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Zusammenfassung

Antimikrobielle Resistenz (AMR) führt zu einem enormen Gesundheitsrisiko und wurde
daher von der WHO als eine der größten Belastungen für die moderne Gesellschaft ein­
gestuft. Aufgrund unwirksamer Antibiotika werden alltägliche Operationen zu lebensbedroh­
lichen Eingriffen. Strenge staatliche Maßnahmen sollen die Verabreichung antimikrobieller
Mittel überwachen und so die Verbreitung von AMR kontrollieren. Das Eingreifen von Ver­
antwortlichen aus dem Gesundheitswesen und eine verantwortungsvolle Anwendung in der
Human­ und Veterinärmedizin sind dringend erforderlich. Vor diesem Hintergrund wird die ab­
wasserbasierte Epidemiologie eingesetzt, um verschiedene Umweltfaktoren zu untersuchen,
die die Antibiotikaresistenz begünstigen und um die Entwicklung dieser in der gesamten Be­
völkerung zu überwachen. Antibiotikarückstände in menschlichen Ausscheidungen sind ein
wichtiger Faktor für AMR. Daher ist es naheliegend, die Zu­ und Abwässer von Kläranla­
gen zu untersuchen. Das gereinigte Abwasser wird letztlich in Flüsse, Seen oder das Meer
eingeleitet, wodurch AMR von einem lokalen zu einem globalen Gesundheitsproblem wird.
Daher ziehen die Wissenschaftler zunehmend Süß­ und Salzwasser für umfassende AMR­
Untersuchungen in Betracht. Gewässer zur Erholung könnten ein erhebliches Gesundheits­
risiko darstellen, wenn sie mit resistenten Bakterien belastet sind. Tatsächlich wurden im
Rahmen der Süßwasser­Epidemiologie Hotspots in asiatischen Seen festgestellt, was die
Dringlichkeit einer zeitnahen und konsistenten AMR­Überwachung weltweit unterstreicht. Al­
lerdings wird die Konsistenz der Daten durch eine große Vielfalt an bioanalytischen Methoden
erschwert. Daher wurden im Rahmen dieser Dissertation standardisierte Proben aus zahlrei­
chen europäischen Süßwasserseen integriert, untersucht und ausgewertet. Dies ermöglichte
Basiswerte für AMR zu ermitteln und die künftige, umfangreiche Überwachung zu erleichtern.

Die Ergebnisse unterstreichen außerdem, dass multiresistente Krankheitserreger alterna­
tive therapeutische Optionen jenseits konventioneller Antibiotika erfordern. Daher untersu­
chen Wissenschaftler antimikrobielle Peptide (AMPs). Bis heute sind mehrere AMPs in kli­
nischen Studien fortgeschritten oder haben sogar Marktreife erlangt. Der Erfolg ermutigte
Wissenschaftler Methoden des maschinellen Lernens (ML) für das AMP­Screening im Hoch­
durchsatzverfahren zu einzusetzen. Die ML­basierte Integration von Peptidomics Daten setzt
jedoch ein maschinenlesbares Format voraus, was die Optimierung der Hyperparameter wei­
ter erschwert. Daher wurden im Rahmen dieser Dissertation auch die Leistung in Bezug auf
Kodierungen, Modelle und den biomedizinischen Bereich untersucht. Schließlich wird in ei­
ner weiteren Studie dieser Thesis ein neuer Ansatz für die unüberwachte Auswahl von Ko­
dierungen und die Konfiguration von Ensembles vorgestellt. Kurzum, diese Arbeit erörtert die
Sammlung, Analyse und Integration von Multi­Omics­Daten, um den Weg für die datenge­
steuerte Forschung von AMR zu ebnen.
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Abstract

Antimicrobial resistance (AMR) results in tremendous health risks, causing the World Hea­
lth Organization (WHO) to designate it as one of the significant burdens for modern society.
Owing to ineffective antibiotics, once everyday surgeries will become life­threatening inter­
ventions. Rigorous governmental measurements are supposed to supervise administration
of antimicrobials, hence controlling AMR dissemination. The intervention of healthcare stake­
holders and responsible application in human and veterinary medicine is urgently required. In
this light, wastewater­based epidemiology has been established to examine various environ­
mental factors promoting AMR and monitoring their development population­wide. Antibiotic
residuals in human excrements are a significant driver for AMR, and assessing in­ and effluent
of wastewater treatment plants is evident. Treated wastewater is ultimately released in rivers,
lakes, or the sea, elevating AMR from a local to a global health concern. Thus, researchers
consider increasingly fresh and salt waters for comprehensive AMR surveys. In this light,
recreational waters could be a significant health risk if strained with resistant bacteria. In­
deed, freshwater­based epidemiology ascertained hot spots in Asian lakes, underpinning the
urgency for timely and consistent AMR surveillance worldwide. However, data consistency
is hampered due to a great variety of bioanalytical methods. For this reason, as part of this
thesis, we integrated, examined, and evaluated standardized samples from numerous Euro­
pean freshwater lakes. Baseline levels of AMR have been detected, which facilitates future
monitoring on a large scale.

The results further emphasized that multi­resistant pathogens require alternative thera­
peutic options beyond conventional antibiotics. Therefore, scientists study antimicrobial pep­
tides (AMPs). To date, several AMPs advanced in clinical trials or gained market maturity.
The success encouraged researchers to develop advanced machine learning (ML) methods
for high­throughput AMP screening. However, ML­based integration of peptidomics assumes
a machine­readable format, further challenging hyper­parameter optimization. Thus, we ex­
plored as part of this thesis the performance concerning encodings, models, and the biomed­
ical domain. Finally, we contributed a novel approach for unsupervised encoding selection
and ensemble configuration to this dissertation. In summary, this thesis addresses the col­
lection, analysis, and integration of multi­omic data to pave the way for data­driven research
on AMR.
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1
Introduction

AMR claimed already millions of death, around 1.5 Million in 2019 alone176. Over­ and mis­
use in human and veterinary medicine is the major cause73,100,190. To regain control of this
severe pandemic, factors for local and global resistance events must be considered100. In
this light, the examination of epidemiological aspects utilizing waste­ and freshwater samples
enables timely intervention by health care stakeholders42. Moreover, environmental epidemi­
ology, specifically based on wastewater samples, recognizes local drivers of AMR and the
association on a population scale42,54. Ultimately, AMR leads to ineffective antibiotics; thus,
previously low­risk surgeries become life threatening228. The search for alternative antimi­
crobials is therefore a natural consequence, bringing AMPs more and more into focus151.
Although AMPs belong to the ancient immune system of diverse organisms, various obsta­
cles, which will be addressed later in this work, must be taken until AMPs achieve clinical
relevance125. However, artificial intelligence paved the way for high­throughput prediction
and optimization, finally bridging the gap between in vitro activity and in vivo application71.

Many tools and technologies have been published to study the rise of AMR. To enable
the integration of multi­model datasets, standardized approaches are required. As a proof
of concept, we examined how streamlining different aspects could be achieved. First, we
elaborated standardized analysis of freshwater samples to monitor AMR dissemination and
revealed base line levels of AMR in putative pathogen­free environments. For the second
part we applied artificial intelligence to predict peptide properties, focusing on antimicrobial
amino acid sequences as an alternative strategy to conventional antibiotics. The case stud­
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1 Introduction

ies are embedded in a comprehensive literature review to motivate standardized integration
of multi­omic datasets and to illustrate accompanied challenges. The standardization tech­
niques could pave the way for the integration of multiple modalities for AMR; thus, enable a
comprehensive picture of prevalence, spread, and alternative therapies.

The aim of this thesis is a presentation of the published studies embedded in a comprehen­
sive literature review to identify various challenges for the integration of multi­omic datasets
concerning AMR. Furthermore, considering the respective domains, the latest publications
are analyzed to understand the diversity of the sampling methods and available data. Five re­
search articles have been contributed to augment current efforts, and to provide perspectives
concerning the limitation and future opportunities of streamlined data integration and process­
ing. Ultimately, the study ensues the hypothesis that unified data collection and workflows
ease integration; hence, the comparability across multiple studies, specifically addressing
various facets of AMR.

The following chapters elucidate the relation of AMR, environmental epidemiology (EE),
AMPs, and ML. The second chapter introduces the variety of AMR mechanisms, modes of
dissemination, and drug classes (see Chapter 2). In addition, this chapter enlightens the chal­
lenge of increasing multi­drug resistant pathogens. The third chapter addresses measures
to detect AMR dissemination based on EE, particularly, by sampling waste­ and freshwaters
(see Chapter 3), which involves the first publication (see Section 6.1). The requirement for
alternative strategies becomes obvious. Thus, the fourth chapter covers the effects of host­
defense peptides (HDPs), focusing on AMPs, which includes biochemical characteristics,
modes of action, applications, and clinical relevance (see Chapter 4). The fifth chapter intro­
duces a broad range of ML techniques for identifying novel AMPs from validated peptidomics
datasets (see Chapter 5). The introduction to ML also encompasses encodings, crucial for
representing amino acid sequences, which is covered by the second publication, presented
in Section 6.2. Moreover, the ML chapter integrates the third publication, which examines
the encoding performance on various applications (see Sections 6.3). Encoding selection
remains challenging; thus, the fourth publication presents an unsupervised approach (see
Section 6.4). Chapter 5 concludes with the presentation of biomedical applications, such as
the high­throughput screening of peptide binding kinetics, as described in the fifth publica­
tion (see Section 6.5).

The articles published for the dissertation are listed in Table 1.1. The table also highlights
the respective contributions per topic as well as a reference to the according background and
result sections.
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1 Introduction

Table 1.1: List of papers annotated with the respective author contributions. Contributions by Sebastian
Spänig (SS) are highlighted in bold. The background sections link the publications into the topical context.
Refer to the Publications section for the actual article.

Publication Contribution Context Results
A multi­omics study on quanti­
fying antimicrobial resistance in
European freshwater lakes

SS and DH developed the concept
and designed the experiments. JB de­
signed the sampling campaign. JKN,
DB, and JB collected and prepro­
cessed the sequencing data. SS and
LE performed the experiments and an­
alyzed the data. SS, LE, MI, and DH in­
terpreted the results. SS and DH wrote
the manuscript. JB and DH supervised
the study.

3.2.1 6.1

Encodings and models for an­
timicrobial peptide classification
for multi­resistant pathogens

SS developed the concept and wrote
the manuscript. DH gave conceptual
advice, supervised the study, and re­
vised the final draft.

5.2.1 6.2

A large­scale comparative
study on peptide encodings for
biomedical classification

SS and DH developed the concept.
SS designed and performed the experi­
ments as well as gathered, curated and
analyzed the data. SM implemented
the Delaunay Triangulation and Dis­
tance Frequency encoding. GH su­
pervised the data visualization aspect
and created the logo as well as the
overview figure. SS, ACH. and DH
interpreted the results. SS wrote the
manuscript. ACH and DH supervised
the study.

5.3.2 6.3

Unsupervised encoding selec­
tion through ensemble pruning
for biomedical classification

SS and DH developed the concept.
SS designed and performed the ex­
periments and analyzed the data. SS
and DH interpreted the results. AM
implemented the MVO algorithm. SS
wrote the manuscript. DH supervised
the study.

5.4.1 6.4

Multivalent binding kinetics re­
solved by fluorescence proximity
sensing

Conceptualization: HMM, CS; Method­
ology: CS, AS, NA, IB, SS; Software:
SS, DH, Formal Analysis: CS, AS,
NA, IB, SS; Investigation: CS, AS, NA,
IB;Writing ­ Original Draft: CS, HMM;
Writing ­ Review & Editing: AS,SS, NA,
IB, RS, DH; Visualization: CS, SS; Su­
pervision: HMM, DH, RS, WS; Project
Administration: HMM, RS, WS, DH;
Funding Acquisition: HMM, RS, WS,
DH

5.3.1 6.5
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2
Antimicrobial Resistance

Bacteria are critical for various aspects of life and form the basis of many environmental, in­
dustrial, and metabolic processes74. The industry employs bacteria for sewage purification
or food production; however, bacteria are also involved in digestive nutrient utilization74. Al­
though it has been long supposed that microbes outnumber human cells tenfold, a recent
study assumes a one­to­one ratio208, still stressing the importance of microorganisms. The
human gastro­intestinal microbiome harbors many microorganisms, including around 1000
species from 8 taxonomic families145. Bacteria colonize other ecosystems than the human
digestive system and are ubiquitous in terrestrial and aquatic environments such as soils and
waters74. As such, bacteria are endemic in ecologic niches, therefore possessing defense
measures to protect against microbial competitors and abiotic molecules188. These organ­
isms produce antibiotic substances, completing their intrinsic resistance system for defense
against prokaryotic intruders188. Moreover, microbes acquire antimicrobial resistance (AMR)
to cope with selection pressure and environmental changes, for instance, human­made antibi­
otic residuals or from antibiotic­producing species134. It should be highlighted that human­
made pollution is merely one element contributing to AMR, and intrinsic resistance is long
present115. Recently, researchers acknowledged the latter by referring to it as the “ancient”
resistome134, which is the entirety of AMR gene clusters encoded on microbial chromosomes
or plasmids122.

As mentioned above, AMR concerns the intrinsic or acquired resistance against antimi­
crobial drugs. It describes the transformation of formerly susceptible to resistant pathogens
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2 Antimicrobial Resistance 2.1 Mechanisms

in a clinical context. The European Centre for Disease Prevention and Control (ECDC) ob­
served significantly increased AMR rates for several critical pathogens between 2015 and
201966. Owing to this concerning trend, the WHO reckons about 50 million deaths by 2050
and tremendous financial burdens for public healthcare systems115,155. Without effective
antibiotics, low­risk surgeries, such as caesareans, could become life­threatening interven­
tions228. Blair et al. (2015) confirmed antibiotics as essential for modern medicine since they
allow the treatment of microbial infections and mitigate, for instance, side­effects of complex
operations19. Thus, rising multi­resistant pathogens urge novel antibiotics19. In addition, the
inappropriate usage of antibiotics intensifies this problem100.

More and more drug residuals enter sewage, and incomplete purification causes envi­
ronmental pollution134. Generally, the spread of AMR via hospital or municipal effluent or
antibiotic release due to livestock farming is a significant concern100. The resulting selection
pressure increases the probability that susceptible species acquire AMR; consequently, re­
sistant bacteria become more prevalent134. Nevertheless, the subsequent section addresses
resistance mechanisms before more details on AMR dissemination are described.

2.1 Mechanisms

Effectively, the genetic blueprints of AMR are encoded on the microbial chromosome or the
plasmid. Chromosomal­ and plasmid­encoded genes ultimately provide for the resistance
induced by diverse modes of action. To this end, microbiologists distinguish between intrinsic
and acquired AMR.

Intrinsic AMR comprises efflux pumps, selective membranes, as well as complex genomics
rearrangements to mitigate antibiotic efficiency47. In particular, efflux pumps refer to proteins
spanning the outer layer of the microbial cell wall and exclude toxic molecules, for instance,
antimicrobials47. Removal via efflux pumps is specifically enabled through the resistance­
nodulation­division (RND) complex19,47. Cox and Wright (2013) enumerate additional efflux
pumps, namely “the ATP binding cassette”, “the major facilitator”, “the multidrug and toxic­
compound efflux”, and “the small multidrug resistance”47. Efflux pumps exist in a wide range
of bacteria, not necessarily for antibiotic removal, and can be classified in two groups: for a
particular molecule class or with unspecific affinity47. To cope with environmental changes,
higher expression of these transmembrane proteins result in the more effective discharge of
antimicrobial agents19.

Another intrinsic resistance mechanism refers to selective cell membranes. Gram­negative
bacteria employ cell membrane selectivity to prevent infiltration of antibiotics47. The imper­
meability of gram­negative cell walls is due to physicochemical properties47. A cell wall con­
sisting of compact phospholipids can form a tight mesh and hinder molecule transition19,47.
In contrast, gram­positive bacteria are generally more sensitive to antimicrobials and possess

7



2 Antimicrobial Resistance 2.1 Mechanisms

a looser, mostly composed of peptidoglycan molecules, outer membrane layer47. Further­
more, some species adapt proteins spanning the outer layer, specifically porins, resulting in
decreased antibiotic selectivity and permeability19. In the review by Blair et al. (2015), the
authors refer to several clinically relevant species, for instance, from the genus Acinetobacter,
which reduce porin biosynthesis or employ different variants of this outer­membrane proteins
to decrease permeability19.

Choi et al. (2019) examined the role of different porine proteins and their role in AMR43.
The study results indicated that mutations in the outer­membrane protein (omp)F increased
insensitivity43. Altered ompA variants mitigated resistance to specific antibiotics43. In addi­
tion, mutations in ompC possess different effects against antibiotics, comprising increased
resistance, enhanced efficiency, or retained resistance43. The authors conclude that proteins
spanning the outer layer of the cell membrane contribute individually, underpinning the impor­
tance of porine proteins for AMR43. Blair et al. (2015) noticed that cell membrane modification
resulting in biochemical alteration mitigates the efficiency of polymixins and daptomycins19.

A further intrinsic defense mechanism concerns the adaption of the chromosomal­encoded
genes, including mutations or mobile genetic elements (MGEs) such as transposons47,225.
If antibiotics penetrate the cell membrane and reach intracellular compartments, the micro­
bial cell expresses modified proteins, which retain functionality; however, inhibition due to
antibiotics is mitigated19. An example is the resistance of Pseudomonas genera to triclosan,
owing due to an additional gene encoding for a resistant homolog version of the actual tar­
get19. Transposable elements enable more complex alterations of the chromosome225. Blair
et al. (2015) pointed out that genes encoding for efflux pumps can also be translocated to
the plasmid, allowing faster adoption of multi­resistance19. Single nucleotide substitutions
resulting in antibiotic resistance can be rapidly adapted in microbial communities19. For in­
stance, Staphylococcus aureus developed resistance to the linezolid antibiotic in this way19.
A further strategy is the uptake of free DNA, achieved via transformation, which leads to the
development of genetic variants from concatenated homologous genes19. Blair et al. (2015)
highlighted that novel genes, for example, acquired by horizontal gene transfer (HGT), en­
code for mutated proteins, likewise reducing susceptibility towards, for instance, β­lactams
or oxacillin antibiotics19.

In summary, efflux pumps, cell wall selectivity, and chromosomal adaption protect micro­
bial organisms from biocidal threats47. Nevertheless, bacteria developed various mecha­
nisms to inactivate antibiotics, which already passed the membrane19. Methylation of the
antibiotic binding site in proteins or molecules increased insensitivity to multiple antibiotics,
which contrasts to resistance systems based on DNA alterations since genes encoding for
the antibiotic destination are not altered19. A further strategy concerns the protection of the
DNA synthesis, which is the primary target of the quinolone antibiotic19. Bacteria can also
directly tackle antibiotic agents to hamper the mode of action19. Such defense mechanisms,
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2 Antimicrobial Resistance 2.2 Dissemination

comprising premature disintegration of the antibiotic and chemical modification, ultimately
lead to binding inhibition of the antibiotic and its inactivation19. Antibiotics affected through
direct modulation include various β­lactams, rifamycins, and aminoglycosides19.

It is crucial to detect and understand the great variety of AMR mechanisms to introduce
novel potent drug candidates156. To this end, in a study realized by Manna et al. (2021),
the authors first determined the mutation, which is responsible for resistance against the un­
modified trimethoprim (TMP)156. Afterward, they designed the derivate antibiotic, namely
4’­DTMP, which retained target affinity, despite the amino acid substitution156. In addition
to increased susceptibility than the wild type, the authors observed a reduced AMR devel­
opment using the modified version of TMP156. This stressed the significance of profound
comprehension of AMR to develop improved antibiotics156.

Furthermore, antibiotics can tackle over­expressed efflux pumps by reactivating suppres­
sor genes19. Targeted silencing of the gene complex encoding for the efflux pump mechanism
resulted in significant sensitivity of former resistantPseudomonas aeruginosa strains47. How­
ever, some bacteria confer complex resistance using multiple mechanisms. For instance,
Cox and Wright (2013) underpinned reciprocal effects of multiple resistance mechanisms47.
To this end, the authors refer to a study conducted by Vaara (1992), who treated Escherichia
coli with a membrane­disrupting antimicrobial peptide prior to antibiotic dispensation47,233.
The constant susceptibility indicates that the cell wall is merely one part of the resistance
cascade47,233. Lázár et al. (2018) demonstrated that peptides with antimicrobial efficiency in­
crease sensitivity to conventional antibiotics if jointly administered135. Parallel administration
of multiple antibiotics is thought to elude chromosome­encoded resistance via the inhibition
of genes, for instance, encoding β­lactam insensitivity19.

MGEs, including the transposon machinery mentioned above, enable other species to ac­
quire resistance and bypass antibiotic effects47. Insensitive bacteria can integrate antimi­
crobial resistance genes (ARGs) into their plasmid and exchange the genetic information
with conspecifics using HGT19. Furthermore, vertically inherited ARGs; hence, dissemina­
tion within the same species occurs47. Enhanced AMR rates through acquired resistance, in
particular fostered by MGEs, constitute aggravated predictivity of environmental resistance
flow134 and is subject to diverse local and global conditions100, which will be described next.

2.2 Dissemination

AMR originates from a nearby environmental mutual exchange, fostered by local ecosystems,
referred to as “One Health” domains100. These domains encompass, for instance, antibiotic
administration in animal husbandry resulting in pollution of freshwater100. Hernando­Amado
et al. (2019) shed light on different aspects of AMR dissemination as well as relevant ge­
ographical and socio­economic factors100. The authors stressed the severity of the AMR
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2 Antimicrobial Resistance 2.2 Dissemination

pandemic, which is further highlighted by economically, politically, and scientifically acknowl­
edgment100. Additionally, they noted that ARGs emerging from non­pathogenic bacteria drive
AMR in One Health environments100. In contrast, “Global Health” determinants consider One
Health at a large scale, hence, the transmission of AMR via worldwide interactions, includ­
ing traveling, trading, or animal fluctuation100. ARGs could be verified even in the arctic134.
Larsson and Flach (2021) underpinned the Global Health aspect by referring to multiple ways
of ARG carrying feces dissemination, for instance, through bird migration134.

Furthermore, Hernando­Amado et al. (2019) pointed out various local conditions ultimately
impacting global AMR spread100. AMR acquirement is facilitated through monocultural farm­
ing, hence, the loss of target variability, which eases the migration of bacteria to different
hosts100. More diverse animal husbandry would have been a more significant obstacle for dis­
semination and health implications of the multi­resistant Staphylococcus aureus (MRSA)100.
Furthermore, Kriegeskorte and Peters (2012) showed that Staphylococcus aureus obtained
resistance mainly through HGT of MGEs127.

Although more research is required to determine the actual transmission mode of action
for Staphylococcus aureus127, plasmid genes encoding for resistance against multiple an­
tibiotics, including β­lactams and colistins, are readily shared among pathogens100. Bacteria
conduct HGT via conjugation (DNA exchange), transformation (deoxyribonucleic acid (DNA)
uptake), and transduction (viral transmission)74. Some species prefer a particular mecha­
nisms188. For instance, Streptococcus pneumoniae employ transformation or Staphylococ­
cus aureus prefer transduction, with conjugation being the most prevalent188. Winter et al.
(2021) enlightened the relation of transformation and acquirement of ARGs across distinct
species249. Specifically, the work stressed that AMR dissemination owing to natural transfor­
mation is enhanced by cross­species spread and transmissible gene clusters249. With this
respect, Jian et al. (2021) highlighted phages carrying ARGs concerning particular acquire­
ment through transduction74,115.

As stated by Larsson and Flach (2021), the dissemination of MGEs contributes significantly
to the rise of AMR134. A natural source of MGE carrying ARGs are antibiotic­producing bacte­
ria, which utilize self­produced antibiotics to protect against competitive organisms; thus, they
are intrinsically resistant34,134. Self­resistance in antibiotic­producing bacteria is generally
chromosomal encoded, whereas, in pathogens, MGEs encode resistance mechanisms188.
Nevertheless, AMR acquirement is governed by manifold environmental relations and com­
plex interactions134. Larsson and Flach (2021) addressed the role of the environment to
increased selective pressure and resistance134. The authors also considered the relation
of anthropogenic contaminants and AMR development and finally recommend additional in
vitro experiments to reconstruct selection patterns to predict upcoming resistance acquire­
ment events134.

