Yet, they do not exactly approximate its shape and are usually not differentiable at some

input voltages. The best solutions achieve a relative mean deviation between 2.5 and 5%, which

is slightly larger than the values reported for two similar but extrinsic evolution experiments as

well as for one human design.

6-bit digital-to-analog converters Generally speaking, the results are surprisingly good in that most

of the evolved DACs achieve a linearity of at least 4 bits while the better and best solutions

exhibit a nonlinearity between 0.5 and 1 bit. The results are the more remarkable as the settling

time between the last input voltage and the sampling of the output voltage amounted to less

than 0.5µs, especially if one takes into account that the substrate provided by the FPTA is

probably a factor of 100 slower than its fabrication process. However, it has been shown that

these solutions rely on the analog voltage levels of the digital input signals. Yet, it has also

been shown that this dependence can be avoided by adding digital buffers at the input, which is

supposedly a simpler task than the design of the DAC itself.

Frequency selective filters The artificial evolution of low- and highpass filters has been used to es-

tablish and test three different methods of evaluating the frequency response of the circuit under

test. Here, measuring the step response and applying a Fourier transform turned out to yield

the best results. On the other hand, applying sinusoidal input signals of different frequencies in

conjunction with a Fourier transform applied to the according output signals is believed to be

the most prospective method when applied more carefully. First, this method has been shown

to possess the lowest noise floor of the three methods considered. Second, it stands out in that it

offers the possibility to choose the tradeoff between linearity and magnitude response by means

of a small set of weighting factors. The analysis of the evolution results revealed the following:

First, LPFs exhibiting a second or third order rolloff behavior whilst adding a relatively small

amount of distortion to the signal. Yet, the evolution results tend to get worse for lower corner

frequencies. In contrast, the artifical evolution of HPFs proved to be more difficult than that of

LPFs, in that, on average, results tended to be worse despite using a ten times larger number of

generations. Probably, this has to be attributed to the lack of passive capacitors in the PTA.

Evolution based on a digital BB library A building block library consisting of the four simple logic

gates has been employed to evolve XOR/XNOR gates as well as tone discriminators. While
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the utilization of BBs boosted the yield of perfect XOR/XNOR gates from 0 to over 50%, it

greatly increased the probability to find viable tone discriminators. While most of the better

tone discriminators indeed provide significantly different output voltages for different input

frequencies, none of them manages to provide the desired smooth glitch-free voltage levels at

the output.

Evolution of comparators using an analog BB library The utilization of an analog building block

library of 124 analog BBs comprising between 0 and 3 transistors has been demonstrated to

a) greatly accelerate the evolution of comparator circuits and b) massively enhance the yield

of good comparators. Moreover, the best comparators evolved from the BB library usually

exhibit a larger gain than their counterparts evolved with the standard genotype representation

presented in section 4.4.3. In terms of the achieved fitness results as well as for the guaran-

teed resolution, the best of the evolved comparators are competitive with a human-designed

two stage comparator. Yet, the human-designed comparator suffers from an unusually high

offset and has not been particularly well optimized for the task. The offset of this reference

design may be due to different source resistances of matching transistor pairs, which has been

explained above.

Reliability and Migration. Typically, the results obtained from the best-of-run solutions at the end

of the evolution run and those attained in the verification tests coincide well for those design problems

targeted at a particular dc behavior. This has been ensured by using randomized test patterns to

avoid the temporal or ordinal structure of the test pattern to be exploited. Although with slightly

less rigor, the above observation also applies to the tone discriminators which are characterized by

their transient behavior. However, in case of the filter circuits evaluated by the deviation of the desired

frequency behavior, large variations between the fitness values obtained from the 100 verification tests

are observed. As frequency selective filters implemented on the FPTA substrate are bound to utilize

capacitors, the evolutionary algorithm may produce circuits that exploit the given charge distribution

on the PTA. If this is the case, the circuit will only work satisfactorily if the charge distribution indeed

suits it. In order to prevent the evolution process from using such floating nodes, an analog substrate

reset was introduced. For the proposed filter experiments, the FPTA was configured with a random

gene, before the download of the respective candidate circuits. Yet, this mechanism did not entirely

solve the problem, which may be partially due to the fact that the substrate reset was not applied

between different test modes.

One of the long-term goals of this project is to evolve new circuits or circuit principles that can

be migrated from the FPTA to other analog substrates, as e.g. new fabrication processes. Though far

beyond the scope of this thesis, a first step in this direction has been taken in that all of the evolved

circuits have been subjected to verification tests on a second hardware evolution system. In the vast

majority of cases, the performance measured on the second FPTA matched that one obtained on the

first chip, on which the circuits have been evolved, very closely. Yet, of all experiments, it is those

circuits that are composed of the digital building blocks that experience a significant performance loss

when used on the second chip. Hence, it must be concluded that simple logic gates, which guarantee

robustness by large noise margins in digital designs, are not very well suited to evolve analog circuits

with. This is in good accordance with the results from the tone discriminator experiments published

by A. Thompson [Tho99].

Discussion. A comparison between hardware evolution results reported from different hardware

evolution experiments is difficult and must not be overestimated, since the experiments usually differ

in many regards, as e.g. the analog substrate, the chosen EA representation, the evaluation criterion,
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the number of candidate evaluations spent, and the measurement/analysis mode. However, a few

remarks seem to be adequate here:

With regard to most intrinsic hardware evolution experiments published in the literature, espe-

cially those that include topology synthesis on the transistor level, the evolution results presented in

this thesis are highly competitive. Here, the results obtained from the logic gates seem to have yielded

the poorest performance. Yet, this may at least partially be due to the (over-) ambitious specification

of the target behavior. The second exception to the general competitiveness stated above concerns the

tone discriminator experiments. In fact, the results suggest that artificial evolution using logic gates

yields better results than experiments based on plain transistors. On one hand, this may explain, why

the BB-based tone discriminators cannot match the performance reported by A. Thompson [Tho98b],

as the latter ones had access to a larger number and variety of logic gates. On the other hand, all of the

BB block experiments confirm that it is easier to evolve circuits from more complex structures than

from transistors themselves. Yet, most often it is not that equally good solutions based on transistors

could not be found; they are just less probably to emerge.

While the evolved DACs that are reported from in- and extrinsic evolution experiments to date

are limited to three [Ben99] and four [Zeb03] bits of resolution, many of the other evolved circuits

presented here are outperformed by circuits evolved extrinsically. This may be due to several different

reasons: First, many of the extrinsically evolved circuits are not tested by a transient analysis. Yet,

as dc and ac analyses each exclude some part of circuit’s electrical properties, a transient analysis

seems to be mandatory to warrant that the evolved circuits would indeed work in reality. In contrast,

the evolved circuits presented here have been proven to work at least on two different FPTA chips.

Second, a closer look on the results reported by A. Stoica et al. reveals the following: Typically,

the performance of their evolved circuits is better for extrinsic experiments than for intrinsic ones.

Moreover, they are usually best, if circuit representation has been used that is not constrained to the

architecture of their FPTA. The advantages of unconstrained circuit representations are twofold. For

one, they are not limited by any routing constraints. For the other, EAs that utilize representations

directly reflecting the structure of a reconfigurable device must actually accomplish the electrical

circuit design and the layout, that is the placing and routing onto the device, in one single step.

In case of unconstrained representations, the second step is not considered at all. Hence, intrinsic

hardware evolution bound to a concrete substrate is the more complex task.