Since MGE dissemination are characteristic for AMR development, Hernando­Amado et
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al. (2019) highlighted countermeasures to tackle AMR spread on local and global levels100.
An essential tool is the controlled application of antibiotics, which have been prescribed in­
creasingly in the last decades, with a presumable growth until 2030100. Although the overuse
of antibiotics in the first world is problematic, enhanced antibiotic application, partly due to
self­prescription in some countries, has been observed100. The situation in third­world areas
is also aggravated on account of regional sanitation standards100. Therefore, advances in
wastewater treatment are crucial to prevent further AMR spreading and to stem antibiotic
residue dispensation100. Antimicrobial usage in livestock farming outweighs human applica­
tion, specifically in low or middle­income countries100. However, high rates are also reported
for the USA100. Winter et al. (2021) underpinned the impact of biocides in the environment,
which increases the availability of DNA residues for bacterial uptake249.

Antibiotic administration of infected hosts, hence, humans or livestock, significantly con­
tributes to environmental dissemination of ARGs134. Misuse of antimicrobial drugs enables
DNA transformation and mutation events, which is additionally enhanced by close spatial
bacteria in biofilms134. Research to understand and predict AMR spreading events is essen­
tial to establish trajectories, revealing ARG flow134. Although multiple ARGs can be tracked
to the source organism, the initial species for a great variety of resistance genes is unknown,
which underpins the concern of diverse microbial communities as ARG pools134.

The intrinsic resistome of antibiotic producer­organisms contributes to AMR negligible,
whereas anthropogenic pollution, including patient and livestock excrements, insufficient re­
moval of drugs in manufacturers waste, and industrial residues, has a far greater impact134.
It is also notable that environmental antibiotic concentrations are below lethal doses; how­
ever, samples of, for instance, clinic, community, and industrial wastewater indicated the
contrary134.

Moreover, transmission events are fostered by physicochemical properties of the envi­
ronment, for instance, surrounding temperature134. Physicochemical attributes are puta­
tively more critical for selection and AMR levels than non­lethal antibiotic residues concentra­
tions134. Larsson and Flach (2021) suggested the reduction of any external factors initiating
or enhancing microbial adaption processes134. Additional environmental pollutants enforce
selection, and the impact of antibiotics residues on AMR might be exaggerated134. Albeit
governments have already introduced measurements to govern antibiotic exposure in an in­
dustrial context, including pollution by drug manufacturers or agricultural applications, the
authors demanded more profound actions134.

As mentioned above, Cox and Wright (2013) concluded that although human­derived an­
tibiotic pollution drives selective pressure, AMR is long­present in non­pathogenic bacteria,
which must be considered in future research on the “intrinsic resistome”47. A promising
method has been introduced by Ellabaan et al. (2021)65. The authors developed a com­
putational model employing genome data from 56.716 bacteria to predict ARG dissemination
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networks65. The study revealed 152 MGEs in a subset of 22.963 genomes65. Moreover, the
authors identified transmissible genes encoding for resistance against various drug classes,
including β­lactams or aminoglycosides65. Based on their findings, Ellabaan et al. (2021) fur­
ther confirmed the severity of AMR spread, including resistance gene transmission in several
ESKAPE species, for instance, Staphylococcus species134. Enterococcus faecium, Staphy­
lococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aerugi­
nosa, and Enterobacter spp. (ESKAPE) possess different strategies to elude or mitigate an­
tibiotic stress; hence, they are a significant threat, and timely development of effective coun­
termeasures is critical155. According to Mancuso et al. (2021), the World Health Organiza­
tion (WHO) designated Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumo­
niae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE)
organisms as critical multi­drug resistant pathogens155. Therefore, the upcoming section ad­
dresses resistance mechanisms concerning different antibiotic drug classes in more detail.

2.3 Drug Classes

Peterson and Kaur (2018) enumerated drug classes addressing multiple cellular compart­
ments188. The authors listed crucial agents according to the targets: β­lactams, lipo­, and
glycopeptides disintegrate the cell wall, aminoglycosides, tetracyclines, as well as macrolides
perturb the protein synthesis cascade188. Moreover, platensimycin affects lipid synthesis188.
As mentioned above, multiple modes of action allow bacteria to evade their own manufac­
tured antimicrobials: efflux pumps, loss of antibiotic function via inhibitor proteins in the cell, or
premature modification in the cell wall188. For increased efficiency, numerous species, such
as Streptomyces peucetius, activate multiple resistance mechanisms in parallel188. Peterson
and Kaur (2018) argued that in the long term, bacteria potentially elude all antibiotics owing
to the diversity of natural AMR188. As an example, they referred to Dantas and Sommer
(2012), who described the effect of the ampC gene acquirement on plasmids, resulting in a
β­lactam resistance pandemic53. Furthermore, Pages et al. (2009) examined the relation of
efflux pumps and β­lactam resistance183. The results indicate that efflux pump are critical
for Klebsiella pneumoniae insensitivity183. In contrast, albeit several studies examined efflux
pumps as a potential drug target, effectivity is hampered due to the low specificity of bacterial
and human cells47.

To sum up, Table 2.1 enumerates ten essential drug classes and is based on the WHO list
of “Critically Important Antimicrobials for Human Medicine”250. The structure is according to
the WHO prioritization factors and distinguishes between “Highest priority” (rows one to five)
and the first five “High priority” antimicrobials (rows six to ten). The taxonomy weights crucial
antibacterial drugs stronger, possessing an increased risk of resistance development. More
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information about the critical antimicrobials can be found at the Comprehensive Antibiotic
Resistance Database (CARD) using the Antibiotic Resistance Ontology (ARO) term3.

Table 2.1: Based on the WHO list of “Critically important antimicrobials”250, the table enumerates drug
classes as well as respective examples, the source bacteria, the mode of action, and the ARO term from the
CARD database3. The first five antibiotics are “Highest Priority”, and the last records are “High priority”.

Drug class Example Source Mode of action CARD

Cephalosporins (3rd+ generation) Ceftriaxone Semi­synthetic1 Cell wall synthesis inhibition227 ARO:0000062

Glycopeptides Vancomycin Amycolatopsis orientalis254 Cell wall synthesis inhibition164 ARO:0000028

Macrolides and ketolides Azithromycin Semi­synthetic185 Protein biosynthesis inhibition185 ARO:3000158

Polymyxins Colistin Bacillus colistinus18 Cell wall lysis18 ARO:0000067

Quinolones Ciprofloxacin Synthetic109 DNA replication pertubation109 ARO:0000036

Aminoglycosides Gentamicin Micromonospora purpurea83 Protein biosynthesis inhibition242 ARO:0000014

Ansamycins Rifampicin Amycolatopsis rifamycinica11 RNA polymerase perturbation226 ARO:3000169

Penems Meropenem Synthetic193 Cell wall synthesis inhibition193 ARO:0000073

Glycylcyclines Tigecycline Semi­synthetic181 Protein biosynthesis inhibition181 ARO:0000030

Lipopeptides Daptomycin Streptomyces roseosporus133 Cell wall lysis96 ARO:0000068
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3
Environmental Epidemiology

Reconstructing antimicrobial resistance gene (ARG) dissemination is critical for investigating
local and global resistance events100. The examination of human fecal to quantify antibi­
otic residuals is therefore essential134. Since stools ultimately enter wastewater processing,
epidemiology­based quantification on a large­scale eases tracking134. Larsson and Flach
(2021) compared wastewater­based epidemiology (WBE) and targeted examination of pa­
tient samples to track antimicrobial resistance (AMR) dissemination134. According to the
authors, the advantage of WBE concerns large­scale screening capabilities with timely noti­
fication of severe AMR developments134. Patient­wise analysis is more costly, and different
regional sampling policies ultimately hamper comparability134. Choi et al. (2018) specified
additional advantages of WBE42. WBE can be utilized to track concentrations of chemicals
and biologicals in normalized wastewater samples, comprising the initial concentration, the
removal efficiency during treatment, and finally, residuals in treated wastewater; thus, the
resulting exposure to the environment42. In addition, large­scale deployment of WBE facili­
tates the inference of drug consumption and dissemination of pathogens for a given time and
place42. Besides quantification of drugs and medicines or the exposure to pathogens, WBE
is employed to investigate the nutrition status of a population or to detect industrial pollution42.
Finally, Choi et al. (2021) underpinned the collaboration of national or international institutes,
which employ WBE, for instance, to monitor population­based drug consumption42.
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3.1 Wastewater­based Epidemiology

WBE is utilized to measure microbial contamination; hence, to track AMR development in
the environment42. Consequently, multiple studies examined antibiotic pollution using WBE.
In the following, representative studies will be presented, which reflect the diversity of WBE.
For instance, Yuan et al. (2016) analyzed wastewater influent from four large Chinese cities,
including Hong Kong and Beijing260. Although the results revealed the least antibiotic residual
concentration for Hong Kong and Beijing among the validated cities, the authors conclude that
Chinese antimicrobial prescription compared to Italy is significantly higher260. The authors
used Liquid Chromatography ­ tandem Mass Spectrometry (LC­MS/MS) to obtain the rate of
antibiotic molecules260. Afterward, the final concentration has been calculated, incorporating
the total per­day wastewater volume and population size260.

Galani et al. (2021) suspected that prescription­free antibiotics potentially contributed to
a 1.5­fold rise of antibiotic usage in Athens (Greece)79. Specifically, the study surveyed
wastewater to monitor prescription rates of various drugs and associate them with the coro­
navirus disease 2019 (COVID­19) pandemic79. The authors demonstrated the strength of
WBE since it provided a detailed picture of drug prescription in Athens79. Concerning hydrox­
ychloroquine, a malaria drug with antiviral effects, Galani et al. (2021) detected a five­fold in­
crease compared to the pre­pandemic era79. Initially, physicians utilized hydroxychloroquine
to treat COVID­19 infections79; however, the European Medicines Agency (EMA) assigned
it as insufficient effective in June 2020173. The authors integrated mass spectrometry data,
and the subsequent statistical analysis included the Wilcoxon signed­rank test to measure
the effect between the two time points79. The drug intake estimation is based on molecule
volume, wastewater quantity, and population size79.

An advantage of WBE concerns monitoring antibiotics removal efficiency of wastewater
treatment plants (WWTPs). In particular, Watkinson et al. (2009) identified antibiotic residu­
als in East Australian WWTPs and adjacent freshwaters244. The verified WWTPs are capa­
ble of removing four­fifth of the antibiotics from the wastewater influent244. Low quantities of
residuals have been detected in receiving freshwaters; however, one river, free from WWTP
effluent, revealed significantly lower rates244. The authors employed HPLC Tandem Mass
Spectrometry (HPLC­MSMS) to detect antibiotic­related molecules244. For the difference
between sample sites, the Analysis of Variance (ANOVA) has been employed244. Further­
more, Spearman’s rank correlation was utilized to determine the effect of patient excretion
and hospital sewage pollution244. The authors concluded that WWTPs contribute to antibiotic
pollution in freshwaters; nevertheless, animal husbandry and stormwater runoff could also be
crucial drivers244.

In this light, Mirzaei et al. (2019) applied WBE to compare levels of various antibiotics
in the in­ and effluent of two WWTP in Teheran (Iran)169. The study approved inadequate
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neutralization of antibiotic agents with various efficiency169. The authors further hypothesize
that the removal efficiency depends on their chemical properties169. In this work, High Per­
formance Liquid Chromatography (HPLC) has been employed for sample analysis169. The
authors calculated the antibiotic burden through normalized antibiotic weight by population
and WWTP flow169.

In another study, researchers examined wastewater samples to determine levels of an­
timicrobial pollutants from the hospital and urban sewage in Kenya178. Ngigi et al. (2020)
detected higher quantities in hospital wastewater and concluded that WBE is essential to
monitor antibiotic consumption and timely notify healthcare stakeholders178. The authors
obtained their data using LC­MS/MS178. The final concentration detection was based on the
acidity of the 17 studied antimicrobial agents178.

Mtetwa et al. (2021) examined ARGs regarding tuberculosis from WBE data from three
South African WWTPs174. Most of the ARGs are poorly degraded174. In addition, the authors
examined antibiotic removal efficiency for critical tuberculosis drugs174. The results indicated
increased concentrations for individual drugs174. Mtetwa et al. (2021) explained the higher
rates by the fact that the sewage processing disrupts bacteria, releasing genetic material174.
The authors enriched the ARGs using polymerase chain reaction (PCR)174. Subsequently,
the Kruskal–Wallis variance analysis followed by Dunn’s posthoc assessment has been used
to detect significant differences in ARG concentration across the sampling sites174. Moreover,
the authors applied the Mann–Whitney U statistics to compare ARG levels in the in­ and
effluent174.

Finally, Hutinel et al. (2019) observed a high correlation between AMR of Escherichia coli
isolates from patients and WWTP influent, underpinning the significance of sewage for epi­
demiology studies160. In this study, the taxonomy classification has been conducted using
Matrix­Assisted Laser Desorption/Ionization Time­Of­Flight (MALDI­TOF) mass spectrome­
try, followed by minimum inhibitory concentration (MIC) testing160. To statistically compare
pathogen burden between the collecting points, a Welch’s t­test has been applied160. More­
over, the authors used linear regression to verify correlation among hospital and WWTP sam­
ples160.

3.2 Freshwater­based Epidemiology

Detectable concentrations of antibiotics and AMR in receiving freshwaters are critical for dis­
semination100. Concerningly, the referenced publications in the section above indicate that
antibiotic residuals are verifiable in freshwaters. Larsson et al. (2021) highlighted recreational
waters as sources for opportunistic infections and AMR, although admitting the necessity for
more studies in this direction134. In addition, the authors suggested examining current AMR in
natural ecosystems, potentially allowing inference towards local clinical relevance134. In this
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light, Bueno et al. (2019) investigated the impact of aquaculture on AMR spread27. Specifi­
cally, the authors compared the AMR contamination of the in­ and effluent of fish farms and
collected samples with varying distances to the breeding station27. A significant finding con­
cerns the confirmation of ARG pollution in the effluent27. However, the authors reported
the decrease in the initial concentrations for some of the ARGs at the last sampling point27.
These observations prove the low impact of the examined trout farming; however, they can­
not rule out the AMR contribution of such facilities in general27. For the computational part,
the authors integrated normalized gene scores based on 44 reference ARGs enriched by
quantitative PCR (qPCR)27. The evaluation comprised linear mixed models to predict ARG
concentration and Principal Component Analysis (PCA) to depict sampling site similarity27.

Regina et al. (2021) examined the relation of human activity and ARG pollution using
samples collected around the greater Rio das Ostras area (Brazil)195. The authors de­
tected typical environmental species; however, minor levels of pathogens close to the city195.
ARGs have been verified in all samples, whereby municipally specimens revealed increased
rates195. In addition, the authors indicated genes encoding for β­lactam and carbapenem
insensitivity195. The data integration comprised PCR for DNA enrichment, being the input
for further analysis195. In particular, the PCR facilitated taxonomy classification using public
databases and the Naïve Bayes classifier (NBC)195. Sample site clustering has been en­
abled through Principal Coordinates Analysis (PCoA)195. The results have been statistically
revisited applying Wilcoxon signed­rank test on the taxonomy features and permutational
Multivariate Analysis of Variance (MANOVA) to calculate the significance of the PCoA195.

Schar et al. (2021) revisited environmental studies from the past 20 years to quantify AMR
levels in Asia203. The authors aggregated the reported resistance as well as meta information
and detected multiple AMR hot spots in Asian naval­ and freshwaters203. Based on a machine
learning (ML) model, they predicted various locations for which future monitoring is recom­
mended203. Schar et al. (2021) obtained AMR of isolates from fish and seafood for the data
integration203. They defined AMR with the P50 value, which is the percentage of antibiotics
possessing no effect on half of the examined pathogens203. The authors modeled the P50
evolution of the past 20 years as a regression using generalized linear models203. In addition,
ANOVA has been used to estimate the significance of various environmental and technical
covariates203. AMR prevalence has been determined between the actual freshwater sample
sites using a stacked ensemble approach203. The interpolated P50 values enabled the au­
thors to quantify AMR for further geographic proximities203. In particular, Schar et al. (2021)
used Boosted Regression Trees (BRTs) as base classifiers and Least Absolute Shrinkage
and Selection Operator (LASSO) for feature selection203. Finally, the coordinates of inter­
est for further surveillance have been established by incorporating industry and population
density along the geospatial P50 distribution203.

Further researchers acknowledged the importance of computational tools to assess the
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risk of ARGs. Specifically, Zhang et al. (2021) mined recent literature on antibiotic volume in
the environment, including freshwater samples from Italy, Spain, and Sweden, among others,
to illustrate the urgency of in silico models for ARG prevalence262. The authors integrated
genomic and metagenomic datasets from patients and public resources as a bioinformatics
pipeline to determine the ARG burden262. The statistical framework automatically assigns
ARGs to four categories reflecting the clinical relevance262. The first level comprises ARGs,
significantly enriched on mobile genetic elements (MGEs) from multiple ESKAPE species262.
The authors observed 122 level one ARGs, potentially contributing to resistance events in the
future262. To validate their results, Zhang et al. (2021) grouped putative level one resistance
genes family­wise and found a high agreement with AMR gene families designated by the
World Health Organization (WHO)262.

Zhu et al. (2017) examined ARG residues at 18 transition points of river outfalls and marine
waters along the eastern China coast267. The authors connected ARG dissemination and
additional meta­information, for instance, population or industrial intensity, reflected by the
gross domestic product267. The results demonstrated that anthropogenic activity impacts
ARG pollution267. Human effects on AMR development are further supported by the fact
that bacteria composition is similar among the investigated sites267. Data integration based
on qPCR included AMR and 16S rRNA genes quantification267. Furthermore, the authors
utilized 16S rRNA amplification to generate the Operative Taxonomic Unit (OTU) table for
taxonomy classification267. Statistical analyses on ecological aspects were conducted using
the R­library vegan57,267.

Schar et al. (2021) independently observed that marine animals examined close to the
eastern China coastland host multiple resistant bacteria203. Consequently, increased patho­
gen rates led to higher ARG levels in east Chinese sea water203. The observed ARG preva­
lence indicates that estuary AMR pollution could drive further dissemination in the ocean,
potentially affecting Global Health issues100; however, the origin of marine AMR is not com­
prehensively clarified95.

Besides estuary samples, Hooban et al. (2021) examined various origins across Ireland,
including lakes, rivers, the sea, treated and untreated wastewater, as well as human feces104.
The goal of the study was the detection of ARGs from clinically relevant microorganisms104.
To this end, Hooban et al. (2021) isolated 211 species and verified genes encoding for resis­
tance to various antibiotics, such as β­lactam and carbapenem104. The results revealed the
prevalence of ARGs in all isolates, independent of the origin104. However, resilience to antibi­
otics differs according to the origin104. For instance, tetracycline resistance is more common
in presumably clean water, whereas wastewater isolates were resistant against other an­
timicrobial agents104. Moreover, whole­genome sequencing (WGS) of Escherichia coli and
several Klebsiella species exhibited high agreement of the core genome from waste­ and
freshwater cultures104. Hooban et al. (2021) concluded that AMR development progressed
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across ecological borders and suggest ongoing AMR monitoring in the future104. The authors
used PCR for ARG detection104. Isolates for WGS were selected based on the ARG con­
tent as well as a preceding antibiotics sensitivity screening104. Regarding the data analysis,
the authors implemented a bioinformatics pipeline, conducting different steps to screen the
assembled genomes for ARGs, virulence factors, and plasmid DNA104.

Thus far, aside from the references cited above, numerous studies dealt with waste­41,99,158

or freshwater­based epidemiology40,161,180 to monitor AMR. The different data integration
and analysis protocols demonstrate the diversity and urge for standardized approaches. Con­
sistent measures and thorough surveillance to identify the risk for humans has been also de­
manded in a recent study about AMR pollution in European recreational waters67. Czekalski
et al. (2015) provided a significant contribution in this direction49. The authors surveyed
21 Swiss lakes to measure background levels of AMR49. According to the study, treated
wastewater and anthropogenic effects are related to sulfonamide resistance49. In the first
step, qPCR has been utilized for antibiotic resistance and 16S rRNA gene detection49. After­
ward, linear regression estimated the correlation between ARGs and socio­economic data49.
The authors used the R­package vegan to statistically verify the diversity of the microbial
communities49.

3.2.1 A Multi­omics Study on Quantifying Antimicrobial Resistance in
European Freshwater Lakes

To comprehensively reflect the environmental AMR diversity, many sampling sites beyond in­
dividual countries or covering even a whole continent are necessary. Since comprehensive
studies are based on unified sampling and analyses protocols, temporal and quantitative con­
formity can be ensured. Consequently, in the first publication of this dissertation, we exam­
ined 274 European freshwater lakes to investigate ARGs, specifically encoding for resistance
against four critical antimicrobials, comprising sulfonamides, tetracyclines, cephalosporin,
and fluoroquinolones221. In addition, we related various farming facilities, for instance, an­
imal husbandry or cereal cropping, to unveil potential correlation with AMR221. The results
are based on multi­omic data, comprising 16S rRNA amplicon sequencing of all and the
metagenomes of 39 waters221. First, we utilized the former technology to examine the gen­
era221. Among others, we detected Acinetobacter, Mycobacterium, Pseudomonas ampli­
cons, partly spanning ESKAPE species; nevertheless, non­pathogenic members are wide­
spread in the lakes221. The OTU table, which describes the lakes (samples) by the abun­
dance of bacteria (features), has been used as input for the PCoA to visualize the sampling
sites in two dimensions221. Although taxonomy variation between the locations is seemingly
low, a non­parametric MANOVA revealed a significant difference221.
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For the second part of this study, the metagenome of 39 lakes has been sequenced and an­
alyzed221. Using the metagenome data, we refined the taxonomy classification from genus to
species level, and verified common and clinical relevant bacteria221. Next, the metagenome
data was used for ARG detection, carried out through the Resistance Gene Identifier (RGI)
tool provided by the Comprehensive Antibiotic Resistance Database (CARD)221. In short,
the RGI tool predicts ARG families and drug classes to which a strain at hand possesses
resistance3,221. One German lake, located in Thuringia (N261LU), hosts bacteria with puta­
tive resistance against sulfonamides, tetracyclines, cephalosporin, and fluoroquinolones221.
ARGs have also been identified in further German, Romanian, Italian, and French lakes221.
Species there are potentially insensitive to tetracyclines, among others221. Moreover, we
detected members of the TEM β­lactamase gene family for various lakes in Romania and
Germany as well as lower quantities in French waters221. Notably, β­lactamase production
confers resistance to cephalosporins217. An insignificant low correlation between sulfon­
amides and agricultural usage within 20 kilometers around the sampling points has been re­
ported221. In this light, nearby farming has seemingly no effect on tetracycline, cephalosporin,
or fluoroquinolones resistance221. However, higher ARG levels in particular countries, for
instance, Germany, are following the grade of farming intensity reported by the European
Union (EU)221.

These findings indicate the progress of AMR against conventional antibiotics. Fortunately,
research on alternative therapies is an active topic190. Qu et al. (2019) referred to a study that
leveraged synthetic biology to confer antimicrobial abilities to host cells of mammalians144,190.
Other researchers, as noted by the authors, investigated the role of antimicrobial peptides
(AMPs)190. AMPs have also been covered in a recent review, reporting efficiency even on
ESKAPE organisms175. To understand the significance of host­defense peptides (HDPs) and
shed light on their mode of action and biochemical properties, particularly AMPs are covered
in the following chapter in detail.
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4
Host­Defense Peptides

Host­defense peptides (HDPs) are peptides that are capable of pleiotropic immune response
regulation, including antimicrobial peptides (AMPs)101,179. AMPs are short molecules con­
sisting of 10 to 50 amino acids, and the main modes of action are membrane disruption of
pathogens and translocation into the cell125,231. Effectively in the year 2019, 34 AMPs were
in preclinical, and 27 peptides were in the clinical phase125. Only one peptide has reached
market maturity at this time125. The low amount is out of all proportion to the actual num­
ber of AMPs, namely almost 5000, possessing a great effect on pathogens and host­defense
modulation125. The in vivo selectivity is hampered by toxicity, salt susceptibility, or premature
degradation125,231. Since side effects ultimately compound translation into effective antibi­
otics, current research focuses on countermeasures. The greatest impact is obtained by
adapting physicochemical properties of the peptide’s primary sequence, such as amino acid
composition and order231. To this end, the current chapter describes various aspects of an­
tibiotic activity and sequence modulation in more detail.

4.1 Antimicrobial Peptides

For a peptide’s antimicrobial activity, hence, membrane interaction, the amino acids se­
quence depends on cationic, hydrophobic, and amphipathic properties56. Hence, AMPs are
composed of the positively charged (cationic) arginine, histidine and lysine, as well as water
repellent (hydrophobic) amino acids15. Hydrophobicity is provided by the non­polar amino
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acids glycine, alanine, proline, valine, leucine, isoleucine, methionine, tryptophan, and pheny­
lalanine15. Other amino acids are the negatively charged aspartate or glutamate and those
featuring hydrophilicity, including the polar serine, threonine, tyrosine, cysteine, asparagine,
and glutamine15. In addition, the amino acid sequence of AMPs should possess an amphi­
pathic character, hence, a non­polar hydrophobic and a polar hydrophilic face237. In aqueous
environments, the structure of AMPs is undifferentiated; once the peptides bind to a mem­
brane, a secondary structure formation occurs231. In particular, AMPs can develop α­helical,
β­strand, combined αβ, or random coil segments71,105. The structure and amino acid com­
position are essential for membrane selectivity125. For instance, Deslouches et al. (2005)
stressed the importance of arginine to increase the affinity of α­helices to hydrophobic cell
walls56.

AMPs are of a manifold and natural origin71 and are part of the innate human immune
system31. These peptides are responsible for diverse interactions with exogenous threats,
such as microorganisms, or the regulation of the immune response31. Beyond human ori­
gin, the genetic information for AMPs is encoded on the DNA of various species, including
vertebrates, invertebrates, or plants229,231. To neutralize pathogens and other microorgan­
isms, the host responds with the synthesis of AMPs or pre­cursor proteins, which are post­
translationally cleaved to mature AMPs231. Other modifications comprise disulfide bond for­
mation or glycosylation, implying the augmentation of side chains with carbohydrates13,231.
Generally, post­translational modification increases antimicrobial activity and durability of the
peptide13.

As mentioned above, the main mode of action of AMPs is the targeted aggregation on
cell walls, whereby the selectivity depends on the physicochemical properties of the amino
acid sequence and the cell membrane231. In particular, bacterial membranes are nega­
tively charged, and eukaryotic cell walls are zwitterionic, hence, both positive and negative
charged231,237. The membrane potential is due to different phospholipid structures229. Bac­
teria exhibit mainly phosphatidylethanolamine, and eukaryotic host cells are composed of
phosphatidylcholine229. Different biochemical properties are essential since AMPs interact
directly with the membrane wall231.

However, the physicochemical properties also determine the toxicity of AMPs231. For in­
stance, mellitin, a bee venom, and pardaxin, targeting both mammals and bacteria202,231. In
contrast, magainins and cecropins are highly specific to bacteria231.

Besides lipid composition, thus, membrane charge, the electric potential along the primary
structure define the selectivity231. In particular, the cationic, positively charged AMP interacts
with anionic, negatively charged cell wall231. Deslouches et al. (2005) highlighted that antimi­
crobial effects could be increased by directed integration of amino acids in the sequence56.
Additionally, the study evaluated the length and ratio of helices on the antimicrobial effect56.
Albeit sequence extension and helix propensity led to increased antimicrobial activity, the cor­
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relation solely demonstrated a significant increase for up to 24 amino acids56. Furthermore,
the authors studied the effect of AMPs containing only arginine and valine, reinforcing the
amphipathic character and helicity56. The results revealed good antimicrobial activity, partly
confirming the observation that some AMPs develop a secondary structure on membrane
binding231. The effect could be increased specifically concerning Pseudomonas aeruginosa
and Staphylococcus aureus by substituting valine with tryptophan, an important amino acid
for protein­membrane interaction55,56.

The affinity is also facilitated by particular physicochemical properties of both conjugates,
ultimately defining the antimicrobial mode of action231. Disruption of the lipid bi­layers, pore­
forming (permeability of the cell wall), and dissolution of the membrane potential, hence,
disruption of ion flow, results in neutralization of the pathogen231. Besides cell wall disruption
also translocation is known81. Considering that microbes have been exposed to AMPs ever
since, only a few species developed resistance71,231. The resistance mechanisms comprise
cell wall modification, proteolysis, or non­specific efflux pumps85,231.

Nevertheless, AMPs are still regarded as highly effective antibiotic agents, and physic­
ochemical parameters determining the membrane interaction are under continuous inves­
tigation136. In this light, researchers identified membrane aggregation and disruption as a
two­step process184. First, as mentioned above, AMPs possess a random coil before bind­
ing to the membrane surface184. Afterward, structural development occurs on binding to the
anionic half of the phospholipid184. The hydrophilic part interacts with phospholipids on the
cell membrane and the hydrophobic section with hydrophobic carbon chains, allowing the
peptide to extend into the lipid layer231.

Papo and Shai (2005) synthesized two different peptides, only differing in the chirality of
four leucines184. The author’s objective was the examination of physicochemical properties,
which determine membrane binding and permeation184. Papo and Shai (2005) observed
that the one containing proteinogenic L­leucine, only binds to the lipopolysaccharide layer
without membrane penetration184. In contrast, D­leucine enantiomers additionally disrupt
the cell membrane184. Consequently, the authors suggested that different physicochemical
properties are responsible for binding and insertion184.

The findings of Papo and Shai (2005) stressed the amphipathic character of AMPs184,
hence, hydrophobic and hydrophilic segments231. Thus, the positively charged amino acids
lysine and arginine are common in natural AMPs231. Besides amphipathicity, the amino
acid composition also defines the secondary structure propensity231. Accordingly, AMPs are
classified in linear peptides, possessing α­helix tendency, and non­linear peptides, includ­
ing individual numbers of disulfide bonds to strengthen the β­sheet formation231. However,
proline­rich linear peptides mitigate a helical structure aggregation, ultimately retaining ran­
dom coil structure231.

It is difficult to derive the mode of action or an antimicrobial effect from the shape since
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AMPs vary in amino acids, secondary structure propensity, and biochemical features231. To
shed light on the relation of peptide shape and particularly pore­forming, Sato and Heix (2006)
examined the antimicrobial activity of the AMPs cecropin and a cecropin­mellitin­hybrid202.
The hybrid employed positively charged N­terminal amino acids from cecropin and non­polar
residues from mellitin202. The authors confirmed that upon α­helix formation, the hydrophobic
and hydrophilic faces are located on opposite sides202. Moreover, experiments demonstrated
that the alignment of helical AMPs occurs parallel, oblique, or vertical to the membrane sur­
face202. Upon reaching the required peptide concentration, transmembrane insertion results
in cell wall lysis202,231. More details and the description of additional modes of action follow
in the next section.

4.2 Modes of Action

Different models have been observed to describe the mode of action of AMPs, including the
barrel­stave, toroidal, and carpet model202. The mechanism of the barrel­stave model is
as follows. Hydrophobic peptides permeate into the phospholipids in a parallel manner231.
Subsequently, multiple AMPs merge to form the required peptide concentration and create the
pore202,231. The hydrophilic face is oriented inward, hence, towards the pore core, whereas
the hydrophobic side interacts with the phospholipids231. The hydrophobic and hydrophilic
faces are oppositely oriented, thus, increasing the stability of the pores202.

In the carpet model, the AMP head interacts with the glucosamine part of the membrane
lipids, hence, the exterior of the cell wall231. Afterward, oligomerization of horizontal aligned
AMPs to the membrane increases the force on the lipid bi­layer, eventually leading to disrup­
tion of the membrane231.

Regarding the toroidal model, the peptide’s amphipathic segments lead to the collapse of
the lipid bi­layer231. In particular, the hydrophilic and hydrophobic moieties induce horizontal
pressure on the outer membrane, therefore, forcing lipid molecules from the outer layer to
interact with molecules from the inner layer, ultimately forming a pore with a toroidal shape231.
Lipid heads and the peptide’s hydrophilic face stabilize the interior of the toroid202,231. The
cell wall lysis perturbs the cell’s interior and exterior ion gradient, ultimately neutralizing the
pathogen231. Since AMPs can also affect interior targets, more research is necessary to
identify the definitive cause for inactivation231.

Toxicity is an undesired side effect and concerns, for instance, erythrocytes191. The “ther­
apeutic index” describes AMPs by their tendency of prokaryotic membrane lysis and their
impact on red blood cells264. Findlay et al. (2010) pointed out that the primary structure
could also indicate toxicity and antimicrobial activity70. In particular, the authors observed
that disintegrating α­helix segments reduced hemolysis without affecting thereby bacterici­
dal70. Other research specifically addressed the clinical relevance of natural AMPs, owing to
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their high selectivity and broad­spectrum activity26. Brogden and Brogden (2011) suggested
that the peptide’s feature of ready optimization should be leveraged to reduce hemolysis and
premature disintegration to increase effectivity26. Various studies investigated the role of the
α­helix tendency and toxicity and concluded that helix forming is relevant for hemolytic ac­
tivity231. However, amino acids can be substituted with proline to mitigate α­helix propensity
and simultaneously retain antimicrobial activity,140,219,231.

The hydrophobic moment also influences toxicity231. It is defined by the vectorized amino
acid sequence with a length equal to its hydrophobicity value and direction corresponding
to the helical orientation64. Afterward, all values are accumulated to obtain the hydropho­
bic moment of an AMP231. Researchers also observed that hydrophobicity is more critical
for hemolysis than for antimicrobial activity231. Thus, selectivity and hydrophobicity are re­
lated, meaning that reducing hydrophobicity and retaining a constant hydrophobic moment
increases selectivity without mitigating antimicrobial potential231.

To further correlate the effect of physicochemical properties and the mode of action, Yin
et al. (2012) developed different protocols for testing antimicrobial and hemolytic activity of
synthetic peptides with varying parameters259. In particular, the authors adapted hydropho­
bicity and amino acid composition through the insertion of lysine and alanine259. The re­
sults indicate that hydrophobicity is essential for secondary structure formation, and β­strand
aggregation was higher for more hydrophobic peptides259. Insertion of alanine increased
hemolysis259. Furthermore, amino acid replacement with leucine showed similar antimicro­
bial potential with reduced toxicity259.

4.3 Pleiotropic Applications

AMPs are broadly applicable to pleiotropic targets, comprising microorganisms, fungi, such
as yeast, or protozoa81. Toke et al. (2005) stressed the antiviral and anticancer effect of
AMPs231. The authors also referred to some AMPs, which can be employed for convey­
ing active substances into the bacterial cell231. Cell­penetrating peptides carry molecules,
usually hydrophilic compounds, to overcome the hydrophobic cell membrane258. Further­
more, Mader and Hoskin (2006) examined the potential of some cationic AMPs for cancer
treatment150. Specifically, cecropins and melletin, among others, exhibit cytotoxicity against
tumor cells by prevention of angiogenesis, disruption of the tumor membrane, or initiating pro­
grammed cell death (apoptosis)150. However, a significant challenge is premature peptide
digestion due to blood proteases150. Encapsulation in lipid vesicles or viral vectors could im­
prove delivery efficiency150. In particular, modified adenoviruses carrying the gene encoding
for melittin have been used to study the effects on tumor cells150. In addition, anticancer pep­
tides can support conventional treatment by alteration of the tumor cell membrane for more
effective chemotherapy150. A recent study revealed that tumor cells contain phosphatidylser­
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ine, which could explain the affinity of some AMPs229. However, tumor tissue can consist of
different lipids, which influence the membrane charge, resulting in increased or decreased
AMP attraction229.

Furthermore, Zaiou (2007) specified antiviral, antifungal, and antiprotozoa as well as an­
tiinflammatory, antirespiratory, and antiparadontal efficiency261. Antiviral activity has been
reported against human immunodeficiency virus (HIV) and influenza viruses261. In particular,
AMPs can perturb HIV’s co­receptor tropism mechanism, either by inhibiting a co­receptor or
binding to the viral gp120 protein261. Antifungal effects are due to membrane lysis and mod­
ulation of intracellular targets261. Multiple species from Candida are of interest here, owing
to infections of immune­compromised patients on intensive care stations35,261. Moreover,
CZEN­002, the dimerization of the tri­peptide α­melanocyte­stimulating hormone (α­MSH),
can be administered against yeast infections of the female genital tract as soon it accom­
plishes clinical trial125,209.

Antiprotozoa peptides cause cell wall disintegration, for instance, in Trypanosoma brucei, a
parasite causing the African trypanosomiasis120,261. Zaiou (2007) also stressed the potential
of AMPs considering antiinflammatory effects261. AMPs mitigate pro­inflammatory diseases,
such as psoriasis or acne vulgaris261. In addition, researchers observed an effect of AMPs
in Crohn’s disease, Ulcerative colitis, or atherosclerosis development261. Zaiou (2007) also
highlighted that multiple AMPs can be employed against respiratory tract disorders261. How­
ever, diseases affecting ion exchange between cell compartments are challenging, owing to
the salt susceptibility of AMPs261.

Moreover, AMPs are involved in cytokine synthesis, therefore, stimulating the innate de­
fense system261. In this light, Yeung et al. (2011) underpinned that AMPs can improve the
immune response to vaccination258. Human defensins, expressed in white blood cells, par­
ticularly neutrophils, can attract cytokines, stimulating endogenous defense258. Vaccination
based on such an antigen therapy could be more effective258.

AMPs additionally possess regulatory capabilities, impacting various immunomodulatory
pathways92. In particular, Hancock et al. (2016) revealed multiple interactions of the AMP
LL­37 with different genes and proteins, demonstrating the importance of this cathelicidin
for metabolism92. Notably, the authors stated that due to enzymatic modification, the host­
microbiome eludes AMPs92. Hilchie et al. (2013) suggested another class of AMPs, denoted
as innate defense regulators101. Three groups of interactions are described: targeted anticel­
lular activity, including microbial or tumor cell wall lysis, peptide­mediated immune response,
including antigen­presenting AMPs, and immunomodulation, such as cytokine biosynthe­
sis101. For instance, LL­37 binds on the targets cell surface, resulting in affinity to white
blood cells and immunomodulation101. Hilchie et al. (2013) also reported that albeit some
species elude cell lysis by premature peptide degradation or adapting physicochemical prop­
erties of the cell wall, host­immunoregulation is not affected101,187. Furthermore, AMPs ac­
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tivate antigen­presenting cells to notify the adaptive immune system about the presence of
pathogens81.

In another study, Mannoor et al. (2010) bound AMPs on a solid phase to quantify patho­
gens157. In particular, pathogen levels are measured through the chemical attraction of the
peptide’s polar face to the non­polar bacteria’s lipid bi­layer157. The application of AMPs
also demonstrated potential for the food industry26. Hence, the attachment of AMPs to the
inner surface of containers extended the content’s edibility26. Furthermore, small vesicles
prepared with AMPs can be mixed into cosmetical products to extend storage life26.

4.4 Synthetic Modification

Physicochemical properties determine the activity and toxicity of AMPs. Toke et al. (2005)
testified an overall positive charge for active peptides; hence, the cationic character is critical
to interact with the negatively charged cell membrane231. The actual number of positively
charged amino acids is secondary231. Specifically, the charge correlates only to a certain
degree with interaction tendency231. Membrane penetration has a maximum and is inde­
pendent of additional positively charged residues231. However, the hydrophobic moment,
hence, amphipathicity, is crucial for antimicrobial activity and is, according to the authors,
more critical than helicity and hydrophobicity231.

AMPs with evenly distributed hydrophilic and hydrophobic faces tend to arrange vertically
to the phospholipids, hence, parallel to the cell membrane231. In contrast, peptides exhibiting
overall hydrophobic face form pores, that is, prefer parallel alignment to the phospholipids231.
Peptide orientation also determines the binding phases231. Peptides interact with the cell
wall, followed by the insertion into the membrane231. As mentioned above, the structure is
also significant for selectivity and efficiency, which could be verified by artificially secondary
structure lysis, resulting in inactivity and hindered selectivity231.

Impeding premature lysis is essential since AMPs are prone to protease and to salt81,231.
Low salt susceptibility is crucial at endogenous conditions, including tolerance to the physi­
ological salt concentration170. AMPs can also possess undesired side­effects, for instance,
bleeding disorders, modification of the innate immune response, or hemolytic activity, which
must be mitigated by synthetic sequence modification81,231. Regarding hemolysis, Giuliani
et al. (2007) suggested the substitution of arginine with lysine to improve selectivity to mi­
croorganisms and hamper interaction with red blood cell81. Nicolas (2009) underpinned the
importance of arginine prevalence to support membrane translocation179.

Brogden and Brogdon (2011) recited a variety of chemical modifications to improve AMPs26.
These modifications include substitution with non­proteogenic amino acids or enantiomers
conjugates, sequence truncation, amino acids deletion, or hybridization of AMPs26. The
fundamental characteristics, hence, polar or non­polar moieties and hydrophobicity, are re­
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tained26. The attachment of the side chain to the amide group instead of the α­carbon
also significantly reduced susceptibility and retained antimicrobial activity26,168. Examples
for hybridization include the peptides cecropin­mellitin or pyrrhocoricin­drosocin­apidaecin
(A3­APO)26,202.

A3­APO leverages multiple properties from its parent peptides, resulting in a dual mode of
action, which involves membrane lysis and translocation26. Substitution of individual amino
acids, including the modification of the secondary structure, is also essential26. Cyclization
enhances the stability of AMPs, confirming the effectivity of plant­derived cyclic AMPs26. In
terms of stability, hence, pharmacokinetics, Findlay et al. (2010) suggested incorporating
chiral amino acids to reduce premature peptide digestion, for instance, exchanging L­leucine
with D­leucine mitigates proteases70. Rathinakumar et al. (2009) observed that replacing
L­amino acids with their D­enantiomers results in disorganization of the helix and simultane­
ously reduces antimicrobial activity against some species191. A further strategy to enhance
activity concerns the employment of more voluminous side chains to inhibit the protease’s
active site70. Amino acid modification using fatty acids increases the interaction with the cell
membrane70.

Schmidt et al. (2011) narrowed down the membrane disruption progress of multiple de­
fensins to the “sattle­spray curvature” and underpinned the role of a specific amino acid com­
position205. More precisely, the authors discovered that fewer arginines could be neutralized
by additional lysines and, in general, hydrophobic residues205. Notably, more lysines and
fewer arginines highly correlate with the overall hydrophobicity and confirm the significance
of lysine for antimicrobial activity205. The results demonstrated that the microbial mem­
brane, composed of negatively charged phospholipids, and choline­rich eukaryotic mem­
branes, is crucial for selectivity205. The authors observed membrane bending solely for
phosphatidylethanolamine­containing prokaryotic cell walls205.

Another determinant of antimicrobial activity is the peptide length. Seo et al. (2012) col­
lected multiple short AMPs with less than 12 amino acids and described their clinical rel­
evance209. Remarkably, even AMPs with three amino acids possess antimicrobial activ­
ity209. For instance, the three amino acids long, C­terminus truncated α­MSH, still demon­
strated pleiotropic effects209. Moreover, Mikut et al. (2016) designed peptide libraries of
varying amino acid composition derived from a large cohort of short, active peptides for high­
throughput screening167. The results revealed that antimicrobial characteristics, such as
hydrophobic moment and positively charged amino acids, are difficult to transfer to short
peptides167. However, the findings suggest highly active candidates with a low minimum in­
hibitory concentration (MIC)167. Findlay et al. (2010) noted that short AMPs are cheaper to
synthesize70.

Furthermore, Teixeira et al. (2012) investigated the contribution of cell membrane charac­
teristics to AMP selectivity229. The authors listed the percentage of various compartments
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of prokaryotic and eukaryotic membranes to elucidate the importance of the target mem­
brane229. Since the interaction between the positively charged AMP moiety and negatively
charged phospholipids occurs via variations in the potential, the electrostatic of the lipid­
bilayer is crucial229. The charge also hampers interaction with eukaryotic cell membranes
due to more uncharged phosphatidylcholine or sterols229. Teixeira et al. (2012) pointed out
that phosphatidylserine also contributes to selectivity, and albeit the inner section of eukary­
otic membranes partly consists of this lipid, AMPs would require exposition for toxicity229.

A major obstacle is the in vitro, time­consuming screening for novel AMPs77. To tackle this
challenge, Fjell et al. (2012) underpinned advantages using “virtual screening” techniques71.
Researchers can employ machine learning (ML) algorithms to predict AMPs virtually. These
algorithms are trained with known AMPs, for instance, derived from public databases71. Many
ML models require a fixed­length and numeric input137; thus, preprocessing of the amino acid
sequences is necessary. To this end, the subsequent chapter thoroughly describes encoding
libraries, ML for peptide classification and the diversity of ML models utilized in this context.
The ML chapter is completed by publications made as part of this dissertation.
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Machine Learning

Various aspects of antimicrobial resistance and data integration of multi­omic resources have
been presented. Specifically, environmental epidemiology utilizes next­generation sequenc­
ing data or different bioanalytical techniques, including polymerase chain reaction (PCR).
Afterward, the data is used for bioinformatics and statistical evaluation. In contrast to such
prospective studies, artificial intelligence retrospectively finds unknown patterns in the data.
The current section continues the work of the previous chapters and illuminates various parts
of machine learning (ML) workflows for host­defense peptide (HDP) classification. First, the
present section describes the necessity of public peptide databases for data generation. The
second part covers libraries for peptide encodings and an overview of available descriptors.
The third section introduces various models and applications for ML on peptidomics datasets,
including antimicrobial or cell­penetrating peptides. Since researchers applied numerous en­
codings on various biomedical prediction tasks, this part concludes with our encoding bench­
mark and the introduction of sophisticated ML models. In this light, a novel method for en­
semble performance and unsupervised encoding selection is also outlined.

5.1 Databases for Antimicrobial Peptides

Sufficiently large datasets are critical in silico peptide screening studies. A binary classifica­
tion problem is expected; hence, the dataset consists of sequences from two classes. The se­
quences from the positive class carry the property to be predicted, such as antimicrobial effi­
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ciency. Peptides from the negative class are ineffective. A straightforward manner is to query
the UniProt database12. Sequences annotated with, for instance, “antimicrobial” are as­
signed to the positive class; otherwise, to the negative class253. Multiple dedicated databases
for antimicrobial peptides (AMPs) have been published over time. These databases enable
researchers the ready acquirement of experimentally validated, for instance, biocidal, amino
acid sequences238.

Wang et al. (2004) established the Antimicrobial Peptide Database (APD)243. The latest
version of the APDs is a collection of around 2,700 HDPs, including the majority being an­
tibiotic and other peptides, comprising antiviral or antifungal effects240. The APDs provides
biological information, such as the target species, or further details on biochemical modifica­
tions240.

Zhao et al. (2013) founded the Linking Antimicrobial Peptides Database (LAMP), which
contains approximately 5,500 natural and synthetic AMPs265. The maintainer incorporated
associations between various AMP databases, linking the entries to other repositories, provid­
ing comprehensive sequence information265. In addition, the LAMP covers AMP cell speci­
ficity and the toxicity of AMPs265.

Waghu et al. (2015) created the Collection of Antimicrobial Peptides (CAMP)238. The
CAMP aggregates over 10,000 sequences, partly wet­lab verified238. A unique feature con­
cerns the family­wise grouping238. In particular, the authors trained Hidden Markov Models
with sequences belonging to known AMP families, for instance, cathelicidins, to categorize
further peptides238. Moreover, the database provides structures of around 750 AMPs238.

Jhong et al. (2019) developed dbAMP, a database consisting of more than 12,000 HDPs,
with nearly one­third being laboratory reviewed113. A unique feature is the possibility to up­
load multi­omic data from the genome, transcriptome, or proteome for automatic AMP screen­
ing113. The latest update provides 26,447 HDPs114.