Outlook for the Heidelberg FPTA Project

Despite the wealth of experiments and results presented within this thesis, the Heidelberg FPTA

project still offers numerous possibilities to extend and improve the existing evolution system and

a vast number of new research avenues. Some of them are sketched below:

Algorithm Design. First, as has been hinted in chapter 2, analog circuit design problems are in

fact multiobjective optimization problems. Therefore, it is highly desirable to include appropriate

extensions in the DarkGAQT software that allow for multiobjective optimization, which in fact has

already been accomplished by M. Trefzer. In conjunction with the capability to evaluate the frequency

behavior of candidate circuits that has been proposed in this thesis, this has led to a first approach to

the automatic synthesis of operational amplifier circuits [Tre05].

Second, the previous discussion on unconstrained and constrained representations as well as the

inability to evolve human-competitive circuits observed for almost all of the design problems tackled

within this thesis reveal that better algorithms are desperately needed. Here, algorithms that allow

for developmental growth, as, for instance, genetic programming, may turn out to enhance the evolu-
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tionary process. In this vein, decoupling the electrical circuit design from the process of mapping the

candidate circuit onto the chip is considered to be rewarding, albeit difficult to implement. Moreover,

it may turn out to be necessary to include prior design knowledge into the algorithm, that is, in case

of an evolutionary algorithm, into the representation.

Analysis of Evolved Circuits. One of the main goals of this project has been to use the FPTA as a

search engine for new circuit designs that can be used in the design of other VLSI circuits. Yet, as has

been pointed out above, this ability to migrate circuits to a fabrication process is challenged by the

parasitics entailed in the configuration circuitry. In order to support the migration process, an export

filter that translates the evolved FPTA configurations into SPICE-readable netlists has been added to

the DarkGAQT software by M. Trefzer. First results on simulating evolved comparator circuits are

promising [Tre04]. However, further work will be necessary to allow for a deeper understanding of

the differences between the circuit behavior obtained from hardware measurements and the according

simulation results. Essentially, it will be crucial to design a suited model of the programmable transis-

tor cell that captures its prevalent parasitics and yet can be simulated with small computational effort.

Eventually, it may deem necessary to evaluate the candidate solutions in software and in hardware.

This concept is referred to as mixtrinsic evolution and has been proposed by Stoica et al. [Sto01b].

Mixed Signal Test Environment. The mixed system test environment can be improved in many

regards. First, it would be desirable to increase the analog precision to allow evolving circuits fea-

turing a high dynamic range. Second, complex experimental setups involving multiple test modes,

test benches and analog substrate resets are not supported by dedicated VHDL modules. In such sit-

uations, moving some of these tasks into the FPGA can considerably increase the evaluation speed.

Although the evaluation of candidate circuits can be faster in hardware than in software, the hardware

test and possibly the whole evolution system will have to be parallelized to achieve competitive speed

compared to multiprocessor computers or Linux clusters. A framework for the parallel training of

analog neural network chips has been developed in the Electronic Vision(s) group [Fie04] and may

also lend itself to hardware evolution experiments when appropriately adapted.

Second Generation FPTA. Although the proposed FPTA chip has been successfully used for a

large variety of experiments, this thesis has also pointed out some of its limitations. A design of a

second generation FPTA should therefore realize the following improvements: The problems caused

by finite resistances connected to the source terminals of matched transistor pairs should be mitigated

by providing matched pairs in some or all of the transistor cells. Another approach may be to directly

connect several transistors of different cells to one common metal line. Moreover, an increase in

routing capabilities seems also beneficial. Yet, the advantage of additional routing must be traded off

against increased parasitic devices. As many analog circuits are characterized by an I-V characteristic,

a future FPTA should provide analog input circuitry that is capable of current and voltage I/O. Finally,

a wider data bus or another type of faster protocol for the transfer of the configuration data as well as

a means for partial reconfigurations can speed up the reconfiguration, especially if the chip requires a

larger configuration string.

Final Remarks

Originally, the Heidelberg FPTA project set out to pursue two different goals: First, to use intrin-

sic hardware evolution to search for new circuit topologies that can be used in other VLSI designs.

Second, to provide a device that can be used as an FPAA that can be adapted to a variety of tasks
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and environmental conditions by means of artificial evolution. To serve both of these purposes, the

FPTA chip has been designed as a fine grained analog array with distinct programmable transistors

which were meant to dominate its electrical behavior so that the emerging circuits can be understood.

However, the results presented within this thesis render the proposed chip to be incapable of fully

achieving either of these goals. On one hand, the parasitic devices entailed in the configuration cir-

cuitry are likely to prevent the successful migration of evolved circuits to new technologies. On the

other hand, these parasitic effects decrease the analog bandwidth of the FPTA and probably deteriorate

the fidelity of the analog signals. In addition to this drawback, the fine-grained character of the chip

hinders the efficient evolution of human competitive circuits.

Therefore, it is believed that future research will have to pursue the aforementioned goals with

different approaches. To tackle the synthesis of analog transistor level circuits a simulation based

approach combined with sufficient computational power provided e.g. by a large Linux cluster will

probably offer closer device modeling and more independence of one particular target technology.

Moreover, a software based approach can easily be adapted to solve problems not related to analog

circuit design. Field evolvable hardware devices whose electrical characteristics in terms of noise,

distortion and bandwidth shall be competitive with commercially available FPAAs, will have to be

based on higher level building blocks. Viable alternatives may be operational amplifiers, transcon-

ductance amplifiers, Gm-C cells, or current conveyors. As topology design persists to be much more

difficult than parameter optimization, the ideal analog cell would be one whose behavior can be con-

trolled by a quasi-continuous parameters as, for example, bias current and capacitor values in a Gm-C
cell.



Appendix A

FPTA Chip: Configuration Details and

Pad and Signal Description

This appendix collects some definitions and data not of interest to the scientific treatment of the FPTA

in chapter 3, which nonetheless may be of interest to the reader in general and to a potential FPTA

user in particular. The main ingredients of this appendix are: The assignment of the configuration bits

needed for programming the FPTA, pad and bonding diagrams and description of the different analog

and different signals of the FPTA and their location on chip and on the Brightwing connector.

A.1 Configuration Bit Assignment

The bit patterns necessary for configuring one programmable transistor cell are summarized in Table

A.1. The information is arranged in subtables for the different aspects of the cell that can be config-

ured. Each subtable contains all relevant bits on the left hand side and the resulting property on the

right hand side. Thereby NC abbreviates ‘Not Connected’. The bits are enumerated in the order that

lends itself best to their being programming from outside of the chip. The bit enumeration is depicted

in Fig. 3.2 and 3.11. The overall structure of the SRAM and the programming thereof is explained in

section 3.4.

The awkward bit orders are not meant as a special nuisance to the user, but simply offered the

easiest, most area efficient way of implementing/layouting the respective part of the transistor cell

circuitry. Note, that for the analog multiplexers as well as for the W and L selection at least one bit

pattern must result in a ‘not connected’ to allow the transistor to be turned off and remain unused.

The bits 16 and 17 are not used. They are included in the chip for symmetry reasons and simplicity

of implementation. First, the gain in silicon area would not have justified the more in design effort (

WORD and BIT lines are necessary anyway). Second, it is common practice to add dummy structures

to the layout in order to preserve symmetry.
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Bit 0 Bit 1 Bit 2 GATE→
0 0 0 EAST

0 0 1 SOUTH

0 1 0 ANAVDD

0 1 1 WEST

1 0 0 NORTH

1 0 1 ANAGND

1 1 0 NC

1 1 1 NC

(a) Gate connection

Bit 6 Bit 7 Bit 8 DRAIN→
0 0 0 EAST

0 0 1 ANAVDD

0 1 0 NORTH

0 1 1 NC

1 0 0 SOUTH

1 0 1 ANAGND

1 1 0 WEST

1 1 1 NC

(b) Drain connection

Bit 9 Bit 10 Bit 11 Source→
0 0 0 EAST

0 0 1 SOUTH

0 1 0 NORTH

0 1 1 WEST

1 0 0 ANAVDD

1 0 1 ANAGND

1 1 0 NC

1 1 1 NC

(c) Source connection.