The dataset construction concludes with the removal of similar sequences, as it has been
conducted by Chung et al. (2020)44. Thus, the authors utilized the CD­HIT algorithm to
remove overlapping amino acid sequences and to detect AMPs in various species subse­
quently44. In particular, CD­HIT counts k­mers to quantify the similarity between, for instance,
peptides107. Afterward, the algorithm determines relevant sequences, hence, clusters, and
assigns related ones to the respective cluster107. In the present context, CD­HIT is generally
utilized to clean the initial AMP datasets before model training44,58,252.

Golbraikh et al. (2014) introduced the Modelability Index (MODI), which describes the
number of similar sequences within and across classes as a single metric82. Consequently,
the MODI can be used to estimate the discriminability of a given dataset a priori 215.
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5.2 Encodings

Datasets for binary classification tasks consist of amino acid sequences, represented as
strings of amino acids in the one­letter code of differing lengths. The initial preprocessing
step covers the elimination of similar sequences (see Section 5.1). Afterward, the workflow
encompasses the sequence encoding220. Encoding algorithms translate the raw input to nu­
merical sequences with equal length220. One differentiates among a direct mapping from
amino acids to an index, for instance, using the hydrophobicity, or the incorporation of multi­
ple amino acids, including the k­mer count220. Various packages have been published in the
last years, easing the programmatic access to these algorithms and underpinning the great
variety of available encodings.

Cao et al. (2013) implemented PyDPI, a library for the numerical description of chemical
and biological sequences30. The packages include six amino acid encodings based on, for
instance, the composition or auto­correlation30. In addition, the authors introduced further
encodings to represent protein­protein interaction and molecule­protein interaction30.

Ruiz­Blanco et al. (2015) developed ProtDCal, an interactive Java tool providing various
physicochemical encodings to study the sequence­structure relationship200. In a recent up­
date, the working group also provides a web­based version (ProtDCal­Suite)199.

Furthermore, Wang et al. (2017) published a PSSM­based encoding framework, namely
the POSSUM web service241. In particular, the algorithm leverages the position­specific scor­
ing matrix (PSSM) of the Position­Specific Iterative BLAST (PSI­BLAST) algorithm as input,
which represents the query peptides using the calculated evolutionary stability4,241. More­
over, the iFeature package by Chen et al. (2018) aggregated 18 encoding methods and
various preprocessing algorithms, including clustering and feature reduction39.

PyBioMed, developed by Dong et al. (2018), introduces further encodings for amino acid
and nucleotide sequences59. The package offers interfaces to further sequence databases59.
In the light of PyDPI30, another feature of PyBioMed are encodings, which describe the in­
teraction between macromolecules, such as DNA and proteins59.

Li et al. (2019) integrated, besides various DNA, RNA, protein encodings, ML models in a
comprehensive web­based tool denoted as BioSeq­Analysis2.0142. The developers grouped
the encodings by residue­ and whole­sequence­derived descriptors and introduced a novel
for the former class142. A similar project, namely ProPythia, has been published by Sequeira
et al. (2021)210. The authors implemented a user­friendly framework, which includes multiple
amino acid sequence encodings for preprocessing and various ML components210. Addition­
ally, ProPythia provides access to numerous Deep Learning (DL) modules210.

Recently, Bonidia et al. (2021) augmented the encoding domain with a novel descriptor
group, which the authors denote as “mathematical descriptors”21. As part of their MathFea­
ture library, the authors added, for instance, the “complex networks” encoding, initially devel­
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oped by Ito et al. (2018)21,111. This encoding represents a biological sequence as a graph,
with k­mers being the nodes, and the edge weight reflects the k­mer count111. The final
encoding is derived of various measures from graph theory, such as the betweenness cen­
trality, which summarizes the number of shortest paths through a particular node111. Users
can access the MathFeature package via the command line or graphical user interface21.

The objective of the packages above is to capture the biological meanings of the input
sequences involving potential interactions of non­adjacent amino acids. However, individ­
ual amino acids can also be regarded as categorical data, which is a common challenge in
ML32,189. To this end, McGinnes et al. (2018) published the category_encoder library, a col­
lection of various encodings for non­numeric scales163. The one­hot encoding is a straight­
forward example since it is simply a binary vector with the length equal to the number of
instances per category, and one bit set, respectively189.

Nevertheless, the one­hot encoding is only one proxy of a pool of many encodings. This
circumstance is additionally reflected by the broad choice of encoding packages mentioned
above. Some of the presented libraries also interface multiple ML models. Ultimately, re­
searchers are faced with numerous encodings and models to tackle a biomedical classifica­
tion task. Thus, in a recent review, we comprehensively examined a wide range of encodings
and models220.

5.2.1 Encodings and Models for Antimicrobial Peptide Classification for
Multi­resistant Pathogens

As part of this dissertation, we reviewed various encodings, specifically for the prediction
of AMPs220. Encodings are derived from the primary structure, or secondary and tertiary
structure220. Thus, we classified encodings in two main groups: sequence­based encodings
(SeBEs) and structure­based encodings (StBEs)220. In addition, model­based encodings
(MoBEs) involve intrinsic, model­dependent representations220. MoBEs are derived either
from the primary or tertiary structure220.

SeBEs process individual or multiple amino acids at once220. For instance, the binary en­
coding or physicochemical properties are functions of single amino acids and return a binary
vector or a float value per amino acid, respectively220. The AAindex database119, a collection
of various experimentally derived amino acid indices, can be used to retrieve physicochemical
properties220. A drawback of a one­to­one mapping concerns peptides of varying length220.
For this purpose, Heider and Hoffmann (2011) developed Interpol, a package that provides
algorithms for normalizing the input sequences to a common length98,220.

The second group of SeBEs summarizes multiple amino acids, which is beneficial for re­
flecting the interaction of non­adjacent amino acids220. With these SeBEs, sequences of
different lengths can be conveyed in a fixed­length feature vector, eluding the necessity of in­
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terpolation220. The amino acid composition (AAC) is a basic example220. Here, each amino
acid is counted, and the ratio concerning the total residue number is calculated220. An ad­
vanced encoding first groups the amino acids using their chemical characteristics, such as
the charge, before calculating the composition220. Various SeBEs encode the interaction
of distributed amino acids statistically220. Essential proxies comprise auto­correlation­based
encodings, which measure repeating patterns within a peptide or protein220. The individual
amino acids are firstly represented by their physicochemical properties, followed by the actual
correlation analysis220.

In contrast to SeBEs, encodings derived from the secondary or tertiary structure (StBEs)
describe the conformation of the amino acid chain in the three­dimensional space220. StBEs
require the amino acid coordinates in advance220. The Protein Data Bank (PDB) is a central
repository for peptide and protein structures, which also enables the retrieval of AMP struc­
tures29. The CAMP additionally provides access to hundreds of AMP conformations238. The
peptide structure is employed for calculating various encodings, for instance, describing the
secondary structure content or fold propensity220. Another example is the electrostatic hull,
which encodes electrostatic properties at distinct points across the solvent­accessible sur­
face146,220. This surface is the reference to determine the final feature vector using various
distances146,220.

A further StBE is the Delaunay triangulation220. First, the coordinates of all amino acids,
specifically of the Cα­atoms, are used as the triangulation constraints, which states that the
circumscribed sphere of four connected atoms, hence, a tetrahedron, must not contain ad­
ditional points220. If the condition is fulfilled, the respective amino acids are connected via
edges220. Subsequently, the Delaunay triangulation is passed to several aggregation meth­
ods220. For instance, the average distance calculates the average length between two indi­
vidual amino acids, ultimately used as feature220.

We concluded with an overview of additional encodings220. One example is the chaos
game representation (CGR), which depicts the primary sequence as two­dimensional im­
ages220. Recently, Löchel et al. (2021) also highlighted the broad applicability of this encod­
ing147, including constraint resolution towards synthesis and sequencing in the field of DNA
storage148.

We also listed several models, for instance, the Random Forest classifier (RFC), which has
been successfully employed for the prediction of AMPs220. Support Vector Machines (SVMs)
are a special case since the default kernel can be used for classification and custom ker­
nels220. An example for the latter is the string kernel, a MoBE, which measures the similarity
between two amino acid sequences220.

Although the review explicitly focused on AMP prediction, amino acid encodings and ML
models have been applied in many biomedical domains. Thus, more details on applications
are provided in the following section.
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5.3 Biomedical Applications

The classification of AMPs is crucial; however, encodings enable general peptide classifica­
tion tasks. Specifically, Section 4.3 provides an overview of the pleiotropy of HDPs. In the
following, selected biomedical studies on ML and applications are introduced, highlighting
peptides’ broad applicability and the importance of encodings.

Lee et al. (2016) employed various encodings to investigate the cell membrane activity of
AMPs138. The employed encodings comprise dipeptide composition (DPC), peptide charge,
and auto­correlation­based algorithms, among others138,220. In the first step, the authors
trained an SVM model to predict novel, active AMPs138. To reduce the search space, Lee
et al. (2018) included other properties, for instance, sequence similarity or α­helix propen­
sity138. Selected peptides have been synthesized to examine membrane affinity experimen­
tally138. Lee et al. (2016) also confirmed the “sattle­spray curvature” formation (see Section
4.4)138,205. Finally, the authors applied the developed algorithm to determine membrane in­
teraction and predicted several peptides with significant activity, including neuropeptides138.

Gupta et al. (2017) examined interleukin­17 (IL17) inducing effects of peptides88. Specif­
ically, IL17 is a cytokine naturally involved in the host defense; however, over­expression
results in various autoimmune diseases88. First, the authors collected sequences, specifi­
cally epitopes, hence, amino acid patterns located on antigens15, with and without an IL17­
inducing effect88. Afterward, the authors employed the AAC, DPC, and amino acid pairs
(AAP)88. The AAP encoding is based on the DPC, whereby the dipeptides are addition­
ally weighted using their frequency in the dataset88. Finally, the authors deployed an SVM,
trained on the DPC­encoded dataset due to superior performance88.

Simeon et al. (2017) investigated the effect of various composition­based encodings for
HDP prediction215. In particular, the authors employed the AAC, DPC, and composition/tran­
sition/distribution­composition (CTDC) encodings for the subsequent identification of crucial
sequence components215,220. The CTDC encoding, a special case of reduced AAC descrip­
tors, groups amino acids using their physicochemical properties and returns the percentages
per group as the final feature vector220. Important features have been constituted with the
biological meaning, including the significance of threonine in antibacterial peptides, due to the
involvement of this amino acid in manifold host­defense processes215. The final algorithm is
denoted as PepBio and uses C4.5 decision trees and the RFC as models215.

In contrast, Fuchs et al. (2018) encoded peptides on the molecular level using quantitative
structure­activity relationship (QSAR) descriptors76,220. The goal of the study was the pre­
diction of lipophilicity76. This characteristic describes the uptake efficiency of drugs and is
specifically important in pharmaceutical research108. The authors utilized two ML regres­
sion models, namely SVM regression and Least Absolute Shrinkage and Selection Opera­
tor (LASSO)76. The final output is based on the average prediction of the SVMs using the
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feature subsets obtained by the LASSO and Principal Component Analysis (PCA)76. No­
tably, Fuchs et al. (2018) applied their model to successfully estimate the lipophilicity of
several newly synthesized peptides76.

Grisoni et al. (2018) studied the efficiency of cancer­toxic peptides through DL84. The au­
thors encoded the peptides through the binary encoding84. In particular, the initial amino acid
sequences have been transferred into k­dimensional binary input space, where k is the length
of the longest peptide177. The model was pre­trained on generic peptides fulfilling properties
of anticancer peptides (ACPs)84. Afterward, in vitro verified ACPs were used for the con­
clusive training, and the final model was employed to generate novel ACPs84. Compared
to the experimental data, the predictions possessed similar physicochemical properties84.
Agreeing overlapping characteristics demonstrated the generative capability of the applied
model84. Ultimately, 12 peptides have been synthesized, of which six showed high in vitro
selectivity in breast cancer cell lines84.

In this light, Shoombuatong et al. (2019) developed an online­accessible tool, namely TH­
Pep, to predict ACPs213. The authors implemented multiple RFCs employing AAC, DPC,
and the pseudo amino acid composition (PAAC)213. The PAAC utilizes the AAC and auto­
correlation of non­adjacent amino acids using a distance of λ220. The hybrid model trained
with the AAC and PAAC encodings achieved the highest accuracy213. Additionally, the au­
thors observed that tryptophan is an import feature for ACP classification213. The importance
of tryptophan is following Simeon et al. (2017)215 and other studies213.

Another study concerning ACPs has been conducted by Gabernet et al. (2019)78. The
authors collected the ACPs from the CancerPPD database232, and peptides possessing a
known secondary structure from UniProt78. As sequence representation, QSAR­derived
molecular features have been employed78,220. First, RFC and SVM models have been used
for classification78. Afterward, the authors verified putative ACPs and confirmed that around
four­fifth of the synthesized peptides have in vitro activity78. Furthermore, Gabernet et al.
(2019) implemented an evolutionary algorithm to ameliorate selectivity78. The resulting pep­
tides demonstrated increased affinity towards tumor cells and mitigated toxicity78.

Manavalan et al. (2019) leveraged artificial intelligence to classify peptides possessing
hypertension decreasing effects153. Hypertension causes cardiovascular diseases and is
widespread among the population; thus, additional treatment options are of great interest153.
The authors employed various encodings to represent the peptides in a machine­readable
format and to enable the training of multiple models153. Besides the AAC, DPC, and the
CTDC encoding, the authors employed physicochemical properties of the amino acids and
binary transformation of the N­ and C­terminus153. Additionally, the authors included the
“overlapping property” encoding153. Briefly, each amino acid is depicted as a binary vector
of length 10, whereby each bit represents a certain biochemical property153. Amino acids po­
tentially share attributes; thus, properties are overlapping153. In contrast, the “twenty­one­bit”
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encoding prohibits amino acids in the same group; therefore, seven physicochemical prop­
erties partitioned in three groups result in 21 features per amino acid153. The final prediction
ensues from the mean probability of several base models153. Peptides exceeding the 0.44
threshold are putative antihypertensiv153.

Furthermore, Armenteros et al. (2019) implemented a DL algorithm to detect signal pep­
tides, which define the affinity of proteins to intracellular targets6. The authors encoded the
sequences using the BLOSUM62 scoring matrix6. This matrix reflects the probability of in­
effective sequence alterations within a certain period220. Armenteros et al. (2019) utilized
the final model to examine amino acids with significant contribution to signaling cascades6.
The authors revealed that an alanine at the second position of the peptide is an essential,
particularly for chloroplast targeting6.

Damiati et al. (2019) employed ML to examine the interaction of cell­penetrating peptides
and model membranes52. The authors trained an Artificial Neural Network (ANN) featuring
the amino acid count, sequence length, weight, charge, hydrophobicity, and composition of
hydrophilic amino acids, as well as the examined membrane52. The final model revealed a
high agreement between the observed and predicted membrane compression52. A feature
importance survey indicates that tryptophan and less hydrophilic amino acids are significant
contributors to membrane interaction52. According to the authors, this is due to the relevance
of the molecular weight and low hydrophilicity for cell penetration52.

Wei et al. (2020) developed another framework to predict signal peptides, in particular
focusing on quorum­sensing peptides (QSPs), essential for subcellular interactions245. The
authors utilized several encodings, such as the CTDC220, similar encodings as Manavalan
et al. (2019)153, and additional ones245. The g­gap dipeptide composition (GPC) is based
on the DPC and comprises non­adjacent dipeptides245. Moreover, the adaptive skip dipep­
tide composition calculates the auto­correlation between adjacent and non­adjacent amino
acid pairs245. The 188­bit encoding combines the AAC and CTDC encodings using various
physicochemical properties245. The authors trained RFCs for each encoding class and fused
the predictions using stacked generalization129,245. Thus, the final feature vector depicts the
QSPs as a binary vector245.

Yamashita et al. (2020) examined the impact of amino acid substitution on the inhibitory
activity of enzymes257. The concerning peptides inhibit critical enzymes, for instance, α­
amylase and α­glucosidase, involved in digestive processes257. The authors generated the
initial dataset by substituting amino acids on various positions and experimentally verified
the efficiency257. Subsequently, amino acid­, and sequence­wise, physicochemical prop­
erties have been utilized for the encoding220,257. Finally, Yamashita et al. (2020) used a
Random Forest regressor (RFR) to predict peptides with increased inhibitory activity257. The
authors observed that although the expected activity was higher, a molecular docking­based
validation demonstrated still improved efficiency257.
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Charoenkwan et al. (2021) developed a DL model to classify the bitterness of peptides36.
The authors motivated their research with the significance of drug flavor since bitter agents
could enhance aversion36. For the DL part, the authors used a Word2Vec­derived method
to encode the sequences36. Word2Vec embeds sentences; hence, amino acid sequences
in the present case, in a vector space, retaining the context36,166. However, the final model
uses the “bidirectional encoder representation from transformers” method, which can capture
a more fine­grained representation of the context36. The authors encoded the sequences
with, for instance, AAC and amino acid indices36. The encoded dataset has been utilized for
training further models36. Nevertheless, the DL algorithm, namely BERT4BITTER, revealed
superior performance36.

Janairo (2021) published a study concerning the prediction of antioxidative peptides112.
Antioxidative agents are essential to alleviate oxidation, resulting in cell damage due to free
radicals112,214. The author described antioxidative tripeptides employing various SeBEs and
StBEs112,220. The encoded sequences are subsequently used to train an SVM regression
model112. The model using the BLOSUM encoding achieved the highest accuracy112. Janairo
(2021) highlighted the significance of in silico models for more environment­friendly peptide
synthesis since manufacturing is targeted112.

Shen et al. (2021) classified antioxidative peptides212. In this study, the authors used the
PAAC in combination with a motif count scheme212. The algorithm searches the peptides with
and without antioxidative activity for characteristic motifs212,236. Besides the actual amino
acids, the motif search also considers various physicochemical features236. The predicted
pseudo probabilities are increased, if a motif is present212. Albeit the authors claim that the
motif encoding resulted in higher performance, validation results on an independent test set
indicated non­significant differences212. However, the final model was used to predict novel
peptides212. The top peptides have been synthesized and tested, revealing one with good
antioxidative activity212.

In another study, Manavalan et al. (2021) compared models from different working groups
to predict anti­severe acute respiratory syndrome coronavirus type 2 (SARS­CoV­2) peptides
and epitopes152. The majority of the applied encodings have been reviewed by Spänig and
Heider (2019)220, including multiple SeBEs, for instance, auto­correlation, and various StBEs,
such as distance distribution152,220. The authors encoded the amino acid sequences to cre­
ate a benchmark dataset152. Using this dataset, all classifiers revealed poor performance,
as only one model exceeded the Matthews correlation coefficient (MCC) of 0.3152. Although
the developers of the evaluated algorithms utilized various encodings, the association of the
encoding selection and model performance is not discussed.

The prediction of active peptides depends on in vitro or in vivo screening results. ML
requires verified data, hence, the true label; likewise, artificial intelligence drives novel hy­
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potheses, ultimately experimentally tested and reassessed139. This self­reinforcing cycle of
wet­lab results, ML, and peptide synthesis generates more and more data, bridging the gap
between biology and computer science. A critical component concerns artificially manufac­
tured amino acid chains, with the solid­phase peptide synthesis being an important proxy of
these methods172.

However, “difficult sequences”, resulting from the aggregation of non­adjacent amino acids,
impair the synthesis45. Since determinants for aggregation events are unclear, ML models
could be developed to enable prediction171. To this end, Mohapatra et al. (2020) conceived a
DL­based framework to estimate the synthesis performance171. Specifically, the authors uti­
lized the peptide sequence, the amino acid to be coupled, and the parameters of the synthesis
machine as input171. The fingerprint encoding, binary­encoded molecular properties similar
to the QSAR descriptor, has been used to describe the amino acids171,197,220. The binary
encoding has been employed for categorical values171. The target score is the amplitude of
the ultraviolet signal per reaction, hence, the coupling success171. The final model accurately
predicted difficult couplings; thus, allowing improved peptide synthesis in the future171.

5.3.1 Multivalent Binding Kinetics Resolved by Fluorescence Proximity
Sensing

Mohapatra et al. (2020) created a model, which can be applied to optimize peptide synthe­
sis in various domains171. Targeted synthesis decreases time and material overhead; thus,
environmental pollution and expense112. In this light, a further study contributed to this disser­
tation stressed the significance of computer­aided predictions206. Specifically, we examined
the binding affinity of peptides, modified with chemical conjugates206. It has been verified
how different architectures, hence, di­, tetra­, and octamer linkers, could reinforce the inter­
action with the target protein206. The results demonstrated a positive correlation between
linker count and the binding rate206.

We used the modified peptides and binding affinities to train an ML model206. The amino
acid sequences have been encoded with the AAC and the different architectures through
binary encoding206. Although the RFR revealed good performance, more research is neces­
sary to study the effect of the amino acid composition and diverse architectures206.

The current chapter highlighted the great variety of encodings and applications in biomed­
ical domains. Therefore, we gathered 48 encoding groups and 50 biomedical datasets and
conducted a large­scale encoding comparison study as part of the thesis223. The experi­
ments illuminated potential application­dependent encoding performance223. More details
on this study will be addressed in the following section.
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5.3.2 A Large­scale Comparative Study on Peptide Encodings for Biomedical
Classification

Researchers implemented various peptide encodings for diverse applications. These biomed­
ical domains include antimicrobial, antiviral, or signal peptides classification. Peptides pos­
sess additional targets, such as oxidation or hypertension regulators. However, encodings
are applied without reasoning the selection more detailed. Thus, it is unclear whether cer­
tain encodings should preferably be used on certain biomedical applications223. Conse­
quently, we conducted a comprehensive benchmark comprising various encoding groups
and datasets from manifold domains223. We collected 50 datasets to evaluate 48 encoding
groups divided into two groups: SeBEs and StBEs220,223.

StBEs are based on the secondary or tertiary structure. Thus, structural data is required
for the encoding algorithm; however, conformational information is unavailable for many pep­
tides. To this end, researchers developed various structure prediction algorithms186. Due to
the lengthy computation, embedding in a high­throughput framework is impractical223. There­
fore, we presented a novel algorithm, which can approximate the tertiary structure223. The
Basic Local Alignment Search Tool (BLAST)4 has been employed to screen a database with
known peptide and protein structures223. The best match on a sub­structure is extracted and
returned as the tertiary structure approximation223.

A further concern is the large number of encoded datasets223. The pseudo k­tuple re­
duced amino acids composition (PKRAAC), which accepts five parameters, contributes sig­
nificantly223. The PKRAAC is based on the PAAC encoding and measures the auto­corre­
lation between gap­divided k­mers or within a specific window using a reduced amino acid
alphabet39. To obtain a representative encoded dataset, we calculated the correlation be­
tween each dataset and amino acid alphabet223. Afterward, this information is used to obtain
a distance matrix to project the datasets into a two­dimensional space223. The representative
dataset is the center of the cluster (medoid)223. In this way, the initial number of encoded
datasets could be substantially reduced223.

For the actual benchmark, RFCs are trained on the remaining datasets to calculate sev­
eral metrics223. The metrics, for instance, MCC and sensitivity, are later utilized to rank and
cluster the encoding groups223. However, we implemented various additional statistics to
compare the encodings not only performance­wise223. The diversity indicates the agreement
of the classifier outputs; hence, to what extent encodings resemble on their predictions223.
The critical difference detects significant different classifier outputs223, and has been initially
developed to compare multiple classifiers on multiple datasets201. We applied it to compare
multiple folds of multiple encoded datasets223. The adjusted RV­coefficient has been em­
ployed to calculate the correlation between encoded datasets, specifically within encoding
groups and contiguous parameters223. This statistic has been originally introduced to calcu­
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late the correlation among k­dimensional omics datasets, further aggravated due to distinct
k’s per dataset162.

We observed superior performance of the SeBEs223. Concerning the class ratio, the mis­
classification rate of balanced is lower than imbalanced datasets, which is also reflected by
the ranks223. Only a few encodings, mostly SeBEs, are continuously among the best223.
Multiple SeBEs and StBEs are rarely or never top­ranked223. Notably, the QSAR encoding
demonstrated superior performance on the human immunodeficiency virus (HIV) datasets223.
The clustering confirms the distinction of SeBEs and StBEs; however, a clear separation of
biomedical domains is not visible223. The HIV and some AMP datasets are exceptions223.
Also noticeable is the relationship of encoded datasets originated from the same group223. In
particular, contiguous parameters yield similar performance223. This observation is addition­
ally confirmed by the adjusted RV­coefficient, which revealed high similarity within encoding
groups and the non­critical difference of the respective classifiers223. Moreover, unrelated
encodings, including SeBEs and StBEs, indicate higher diversity223.

Albeit we could not detect encodings superior on a particular biomedical domain, we pro­
posed instructions for encoding selection223. Researchers should prefer SeBEs, due to faster
computation223. Furthermore, we recommended SeBEs, which are more common among
the top ranks223. In addition, it is advisable to limit the parameter space, owing to the high
similarity of parameterized encodings223. Finally, we referred to Kunchevas’ (2014) gen­
eral129 and Spänig and Heiders’ (2019) specific220 advice to fuse the predictions of base
classifiers223. Ensemble classifiers mitigate weaknesses and reinforce advantages of indi­
vidual classifiers129. Ensemble techniques are already widely applied in the domain. Conse­
quently, the following section introduces selected examples in more detail and emphasizes
the contribution of various encodings.

5.4 Base Models and Ensemble Classifiers

Various base models have been mentioned in the previous sections, including the Decision
Tree classifier (DTC) or the SVM. The term “base” reflects that the predictions are aggre­
gated in a meta­model, potentially improving the performance of the first­layer predictors129.
Meta­models or ensemble classifiers correct misclassified training examples from the first
layer. Ideally, some base models will predict correctly, whereas others will fail on respective
instances129. Thus, an ensemble of three base models using the majority vote as fusion
method will assign the correct label if at least two predictions agree with the actual class in
the basis layer129. This example also demonstrates the importance of the diversity of the
individual predictors129. If base models agree on their output, the ultimate performance will
not improve. Although diversity is crucial, researchers should consider other metrics to find
optimal first­layer models129.
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Combining different encodings to incorporate multiple amino acid sequence properties as
ensemble classifiers is an active research topic. For instance, the RFC, an ensemble of
DTCs, has been extensively applied78,215,245. Nevertheless, researchers developed various
other approaches. For instance, Löchel et al. (2018) developed a classifier to predict co­
receptor tropism of the HIV subtype A146. The model combined two base classifiers using
stacked generalization146. In particular, Löchel et al. (2018) trained the first model with
physicochemical properties of the primary structure146. The second model deployed the
tertiary structure, numerically encoded by the electrostatic hull (see Section 3.2.1)146. The
authors trained the meta­RFC via the predicted probabilities of the first­layer classifiers146.
Although the ensemble performed, regarding the area under the curve (AUC), worse than
the base models, the authors observed improved sensitivity and specificity under the partial,
thus, diagnostic relevant, AUC146,149.

Singh et al. (2019) developed a further ensemble method to predict HIV protease cleavage
sites216. The HIV protease is a critical drug target since it is involved in the virus replication216.
The algorithm is based on multiple SeBEs, for instance, amino acid and dipeptide compo­
sition216. Moreover, the authors used SVMs with four different kernels as base classifiers,
and each model is trained on individually encoded datasets216. Furthermore, Singh et al.
(2019) implemented a genetic algorithm consisting of genes, encoding for each of the four
SVM types, the presence or absence, and the weight of a base model216. Hence, the first
layer ranges from one to altogether 56 base classifiers, which are selected and improved
over time using various genetic operators, such as mutation216. The final output results from
a weighted majority vote; hence, a modification of the ordinary majority vote, which weights
the respective predictions before voting216. According to the authors, automatic weight as­
signment emphasizes efficient models and encoding combinations, ultimately confirmed by
the high accuracy216.

Zhang et al. (2020) presented a multi­stage AMP ensemble classifier263. The architec­
ture enables the first distinction between sequences possessing an antimicrobial effect and
non­AMPs263. The second stage evaluates the specific subcategory, for instance, antiviral
or antifungal263. The authors employed a classifier chain263. For each label, a separate bi­
nary predictor is trained; however, the predictions of the first classifier are used to train the
next and so forth194. The majority vote aggregates the predictions of the individual chains,
ultimately denoted as Ensemble Classifier Chains (ECCs)194,263. Zhang et al. (2020) used
different tree­based models, leveraging the PSSM encoding and the propensity of amino
acid interactions, as base classifiers263. The second­stage ECC exploits an over­sampling
technique to tackle skewed class distribution. The proposed workflow outperformed various
state­of­the­art methods263.

Fu et al. (2020) assembled a cell­penetrating peptides predictor using stacked generaliza­
tion75. The predictions of the base models are combined using a meta SVM75. The first­layer
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classifiers included tree­based models, SVM, and k­nearest neighbors75. The individual clas­
sifiers are trained with the interaction energy of the amino acids75. Before the second­layer
stacking, Fu et al. (2020) examined the performance of the base models, whereby the SVM
revealed the best performance75. However, the ultimate meta­model was significantly bet­
ter75.

Ren et al. (2021) applied the CGR to encode genome sequences for antimicrobial resis­
tance (AMR) prediction196. The study was based on whole­genome sequencing (WGS) data
from hundreds of clinical Escherichia coli isolates and the respective drug sensitivities196.
The great advantage of the CGR encoding is the broad­applicability on multiple sequence
types, such as proteins or DNA in the current study147. Ren et al. (2021) trained an SVM,
Logistic Regression classifier (LRC), ANN, and RFC with the encoded datasets196. The au­
thors observed that ANNs and RFCs predicted susceptibility to various antimicrobials with
improved performance196. According to important features, specific single nucleotide poly­
morphisms are relevant for AMR196.

Guo et al. (2021) created an ensemble classifier to predict HDPs86. To this end, the au­
thors collected peptides, covering multiple applications, for instance, antibacterial or ­viral
activity86. Afterward, several encoding algorithms have been utilized to transform the amino
acid sequences86. The authors trained SVMs and RFCs on one encoded dataset, respec­
tively86. The probability scores of the 18 base models are used as input for a genetic algo­
rithm, which optimizes the contribution of the individual classifiers86. The final probability is
the sum of the individually weighted predictions86. Compared to the gold standard, Guo et
al. (2021) reported a slight AUC improvement on the training set; however, the difference on
the test data is minor86.

Finally, Xu et al. (2021) combined multiple DL algorithms to predict immune­modulating
peptides255. The models comprised ANNs and Convolutional Neural Networks (CNNs)255.
The dataset also contained the sequences of the accompanied T­cell receptor to enhance the
performance255. The first layer predicted the interaction probability of epitopes with the recep­
tor’s α­ or β­chain255. The average likelihood of all base models is the final score255. Based
on the results, the model determines combined αβ­chain­binding255. By applying this algo­
rithm on independent test data, Xu et al. (2021) demonstrated high AUC and accuracy255.
The binary encoding, physicochemical properties, and PCA features have been utilized as
input255. For the latter, the authors reduced the concatenation of all available amino acid
indices from AAindex database119 to the first principal components255.

In summary, it could be demonstrated that ensembles are widely adopted, and the perfor­
mance is superior to single classifiers. Additionally, the vast encodings underlying the meta
classifiers reveal the abundance, thus, the complexity of end­to­end ML workflows. To pave
the way for unsupervised pipelines, we conceived a tool that allows an automatic encoding
selection and ensemble configuration. This work continues the initial groundwork on peptide
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encodings220,223 and will be introduced subsequently.

5.4.1 Unsupervised Encoding Selection through Ensemble Pruning for
Biomedical Classification

Researchers have conducted tedious work to find the best encoding and model composition.
Specifically, the hyperparameter search space is drastically increased due to the exploration
of optimal encodings, models, and parameter configuration. To ease basic hyperparame­
ter optimization, Feurer et al. (2015) presented auto­sklearn, a framework for automated
ML69. The user solely passes a dataset, auto­sklearn conducts automatic hyperparameter
configuration, and a trained model is returned69. Various other publications underpinned the
importance of this research, for instance, Hyperopt, Auto­WEKA, and TPOT, all pursuing
different approaches or bindings to ML libraries16,182,230.

Nevertheless, these tools assume a single dataset as input. Scientists in the biomedi­
cal area are challenged with multiple encoded datasets derived from identical amino acid
sequences. The encodings alone contribute primarily to the search space, even after fil­
tering223. Furthermore, ensembles using diverse encoded datasets are potentially supe­
rior220,223, which follows Kuncheva (2014), who suggested diverse base models to minimize
the prediction error129,159. Optimal encodings and classifiers approach a theoretical bound­
ary129,159, which we leveraged for an unsupervised encoding selection222. The algorithm de­
termines the best encodings, base models, and fusion methods222. As a proof­of­concept,
we collected ten datasets from distinct biomedical domains, four base models, and three
aggregation functions222. The base models encompass the Naïve Bayes classifier (NBC),
LRC, DTC, and RFC, whose output is fused by majority voting (hard voting), averaging (soft
voting), and stacked generalization (stacking)222.

Kuncheva (2014) referred to multiple methods to select the optimal ensemble size for one
dataset129. “Sequential forward selection”, as an example, successively adds one base
model, provided the overall performance increases129. Such approaches become compu­
tationally challenging considering 100 to 200 encoded datasets223. A promising alternative
is based on the kappa­error plot, which represents classifier pairs by their diversity and aver­
age error in a two­dimensional space129. Here, the convex hull and Pareto frontier pruning
can be utilized129 to mitigate the computational complexity.

In addition, we implemented an optimization algorithm, which is based on the multi­verse
paradigm2,222. The multi­verse optimizer (MVO) receives a binary vector, where each bit
describes the presence or absence of a base model trained on a specific encoded dataset.
Hence, the i­th bit indicates whether the i­th encoding is part of the ensemble222. We also
added the best and random base models for comparison besides the convex hull, Pareto
pruning, and the MVO222. The best base classifiers are selected owing to the lowest error,
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and the random models are distributed across the kappa­error diagram222. We also intro­
duced the extended critical difference chart201, which depicts the average performance and
a statistical comparison of pruning methods and ensemble classifiers222.

In conclusion, we developed a workflow that enables high­throughput ensemble genera­
tion and unsupervised encoding selection222. Specifically, the case study involved four base
classifiers and three fusion methods created by five distinct ensemble selectors222. The re­
sults demonstrated that the ensembles improved individual performance222. The RFC, an
ensemble per se, already performed good on single encoded datasets222. The performance
gain as base classifier of ensembles is negligible222. The RFC saturation is also reflected
by a relatively compact distribution in the kappa­error chart222. The Pareto frontier pruning
creates the most efficient ensembles222. The pipeline follows an extensible design pattern;
thus, users can add other base classifiers and ensemble methods222. The visualizations and
evaluation will scale accordingly222. However, only base model­independent fusion methods
are supported out­of­the­box in the current version222.
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Publications

Following the background part, the current chapter comprehensively presents the publica­
tions of this thesis. In particular, each section begins with an extended abstract, followed
by the corresponding manuscript. The first study concerned the examination of multi­omic
datasets from European freshwater lakes221. The objective was to detect baseline levels of
antimicrobial resistance (AMR)221. The second publication discussed various encodings and
models to describe and predict antimicrobial peptides (AMPs)220. The objective of the third
publication was the evaluation of multiple encoding groups in additional biomedical areas223.
The fourth article covered the prediction of the peptide­protein binding affinity206. Finally, the
fifth publication addressed the unsupervised encoding selection leveraging ensemble prun­
ing222.

6.1 A Multi­omics Study on Quantifying Antimicrobial Resistance in European
Freshwater Lakes

The World Health Organization (WHO) designated AMR as a significant thread for modern
healthcare systems110. To prevent the estimated ten million deaths by 2050, the WHO recom­
mended effective countermeasures immediately110. Several studies surveyed AMR employ­
ing wastewater­based epidemiology (WBE), specifically from hospital effluent102. Although
many countries require hospital wastewater processing, resistant bacteria are verifiable102.
Hendriksen et al. (2019) analyzed untreated sewage of 79 sample sites of 60 countries99.
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Albeit the authors found no relation between antibiotic dispensation and AMR prevalence,
they identified sanitation standards to have a significant impact99.

Cleaned wastewater ultimately enters rivers and lakes, potentially leading to further AMR
dissemination100. Czekalski et al. (2019) conducted freshwater­based epidemiology (FBE)
on 21 Swiss freshwater lakes to relate human activity to background levels of AMR49. The
authors examined whether genes encoding for resistance against various antibiotics are de­
tectable in the sampling sites, and verified treated sewage as source for AMR specifically
against sulfonamides49.

WBE and FBE are crucial for monitoring AMR110. Thus, we collected samples from 274
European freshwater lakes and conducted a comprehensive multi­omics study on AMR.
We employed 16S rRNA amplicon sequencing for a taxonomic overview in the first step.
Subsequently, metagenomes from 39 lakes have been analyzed to quantify and allocate
AMR genes across Europe. We focused on resistance genes against the following essen­
tial human and veterinary drug classes: sulfonamides, tetracyclines, fluoroquinolones, and
cephalosporins63.

The amplicon analysis revealed various genera in the samples, including Acinetobacter,
Pseudomonas, and Mycobacterium. However, predominantly nontuberculous mycobacte­
ria are common in freshwater ecosystems198. Afterward, we utilized Operative Taxonomic
Units (OTUs) for a Principal Coordinates Analysis (PCoA) to detect differences in the sam­
pling sites. A non­parametric Multivariate Analysis of Variance (MANOVA) verified that sam­
ple sites differ significantly. The examined metagenomes confirmed the initial taxonomy as­
signment. Common freshwater genera are widespread, such as Limnohabitans90. Subse­
quently, we focused on putatively pathogenic genera and identified Clostridium, Staphylo­
coccus, and Corynebacterium, among others.

We quantified AMR in Germany, Austria, and Romania, considering different drug classes
and gene families of putative pathogenic genera. Certain samples indicate resistance against
sulfonamides, tetracyclines, and fluoroquinolones, whereas cephalosporins were detected at
higher rates. A low and insignificant correlation with animal farming nearby could be solely
observed for sulfonamides. Further research is necessary to include additional anthropogenic
factors for AMR besides livestock farming.

A large proportion of reads could be assigned to multiple gene families, such as TEM beta­
lactamase24 or elfamycin resistant EF­Tu103. However, bacteria acquire AMR differently,
which is not reflected in the analysis. Precisely, the origin of reads, hence, whether the
AMR gene is located on the chromosome or plasmid, or the distinction between intrinsic and
acquired resistance is not considered47,188.

The results provide a baseline reference to monitor AMR in Europe and other countries.
Considering in particular China or India, where antibiotic abuse led to an advanced AMR
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contamination in lakes33,124, the findings enable healthcare officials to execute appropriate
measures timely.
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A B S T R A C T   

The surveillance of wastewater for the Covid-19 virus during this unprecedented pandemic and mapped to the 
distribution and magnitude of the infected in the population near real-time exemplifies the importance of 
tracking rapidly changing trends of pathogens or public health problems at a large scale. The rising trends of 
antimicrobial resistance (AMR) with multidrug-resistant pathogens from the environmental water have similarly 
gained much attention in recent years. Wastewater-based epidemiology from water samples has shown that a 
wide range of AMR-related genes is frequently detected. Albeit sewage is treated before release and thus, the 
abundance of pathogens should be significantly reduced or even pathogen-free, several studies indicated the 
contrary. Pathogens are still measurable in the released water, ultimately entering freshwaters, such as rivers and 
lakes. Furthermore, socio-economic and environmental factors, such as chemical industries and animal farming 
nearby, impact the presence of AMR. Many bacterial species from the environment are intrinsically resistant and 
also contribute to the resistome of freshwater lakes. This study collected the most extensive standardized 
freshwater data set from hundreds of European lakes and conducted a comprehensive multi-omics analysis on 
antimicrobial resistance from these freshwater lakes. Our research shows that genes encoding for AMR against 
tetracyclines, cephalosporins, and quinolones were commonly identified, while for some, such as sulfonamides, 
resistance was less frequently present. We provide an estimation of the characteristic resistance of AMR in Eu
ropean lakes, which can be used as a comprehensive resistome dataset to facilitate and monitor temporal changes 
in the development of AMR in European freshwater lakes.   

1. Introduction 

The surveillance of wastewater for Covid-19 virus in our current 
pandemic and mapped to the distribution and magnitude of the infected 
in the population near real-time exemplifies the importance of tracking 
rapidly changing trends of pathogens or public health problems such as 
antimicrobial resistance that may involve large populations in a large- 
scale (Kitajima et al., 2020). According to the World Health Organiza
tion (WHO), the resistance to antibiotic agents is one of the major threats 
to modern society (de Kraker et al., 2016; UN Interagency Coordination 
Group (IACG) on Antimicrobial Resistance, 2019;). As of 2019, there are 
already around 700.000 deaths annually, with a potential increase to 10 
Million in the next decades without appropriate measurements (UN 

Interagency Coordination Group (IACG) on Antimicrobial Resistance, 
2019). Thus, it is crucial to understand how environmental pressure 
gives rise to new resistance mechanisms. It has been shown that the 
over- and misuse of antibiotics are a significant contribution to AMR 
(Holmes et al., 2016; Singer et al., 2016). Moreover, Hendriksen et al. 
observed a strong correlation between sanitation standards and health 
care conditions by analyzing global AMR distribution in urban sewage 
(Hendriksen et al., 2019). Even indications for the contamination of 
community sewage by hospital wastewater burdened with antibiotic- 
resistant bacteria is present (Hocquet et al., 2016). These epidemiolog
ical approaches measure the collective signature across a community, 
and they have the potential to enhance detection, contain, and mitigate 
an outbreak. At the same time, the application may be deployed within 
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monitoring networks to provide inter-comparable data across countries 
(Daughton, 2020). 

However, hospitals, urban transit, and sewage share a significant 
commonality: they pool sources of health risk, e.g., the risk of contagion 
through human interchange or the spread of diseases through human 
waste, respectively. Such urban sewage and hospital wastewater are 
more likely to be contaminated with multi-resistant pathogens, and the 
search for AMR in this direction is quite natural. Other studies investi
gated AMR distribution in the environment, e.g., the abundance of 
antimicrobial resistance genes (ARGs) in 21 Swiss lakes (Czekalski et al., 
2015). Freshwaters are the recipients of the effluent of wastewater 
treatment plants (WWTP). Consequently, several studies proved the 
presence of pathogens in natural surface waters (Blaak et al., 2015; 
Franz et al., 2015; Yang et al., 2017). Accordingly, Czekalski et al. 
revealed a 200-fold increase of ARGs in the sediment close to sewage 
release points of freshwater lakes (Czekalski et al., 2014). 

However, the dissemination of AMR is not solely associated with 
human behavior, as various dispersal processes in most ecosystems also 
contribute to the spread of AMR (Berendonk et al., 2015). Two-thirds of 
the global antibiotic usage is associated with treating farm animals and 
agriculture, having a significant effect on the rise of AMR (Done et al., 
2015; Van Boeckel et al., 2017). Most of these antibiotics belong to the 
class of so-called “uncritical” agents, e.g., tetracyclines and penicillins 
(Annual report on antimicrobial agents intended for use in animals, 
2018). Concerningly, other studies reported similar indications, i.e., 

isolates from indicator bacteria reveal medium to high AMR levels to 
tetracyclines, sulfonamides, and quinolones (European Union Summary 
Report on antimicrobial resistance, 2013). Most notably, restricted an
tibiotics, such as colistin and third- and fourth-generation cephalospo
rins, are widely applied in poultry farming (European Union Summary 
Report on antimicrobial resistance, 2013). Wang et al. (2020) even 
conclude that reducing antibiotic contamination and eutrophication 
reduces the risk of AMR (Wang et al., 2020). 

To this end, we collected samples from multiple freshwater lakes 
following a standardized protocol to detect AMR levels within microbial 
communities and quantify the resistome of the environment. Whereas 
our findings suggest that all possible AMR classes can be observed within 
the samples, we focused on four important classes of antibiotics in ani
mal husbandry and human healthcare, i.e., tetracyclines, cephalospo
rins, quinolones, and sulfonamides, for quantifying the resistance in 
European freshwater lakes. 

2. Materials and methods 

2.1. Sampling and sample preparation 

The dataset consists of standardized samples from 274 lakes for 
which 16S rRNA has been sequenced. Moreover, for 39 of these lakes, 
shotgun metagenomic sequencing was performed. For homogeneity, all 
samples were collected within one month and followed a standardized 

Fig. 1. Relative abundance of taxa, based on amplicon sequencing. a Map of the sample sites for the 274 freshwater lakes across Europe. b Principal coordinate 
analysis (PCoA) of operational taxonomic units. 5.2 and 4.7 % variation can be explained for the first and second components, respectively. c Relative abundance (y- 
axis) of genera, including genera with literature-known antimicrobial resistance for the different sample sites (x-axis). 
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protocol for sampling and analysis. Sampling sites are summarized in 
Fig. 1a. GPS coordinates of the different sampling sites are shown in 
Supplement 1. The sampling sites include lakes in 13 countries all across 
Europe. 274 European freshwater lakes were sampled, covering a broad 
latitudinal gradient ranging from Scandinavia to Spain. We have chosen 
a gradient design to cover a broader range of sampling points under 
varying environmental variables, including altitude or physicochemical 
factors, e.g., temperature, pH value, or chemical composition, instead of 
a replicated design, which is why no biological replicates were collected 
per lake. Samples were taken from the shore of each lake or pond, col
lecting epilimnial water up to 0.5 m depth. For genomic DNA extraction, 
samples were filtered onto 0.2 µm nucleopore filters until the filters were 
blocked to obtain similar amounts of biomass. Biomass filters were 
subsequently air-dried and preserved below − 80 ◦C in a cryoshipper 
(Chart/MVE, Ball Ground, USA). 

2.2. DNA extraction, PCR, and sequencing 

For the amplicon analysis, genomic DNA was extracted from biomass 
filters using the my-Budget DNA Mini Kit (Bio-Budget Technologies 
GmbH, Krefeld, Germany) following the manufacturer’s protocol with 
minor adaptations. We changed the protocol as follows: Except that 
filters were homogenized in 800 µl Lysis Buffer TLS within lysing Matrix 
E tubes (MP Biomedicals, Santa Ana, California, USA) and homogenized 
three times for 45 s using FastPrep (MP Biomedicals, Santa Ana, Cali
fornia, USA) at 6 m/s followed by incubation for 15 min at 55◦ C. The 
DNA quality was checked using a NanoDropTM ND-2000 UV–Vis spec
trophotometer (Thermo Fisher Scientific, Waltham, Massachusetts, 
USA) and on 1% agarose gels. PCR amplifications targeted the V2-V3 
region of the bacterial 16S rRNA gene using the primers 104F (5′- 
GGC GVA CGG GTG MGT AA-3′) and 515R (5′- TTA CCG CGG CKG CTG 
GCA C-3′) (Lange et al., 2015). The selected forward primer contains two 
wobble positions in order to cover a broad taxonomic spectrum. For each 
sample, two technical replicates of the extracted DNA were indepen
dently amplified using primers with different sample identifiers (Lange 
et al., 2015). For the PCR reaction, 1 μl of DNA template in 25 μl PCR 
reaction with 0.4 units of Phusion DNA polymerase (Thermo Fisher 
Scientific, Waltham, Massachusetts, USA), 0.25 μM primers, 0.4 mM 
dNTPs, and 1 × Phusion buffer (Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) was used. The PCR protocol consisted of 35 cycles, 
including a denaturation step at 98◦ C for 30 s, an annealing step at 72◦ C 
for 45 s (Lange et al., 2015), and an elongation step at 72◦ C for 30 s. 
Finally, the PCR was completed by a final extension step at 72◦ C for 
10 min. Samples were pooled in equimolar ratios and sequenced using 
paired-end (2 × 300 bp) HiSeq 2500 Illumina sequencing in “rapid-run” 
mode at a sequencing provider (Fasteris, Geneva, Switzerland). Clean 
sequencing reads were in total 731,842,882 or on average 2,670,959 
reads per lake. Finally, clean and demultiplexed samples were provided 
for further analyses. 