Bit 9 Bit 10 Bit 11 Transistor Length

0 0 0 L0 = 0.6µm

0 0 1 L2 = 2µm

0 1 0 L4 = 8µm

0 1 1 NC

1 0 0 L1 = 1µm

1 0 1 L3 = 4µm

1 1 0 NC

1 1 1 NC

(d) Transistor length

Bit 15 Bit 21 Bit 22 Bit 23 Transistor Width

0 0 0 0 NC

1 0 0 0 W3 = 8µm

0 1 0 0 W1 = 2µm

0 0 1 0 W2 = 4µm

0 0 0 1 W0 = 1µm

(e) Transistor Width

Bit 12 Bit 13 Bit 14 Bit 18 Bit 19 Bit 20 Routing

1 0 0 0 0 0 NORTH ←→ EAST

0 1 0 0 0 0 NORTH ←→ WEST

0 0 1 0 0 0 EAST ←→ WEST

0 0 0 1 0 0 SOUTH ←→ WEST

0 0 0 0 1 0 SOUTH ←→ EAST

0 0 0 0 0 1 NORTH ←→ SOUTH

(f) Routing

Table A.1: Assignment of the 24 SRAM bits of one transistor cell: (a) gate connection, (b) drain connection,

(c) source connection, (d) transistor length L, (e) transistor width W and, (f) routing bits. In case of (e) and (f)

any bit combination is valid resulting in 15 different transistor widths W = 1,2, . . . ,15.
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A.2 Bond Pads of the FPTA

Fig. A.1 illustrates the location of the bond pads of the FPTA. The numbers next to the bond pad names

are referred to as pad numbers in this appendix. They are enumerated counter-clockwise starting at

the upper left corner of the chip excluding the probepads. Note that some of the power pads possess

the same name, albeit different pad numbers. The propepads are enumerated in the same counter-

clockwise fashion as the main pads. However, only those that can be easily bonded, that is probepads

16 to 47 on the chip’s southern and western edges are highlighted.

This sentence is only here to avoid that this figure is rotated by 90

degree in the resulting pdf file.
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Figure A.1: Chip photo with pad names.
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A.3 Bonding Diagram

The bonding diagram used for the chips currently in use is shown in Fig. A.2. A PGA144 is used as

the chip carrier. Although not all of the 144 pins of the carrier are in use, it must be that large due to

the large numbers of bond pads on the northern and western side of the FPTA, which are arranged in

this way to allow for the direct connection of up to four FPTA chips via the probepads on its southern

and eastern side. The pad/pin numbers of the PGA144 chip carrier are enumerated counter-clockwise

starting from the upper left corner, too; they are included in Fig. A.2. The assignment pin numbers of

the chip carrier and the pad numbers of the FPTA is contained in Table A.5.
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Figure A.2: Bonding diagram for the FPTA chip. All of the probepads that are bonded to in the diagram can

in principle be accessed through the Brightwing board by means of jumper settings.

It should be noted, that the probepads have to be treated with utmost care: First, mechanically,

during the bonding process itself, because of their small size and vicinity to the rest of the IO-cell,
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block capacitors and the power ring. Second, electrically, since they lack any ESD1 protection. Not

all of the bonded FPTA chips have their probepads bonded (in the way suggested by Fig. A.2, least of

them all of them.

A.4 Chip Carrier Pins

Fig. A.3 displays the assignment of the pin names of the PGA144 carrier to its actual pins accessible

on a PCB. The pins are enumerated for the chip carrier seen from the top. Note that the orientation of

the carrier is defined by pin 0 in the lower left corner. The unused pins are shaded in a dark gray, while

the pins connected to the main pads of the FPTA are shaded in a lighter gray and those connected to

probepads are shaded in white. This carrier pin bond pad assignment is based on the bonding diagram

in Fig. A.2.
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Figure A.3: The correlation between pad numbers and pins of the PGA144 chip carrier. The graphic shows

the carrier seen from the top.
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A.5 Signal Description

Tables A.2, A.3 and A.4 contain a short description of all FPTA signals. The pin names refer to the

signal names used within this thesis. The CAD names denote the signal names in the top level of the

FPTA’s schematic used during the design phase. Note, that the data bus D<0:5> runs on 3.3V and

possesses its own 3.3V power supply.

pad CAD signal

no.
pin name

name type
description

1, 7, 17,

31, 39,

55

DIG_GND DigGnd power gnd connection for all digital circuitry, that is the

digital interface of the IO-cells and the SRAM con-

trol.

2 PRE_CH _PreCh digital

input

for SRAM readout: Pulls the bit lines towards vdd

and equalizes them before the bit lines are con-

nected to the respective sense amplifier.

3 WRITE_EN WE digital

input

for SRAM configuration: Upon WRITE_EN the tri-

state buffers driving the bit line pairs are activated.

This is used during an SRAM write operation to

push the information stored in the according flip-

flops the selected SRAM column.

4 S_CLK2 clk2 digital

input

for SRAM readout: Clock signal that clocks the

power supply of the 96 sense amplifier sensing the

bit-line pairs on. The result is latched as long as the

S_CLK2 is active.

5 S_CLK1 clk1 digital

input

for SRAM readout: Clock signal upon which the

bit line pairs are connected to the input gates of the

sense amplifier. To be activated after the chosen

word line is activated and after before the S_CLK2

signal.

6 READ_EN ReadEn digital

input

for SRAM readout: Controls the arbitration of the

data bus D<0:5>. Within an SRAM read operation

READ_EN is activated to read out the information

latched in the sense amplifiers. All other opera-

tions use D<0:5> as digital input signals. Hence

READ_EN must be set to low apart from the SRAM

readout.

8, 18,

32, 40,

56, 73

DIG_VDD DigVdd power power supply for all digital circuitry, that is the dig-

ital interface of the IO-cells and the SRAM control.

Needs 5V.

Table A.2: Description of the I/O pads (first part).
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pad CAD signal

no.
pin name

name type
description

9–10,

12,

14–16

D<0:5> D<0:5> digital

I/O

tristated data bus: Used as digital output during

the readout of the SRAM and as a digital input

for SRAM write, IO-cell configuration and for the

generation of the SAMPLE signal controling the

sample and hold operation of the IO-cells. Exter-

nally , that is on the bond pad, D<0:5> only possess

a voltage swing of 3.3V. D<0:5> may sometimes

be referred to as DATA<0:5>

11 GND33 Gnd33 power gnd for the 3.3V power supply for the data bus

D<0:5>.

13 VDD33 Vdd33 power vdd for the 3.3V power supply for the data bus

D<0:5>.

19, 29,

37, 58

ANA_GND AnaGnd power gnd for the analog power that supplies the all of

the analog circuitry except for the programmable

transistors themselves. This is the substrate gnd.

20, 30,

38, 57

ANA_VDD AnaVdd power vdd for the analog power.

21, 33,

48, 63

VDDA vdda power power supply for the programmable transistors

only Corresponds to the vdd terminal in Fig. 3.2

and 3.25

22, 34,

47, 64

GNDA gnda power power supply for the programmable transistors

only Corresponds to the gnd terminal in Fig. 3.2

and 3.25

23 TEMP1_B Temp1_B analog

I/O

base terminal of the vertical pnp transistor dedi-

cated to temperature sensing. Lower left corner.

24 TEMP1_E Temp1_E analog

I/O

emitter terminal of the vertical pnp transistor ded-

icated to temperature sensing. Lower left corner.

25–28 SAM<0:3> Sam<0:3> digital

input

independent signals that can control the SAMPLE

signal in one or more IO-cells that are accordingly

configured. D<3:5> can be used in the same way.

35 TEMP2_B Temp2_B analog

I/O

base terminal of the vertical pnp transistor dedi-

cated to temperature sensing. Lower right corner.

36 TEMP2_E Temp2_E analog

I/O

emitter terminal of the vertical pnp transistor ded-

icated to temperature sensing. Lower right corner.

41 BUF_PD Buf_PD digital

input

power down signal to turn off the global output

buffer.

42 BUF_OUT Buf_Out analog

output

global analog output signal buffered by the global

output buffer to drive up to 100pF and resistive

loads down to 1kΩ and below.

Table A.3: Description of the I/O pads (second part).
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pad CAD signal

no.
pin name

name type
description

43 ANA_OUT ANA_Out analog

out-

put

global analog output before the global output

buffer. Maybe already buffered by an IO-cell

buffer.

44 ANA_IN ANA_In analog

input

The one and only analog input that must be mul-

tiplexed by the IO-cells. Capacitively loaded by

ten(s) of pF. Resistive load depends on applica-

tion (as digital input for the PTA.

45 TEMP3_E Temp3_E analog

I/O

emitter terminal of the vertical pnp transistor

dedicated to temperature sensing. Upper right

corner.

46 TEMP3_B Temp3_B analog

I/O

base terminal of the vertical pnp transistor ded-

icated to temperature sensing. Upper right cor-

ner.

49–54,

59–62,

65

A<9:0> A<9:0> digial

input

adress bus used for all sorts of configuration and

readout.

65 TEMP4_B Temp4_B analog

I/O

base terminal of the vertical pnp transistor dedi-

cated to temperature sensing. Upper left corner.

66 TEMP4_E Temp4_E analog

I/O

emitter terminal of the vertical pnp transistor

dedicated to temperature sensing. Upper left

corner.

67 RESET _Reset digital

input

global, active-low reset signal. All of the re-

setable logic included in the IO-cells and the

SRAM control can be reset by this signal.

68 SH_EN _SH_En digital

input

enable signal to activate the chosen address for

communicating with the IO-cells.

69 PROBE_EN _AProbe_En digital

input

enable signal for activating the chosen row, col-

umn and terminal in the PTA that is to be probed.

71 RAM_EN _AR_En digital

input

enable signal to activate the selected PTA row

during SRAM write operations.

71 WORD_EN _AW_En digital

input

enable signal to activate the decoded word line.

72 CHIP_SEL _Chip_Sel digital

input

chip select signal that allows to control a group

of FPTA chips with the same signal. The en-

able signals control the action to be taken, the

CHIP_SEL decides any of these actions are rele-

vant to the chip.

Table A.4: Description of the I/O pads (third part).
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A.6 Signal – Bond Pad – Carrier Pin Assignment

Table A.5 and A.6 relate the FPTA signals to the pad number of the chip, the according pin number

of the chip carrier and the respective pin of the Brightwing connector, that is, the connector of the

add-on board hosting the chip and some additional circuitry, which is plugged onto the Darkwing PCI

card.

pad no. pin name CAD name pin no. for PGA144
Brightwing

connector

1, 7, 17, 31, 39, 55 DIG_GND DigGnd 1, 7, 17, 46, 87, 126 A1,A16,C1,C16

2 PRE_CH _PreCh 2 A5

3 WRITE_EN WE 3 C9

4 S_CLK2 clk2 4 C7

5 S_CLK1 clk1 5 B7

6 READ_EN ReadEn 6 C8

8, 18, 32, 40, 56, 73 DIG_VDD DigVdd 8, 18, 47, 88, 127, 144 B16

9 D<0> D<0> 9 C4

10 D<1> D<1> 10 C6

11 GND33 Gnd33 11 A1,A16,C1,C16

12 D<2> D<2> 12 C5

13 VDD33 Vdd33 13 B15

14 D<3> D<3> 14 B4

15 D<4> D<4> 15 A4

16 D<5> D<5> 16 B5

19, 29, 37, 58 ANA_GND AnaGnd 19, 44, 85, 129 A1,A16,C1,C16

20, 30, 38, 57 ANA_VDD AnaVdd 20, 45, 86, 128 B16

21, 33, 48, 63 VDDA vdda 21, 57, 119, 134 B16

22, 34, 47, 64 GNDA gnda 22, 58, 118, 135 A1,A16,C1,C16

23 TEMP1_B Temp1_B 23 –

24 TEMP1_E Temp1_E 24 –

25 SAM<0> Sam<0> 25 B8

26 SAM<1> Sam<1> 26 B6

27 SAM<2> Sam<2> 27 A7

28 SAM<3> Sam<3> 28 A6

35 TEMP2_B Temp2_B 59 –

36 TEMP2_E Temp2_E 60 –

Table A.5: Description of the I/O pads (first part).
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pad no. pin name CAD name pin no. for PGA144
Brightwing

connector

41 BUF_PD Buf_PD 112 B14

42 BUF_OUT Buf_Out 113 B1

43 ANA_OUT ANA_Out 114 B2

44 ANA_IN ANA_In 115 C2

45 TEMP3_E Temp3_E 116 –

46 TEMP3_B Temp3_B 117 –

49 A<9> A<9> 120 B13

50 A<8> A<8> 121 C13

51 A<7> A<7> 122 A14

52 A<6> A<6> 123 A13

53 A<5> A<5> 124 C12

54 A<4> A<4> 125 B12

59 A<3> A<3> 130 A12

60 A<2> A<2> 131 B11

61 A<1> A<1> 132 C11

62 A<0> A<0> 133 C10

65 TEMP4_B Temp4_B 136 –

66 TEMP4_E Temp4_E 137 –

67 RESET _Reset 138 A15

68 SH_EN _SH_En 139 A9

69 PROBE_EN _AProbe_En 140 A10

71 RAM_EN _AR_En 141 B10

71 WORD_EN _AW_En 142 A8

72 CHIP_SEL _Chip_Sel 143 B9

Table A.6: Description of the I/O pads (second part).



Appendix B

Rail-to-Rail Operational Amplifier:

Simulation Results

This appendix contains a more detailed selection of simulation results attained for the three different

rail-to-rail amplifier implementations utilized in the FPTA design than is presented in section 3.7.4 on

page 95. All of the simulations are based on a circuit temperature of T = 27 ◦C and typcial mean

process parameters. The different circuit specifications, the type of analysis as well as the op-amp

configuration imposed by the respective testbench are summarized in Table B.1. Neither is the selec-

Property Configuration Analysis Description/Comment

VOS buffer DC offset voltage

Itot, IM38 buffer DC quiescent current

AOL open loop AC at 1Hz dc open loop gain

UGB, GBP open loop AC

magn. response open loop AC

phase response open loop AC

PM open loop AC

SR buffer transient for 10 to 90 % of output step

Vstart , Vstop ∈{0V,0.5V,1V,2.5V,4V,4.5V,5V}
CMRR buffer + VCM AC

THD buffer transient sinusoidal input signal, output attained from

Fourier transformation

Tsettle buffer transient precision relative to output step: 0.1 or 1%.

Table B.1: Description of the I/O pads (first part).

tion of specifications complete, nor is their simulation sufficient. In particular VOS, CMRR and THD

necessitate Monte-Carlo simulations including device mismatch. Nonetheless, the presented simula-

tion results do characterize the three amplifiers well enough to allow for some performance estimates

of the analog IO signal path on the FPTA chip.