Besides the amplicon analysis, we also carried out metagenomics 
analysis on 39 samples. The metagenomic samples were sequenced at 
BGI on an Illumina HiSeq XTen machine producing 150 bp paired-end 
samples. At BGI, genomic DNA was quality tested, and the qualified 
samples were used to construct the sequencing library. Therefore, pu
rified DNA samples were first sheared into smaller fragments with the 
desired size by Covaris S/E210 or Bioruptor. Then the overhangs 
resulting from fragmentation were converted into blunt ends using T4 
DNA polymerase, Klenow Fragment, and T4 Polynucleotide Kinase. 
Adapters were ligated onto both ends of the DNA fragments. The desired 
fragments were purified through gel-electrophoresis, then selectively 
enriched and amplified by PCR. Index tags were introduced into the 
adapter sequence to allow pooling. Finally, the libraries were quality 
tested and sequenced. Clean and demultiplexed samples were provided. 

2.3. Amplicon analysis workflow 

For the amplicon analysis, we used the standardized workflow 
Natrix, including (i) quality filtering, (ii) clustering, and (iii) taxonomy 
annotation (Welzel et al., 2020). The quality of the sequencing reads was 
re-checked using FastQC (v0.11.8), and low-quality tails were removed 
from the reads using PRINSEQ (Schmieder and Edwards, 2011) 
(v0.20.4). Trimmed reads with an average Phred quality score of less 
than 25 were discarded. Additionally, we removed all reads with at least 
one base with a quality of less than 15 and all reads that contained errors 
in the primer regions. Adapters containing primer, barcode, and poly-N 
sequences were removed, and the paired-end reads were subsequently 
assembled using PANDAseq (Masella et al., 2012) (v2.10). Chimeras 
were removed using UCHIME (usearch v7.0.1090) (Edgar et al., 2011). 
Subsequently, the sequences that passed quality and AmpliconDuo 
filtering (Lange et al., 2015) were clustered into Operational Taxonomic 
Units (OTUs) with SWARM (Mahé et al., 2015) (v2.1.9), using a local 
threshold since lineages evolve at variable rates. The local clustering 
threshold d was set to 1. For all OTUs, we used BLASTn (Altschul et al., 
1990) (v2.7.1 + ) with the NCBI nt and the Taxonomy Database (Dec 5, 
2017) to annotate the OTUs with taxonomic information (see supple
ment 2 and 3). 

2.4. Amplicon abundance analysis 

We used the R package phyloseq (McMurdie and Holmes, 2013) for 
the relative abundance analysis of operational taxonomic units (OTUs). 
Specifically, the principal coordinate analysis has been conducted with 
the ordinate function using the “PCoA” method and Bray-Curtis 
dissimilarity as the distance metric. The OTU table is used for the 
principal coordinate analysis (PCoA). In order to statistically revise the 
PCoA, we used the non-parametric multivariate analysis of variance 
(MANOVA) (Anderson, 2001) provided by the R-Vegan package 
(v2.5–6) through the adonis function with Bray-Curtis dissimilarity 
(Oksanen et al., 2019). 

For the bar chart, the following genera containing strains with 
literature-known antimicrobial resistance were filtered out from the 
original dataset: Enterococcus, Mycobacterium, Staphylococcus, Strepto
coccus, Campylobacter, Neisseria, Escherichia-Shigella, Klebsiella, Entero
bacter, Salmonella, Acinetobacter, and Pseudomonas. This list is based on a 
reference list of pathogens of the Pathosystems Resource Integration 
Center (PATRIC) (Wattam et al., 2017). The visualization has been 
carried out with phyloseq’s barplot function, using the genera for color 
filling. The final version of the plot is crafted with Altair, a visualization 
library for the Python programming language (VanderPlas et al., 2018). 

2.5. Metagenomic analysis of antimicrobial resistance 

Antimicrobial resistance (AMR) was analyzed using the resistance 
Gene Identifier (RGI tool) of the Comprehensive Antibiotic Resistance 
Database (CARD) (Jia et al., 2017), which can be used to predict the 
resistome from raw genome sequences. CARD is a database containing 
AMR drug classes and resistance mechanisms and intrinsic mutation- 
driven and acquired resistances. The basis consists of antibiotic resis
tance ontologies (ARO term), a networked and hierarchically controlled 
system of terms (Jia et al., 2017). Internally, the RGI tool uses Bowtie2 to 
align the metagenomic reads against CARD. We used the default settings 
for the analyses. For further evaluations, the focus was set on the AMR 
gene family and drug classes to achieve comparability and practical 
relevance. In addition, only those reads that have been entirely mapped 
to genes encoding for AMR factors were used for the subsequent 
analysis. 

2.6. Metagenomic taxonomic analysis 

In our analyses, we focused on reads related to resistance. Thus, only 
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those reads, which could be associated with AMR gene families or drug 
classes listed by the CARD database (see above), were used for further 
analysis. We used Centrifuge (Kim et al., 2016) to perform taxonomic 
analyses using Burrows-Wheeler transform (BWT) and Ferragina- 
Manzini (FM) index. The taxonomic analysis of the filtered FASTQ 
files was analyzed with the index containing all complete bacterial ge
nomes (Kim et al., 2016). In order to cope with different sequencing 
depths among the samples, we normalized the mapped reads (num
Fragments) for gene length (geneLength) and sequencing depth (total
NumReads) (Chen et al., 2021): 

FPKM =
numFragments

geneLength
1000 *totalNumReads

1,000,000  

2.7. Data visualization and statistics 

We used the function clustermap from the Python package seaborn 
for drawing the heatmaps (Waskom, 2021). All fragments, derived from 
the mapped reads of the CARD output, were displayed in one heatmap, 
each for the AMR gene families and the drug class resistance. We 
restricted the analyses and visualization to those gene families and drug 
class resistances that were most common among the lakes. We then 
clustered the lakes based on the country. AMR gene families or drug 
class resistances with over 500 fragments per lake accounted for less 
than 2% of all samples. Therefore, we set the limit for visualization to a 
maximum of 500 fragments per AMR gene family or drug class resis
tance, respectively, i.e., AMR gene families or drug class resistance with 
more than 500 fragments were capped. To finalize the heatmaps, we 

utilized Altair (VanderPlas et al., 2018). For Fig. 2, only the most 
common taxa are shown for the comparison. In order to analyze the 
pathogenic taxa, we used a filtered list of pathogens from PATRIC 
(Wattam et al., 2017). 

Correlation analyses were carried out based on Pearson correlation 
to detect associations between resistance genes and taxa. To this end, we 
correlated the number of reads found by centrifuge with all mapped 
reads found by CARD and calculated the coefficient of determination. 
Moreover, we analyzed the association between resistance and farm
land. We used SEDE-GPS for gathering socio-economic data (Sperlea 
et al., 2018). That is, we collected all data related to the term agriculture 
as defined by Eurostat (https://ec.europa.eu/eurostat/en/web/agricul 
ture/data), for instance, agricultural products and organic farming, 
among others. SEDE-GPS takes a table with the GPS coordinates as input 
and collects information from different databases, such as Eurostat, 
within a user-specified radius. In our study, we used 20 km as the radius 
for SEDE-GPS. Correlations were calculated and reported based on the 
Pearson’s product-moment correlation coefficient: 

rXY =

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√√

with n the sample size, xi and yi the sample points, and x and y the 
corresponding mean; p values are calculated based on Student’s t-dis
tribution with n − 2 degrees of freedom. 

Fig. 2. Stacked bar charts of genera found in the metagenomic taxonomy classification. Top: The fragments mapped to a particular genus (y-axis) and for a sample 
site (x-axis). Only non-pathogenic Pseudomonads were found. Center: Non-AMR-related genera are removed, and only the top-10 of pathogenic genera are kept. 
Bottom: Total distribution of fragments mapped to pathogenic genera across all 39 lakes. 
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3. Results 

3.1. Relative abundance of taxa 

In total, we generated 731,842,882 clean sequencing reads from 274 
freshwater lakes, i.e., 2,670,959 reads on average per lake, which we 
employed for subsequent 16S rRNA amplicon sequencing. Based on the 
16S rRNA amplicon sequencing results, we analyzed the relative abun
dance of operational taxonomic units (OTUs) for each sample site 
(Fig. 1a). A summary of the lakes can be found in supplement 1. 
Moreover, a principal coordinate analysis reveals that seemingly no 

country-specific differences can be observed across the samples since 
only 5.2 and 4.7 % variation can be explained for the first and second 
components, respectively (Fig. 1b). However, a non-parametric multi
variate analysis of variance unveils a significant difference across the 
samples (p = 0.001). We then focused on the genera known for anti
microbial resistance (AMR). The results indicated the presence of mul
tiple genera, including species with known AMR (Fig. 1c). 
Representatives of the genus Mycobacterium can be observed in large 
quantities in almost all samples since it is widespread in aquatic eco
systems and is likely dominated by nontuberculous mycobacteria (NTM) 
(Roguet et al., 2018). Roguet and the coworkers pointed out that the 

Fig. 3. Heatmaps are depicted of the respective lakes (x-axis) and resistances to drug classes (a) and AMR gene families (b) on the y-axis, respectively. In addition, 
the color density is determined by the quantity of fragments mapped against the respective category. 
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flowing of rivers into lakes appeared to strongly increase NTM densities, 
as opposed to lakes without connected rivers (Roguet et al., 2018). 
Acinetobacter species were also present in many samples, albeit in 
smaller quantities. Shao et al. (2019) suspected inflows polluted by 
stormwater runoff of sewage posed a possible source for Acinetobacter 
contamination (Shao et al., 2019). In addition, one lake in Germany 
seems to host larger quantities of Pseudomonas species (Fig. 1c). Species 
of these abundant genera are often associated with environmental wa
ters and may be a source of opportunistic infections. The OTU table and 
the taxonomy data can be found in supplement 4 and 5. 

3.2. Metagenomic taxonomy classification 

Since amplicon sequencing only allows a straightforward overview 
of the present species, we conducted a more detailed taxonomic classi
fication in a follow-up analysis based on metagenomic reads. We were 
able to increase the resolution of the found taxa based on the reads 
assigned to genes involved in antimicrobial resistance mechanisms. 
Specifically, we found multiple species related to AMR and a wide range 
of unrelated species, e.g., Limnohabitans strains (Fig. 2a). This analysis 
provides more details about the genus distribution in the samples. 
However, since we are interested in genera potentially related to AMR, 
we removed the remainders and focused on hits with AMR genes to 
research potential resistance. We detected fragments mapped to AMR- 
related genes, suggesting that AMR-related genera emerge in all sam
ples, such as Pseudomonas or Staphylococci (Fig. 2b). 

3.3. Antimicrobial resistance levels 

We analyzed metagenome samples from 39 of the 274 freshwater 
lakes to identify AMR-related genes. The lakes were selected as a 
representative subset of the lakes analyzed in the first step, i.e., 
considering their geographical distribution to limit country-specific 
findings. Our results show indications towards various AMR genes in 
low to moderate quantities in the different samples (Fig. 3a). Specif
ically, we found a cluster of lakes exhibiting resistance against, e.g., 
β-lactam antibiotics, such as monobactams, cephalosporins, and 
penems, including lakes in France, Romania, and Germany. Genes 
encoding potential drug class resistances for quinolones and tetracy
clines, as well as sulfonamides, can also be detected in the samples, 
albeit in smaller quantities (Fig. 3a). Moreover, an analysis on the 
abundance of AMR gene families reveals higher quantities of genes 
acting as antibiotic targets, mainly involved in protein biosyntheses, 
such as the elfamycin-resistant elongation factor thermo unstable (EF- 
Tu) gene (Parmeggiani and Nissen, 2006), the rifamycin-resistant β 
subunit encoding RNA polymerase (rpoB) gene (Goldstein, 2014), as 
well as the fluoroquinolone-resistant gyrases A and B (van der Heijden 
et al., 2012). Again, distinct clusters based on the quantity of mapped 
fragments can be observed for lakes in France, Germany, and Romania 
(Fig. 3b). Considering all mapped fragments for resistance against 

tetracyclines, cephalosporins, quinolones, and sulfonamides, it turns out 
that precisely, lakes in these countries exhibit diverse levels of putative 
resistance to drug classes stated above. Moreover, individual lakes in 
Germany, Italy, France, and Romania show a higher amount of mapped 
fragments to AMR-related genes than other countries (Fig. 4). We 
investigated a potential correlation with surrounding farmland or other 
possible factors in the following section. 

3.4. Association to agriculture 

As stated above, livestock farming is one of the main fields for 
applying antibiotics (Done et al., 2015; Van Boeckel et al., 2017). We 
employed SEDE-GPS to retrieve information on agriculture in an area of 
20 km around the GPS coordinates of the lakes (Sperlea et al., 2018). 
Antibiotics or resistant bacteria from sewage with human excreta, in 
general, can enter freshwater in many ways. In a study conducted by the 
German Environment Agency, three possible pathways were identified: 
(i) the straight entering into surface water via excretion, for instance, 
sewage carrying human excreta with resistant bacteria, e.g., from 
stormwater runoff, (ii) the detour via the soil or (iii) via manure, sup
plied on fields and meadows (German Environment Agency, 2015). Our 
findings indicate only a low, non-significant correlation (R = 0.28, 
p = 0.08) between agricultural use and the frequency of antimicrobial 
resistance genes, particularly for sulfonamides. We also found non- 
significant correlations for the other three antibiotics investigated, i.e., 
tetracyclines, cephalosporins, and quinolones, which show no signifi
cant correlation with adjacent agriculture. Our findings suggest that 
human-made agricultural influences are low in Europe. However, we 
observed indications for genes encoding for resistance to one of the four 
drugs mentioned above, which will be discussed. 

3.5. Tetracyclines 

It has been reported that tetracyclines are among the most popular 
antibiotics in animal husbandry, with a share of around 30% (Annual 
report on antimicrobial agents intended for use in animals, 2018). Our 
findings are generally in support of this. Thus, resistance to this drug 
class can be observed in several European lakes in Austria, Germany, 
and Poland (Fig. 4). Furthermore, tetracyclines belong to frequently 
observed drug classes compared to others across all lakes (Fig. 3a). 

3.6. Cephalosporins 

In contrast to tetracyclines, cephalosporins, starting from the third 
generation on, are considered as critical antimicrobials (including car
bapenems which are drugs of last resort), respectively, according to the 
WHO (Critically important antimicrobials for human medicine, 2019). 
However, their application is widespread, particularly in poultry 
farming (Annual report on antimicrobial agents intended for use in an
imals, 2018). Our study indicates the presence of resistance for this drug 

Fig. 4. Boxplot of the mapped fragments to genes encoding for resistance against different drug classes: tetracyclines, cephalosporins, (fluoro)quinolones, and 
sulfonamides. The following number of lakes were sampled in the respective countries: Austria (5), France (8), Germany (7), Hungary (1), Italy (6), Norway (2), 
Poland (2), Romania (4), Slovakia (2), Spain (1), and Sweden (1). 
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class. In particular, specific sample sites show higher exposure to mi
crobes, potentially carrying associated resistance genes, compared to 
resistance against the remaining drug classes (Fig. 3a). If one considers 
the fragments mapped for individual countries, again lakes in Romania, 
France, and Germany reveal a descending order of fragments of genes 
encoding for resistance against this drug class (Fig. 4). The indications 
can be further validated by regarding individual lakes as shown in Fig. 5, 
where increased fragments mapped to genes encoding for cephalosporin 
resistance can be observed for lakes in Romania, Italy, and France. 

3.7. (Fluoro)quinolones 

These belong to another important class of antimicrobial agents, as 
stated by the WHO (Critically important antimicrobials for human 
medicine, 2019). The results also show resistance across individual lakes 
(Fig. 3a) as well as for specific countries (Fig. 4). Redgrave et al. (2014) 
observed a strong correlation between fluoroquinolones resistance and 
antibiotic consumption in Greece, France, and Sweden, i.e., the higher 
the intake, the higher the percentage of resistant Escherichia coli isolates 
(Redgrave et al., 2014). We endorse the findings of Redgrave et al.; i.e., 
fluoroquinolones resistance can be found from lakes in Germany, Italy, 
Romania, and France. Even for the sole Swedish lake, for which meta
genomic samples have been sequenced, we observed indications for 
resistance to this drug class (Fig. 4), supporting the results from Red
grave et al. Interestingly, we observed a correlation between 

fluoroquinolones resistance and the presence of Streptomyces albus, a 
bacterial strain known for non-pathogenicity (R = 0.52, p less 
than 0.001). However, this might be due to cryptic gene clusters that are 
not expressed but are frequently found in Streptomyces (Xu et al., 2017). 

3.8. Sulfonamides 

Finally, the mapped fragments to genes encoding for sulfonamide 
resistance are lower than the other drugs but still present (see Fig. 3a). In 
addition, the quantity for individual countries is lower than the 
remaining drug classes (Fig. 4). 

4. Discussion 

We collected samples from 274 European lakes for a large-scale study 
on quantifying antimicrobial resistance (AMR) in freshwaters. To the 
best of our knowledge, this is the largest, standardized data set so far, 
employing 16S rRNA amplicon and metagenomic analyses on the bac
terial composition and the resistome of these lakes. The standardized 
approach clearly distinguishes our study from others, relying heavily on 
non-standardized metagenomic data collected from public databases, 
differing in sampling protocols and analytic procedures, for instance, 
studies dealing with environmental or agricultural resistomes (Durso 
et al., 2012; Pal et al., 2016). 

The present study used an integrative multi-omics approach using 

Fig. 5. Number of fragments per lake, which were mapped to genes encoding for resistance against tetracycline, sulfonamide, (fluoro)quinolone, and cephalosporin. 
Each dot denotes a specific lake, and the larger a dot, the more fragments were mapped to the respective resistance class. We observed increased numbers of 
fragments mapping to cephalosporin resistance for lakes in Germany, Italy, and Romania. 
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16S rRNA amplicon sequencing for a first-glance taxonomy identifica
tion, followed by a shotgun metagenomics analysis. Both approaches 
have strengths and weaknesses: taxonomical classification using 16S 
rRNA is more appropriate for various samples but offers a limited res
olution in taxonomic classification depth. Contrary, shotgun meta
genomics provides a detailed taxonomic resolution and the functional 
annotation of sequences, e.g., AMR genes (Jovel, 2016), however, at 
higher costs. Consequently, Hendriksen et al. argued that metagenomics 
offers the advantage of detecting transmissible resistance genes from a 
variety of bacterial species (Hendriksen et al., 2019). 

Our findings quantify AMR among the analyzed lakes. We specif
ically focused on the association of resistance genes to four antibiotics, 
namely tetracyclines, cephalosporins, (fluoro)quinolones, and sulfon
amides, with agriculture (Annual report on antimicrobial agents inten
ded for use in animals, 2018). However, none of these show a significant 
correlation with agriculture. The data suggest that low human impact on 
AMR can be observed in the European freshwater lakes, and our findings 
may serve as a reference for monitoring AMR development in European 
freshwater lakes in the future. 

We selected the 39 lakes as a representative subset of the overall 
lakes analyzed based on their geographical distribution, thus limiting 
the country-specific findings. Nevertheless, our methodology and data 
will be valuable as a reference to track the temporal development of 
AMR in Europe, and comparisons for those studied from countries of 
other continents. Our standardized approach contrasts from studies that 
already identified significant accumulation of AMR from lakes (Chak
raborty et al., 2020; Kong et al., 2021; Ram and Kumar, 2020; Wang 
et al., 2020) and could avoid conditions, for instance, present in China 
and India, where, albeit governmental actions have been already taken, 
the environment is highly suffering from a mis- and overuse of antibi
otics (Kakkar et al., 2017; Qu et al., 2019). One limitation in our current 
study is concerning the chromosomal and non-chromosomal elements 
such as plasmids, as the AMR genes are not necessarily vertically 
inherited, and the 16 s rRNA survey, therefore, most likely yields an 
incomplete list of AMR-related genera. Furthermore, characteristic 
mutations leading to resistance, e.g., in chromosomal genes gyrA and 
gyrB, were not considered in more detail nor correlated to phenotypic 
resistance of the bacteria. Moreover, Cox and Wright (2013) underpin 
the role of antibiotic-producing bacteria in soils (Cox and Wright, 2013) 
or species with chromosome-encoded elements, e.g., non-specific efflux 
pumps (Peterson and Kaur, 2018), which can be further disseminated by 
horizontal gene transfer (Cycoń et al., 2019). Thus, the exposure of 
intrinsically resistant bacteria to man-made environmental factors is not 
an explanation for their AMR and the natural resistome in European 
freshwater lakes. 

In addition, we only considered agriculture, e.g., livestock farming, 
as an external impact on AMR levels in freshwater lakes. Hence our 
results might be biased towards agriculture (Collignon et al., 2018). 
Nevertheless, recent statistics about developments in agriculture in the 
European Union (EU) states that Romania, Italy, France, Poland, and 
Germany are among those countries with the most significant propor
tion of farming land (Agriculture, 2018). The findings by the EU co
incides with the observations made by our study, i.e., our results verified 
not only indications for resistance against the four drug classes afore
mentioned but also specifically in these countries. Moreover, higher 
resistance against cephalosporins can be observed for lakes in France, 
Germany, or Romania, albeit their use is restricted in the EU (Fig. 4). 

Our results support recent studies which reported increased levels of 
AMR resistance genes in various environments, e.g., against sulfon
amides, in groundwater (Balzer et al., 2016), a further study which re
ported sewage as a source for AMR in the sediment of freshwater lakes 
(Czekalski et al., 2014), and in general, overuse of antibiotic agents in 
livestock farming (Hernando-Amado et al., 2019). We observed AMR in 
freshwater lakes, emphasizing AMR as a significant challenge for current 
and future healthcare systems. However, we could not rule out an 
overestimation of strain confidence completely, and the observed drug 

class resistances cannot be confidentially associated with present drug- 
resistant bacteria. 

5. Conclusion 

We comprehensively analyzed the resistome of freshwater lakes from 
European countries and focused explicitly on the antimicrobial resis
tance genes to four important classes of antibiotics, namely tetracy
clines, cephalosporins, (fluoro)quinolones, and sulfonamides. Our 
findings provide a reference for the surveillance and monitoring of AMR 
development in European freshwater lakes and comparisons to those of 
other countries. 

Funding Sources 

This work has been financially supported by the Federal Ministry of 
Education and Research (BMBF) in project Deep-iAMR (FKZ 
031L0209B) and the German Academic Exchange Service (DAAD) and 
BMBF under grant ID 57513593. 

Author contributions 

SS and DH developed the concept and designed the experiments. JB 
designed the sampling campaign. JKN, DB, and JB collected and pre- 
processed the sequencing data. SS and LE performed the experiments 
and analyzed the data. SS, LE, MI, and DH interpreted the results. SS and 
DH wrote the manuscript. JB and DH supervised the study. All authors 
read and approved the final manuscript. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envint.2021.106821. 

References 

Agriculture, forestry and fishery statistics. Eurostat; 2018. Available from: https://ec. 
europa.eu/eurostat/statistics-explained/index.php/Agriculture,_forestry_and_fish 
ery_statistics. 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local 
alignment search tool. J Mol Biol. 215 (3), 403–410. 

Anderson MJ. A new method for non-parametric multivariate analysis of variance. Vol. 
26, Austral Ecology. 2001. p. 32–46. Available from: https://doi.org/10.1111/j.1 
442-9993.2001.01070.pp.x. 

Annual report on antimicrobial agents intended for use in animals. World Organisation 
for Animal Health; 2018. 

Balzer F, Zühlke S, Hannappel S. Antibiotics in groundwater under locations with high 
livestock density in Germany. Vol. 16, Water Science and Technology: Water Supply. 
2016. p. 1361–9. Available from: https://doi.org/10.2166/ws.2016.050. 