Output Loads. Simulation results are presented for different resistive and capacitive loads. The

different capacitive load are motivated in section 3.7.4. For each of the three amplifier designs two

different load resistors are used: One almost infinite load resistance Rload = 1GΩ and one small load

resistance that amounts to 10kΩ, 1kΩ and 100Ω for the output, IO-cell and cell buffer, respectively.
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The small load resistors for the IO-cell and the global output buffer turned out to be too small, as

can be seen by the dc offset curves of Fig. B.1(a) and B.6(a). It should be noted though, that in the

normal operation of the evolution system only the global output buffer needs to drive a resistive load,

which is considerably larger than the 100Ω tested here. However, the performance for the minimum

feasible load resistors should be found between the two extreme situations simulated.

Overview. The simulation results of the three different rail-to-rail op-amps are presented in the

same order as used in section 3.7.4, that is, IO-cell buffer, global output buffer and cell buffer. In

principle, the same collection of plots account for the performance of the three amplifiers. However,

the plots depicting the PM, the frequency spectra and the settling time tables are adapted to the most

important load conditions.

Special Representations. The slew rate and the settling times are extracted from transient analyses

featuring positive and negative voltage steps between the following seven voltages: 0V, 0.5V, 1V,

2.5V, 4V and 5V, where the first and the last value are identical to gnd and vdd. Voltage steps

therefore start at a voltage Vstart and end at a target voltage Vstop. As the different input values are

naturally described by a two-dimensional matrix or plane, a suited representation is difficult to obtain.

In case of the slew rate, the data of each Vstop is gathered in one curve plotted against Vstart. as can e.g.

be seen from Fig. B.2(a). The slew rate curves for rising and falling steps are plotted into different

graphs. The slew rate for Vstart = Vstop is set to 0. Accordingly, the zero crossing of each curve marks

its stop voltage Vstop. In contrast, the settling time is illustrated by means of 3-dimensional bar plots

to elucidate the dependence on Vstart and Vstop. As the settling times are found to be amongst the most

important figures of merit and given that the 3-dimensional bar plots are too imprecise to read off

concrete numbers, some of the settling time data is also compiled into Tables. Again, in case of the

3-d graphs, settling times for Vstart = Vstop are set to zero.

B.1 Simulation of the Rail-to-Rail IO-cell Buffer
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Figure B.1: DC and AC simulation results for the rail-to-rail operational amplifier used twice in the IO-cells.
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(d) SR falling edge, Cload = 30pF
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Figure B.2: CMRR ((a) and (b)), THD ((c) and (d)) and SR for the rising ((e) and (g) and the falling edge ((f)

and (h) for the op-amp used twice in the IO-cells. In (a) to (d) the stop voltage of each curve can be identified

by its zero-crossing.
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(a) amplitude = 1.0V, f = 1kHz
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(b) amplitude = 2.4V, f = 1kHz
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(c) amplitude = 1.0V, f = 1MHz
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(d) amplitude = 2.4V, f = 1MHz
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(e) amplitude = 1.0V, f = 3.2MHz
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(f) amplitude = 2.4V, f = 3.2MHz
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(g) amplitude = 1.0V, f = 10MHz
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(h) amplitude = 2.4V, f = 10MHz

Figure B.3: Frequency spectra of the op amp used in the IO-cells for different input amplitudes and fundamen-

tal frequencies f . For each plot, the fundamental, the dc component and the first 126 harmonics are displayed.

The op-amp was configured as a unity gain buffer. Rload = 1GΩ, Cload = 10pF.
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(a) amplitude = 1.0V, f = 1kHz
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(b) amplitude = 2.4V, f = 1kHz
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(c) amplitude = 1.0V, f = 1MHz
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(d) amplitude = 2.4V, f = 1MHz
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(e) amplitude = 1.0V, f = 3.2MHz
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(f) amplitude = 2.4V, f = 3.2MHz
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(g) amplitude = 1.0V, f = 10MHz
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(h) amplitude = 2.4V, f = 10MHz

Figure B.4: Frequency spectra of the op amp used in the IO-cells for different input amplitudes and fundamen-

tal frequencies f . For each plot, the fundamental, the dc component and the first 126 harmonics are displayed.

The op-amp was configured as a unity gain buffer. Rload = 1GΩ, Cload = 30pF.
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(a) settling time, precision = 0.1%, Cload = 10pF
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(b) settling time, precision = 0.1%, Cload = 30pF
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(c) settling time, precision = 1%, Cload = 10pF

0
0.5

1
2.5

4
4.5

5

0 0.5 1 2.5 4 4.5 5

0

50

100

150

V
start

 [V]
V

stop
 [V]

S
e

tt
lin

g
 T

im
e

 [
n

s
]

(d) settling time, precision = 1%, Cload = 30pF

Figure B.5: Settling time for the op-amp used in the IO-cells for different precisions (top/bottom) and different

load capacitors (left/right).

Vstop
Vstart 0.0 0.5 1.0 2.5 4.0 4.5 5.0

0.0 – 391 348 270 235 229 228

0.5 75 – 139 73 76 81 90

1.0 70 66 – 43 51 57 66

2.5 54 42 37 – 39 44 55

4.0 67 56 51 42 – 63 67

4.5 93 84 80 80 147 – 74

5.0 174 171 175 203 286 334 –

Table B.2: Settling time in ns for the op-amp used for in the IO-cells: Precision = 0.1%, Rload = 1GΩ,

Cload = 10pF.
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Vstop
Vstart 0.0 0.5 1.0 2.5 4.0 4.5 5.0

0.0 – 388 344 263 228 222 221

0.5 62 – 138 58 62 67 78

1.0 66 60 – 38 55 61 73

2.5 62 58 53 – 51 55 58

4.0 79 67 61 49 – 59 60

4.5 79 68 63 67 146 – 61

5.0 151 148 153 182 272 320 –

Table B.3: Settling time in ns for the op-amp used for in the IO-cells: Precision = 0.1%, Rload = 1GΩ,

Cload = 30pF.

Vstop
Vstart 0.0 0.5 1.0 2.5 4.0 4.5 5.0

0.0 – 394 353 279 248 255 257

0.5 82 – 140 82 90 108 112

1.0 77 72 – 53 65 83 87

2.5 72 60 54 – 46 64 67

4.0 93 81 75 62 – 91 97

4.5 207 197 194 189 207 – 132

5.0 114 102 103 93 128 50 –

Table B.4: Settling time in ns for the op-amp used for in the IO-cells: Precision = 0.1%, Rload = 1kΩ, Cload =
10pF.

Vstop
Vstart 0.0 0.5 1.0 2.5 4.0 4.5 5.0

0.0 – 392 350 273 242 248 250

0.5 70 – 139 69 78 96 100

1.0 70 66 – 44 65 86 90

2.5 72 59 54 – 67 78 82

4.0 89 78 73 57 – 86 92

4.5 198 189 185 181 202 – 131

5.0 113 102 102 92 129 52 –

Table B.5: Settling time in ns for the op-amp used for in the IO-cells: Precision = 0.1%, Rload = 1kΩ, Cload =
30pF.
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Figure B.6: DC and AC simulation results for

the rail-to-rail operational amplifier used as the

global output buffer.
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(d) SR falling edge, Rload = 1kΩ
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Figure B.7: CMRR ((a) and (b)), THD ((c) and (d)) and SR for the rising ((e) and (g) and the falling edge

((f) and (h) for the global output buffer. In (a) to (d) the stop voltage of each curve can be identified by its

zero-crossing.
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(a) amplitude = 1.0V, f = 1kHz
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(b) amplitude = 2.4V, f = 1kHz
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(c) amplitude = 1.0V, f = 1MHz
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(d) amplitude = 2.4V, f = 1MHz
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(e) amplitude = 1.0V, f = 3.2MHz
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(f) amplitude = 2.4V, f = 3.2MHz
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(g) amplitude = 1.0V, f = 10MHz
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(h) amplitude = 2.4V, f = 10MHz

Figure B.8: Frequency spectra of the main output buffer for different input amplitudes and fundamental fre-

quencies f . For each plot, the fundamental, the dc component and the first 126 harmonics are displayed. The

op-amp was configured as a unity gain buffer. Rload = 1GΩ.
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(a) settling time, precision = 0.1%, Rload = 1GΩ
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(b) settling time, precision = 0.1%, Rload = 1kΩ
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(c) settling time, precision = 1%, Rload = 1GΩ
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(d) settling time, precision = 1%, Rload = 1kΩ

Figure B.9: Settling time for the main output buffer for different precisions (top/bottom) and different load

resistors (left/right).
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Vstop
Vstart 0.0 0.5 1.0 2.5 4.0 4.5 5.0

0.0 – 403 366 288 251 244 243

0.5 75 – 164 77 75 79 88

1.0 90 82 – 39 48 54 64

2.5 52 37 26 – 35 42 53

4.0 68 56 51 43 – 79 80

4.5 96 87 84 95 183 – 75

5.0 189 187 192 226 310 352 –

Table B.6: Settling time in ns for the output buffer: Precision = 0.1%, Rload = 1GΩ, Cload = 100pF.

Vstop
Vstart 0.0 0.5 1.0 2.5 4.0 4.5 5.0

0.0 – 407 370 299 267 274 275

0.5 83 – 167 88 93 113 116

1.0 96 89 – 54 66 86 89

2.5 77 64 57 – 46 57 61

4.0 98 86 80 66 – 103 109

4.5 198 187 183 176 193 – 109

5.0 123 113 112 104 163 47 –

Table B.7: Settling time in ns for the output buffer: Precision = 0.1%, Rload = 100Ω, Cload = 100pF.

B.3 Simulation of the Rail-to-Rail Cell Buffer
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(b) DC currents in unity gain configuration
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Figure B.10: DC and AC simulation results for the rail-to-rail operational amplifier used for the inner-cell

probing.



B.3. Simulation of the Rail-to-Rail Cell Buffer 329

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

V
start

 [V]

S
le

w
 r

a
te

 [
V

/u
s
]

V
stop

 = 0.00

V
stop

 = 0.50

V
stop

 = 1.00

V
stop

 = 2.50

V
stop

 = 4.00

V
stop

 = 4.50

V
stop

 = 5.00

(a) SR rising edge, Cload = 20pF
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(b) SR falling edge, Cload = 20pF
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(c) SR rising edge, Cload = 40pF
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(d) SR falling edge, Cload = 40pF
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(e) CMRR vs frequency
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(f) CMRR vs common mode voltage

10
0

10
1

10
2

10
3

10
4

−100

−80

−60

−40

−20

0

Frequency [kHz]

T
H

D
 [
d
B

]

amplitude = 0.1V
amplitude = 0.5V
amplitude = 1.0V
amplitude = 1.5V
amplitude = 2.0V
amplitude = 2.4V

(g) THD, Rload = 1GΩ

10
0

10
1

10
2

10
3

10
4

−100

−80

−60

−40

−20

0

Frequency [kHz]

T
H

D
 [
d
B

]

amplitude = 0.1V
amplitude = 0.5V
amplitude = 1.0V
amplitude = 1.5V
amplitude = 2.0V
amplitude = 2.4V

(h) THD, Rload = 1kΩ

Figure B.11: CMRR ((a) and (b)), THD ((c) and (d)) and SR for the rising ((e) and (g) and the falling edge ((f)

and (h) for the cell buffer. In (a) to (d) the stop voltage of each curve can be identified by its zero-crossing.
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(a) amplitude = 1.0V, f = 1kHz
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(b) amplitude = 2.4V, f = 1kHz
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(c) amplitude = 1.0V, f = 1MHz
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(d) amplitude = 2.4V, f = 1MHz
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(e) amplitude = 1.0V, f = 3.2MHz
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(f) amplitude = 2.4V, f = 3.2MHz
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(g) amplitude = 1.0V, f = 10MHz
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(h) amplitude = 2.4V, f = 10MHz

Figure B.12: Frequency spectra of the cell buffer for different input amplitudes and fundamental frequencies

f . For each plot, the fundamental, the dc component and the first 126 harmonics are displayed. The op-amp

was configured as a unity gain buffer. Rload = 1GΩ, Cload = 20pF.
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(a) amplitude = 1.0V, f = 1kHz
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(b) amplitude = 2.4V, f = 1kHz
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(c) amplitude = 1.0V, f = 1MHz
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(d) amplitude = 2.4V, f = 1MHz
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(e) amplitude = 1.0V, f = 3.2MHz
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(f) amplitude = 2.4V, f = 3.2MHz
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(g) amplitude = 1.0V, f = 10MHz
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(h) amplitude = 2.4V, f = 10MHz

Figure B.13: Frequency spectra of the cell buffer for different input amplitudes and fundamental frequencies

f . For each plot, the fundamental, the dc component and the first 126 harmonics are displayed. The op-amp

was configured as a unity gain buffer. Rload = 1GΩ, Cload = 40pF.
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(a) settling time, precision = 0.1%, Cload = 20pF
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(b) settling time, precision = 0.1%, Cload = 40pF
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(c) settling time, precision = 1%, Cload = 20pF
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(d) settling time, precision = 1%, Cload = 40pF

Figure B.14: Settling time for cell buffer for different precisions (top/bottom) and different load capacitors

(left/right).

Vstop
Vstart 0.0 0.5 1.0 2.5 4.0 4.5 5.0

0.0 – 428 400 346 327 326 331

0.5 109 – 140 82 119 136 158

1.0 140 100 – 96 124 133 150

2.5 170 149 140 – 129 126 146

4.0 165 144 133 106 – 79 108

4.5 161 139 128 99 150 – 91

5.0 230 210 205 204 286 335 –

Table B.8: Settling time in ns for the cell buffer: Precision = 0.1%, Rload = 1GΩ, Cload = 20pF.
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Vstop
Vstart 0.0 0.5 1.0 2.5 4.0 4.5 5.0

0.0 – 417 378 301 276 273 277

0.5 205 – 217 197 193 204 224

1.0 238 196 – 208 230 218 237

2.5 276 280 270 – 258 241 260

4.0 266 243 256 230 – 194 224

4.5 291 270 259 230 228 – 193

5.0 245 223 212 189 185 180 –

Table B.9: Settling time in ns for the cell buffer: Precision = 0.1%, Rload = 1GΩ, Cload = 40pF.

Vstop
Vstart 0.0 0.5 1.0 2.5 4.0 4.5 5.0

0.0 – 429 402 351 333 333 364

0.5 109 – 141 89 126 144 199

1.0 139 100 – 99 113 126 179

2.5 189 168 157 – 152 145 198

4.0 200 176 164 161 – 143 234

4.5 215 192 180 148 181 – 261

5.0 284 262 250 221 201 185 –

Table B.10: Settling time in ns for the cell buffer: Precision = 0.1%, Rload = 10kΩ, Cload = 20pF.