Berendonk, T.U., Manaia, C.M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., et al., 
2015. Tackling antibiotic resistance: the environmental framework. Nat Rev 
Microbiol. 13 (5), 310–317. 

Blaak, H., Lynch, G., Italiaander, R., Hamidjaja, R.A., Schets, F.M., de Roda Husman, A. 
M., 2015. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing 
Escherichia coli in Dutch Surface Water and Wastewater. PLoS One. 10 (6), 
e0127752. 

Chakraborty J, Sapkale V, Rajput V, Shah M, Kamble S, Dharne M. Shotgun metagenome 
guided exploration of anthropogenically driven resistomic hotspots within Lonar 
soda lake of India. Ecotoxicol Environ Saf. 2020;194:110443. 

Chen, C., Zhou, Y., Fu, H., Xiong, X., Fang, S., Jiang, H., et al., 2021. Expanded catalog of 
microbial genes and metagenome-assembled genomes from the pig gut microbiome. 
Nat Commun. 12 (1), 1106. 

Collignon, P., Beggs, J.J., Walsh, T.R., Gandra, S., Laxminarayan, R., 2018. 
Anthropological and socioeconomic factors contributing to global antimicrobial 
resistance: a univariate and multivariable analysis. Lancet Planet Health. 2 (9), 
e398–e405. 

S. Spänig et al.                                                                                                                                                                                                                                  

6 Publications 6.1 Publication 1

58



Environment International 157 (2021) 106821

9

Cox, G., Wright, G.D., 2013. Intrinsic antibiotic resistance: mechanisms, origins, 
challenges and solutions. Int J Med Microbiol. 303 (6–7), 287–292. 

Critically important antimicrobials for human medicine, 2019. 6th revision. World 
Health Organization. Available from: https://www.who.int/foodsafety/ 
publications/antimicrobials-sixth/en/.  
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Mahé, F., Rognes, T., Quince, C., de Vargas, C., Dunthorn, M., 2015. Swarm v2: highly- 
scalable and high-resolution amplicon clustering. PeerJ. 10 (3), e1420. 

Masella, A.P., Bartram, A.K., Truszkowski, J.M., Brown, D.G., Neufeld, J.D., 2012. 
PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics. 14 
(13), 31. 

McMurdie, P.J., Holmes, S., 2013. phyloseq: an R package for reproducible interactive 
analysis and graphics of microbiome census data. PLoS One. 8 (4), e61217. 

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: 
Community Ecology Package. 2019. Available from: https://CRAN.R-project.org/p 
ackage=vegan. 

Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. The structure and diversity of 
human, animal and environmental resistomes. Microbiome. 2016;4(1):54. 

Parmeggiani, A., Nissen, P., 2006. Elongation factor Tu-targeted antibiotics: four 
different structures, two mechanisms of action. FEBS Lett. 580 (19), 4576–4581. 

Peterson, E., Kaur, P., 2018. Antibiotic Resistance Mechanisms in Bacteria: Relationships 
Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, 
and Clinical Pathogens. Front Microbiol. 30 (9), 2928. 

Qu J, Huang Y, Lv X. Crisis of Antimicrobial Resistance in China: Now and the Future. 
Front Microbiol. 2019;10:2240. 

Ram B, Kumar M., 2020. Correlation appraisal of antibiotic resistance with fecal, metal 
and microplastic contamination in a tropical Indian river, lakes and sewage. Vol. 3, 
npj Clean Water. Available from: https://doi.org/10.1038/s41545-020-0050-1. 

Redgrave, L.S., Sutton, S.B., Webber, M.A., Piddock, L.J.V., 2014. Fluoroquinolone 
resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends 
Microbiol. 22 (8), 438–445. 

Roguet, A., Therial, C., Catherine, A., Bressy, A., Varrault, G., Bouhdamane, L., et al., 
2018. Importance of Local and Regional Scales in Shaping Mycobacterial Abundance 
in Freshwater Lakes. Microb Ecol. 75 (4), 834–846. 

Schmieder, R., Edwards, R., 2011. Quality control and preprocessing of metagenomic 
datasets. Bioinformatics. 27 (6), 863–864. 

Shao, Keqiang, Yao, Xin, Xie, Guijuan, Wu, Yuanyuan, Hu, Yang, Tang, Xiangming, 
Gao, Guang, 2019. Detectable Levels of Bacterial Pathogens in the Rivers of the Lake 
Chaohu Basin, China. Int J Environ Res Public Health 16 (23), 4857. https://doi.org/ 
10.3390/ijerph16234857. 

Singer, A.C., Shaw, H., Rhodes, V., Hart, A., 2016. Review of Antimicrobial Resistance in 
the Environment and Its Relevance to Environmental Regulators. Front Microbiol. 1 
(7), 1728. 

Sperlea, T., Füser, S., Boenigk, J., Heider, D., 2018. SEDE-GPS: socio-economic data 
enrichment based on GPS information. BMC Bioinformatics. 19 (Suppl 15), 440. 

UN Interagency Coordination Group (IACG) on Antimicrobial Resistance. No Time to 
Wait: Securing the future from drug-resistant infections. World Health Organization; 
2019. 

Van Boeckel, T.P., Glennon, E.E., Chen, D., Gilbert, M., Robinson, T.P., Grenfell, B.T., 
et al., 2017. Reducing antimicrobial use in food animals. Science. 357 (6358), 
1350–1352. 

van der Heijden YF, Maruri F, Sterling TR, Kaiga A, Blackman A, et al. A Systematic 
Review Of Gyrase Mutations Associated With Fluoroquinolone-Resistant 
Mycobacterium Tuberculosis And A Proposed Gyrase Numbering System. B54. 
TUBERCULOSIS IN SPECIAL POPULATIONS. 2012. Available from: https://doi.org/ 
10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a3265. 

VanderPlas, Jacob, Granger, Brian, Heer, Jeffrey, Moritz, Dominik, 
Wongsuphasawat, Kanit, Satyanarayan, Arvind, Lees, Eitan, Timofeev, Ilia, 
Welsh, Ben, Sievert, Scott, 2018. Altair: Interactive Statistical Visualizations for 
Python. Journal of Open Source Software. 3 (32), 1057. https://doi.org/10.21105/ 
joss10.21105/joss.01057. 

Wang, Z., Han, M., Li, E., Liu, X., Wei, H., Yang, C., et al., 2020. Distribution of antibiotic 
resistance genes in an agriculturally disturbed lake in China: Their links with 
microbial communities, antibiotics, and water quality. J Hazard Mater. 5 (393), 
122426. 

Waskom M., 2021, seaborn: statistical data visualization. Vol. 6, Journal of Open Source 
Software. p. 3021. Available from: https://doi.org/10.21105/joss.03021. 

Wattam, A.R., Davis, J.J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., et al., 2017. 
Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis 
Resource Center. Nucleic Acids Res. 45 (D1), D535–D542. 

Welzel, M., Lange, A., Heider, D., Schwarz, M., Freisleben, B., Jensen, M., et al., 2020. 
Natrix: a Snakemake-based workflow for processing, clustering, and taxonomically 
assigning amplicon sequencing reads. BMC Bioinformatics. 21 (1), 526. 

Xu, F., Nazari, B., Moon, K., Bushin, L.B., Seyedsayamdost, M.R., 2017. Discovery of a 
Cryptic Antifungal Compound from Streptomyces albus J1074 Using High- 
Throughput Elicitor Screens. J Am Chem Soc. 139 (27), 9203–9212. 

Yang, Y., Xu, C., Cao, X., Lin, H., Wang, J., 2017. Antibiotic resistance genes in surface 
water of eutrophic urban lakes are related to heavy metals, antibiotics, lake 
morphology and anthropic impact. Ecotoxicology. 26 (6), 831–840. 

S. Spänig et al.                                                                                                                                                                                                                                  

6 Publications 6.1 Publication 1

59



6 Publications 6.2 Publication 2

6.2 Encodings and Models for Antimicrobial Peptide Classification for
Multi­resistant Pathogens

AMR led to countless deaths and burdened public health care systems drastically with the
associated costs235. AMR refers to the loss of efficiency of antibiotics against pathogens
through natural or acquired resistance mechanisms235. These mechanisms concern, for in­
stance, removal of antibiotics from the cell interior or inactivation19. The emergence of AMR is
fostered by various factors, including mobile genetic elements (MGEs), which can be dissem­
inated by horizontal gene transfer (HGT)100,73. As a consequence, more pathogens acquire
resistance; thus, more antibiotics become ineffective, ultimately compromising medical treat­
ment235. In addition, the over­ and misuse of antibiotics increase evolutionary pressure on
the bacteria and promotes AMR19. The ability of biofilm­forming pathogens further enhances
resistance to common antibiotics80.

AMPs, a class of molecules belonging to the innate immune system of mammalians and
other organisms, are an alternative strategy to conventional antibiotics135. AMPs are ubiqui­
tously produced as a host defense mechanism in epithelial cells, including the skin, to neutral­
ize microorganisms, such as bacteria and fungi93,151. The mode of action is mainly interfering
with the pathogenic cell, hence, membrane disruption71,258. Another effect is translocation to
perturb intracellular targets, including the whole gene expression process71,258. High concen­
trations of AMPs, generally with low activity per se, lead to increased antimicrobial efficiency
and the potential of degrading biofilms71. Moreover, AMPs are highly specific to the bacterial
cell wall71. The reason for the specificity are different molecular properties of prokaryotic and
eukaryotic membranes71. In addition, resistance to AMPs is low135.

Manual identification of AMPs is time­consuming77. To this end, researchers employed
machine learning (ML) for automated classification and autonomous decision making, for
instance, in the field of self­driving cars9 or face recognition46. Advances in ML methods,
greater peptidomics databases, and increased computational power paved the way for pre­
dicting novel AMPs192,240. However, most ML algorithms require numerical and fixed­length
input137.

Amino acids feature physicochemical properties, such as the hydrophobicity scale by Kyte
and Doolittle (1982)130. Consequently, peptides can be represented as numerical vectors.
Besides the physicochemical properties mentioned above, researchers developed various
encodings. An example concerns the binary encoding, meaning each amino acid is repre­
sented as a vector of zeros with one bit set121. The length of the vector is 21, hence, equal
to the number of natural amino acids plus one bit denoting a gap121. However, one can find
additional encodings in the literature39. Thus, we collected and reviewed peptide encodings,
specifically for AMP prediction. In particular, we elaborated the different types, algorithms,
and origins. The study concludes with an overview of libraries and databases, which can be
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used for dataset creation and encoding.
We specified sequence­based encodings (SeBEs), structure­based encodings (StBEs),

alternative encodings, and model­based encodings (MoBEs). SeBEs are derived from the
order of the amino acids (primary structure). StBEs rely on the folding of the amino acid
sequence in higher dimensions (secondary or tertiary structure). Encodings neither fitting to
the main categories have been assigned as alternative encodings. MoBEs result from an
intrinsic model representation, for instance, filter layers from Deep Learning (DL) or custom
kernels from Support Vector Machines (SVMs).

In summary, we collected encodings from a wide range of biomedical studies. We ob­
served that SeBEs not only map amino acids to numerals but also reflect interactions between
non­adjacent amino acids. Moreover, StBEs, although requiring a known peptide structure,
have been applied successfully in multiple studies22,146. For completeness, models and the
particular application are also described in detail. Encoding libraries, focusing on SeBEs, pro­
vide easy access to the underlying algorithms. Since encoding selection is challenging, we
finally recommend to include the diversity of the model outputs for encoding selection. How­
ever, more research is necessary in this direction. Overall, the study provided an overview
of all aspects of AMP prediction, hence, paving the way for future research.
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Abstract

Antimicrobial peptides (AMPs) are part of the inherent immune system. In fact, they
occur in almost all organisms including, e.g., plants, animals, and humans.
Remarkably, they show effectivity also against multi-resistant pathogens with a high
selectivity. This is especially crucial in times, where society is faced with the major
threat of an ever-increasing amount of antibiotic resistant microbes. In addition,
AMPs can also exhibit antitumor and antiviral effects, thus a variety of scientific
studies dealt with the prediction of active peptides in recent years. Due to their
potential, even the pharmaceutical industry is keen on discovering and developing
novel AMPs. However, AMPs are difficult to verify in vitro, hence researchers conduct
sequence similarity experiments against known, active peptides. Unfortunately, this
approach is very time-consuming and limits potential candidates to sequences with
a high similarity to known AMPs. Machine learning methods offer the opportunity to
explore the huge space of sequence variations in a timely manner. These algorithms
have, in principal, paved the way for an automated discovery of AMPs. However,
machine learning models require a numerical input, thus an informative encoding is
very important. Unfortunately, developing an appropriate encoding is a major
challenge, which has not been entirely solved so far. For this reason, the development
of novel amino acid encodings is established as a stand-alone research branch. The
present review introduces state-of-the-art encodings of amino acids as well as their
properties in sequence and structure based aggregation. Moreover, albeit a well-
chosen encoding is essential, performant classifiers are required, which is reflected by a
tendency towards specifically designed models in the literature. Furthermore, we
introduce these models with a particular focus on encodings derived from support
vector machines and deep learning approaches. Albeit a strong focus has been set on
AMP predictions, not all of the mentioned encodings have been elaborated as part of
antimicrobial research studies, but rather as general protein or peptide representations.

Keywords: Machine learning, Antimicrobial peptides, Encodings

Introduction
Antimicrobial peptides are part of the inherent immune system of almost all organ-

isms, such as plants, animals, and humans [1]. Owing to increasing rates of

multi-resistant pathogens, the scientific community has reached out for novel strat-

egies to tackle this threat [2, 3]. One of these approaches leverages the endogenous

defense system mode of action, particularly on exposed surfaces, such as the skin,

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Spänig and Heider BioData Mining            (2019) 12:7 
https://doi.org/10.1186/s13040-019-0196-x

6 Publications 6.2 Publication 2

62



commonly referred to as antimicrobial peptides (AMPs) [1]. To this end, researchers

have shown that AMPs also have an effect even against multi-resistant pathogens and

thus, can effectively employed as antibiotic agents. AMPs can also interfere intracellular

mechanisms, which makes these potential candidates for cancer treatment or inflam-

matory diseases [4]. Owing to their broad fields of application and the demonstrated

potential, the pharmaceutical industry pushes research ahead in order to discover and

develop novel and highly effective AMPs, such as the approved polymyxins, which

serve as last resort therapy, if the usual treatment fails [4]. In order to enable AMP de-

tection with low costs and in high throughput, computational approaches offer the op-

portunity to explore the huge space of sequence variations in a timely manner. In

particular, artificial intelligence, hence machine learning algorithms perform well in

prediction and classification tasks, including computer vision [5], autonomous driving

[6], or life science [7]. It is thus not surprising, that machine learning has been applied

for fast and automated discovery of AMPs [8] and protein classification in general [9].

Two major issues arise here: firstly, biological information of the amino acid sequence

has to be translated into a numerical representation and secondly, the input must not

be of varying length, therefore sequence lengths have to be aligned. This is due to the

intrinsic nature of machine learning models, i.e., the requirement of a numerical input

with a fixed dimension. To this end, a variety of encodings has been developed over

time. Each of these encodings are created to reflect biological relationships as well as

intrinsic information of the primary sequence and higher order confirmations as accur-

ate as possible. Since an informative encoding is very important and crucial for predic-

tion accuracy, not only numerous encodings have been proposed, but also various

strategies to combine existing ones. In order to shed light in this complex topic, litera-

ture has been mined for sequence and structure based encodings and elaborated as part

of this review. The goal of the present study is the easing of the application of existing

encodings for own projects and to encourage further research in the automated classifi-

cation of antimicrobial peptides. The paper is structured as follows: in order to under-

stand the rationale behind different encodings, we introduce the general effect of

AMPs in the first section. Afterwards, prepared with the biological background, we

summarize sequence- and subsequently structure-based encodings in the second sec-

tion. Since the prediction task requires not only an expressive encoding, but also a per-

formant classifier, we further highlight the employed machine learning algorithms in

another section. Moreover, special encodings have been derived from support vector

machines and deep learning. For this reason, we elaborate on these more detailed in

another section. For the sake of completeness, tools for AMP prediction are uncovered,

which includes different databases as sources for AMP sequences and packages, which

provide implementations for many of the presented encodings.

Antimicrobial peptides
AMPs are part of the inherent immune system and can be especially found in exposed

surfaces, such as mucosa and the skin [1]. At these sites, AMPs serve as a defence sys-

tem and are expressed to protect the organism against microbial intruders. The defense

measures encompasses different types of bacterial interaction, mostly due to the AMPs

physicochemical properties and the resulting three-dimensional structure. That is,

mostly positive charged and hydrophobic residues are constituted to 10 to 50 residues
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long peptides, forming either α-helices, β-sheets or random coils [1]. Due to the “mul-

ti-hit mechanism”, adaption against AMPs is difficult and thus, AMPs are effective even

against highly resistant pathogens. To this end, active peptides are interacting with

pathogens in two ways: on the one hand, they disrupt the bacterial membrane and on

the other hand, they advance further into the cell, generally known as translocation

[10]. Because of different characteristics of eukaryotic and prokaryotic membranes, the

interaction of AMPs with their corresponding target is highly selective [11]. The mem-

brane disruption leads to the loss of important ions and metabolites, which finally leads

to cell lysis and subsequently to cell death [1]. Essentially, three membrane disruption

models are known: the barrel-stave model for pore building, the carpet model for disin-

tegration of the membrane, as well as the toroidal-pore model for arranging the mem-

brane to build continuous pores [1, 11]. The further advancement to intracellular

location, i.e., translocation, takes place without permeabilizing the pathogens mem-

brane. Within the cell, AMPs aggregate in the cytoplasm and inhibit nucleic acid as

well as protein synthesis [12]. Besides antimicrobial effects, antiparasitic, antivirus, and

anticancer effects have been reported. In the case of the latter, AMPs can trigger apop-

tosis and prevent angiogenesis [4].

While most AMPs have the ability to kill microbial pathogens directly, other

peptides, e.g., anticancer AMPs, have immunomodulatory capabilities to stimulate

cells and tissues of the host defense system. More general, these class of peptides

are known as host defense peptides (HDP). For instance, the well-studied HDP

LL-37 [13] reveals its complex mode of action, due to direct and indirect interac-

tions with a vast amount of genes and proteins of the host. Hence, HDPs are im-

portant signaling molecules, capable, for instance, to regulate autoimmune

response in the case of inflammatory diseases or, as mentioned above, support

tumor suppression [14].

Encodings
This section describes the different approaches and mechanisms to encode an amino

acid sequence as a numerical vector and is divided in two main parts: the first deals

with sequence-based encodings and the second part describes structure-based encod-

ings. The former, summarized in Table 1, encompass sparse or binary encoding,

followed by the general and the pseudo-amino acid composition. Afterwards, the re-

duced amino acid alphabet will be introduced as well as descriptors, which incorporate

physicochemical as well as statistical properties of the respective amino acid and substi-

tution matrices (which incorporate the substitution frequency of amino acids). Never-

theless, the function of a peptide is defined by its three-dimensional shape, hence

structure-based encodings (Table 2) have been proposed in order to improve prediction

performances. Thus the second part of this section introduces structure-based encod-

ings. Besides the classical state-of-the-art approaches for encoding of peptides, novel,

promising encodings have been developed, such as the Chaos Game Representation,

which are described in the third section and summarized in Table 3. Hereinafter, each

of these encodings are compared in detail and applications and method specific custo-

mizations are provided as well as, if possible, the relation between the biology behind

the encodings and the antimicrobial effect.
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Table 1 Summary of sequence based encodings

Encoding Description Summary Used in Used along with Main
Category

Sparse each amino acid is
represented as an
one-hot vector of
length 20, where
each position,
except one, is
set to 0

Density: -
Information: +

[15, 19–21] Substitution
Matrix, Amino
Acid Composition

Sparse encoding

Amino Acid
Composition

feature vector
contains at each
position the
proportion of an
amino acid in
relation with the
sequence length

Density: +
Information: -

[22–24] Distance Frequency,
Quantitative Matrix,
Dipeptide Composition,
PseAAC

Amino acid
composition

Distance
Frequency

calculates the
distance between
amino acids of
similar properties
and bins the
occurrence
according to the
gap length

Density: +
Information: +

[22] Amino acid
composition

Quantitative
Matrix

encodes the
propensity of each
amino acid at a
position

Density: +
Information: +

[23] Amino acid
composition

CTD describes the
composition (C),
transition (T) and
distribution (D) of
similar amino acids
along the peptide
sequence

Density: +
Information: +

[25] Amino acid
composition

Pseudo-amino
Acid
Composition
(PseAAC)

computes the
correlation between
different ranges
among a pair of
amino acids

Density: +
Information: +

[27–30] Dipeptide
Composition

Pseudo amino
acid composition

Reduced Amino
Acid Alphabet

similar amino
acids are
grouped
together

Density: +
Information: o

[9, 32–34, 36, 37] N-gram Model,
AAIndexLoc

Reduced amino
acid alphabet

N-gram Model
occurrences of
n-mers for an
alphabet of size m,
leading to a mn

dimensional, sparse
representation of
the initial sequence

Density: -
Information: o

[9] Reduced amino
acid alphabet

AAIndexLoc k-nearest neighbor
clustering to
aggregate amino
acids into 5 classes
using their amino
acid index, i.e.,
amino acids with
the respective
highest(T), high (H),
medium (M), low
(L), and lowest (B)
values of a particular
physicochemical
property are
clustered together

Density: o
Information: +

[37] Dipeptide
Composition

Reduced amino
acid alphabet

Physicochemical
Properties

translation of an
amino acid to a

Density: o
Information: +

[40, 42, 47–53] z-descriptor,
d-descriptor

Physicochemical
properties
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Table 1 Summary of sequence based encodings (Continued)

Encoding Description Summary Used in Used along with Main
Category

particular
physicochemical
property

and many more

z-descriptor derived from
the principal
components of
physicochemical
properties by means
of partial least
squares (PLS)
projections, PLS
leads to a subset of
five final features,
capable to
describe the 20
proteinogenic as
well as 67 additional
amino acids

Density: +
Information: +

[42, 44] Physicochemical
properties

d-descriptor amino acid
sequence is
squeezed between
the y- (N-terminus)
and the x-axis
(C-terminus) with
gradually bending
of the single amino
acids and
subsequent
vector summation

Density: +
Information: +

[54] Physicochemical
properties

Autocorrelation interdependence
between two
distant amino
acids in a peptide
sequence

Density: +
Information: +

[57–61] Autocorrelation

Substitution/
Scoring Matrix

provide accepted
mutations between
amino acid pairs,
i.e., sequence
alterations with
either no or positive
impact in terms of
the protein function

Density: +
Information: +

[65–71] BLOMAP, Sparse,
Amino Acid
Composition,
Dipeptide
Composition,
PseAAC,
AAIndexLoc

Substitution and
scoring matrix

BLOMAP incorporates the
BLOSUM62 to
calculate distances
in a high
dimensional input
space, i.e., the
substitution matrix,
to a lower
dimension, using
the Shannon-
projection

Density: +
Information: +

[65] Substitution and
scoring matrix

Fourier
Transformation

to detect underlying
patterns in time
series, by
transforming the
time signal to a
frequency domain

Density: o
Information: +

[73, 74] Fourier
Transformation

+ (good), o (neutral/no declaration), − (bad). For instance, “Density: -” means the encoding results in a high
dimensional feature space and “Information: +” reflects a representative mapping from the residue sequence to the
numerical vector. “o” denotes encodings, which are difficult to classify, due to missing details in the respective
publication or can be considered as neutral. In general, the classification rests upon the authors experience and shall
support researchers to quickly grasp suitable encodings. Nevertheless, an encoding which has been rated “-” still might
work well for a particular application and should by no means regarded as the final evaluation
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Sequence based encodings

Sparse encoding

The first approach that has been used to describe a peptide sequence is sparse encoding

(also named binary encoding). In sparse encoding, each amino acid is represented as an

one-hot vector of length 20, where each position, except one, is set to 0. Thus, in a vector-

ized format, the amino acids alanine and valine are encoded as 10000000000000000000 and

00000000000000000001, respectively [15]. For instance, the amino acid sequence

GHKARVLAEAMSQVTGSAAVM, the p2 peptide ([16, 17]), is encoded into the

matrix A as:

A ¼

G
H
⋮
V
M

A R N D C E Q G H I L K M F P S T W Y V
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0
BBBB@

1
CCCCA

Since machine learning models require a fixed input dimension, the respective se-

quence lengths have to be adjusted before encoding. In the present case, this happens

either by a multiple sequence alignment or with a pairwise alignment against a refer-

ence sequence. The alignments will introduce gaps, hence a further dummy amino acid

Table 3 Summary of alternative encodings (see Table 1 for further details)

Encoding Description Summary Used in Used along with

Chaos Game
Representation
(CGR)

a visual encoding of a
sequence, generating
a fractal

Density: -
Information: o

[98–102] Physicochemical
Properties

Linguistic Model description of AMPs
by a grammar

Density: o
Information: o

[103]

Table 2 Summary of structure derived encodings

Encoding Description Summary Used in Used along with

Quantitative structure-
activity relationship
(QSAR)

describes amino acids sequences
by their chemical properties,
molecular characteristics and
structure

Density: o
Information: +

[78–85] z-Descriptors

General Structure protein structure is described by
means of their total 3D shape,
secondary structure, solvent
accessibility, aggregation
tendency, contact number,
residue depth

Density: +
Information: +

[86–88, 97]

Electrostatic Hull wraps superimposed shapes
of the proteins sub-structure

Density: o
Information: +

[17, 89, 90] Physicochemical
Properties

Spheres incorporates structural variations
as consequence of sequential
rearrangements

Density: o
Information: +

[91] Physicochemical
Properties

Distance Distribution distribution of euclidean
distances between each atom
type

Density: o:
Information: +

[92]

Delaunay Triangulation encodes the complete protein
shape by finding the optimal
edges between representative
atoms

Density: o
Information: +

[93, 94]

+ (good), o (neutral/no declaration), − (bad) (see Table 1 for further details)
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has to be added to the matrix. On the one hand, sparse encoding offers the advantage

of providing an easy representation of the 20 proteinogenic amino acids (plus one

dummy residue for gaps). On the other hand, the resulting input space for subsequent

machine learning is inflated and could impose problems, such as the curse of dimen-

sionality [18]. The feature vector dimension will be inflated to 21*max(l), whereby l de-

notes the length of a given peptide sequence. Nevertheless, sparse encoding is

frequently used. For instance, Hirst et al. (1992) used this encoding to train a neural

network and to predict secondary structure as well as the function [15]. However, the

authors used sliding windows to separate the original sequence into segments such that

the impact of spatially close residues is considered. Thus, the dimension of the input

vector is 20 (each amino acid) times the window size [15]. Another study combined

sparse encoding and a substitution-matrix-based encoding to predict peptide binding

affinity to T-cell epitopes using neural networks [19]. The latter encoding increases the

generalization ability of the classifier, whereas the sparse encoding does not provide

additional information, except simply the amino acid itself [19]. This drawback of

sparse encodings has been recognized by others. For instance, as part of a study to pre-

dict peptide induced modulation of antigen presenting cells, Nagpal et al. (2018)

encoded the N-terminus and the C-terminus as binary vectors and used this encoding

along with the overall amino acid composition as features for a support vector machine

(SVM) [20]. Usmani et al. (2018) used a similar combination of sparse encoding of both

termini and amino acid composition in order to predict antitubercular peptides by

means of an ensemble classifier [21]. In addition, they state that sparse encoding has

the advantage to keep the sequence order information [21].