Vstop
Vstart 0.0 0.5 1.0 2.5 4.0 4.5 5.0

0.0 – 419 383 313 290 289 322

0.5 206 – 175 195 198 211 264

1.0 240 199 – 211 211 224 278

2.5 304 312 303 – 294 273 326

4.0 348 326 315 321 – 299 351

4.5 391 370 361 338 313 – 403

5.0 271 248 238 212 207 194 –

Table B.11: Settling time in ns for the cell buffer: Precision = 0.1%, Rload = 10kΩ, Cload = 40pF.
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Appendix C

Correlation Coefficient

The empirical correlation coefficient R measures the linear correlation of a 2-dimensional sample

(X,Y) with

X = {X1,X2, . . . ,XN} and Y = {X1,X2, . . . ,XN} . (C.1)

In order to define R, we denote the empirical mean for X and Y by

x̄ =
1

N

N

∑
i=1

xi and ȳ =
1

N

N

∑
i=1

yi . (C.2)

The empirical squares of the according variances Sx and Sy can then be defined as

S2
x =

1

N−1

N

∑
i=1

(xi− x̄)2 and S2
y =

1

N−1

N

∑
i=1

(yi− ȳ)2 , (C.3)

whereas the covariance of both sets is calculated as

Sxy =
1

N−1

N

∑
i=1

(xi− x̄)(yi− ȳ) . (C.4)

The correlation coefficient R(x,y) can now be written as

R(x,y) =
Sxy

Sx ·Sy
. (C.5)

The correlation coefficient R(X,Y) has the following useful properties ([Bos97], [Moo97], [Sta00]):

a) −1≤ R(X ,Y )≤ 1

b) |R|= 1 ⇒ yi = axi + b for i = 1,2, . . . ,N and R =

{
1 ⇒ a > 0

−1 ⇒ a < 0

c) yi = axi + b for i = 1,2, . . . ,N ⇒ |R|= 1 with R =

{
1 if a > 0

−1 if a < 0

d) The smaller the correlation coefficient R, the less significant is the linear relation between X

and Y. However, there are innumerate ways that lead to a small |R| or even |R| = 0. Some

important examples are:

• X and Y are statistically independent

• Y is a nonlinear function of X

• One or more outliers severely reduce an R value that would be close to or equal 1 without

these outliers
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Appendix D

Signals and Systems Analysis

This appendix gathers a few definitions, proofs and auxiliary calculations related to the pieces of

signal and system analysis utilized in Chapter 7. The different topics are presented in their order of

appearance within this chapter.

D.1 Discrete Fourier Transform

According to Fliege ([Fli91d], pp. 228) and in accordance with the definition in the utilized FFT1

software [Fri03], the DFT can be written as:

DFT: FD(k) =
N−1

∑
n=0

fD(n)e−2π j nk
N (D.1a)

IDFT: fD(n) =
1

N

N−1

∑
k=0

FD(k)e2π j nk
N , (D.1b)

where IDFT2 denotes the inverse DFT.

D.1.1 Parseval’s Relation for the DFT

Given the signal x(n) and its Fourier coefficients X(k), both sampled at N points, Parseval’s relation

states that the total energy inherent to the signal can be expressed by its Fourier coefficients by the

following equation:

N−1

∑
n=0

|x(n)|2 =
1

N

N−1

∑
k=0

|X(k)|2 . (D.2)

The proof follows that one given in [Fli91d] (pp. 225–226), which derives the relation for discrete

Fourier series, which places the normalization factor 1/N in the transform and not as in the DFT in

the inverse transform: The left hand side of (D.2) can be rewritten by means of (D.1b), which after

1Fast Fourier Transform
2Inverse Discrete Fourier Transform
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some reordering leads to the desired result:

N−1

∑
n=0

x(n)x∗(n)
IDFT
=

N−1

∑
n=0

x(n)
1

N

N−1

∑
k=0

X∗(k)e−2π j nk
N

=
1

N

N−1

∑
k=0

X∗(k)
N−1

∑
n=0

x(n)e−2π j nk
N

︸ ︷︷ ︸
X(k)

=
1

N

N−1

∑
k=0

|X(k)|2 .

(D.3)

D.2 Around the Unit Circle on a Shoestring

In section 7.2.2 the following relation was utilized as (7.28):

N−1

∑
n=0

sin2
(

2π
n

N
+ ϕ

)
=

N

2
for N ≥ 3 , (D.4)

which we will derive below: First, rewriting (D.2) in terms of complex exponential functions yields:

N−1

∑
n=0

sin2
(

2π
n

N
+ ϕ

)
=

N−1

∑
n=0

(
1

2 j

(
e2π j n

N + jϕ − e−2π j n
N− jϕ))2

=
N

2
− 1

4

(
e2 jϕ

N−1

∑
n=0

e2π j 2n
N + e−2 jϕ

N−1

∑
n=0

e−2π j 2n
N

)
.

(D.5)

This expression can be simplified by rewriting the second summation term. We replace n by ñ = N−n,

and obtain:

N−1

∑
n=0

e−2π j 2n
N =

N

∑̃
n=1

e−2π j 2(N−ñ)
N =

N

∑̃
n=1

e−4π je2π j 2ñ
N

=
N−1

∑̃
n=0

e2π j 2ñ
N + e2π j·2− e2π j·0 =

N−1

∑
n=0

e2π j 2n
N .

(D.6)

Thus, (D.5) simplifies to

N−1

∑
n=0

sin2
(

2π
n

N
+ ϕ

)
=

N

2
− 1

2
cos(2ϕ)

N−1

∑
n=0

e2π j 2n
N . (D.7)

Finally, we need to show that the sum on the right hand side of (D.5) vanishes for N > 2: To achieve

this, we rewrite this sum as a geometric series and calculate the according result:

N−1

∑
n=0

e2π j 2n
N =

N−1

∑
n=0

(
e

4π j
N

)n
=

1−
(
e

4π j
N

)N

1− e
4π j
N

=
1−1

1− e
4π j
N

= 0 for N ≥ 3 .

(D.8)

Thus, (D.7) becomes (D.4), which completes the derivation.
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D.3 LTI System Response to Sinusoidal Inputs

Within this section, we want to prove the generalized form of (7.25) in 7.2.2 on page 196: For a

harmonic input signal of the form

x(t) = Asin(ωt + φ) , (D.9)

the output of an LTI system that possesses a real-valued impulse response h(t) with according transfer

function H( jω) is given as:

y(t) = A |H( jω)| sin(ωt + φ + ϕ(ω)) . (D.10)

According to (7.5) the output y(t) can be written as:

y(t) = h(t)∗ x(t) =

∞∫

−∞

h(τ)x(t− τ)dτ

=
A

2 j

∞∫

−∞

h(τ)
(
e jω(t−τ)+φ − e− jω(t−τ)−φ)

dτ

=
A

2 j

[ ∞∫

−∞

h(τ)e− jωτ dτ

︸ ︷︷ ︸
H( jω)

e jωt+φ −
∞∫

−∞

h(τ)e jωτ dτ

︸ ︷︷ ︸
H(− jω)

e−( jωt+φ)

]
.

(D.11)

If we had looked at eigenfunctions of the form x(t) = exp( jωt + φ), the proof would be complete,

since we would have obtained only one expression resembling that one on the left of the last line of

(D.11). For the real-valued harmonic function of (D.9) things are a bit more complicated, in that we

have to rewrite H( jω) as

H( jω) = |H( jω)|e jϕ(ω) = M(ω)e jϕ(ω) , (D.12)

and we have to assume that

H(− jω) = M(ω)e− jϕ(ω) , (D.13)

which we will relate to the condition of h(t) being real-valued later. With (D.13) (D.11) becomes:

y(t) =
A

2 j

[
M(ω)e jωt+φ+ϕ(ω)−M(ω)e−( jωt+φ+ϕ(ω))

]

= AM(ω) sin(ωt + φ + ϕ(ω)) .

(D.14)

Now we still need to justify (D.13). Therefore we start with showing that a real valued h(t),
implies

h∗(t) = h(t) → H∗( jω) = H(− jω) . (D.15)

Since h(t) and H( jω) are related by the Fourier transform of (7.8), we can write

H∗( jω) =

[ ∞∫

−∞

h(t)e− jωt dt

]∗

=

∞∫

−∞

h∗(t)e jωt dt
h real
= H(− jω) ,

(D.16)
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yielding the desired result. According to (D.12) we can now write:

H(− jω) = H∗( jω) = |H∗( jω)|
[

e jϕ(ω)

]∗
= |H∗( jω)|e− jϕ(ω) , (D.17)

which proves (D.13).

Final Remarks. In section 7.1.1.3 on page 185 it was argued that most of the technically important

systems can be described by rational transfer functions. Therefore, it should be noted that it can

be shown that the according impulse response of such LTI systems must be real-valued. To do so,

nominator and denominator of the transfer function are split into an even and an odd polynomial of

jω :

H( jω) =
Ne( jω)+ No( jω)

De( jω)+ Do( jω)

=
Ne( jω)De( jω)−No( jω)Do( jω)

D2
e( jω)−D2

o( jω)
+

No( jω)De( jω)−Ne( jω)Do( jω)

D2
e( jω)−D2

o( jω)
.

(D.18)

While the first term is an even, the second is an odd function of jω . In conclusion, the even term is

real and the second one is pure imaginary. Altogether, this leads to the desired result of H∗( jω) =
H(− jω). Now first, this implies that harmonic functions are also eigenfunctions to LTI systems that

possess a rational transfer function. Furthermore, the reverse direction of the statement contained in

(D.16) can be shown:

h∗(t) =

[ ∞∫

−∞

H( jω)e jωt dω
]∗

H∗( jω)=H(− jω)
=

∞∫

−∞

H(− jω)e− jωt dω

substitute ω by −ω ′
=

∞∫

−∞

H( jω ′)e jω ′t dω ′h(t) ,

(D.19)

such that indeed all LTI systems possessing a rational transfer function must possess a real impulse

response.



Appendix E

Additional Series of Comparator

Experiments: Large Settling Time

The same series of 8 experiments whose results were presented in case study III (section 8.5) of

Chapter 8 are carried out in the slower timing setting, which was used for the test of the hand-

designed comparator in Fig. 8.23(c) and (d) in section 8.5.5. Thereby, the settling time between the

clock enable signal for the second input and that one triggering the sampling of the output is raised

from 1.075µs to 5.275µs. The results are presented below using the same types of plots as are used

in section 8.5.

E.1 Comparison of the Different Experiments: Histograms
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Figure E.1: (a) worst fitness and (b) worst RMS error obtained from 100 verification tests for all 8 experiments.

The bin size is set to 100mV in all histograms. Analogon to Fig. 8.24.
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E.2 Comparison of the Different Experiments: Convergence
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Figure E.2: Mean fitness averaged over all 40 runs of each of the 8 experiments for selected generations. Anal-

ogon to Fig. 8.25. (a) displays averages for the full length of the runs, (b) zooms into the first 500 generations.
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E.3 Comparison of the Different Experiments: Gain and Offset
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Figure E.3: (a)-(c) Scatter plots of offset and gain for all the best-of-run solutions of all 8 experiments that

exhibit the principle comparating functionality for all Vset . (d) accounts for the number of runs per experiment

considered in (a)-(c). Analogon to Fig. 8.26.

E.4 Best-of-Experiment Output Characteristics
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Figure E.4: Output characteristic for best-of-experiment solutions for experiments 1 . . .4. The data is obtained

from the first of 100 verification tests, where best here refers to the worst fitness value obtained in 100 verifica-

tion tests evaluated by means of (8.9), the fitnesscriterion used during evolution. Left: Output behavior for test

mode 1. Right: Output behavior for test mode 2. Read from top to bottom the plots correspond to experiments

1 to 4. Analogon to Fig. 8.27.
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Figure E.5: Output characteristic for best-of-experiment solutions for experiments 5 . . .8. The data is obtained

from the first of 100 verification tests, where best here refers to the worst fitness value obtained in 100 verifica-

tion tests evaluated by means of (8.9), the fitnesscriterion used during evolution. Left: Output behavior for test

mode 1. Right: Output behavior for test mode 2. Read from top to bottom the plots correspond to experiments

5 to 8. Analogon to Fig. 8.28
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E.5 Test on a Second Chip
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Figure E.6: Comparison of the performance achieved on chip 1 and 2 in terms of (a) the fitness criterion used

during the evolution process described by (8.9) and (b) of the RMS error according to (8.11). Analogon to

Fig. 8.29
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Figure E.7: Comparison of the performance achieved on chip 1 and 2 in terms of (a) offset and (b) gain of the

evolved comparators. Analogon to Fig. 8.30



Appendix F

List of Acronyms

ADC Analog-to-Digital Converter

ADSL Asymmetric Digital Subscriber Line

AHDL Analog Hardware Description Language

ASIC Application Specific Integrated Circuit

BB building block

BJT Bipolar Junction Transistor

BPF bandpass filter

BSF bandstop filter

BW bandwidth

BiCMOS Bipolar Complementary Metal-Oxide Semiconductor

CAB Configurable Analog Block

CAD Computer-Aided Design

CMOS Complementary Metal-Oxide Semiconductor

CMRR Common Mode Rejection Ratio

DAC Digital-to-Analog Converter

DMA Direct Memory Access

DECT Digital European Cordless Telephone

DFT Discrete Fourier Transform

DNA DesoxyriboNucleic Acid

DNL Differential NonLinearity

DR Dynamic Range
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DRAM Dynamic Random Access Memory

DSL Digital Subscriber Line

EA evolutionary algorithm

EC evolutionary computation

EEPROM Electrically Erasable and Programmable Read Only Memory

ENOBS Effective Number Of BitS

ES evolution strategies

ESD Electro-Static Discharge

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform of the West

FPAA Field Programmable Analog Array

FPGA Field Programmable Gate Array

FPTA field programmable transistor array

FPTA-0 field programmable transistor array

FPTA-2 field programmable transistor array

GA genetic algorithm

GBP Gain Bandwidth Product

GP genetic programming

GPIB General Purpose Interface Bus

HWE hardware evolution

HDTV High Definition Television

HPF highpass filter

IDFT Inverse Discrete Fourier Transform

IF Intermediate Frequency

INL Integral NonLinearity

JPL Jet Propulsion Laboratory

LCD Liquid Crystal Display

LPF lowpass filter

LSI Large-Scale Integration
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LTI Linear Time-Invariant

MOS Metal-Oxide Semiconductor

MOSFET Metal-Oxide Semiconductor Field Effect Transistor

MOST Metal-Oxide Semiconductor Transistor

MOST-R Resistor implemented by means of MOS Transistor

MPW Multi Project Wafer

MSPS Mega Samples Per Second

NMOS N-channel Metal-Oxide Semiconductor

OTA Operational Transconductance Amplifier

PC Personal Computer

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PD power dissipation

PLL Phase Locked Loop

PM Phase Margin

PMOS P-channel Metal-Oxide Semiconductor

PS power supply

PSRR Power Supply Rejection Ratio

PTA programmable transistor array

RAM Random Access Memory

RF Radio Frequency

RMS Root Mean Square

RMSE root mean square error

RNA RiboNucleic Acid

SC Switched Capacitor

SDRAM Synchronous Dynamic Random Access Memory

SFG Signal Flow Graphs

SNR Signal to Noise Ratio

SQP Sequential Quadratic Programming
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SR Slew Rate

SRAM Static Random Access Memory

SSE sum of squared errors

THD Total Harmonic Distortion

THD+N THD + Noise

TSE test sequence element

UGB Unity Gain Bandwidth

VHDL Verilog Hardware Description Language

VLSI Very Large-Scale Integration

VS voltage swing

XML Extensible Markup Language
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