Amino acid composition

An approach to overcome the limitations of sparse encoding and hence making the

resulting feature space more dense, is the representation of the amino acid sequence as

its respective composition. Here, the final feature vector contains at each position the

proportion of an amino acid in relation with the sequence length (Fig. 1). For instance,

one can divide a peptide into chunks including both termini and calculate the local

amino acid composition [22]. The amino acid composition differs from one class to the

another and, for instance, cell penetrating peptides require hydrophobic residues at the

N-terminus, which could be approximated well by the features gained from the local

Fig. 1 The single letter amino acid composition counts the occurrence of the respective amino acids
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composition [1]. Additional performance has been achieved by introducing a technique

called distance frequency, which calculates the distance between amino acids of similar

properties and bins the occurrence according to the gap length. Matsudo et al. (2005)

used both encodings to predict the subcellular location by means of SVMs [22]. Com-

monly, amino acid composition is applied to distinguish between different classes of

peptides, i.e., antimicrobial and non-antimicrobial peptides [23] or to classify antiviral,

antitumor, antibacterial, and antifungal peptides [24]. The former introduces quantita-

tive matrices as a novel descriptor, which encodes the propensity of each amino acid at

a certain position. This encoding has been employed in addition to local sparse encod-

ing for analysing as well as predicting antimicrobial peptides in general. In contrast, the

latter study applied increment of diversity (ID) to classify unknown peptides to the re-

spective classes. To ensure a well-performing classifier, the ID is not only based on the

amino acid composition, but is rather used along with the dipeptide and the

pseudo-amino acid composition, which will be introduced hereinafter. Dubchak et al.

(1995) proposed an encoding, which describes the composition (C), transition (T) and

distribution (D) of similar, hence in terms of physicochemical properties, amino acids

along the peptide sequence [25]. C refers to the composition of the respective residues,

T denotes the frequency of the transition from one group to another and finally, D re-

flects the distribution of properties within 0, 25, 50, 75 and 100% of the sequence. The

CTD-descriptor has been employed to predict protein folding classes [25].

Pseudo-amino acid composition

Sparse encoding and the amino acid composition do not take into account the se-

quence order effect. This effect considers the vast amount of possible amino acid com-

binations as the sequence length increases. That is, for a peptide of length 6, there are

already 206 = 64,000,000 different sequence arrangements. In terms of antimicrobial ac-

tivity, Cherkasov et al. (2009) pointed out that, albeit having very similar amino acid

compositions, some peptides were virtually inactive [26]. Thus, the pseudo-amino acid

composition (PseAAC) has been introduced to consider the effect of the sequence

order [27]. The PseAAC computes the correlation between different ranges among a

pair of amino acids, which leads to a 20 + λ dimensional vector (Fig. 2a). The first 20

Fig. 2 Sketch of sequence-based encodings derived from autocorrelation and reduced amino acid
alphabet. a Autocorrelation and pseudo-amino acid composition from adjacent residues, considering a gap
size of one. b Reduced amino acid alphabet. Clustering corresponds to similar physicochemical properties,
according to Veltri et al. (2017)
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components are the composition of the 20 natural occurring amino acids, whereas the

20 + 1 to 20 + λ components describe the correlation according to the respective se-

quence order level. For the most contiguous (λ = 1) and the second-most contiguous

(λ = 2) amino acids, the PseAAC results in a 22-D (dimensional) vector. Thus, for λ = 1

the sequence order for adjacent amino acids are taken into account. The correlation

function incorporates several physicochemical properties, such as the hydrophobicity

and amino acid side chain mass. To verify that this method leads to a lower loss of in-

formation compared to the usual amino acid composition, several similarity measures

have been employed. These include the prediction of subcellular locations of proteins,

membrane protein types, as well as their particular locations [27]. To improve predic-

tion accuracy, the PseAAC has been used by several studies, e.g., [28, 29], and [30], in

combination with other types of encodings. For instance, in order to predict AMPs and

additional efficiencies towards, e.g., cancer cells and HIV, PseAAC was applied in a

two-level approach: first, it was used to encode peptide sequences to distinguish be-

tween AMPs and non-AMPs and second, to determine additional effects. Both classifi-

cations have been conducted by means of fuzzy k-nearest neighbors [28]. Moreover,

additional physicochemical properties have been used to enhance the discriminative

power of PseAAC [28]. Chen et al. (2016) tried to unveil novel anticancer peptides by

enhancing the default dipeptide composition with PseAAC [29]. This approach con-

siders long range interactions between amino acid pairs along with the dipeptide com-

position. The latter might reflect structural interactions, such as hydrogen bridge

bonds between spatial close amino acids to form alpha helices [31]. An extension to

the interaction of multiple encodings, including PseAAC, has been conducted by

Meher et al. [30]. They used PseAAC in addition to structural and physicochemical

encodings in order to distinguish between AMPs and non-AMPs. Again, an SVM was

used to conduct the classification [30].

Reduced amino acid alphabet

Sparse encoding, amino acid composition, and PseAAC consider, more or less, the ac-

tual amino acid sequence to encode a peptide. Therefore, the encoding might not re-

flect sequence variations well and this might negatively contribute to the classifier

performance. In order to improve generalization, also considering mutations, one could

make use of the reduced amino acid alphabet. Here, similar amino acids are grouped

together, based on physicochemical, such as hydrophobicity and hydrophilicity [9] or

structural properties, e.g., the backbone structure (Fig. 2b) [32]. The reduced amino

acid alphabet has been employed in combination with the n-gram model to ease the

classification of protein sequences. The n-gram model counts the occurrences of

n-mers for an alphabet of size m, leading to a mn dimensional, sparse representation of

the initial sequence (Fig. 3). Nevertheless, despite the preceding alphabet reduction, the

increased dimensionality is again a major drawback of the n-gram model. Thus, single

value decomposition [33] has been applied to reduce the number of features to effi-

ciently train an artificial neural network (ANN). Finally, the ANN is used to assign the

query proteins to the respective protein families [9]. Comparable to the n-gram model,

the n-peptide composition leads, in particular for an increasing n, to an inflation of the

feature space. Yu et al. (2004) used the n-peptide model to predict the subcellular
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location of proteins in Gram-negative bacteria [34]. For this purpose, the dipeptide,

amino acid, as well as the partitioned amino acid composition have been leveraged. For

the latter, the sequence is split into equal-length segments and these segments are used

to train several SVMs. The assignment of the respective subcellular location is then

based on a majority vote of all classifiers [34]. Furthermore, the reduction of the amino

acid alphabet, based on structural properties, has been used as the initial step to con-

struct more complex features. These complex features consist of compositional, pos-

itional, position-shifted, and correlated features, which are combined through several

boolean functions, such as matches and/or matchesAtPosition. The ultimate goal of the

study was the prediction of AMPs and their selectivity for different kinds of bacteria

and to this end, the complex features are further reduced by means of a filter-based

feature selection [35, 36]. Another study uses the k-nearest neighbor clustering to ag-

gregate amino acids into five classes using their amino acid index, i.e., amino acids with

the respective highest (T), high (H), medium (M), low (L), and lowest (B) values of a

particular physicochemical property are clustered together. This encoding (AAIndex-

Loc) is extended by the five-level dipeptide composition, which extends the aforemen-

tioned clustering by aggregating pairs of amino acids, such as TT, TH, and so forth.

Along with these descriptors, Tantoso et al. (2008) employed the amino acid compos-

ition, for both termini and the middle part of the peptide, which leads to a dataset of

70 features for an SVM to predict subcellular location [37].

Physicochemical properties

One of the important encodings in AMP prediction, if not the most important one, is

the translation of an amino acid to a particular physicochemical property, which have

been determined in various wet lab experiments (Fig. 4a). The amino acid index data-

base (AAindex) has been established as a unified source for these descriptors [38]. The

AAindex is grouped into three parts, whereby the AAindex1 contains the just men-

tioned biochemical properties (one for each amino acid) and the AAindex2 aggregates

different substitution matrices, such as the PAM250 or the BLOSUM62. The AAindex3

provides protein contact potentials, hence empiric values for spatial close amino acids,

such as the Gibbs free energy change, to indicate preferred interactions between resi-

due pairs [39]. The AAindex database, as a consistent source for numerical amino acids

Fig. 3 Similarly to the amino acid composition, the k-mer composition counts the presence of k-mers. In
this example k is set to three
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indices, has proven its usefulness in several studies. An example is the prediction of

transmembrane protein segments [40]. Deber et al. (2001) used, among others, the

hydrophobicity scale introduced by Kyte and Doolittle [41], as a reference to their ex-

perimental derived values of hydrophobicity [40]. The program annotates α-helical re-

gions in the query sequence, based on the respective hydrophobicity and helix

tendency thresholds [40]. So called z-descriptors have been employed as part of the

prediction of cell-penetrating peptides [42]. These type of peptides reveal an important

property, as they are capable to introduce macromolecules into the cell, which is espe-

cially interesting for the pharmaceutical industry [43]. The z-descriptors are derived

from the principal components of physicochemical properties by means of partial least

squares (PLS) projections [44]. PLS leads to a subset of five final features, capable to

describe the 20 proteinogenic as well as 67 additional amino acids. The first three com-

ponents can be considered as lipophilicity, volume (steric bulk), and polarity, respect-

ively, whereas the fourth and the fifth component are not clearly derivable [44]. These

properties are appropriate for the cell-penetrating peptide prediction, due to the intrin-

sic properties, which are the polarity (positively charged residues are advantageous) as

well as the the amphi- and hydrophobicity [42]. However, Hansen et al. (2008) pointed

out, that the method benefits from averaging z-descriptors, because that allows to com-

pare sequences with varying length [42]. Nevertheless, to deal with varying protein or

peptide sequence lengths, interpolation techniques have been introduced [45]. Se-

quence interpolation refers to a method, which connects multiple points, that is amino

acid indices, via different linear and nonlinear functions. In order to obtain a continu-

ous feature vector, the amino acid sequence is first mapped to the respective physico-

chemical property, followed by the actual smoothing, employing one of the

interpolation functions [45, 46]. Physicochemical representations of peptides have been

utilized to classify AMPs and non-AMPs [47]. To this end, Torrent et al. (2011) investi-

gated the different characteristics of antimicrobial peptides, such as the isoelectric

point, in-vivo aggregation, and hydrophobicity with respect to their discriminative

power [47]. A peptide is described by its different characteristics and the particular av-

erages were fed into an ANN to obtain the class to which the query peptide belongs

[47]. In addition, the physicochemical property encoding is employed by various web

servers for peptide retrieval, i.e., database queries, as well as for classification. Two ex-

amples are AVPpred [48] for antiviral peptide prediction and DBAASP for structure

and activity of AMPs [49]. Moreover, this encoding has been used as part of several

Fig. 4 Sketch of sequence-based encodings derived from physicochemical properties and Fourier
transformation. a The numerical representations are based on the physicochemical properties of Serine (S),
Glutamine (Q), Valine (V), Threonine (T), Asparagine (N) and Alanine (A). b Fourier transformation derived
from the encoded peptide sequence
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other studies to predict antimicrobial effects of synthetic peptides [50] or to find sub-

structures with antimicrobial potency in larger proteins [51]. In order to take into ac-

count that some traits of AMPs are dependent on particular parts within the sequence,

such as a positively charged N-terminus, further studies elucidated the physicochemical

property dependence with respect to different sequence sections. One of these studies

divided AMPs into datasets for both termini, calculated the physicochemical represen-

tation, and finally uses an SVM for classification on the best performing feature subset

[52]. Another study leverages pattern changes of amino acid characteristics along a

peptide sequence for the prediction of antimicrobial peptides by means of random for-

ests (RF) [53]. An alternative approach, which leverages hydrophobicity values, is desig-

nated as the d-descriptor [54]. This encoding is founded on sequence moments, a two

dimensional extension of sequence profiles. The amino acid sequence is squeezed be-

tween the y- (N-terminus) and the x-axis (C-terminus) with gradually bending of the

single amino acids and subsequent vector summation. The length of the vectors arise

from the respective property and the angle results from the amino acids orientation in

the 2D space. Finally, the sequence moments are mapped to scalar values, which is

named the d-descriptor. Juretić et al. (2009) used the latter in order to estimate the

therapeutic index, the ratio of hemolytic and antimicrobial activity [54]. Finally, owing

to the high dimensional feature vectors, if one uses all possible amino acid indices, sev-

eral studies, such as [52], performed statistical analysis in order to reduce the features

before the accomplishment of the actual experiments. Other studies used techniques

such as PCA to obtain the aforementioned z-descriptors as well as factor analysis in

order to describe all amino acids with only five factors [55]. Recently, Boone et al.

(2018) proposed a classification method by means of the rough set theory [56]. To this

end, physicochemical properties have been used to encode the samples and afterwards

the algorithm finds suitable boundaries to differentiate between antimicrobial and

non-active peptides [56].

Autocorrelation

An approach to consider physicochemical properties not only for a specific position, but

also for amino acids which might be related in higher dimensional protein structure as-

semblies, can be described by an encoding, which is known as autocorrelation. In general,

autocorrelation describes the interdependence between two distant signals in a time

series, whereby the distance or the lag, respectively, is predetermined and fixed for a par-

ticular computation (Fig. 2a). For amino acid sequences, repeating patterns, i.e., a certain

periodicity, might be unveiled [57]. In peptide, or generally in protein science, two algo-

rithms to detect spatial autocorrelation have been employed: the Moron autocorrelation,

which considers the local dependence of amino acids [58] as well as the Broto-Moreau

autocorrelation, which describes the global relationship of the residues [59]. These formu-

las yield either positive values, meaning that amino acids with similar physicochemical

properties follow each other (positive autocorrelation) or negative values, i.e., amino acids

with different physicochemical properties are interconnected (negative autocorrelation).

Values near zero point to no or less autocorrelation [60]. One of the earliest applications

of autocorrelation was the statistical analysis of protein content [60] and the prediction of

α-helices [57]. A noteworthy relationship exists between autocorrelation and PseAAC,
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since both take the sequence order effect into account, by measuring the correlation

among amino acid pairs. Further advantages of this encoding are the reduction of the fea-

ture space as well as the normalization of the sequence length [61]. To this end, this de-

scriptor has been utilized in several studies and facilitated, for instance, the prediction of

mutation induced stability alterations of the gene V protein by bayesian-regularized gen-

etic neural networks [61]. Another study dealt with protein-protein interactions and used

the autocorrelation descriptor to train the rotation forest algorithm [58]. Furthermore,

Kleandrova et al. (2016) used this encoding for the prediction of antimicrobial activity in

known peptides as well as for screening of novel, artificial AMPs [59].

Substitution and scoring matrix

Substitution matrices, such as BLOSUM62 or PAM250, represent accepted mutations

between amino acid pairs, i.e., sequence alterations with either no or positive impact in

terms of the protein function. More specifically, it is the likelihood for a specific muta-

tion within a certain time frame [62]. In contrast, the position-specific scoring matrix

(PSSM) describes, based on a initial BLAST alignment, and iterative refinement, how

amino acids are evolutionary conserved at a specific position. This results in positive

values for a highly conserved residue and negative values for the others. Values near

zero indicate weakly conserved residues [63]. Alignments with PSSMs can be regarded

as an extension of substitution matrices, since instead of using, e.g., the PAM250, the

PSSM is used for the alignment score, which leads to improved substitution probabil-

ities and hence more sensitive alignments [64]. With regard to antimicrobial peptides,

this encoding weights functional important residues stronger, such that conclusions for

antimicrobial effects can be drawn and hereof facilitates querying peptides with un-

known activity. For instance, the BLOMAP-encoding incorporates the BLOSUM62 to

calculate distances in a high dimensional input space, i.e., the substitution matrix, to a

lower dimension, using the Shannon-projection [65]. Maetschke et al. (2005) demon-

strated how this descriptor improves signal peptide cleavage site prediction using,

among others, Naïve Bayes (NB) and ANNs [65]. Due to the ambiguity of some BLO-

SUM50 entries, i.e., same values for amino acids, which in fact differ towards their

physicochemical properties, Huang et al. (2005) utilized this substitution matrix in

order to extend the sparse encoding [66]. They replaced each non-zero value with the

respective BLOSUM50 score, such that the information of a particular amino acid is

kept and additional information, derived from the substitution probabilities, is taken

into account. The adjusted encoding has been used to predict T-cell epitopes by means

of an SVM [66]. Karypis et al. (2006) applied substitution matrices to train SVMs for

protein secondary structure prediction [67]. Therefore, k-mers are generated and

mapped by means of the PSSM and BLOSUM62 matrices, respectively, to their numer-

ical encoding. A binary SVM has been trained on this input and the results of this clas-

sification are used along with the aforementioned encoding for a second classification,

which incorporates both [67]. Kumar et al. (2008) employed PSSMs as the encoding for

a SVM to predict RNA binding sites in proteins [68]. Another study builds several

SVMs using different encoding schemes, such as split-, dipeptide-, and regular amino

acid composition together with PSSMs to enable the prediction of malaria parasite

mitochondrial proteins [69]. Furthermore, the classification of bacterial virulent
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proteins has been facilitated through the usage of sequence order effect conserving de-

scriptors like PseAAC, the PSSM, and the above mentioned AAIndexLoc encoding.

Nanni et al. (2012) used SVMs as well as an ensemble classifier approach for the final

protein identification [70]. The latter employs a two-stage feature transformation

method, which couples PCA and neighborhood preserving embedding, followed by de-

cision trees [70]. In order to reveal DNA-binding proteins, Xu et al. (2015) extended

PSSMs to incorporate dipeptide composition, which allows the computation of the

probability of simultaneously appearing pairs of same and different amino acids within

a certain distance along the peptide sequence [71].

Fourier transformation

Fourier Transformation (FT) can be used to detect underlying patterns in time series

by transforming the time signal to a frequency domain (Fig. 4b) [72]. Examples for the

application in biomedicine are the detection of the repeated occurring of coding and

non-coding regions in DNA sequences and the prediction of cellular locations of pro-

teins [73]. FT has been applied as part of a study to discover peptides with antimicro-

bial activity [73]. To this end, the residues have been first mapped to physicochemical

properties, followed by the actual FT. Afterwards, the similarity between a reference

peptide and potential hits has been measured by means of the Euclidean distance be-

tween the respective power spectra [73]. Moreover, Yin et al. (2017) proposed an ap-

proach to predict protein-protein interactions by means of discrete Fourier

transformation (DFT) [74]. They showed, that the detection of coevolution patterns

can be carried out without using multiple sequence alignments. Again, hydrophobicity

values have been used to encode the amino acid sequences. Afterwards, subsequences

have been extracted with a sliding window approach and transformed via DFT. Based

on the DFT results, the evolutionary distances between proteins were calculated using

the Euclidean metric. Finally, a protein-protein interaction is indicated by means of the

Pearson correlation coefficient [74].

Structure based encodings

The secondary structure of a protein or peptide, respectively, is mainly determined by

its primary structure, i.e., the order of the amino acids [75]. Moreover, the peptide

structure has a strong correlation with antimicrobial activity [76]. Thus, for the predic-

tion of antimicrobial activity, it is reasonable to use sequence-based encodings, but,

since the secondary structure cannot be completely derived from the primary structure,

it is also conclusive to develop structure-based encodings. In addition, the employing of

both descriptors simultaneously, allows the classifier a better generalization and thus

improves the overall accuracy [77]. The following section introduces several applica-

tions of structure-based encodings.

Quantitative structure-activity relationship

An alternative approach to describe amino acids sequences by their chemical properties

has been developed as part of quantitative structure-activity relationship (QSAR) stud-

ies. In essence, QSAR refers to the prediction of a particular property or activity by

means of its molecular characteristics and structure [78]. This is also the crucial
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difference between the description of amino acids by their physicochemical properties

and QSAR. The latter focuses solely on molecules, whereas the former encodes the

whole residue. In addition, QSAR is mainly applied in chemoinformatics for

high-throughput screening, i.e., to find novel active substances in databases using two-

and three-dimensional representations of compounds [79]. However, several studies

propose QSAR modeling based approaches to predict antimicrobial activity. For in-

stance, one study uses this encoding1 to imitate the artificial AMP Novispirin G10 by

similar peptides in order to enhance its potency. Here, molecular modeling was used to

calculate 3D structure conformations. The structure was then used to obtain a set of

descriptors, such as hydrophobicity, amphipathicity, and electrostatic charges. Finally, a

subset of meaningful features have been determined and the activity measurement of

the analogs was determined by predicting the amount of inhibited bacterial growth

[80]. Moreover, Bhonsle et al. (2007) aimed to find informative 3D physicochemical de-

scriptors in order to predict bioactivity of AMPs [81]. Solvent-accessible surface de-

scribing (e.g., fractional charged partial surface area), structural (H-bond acceptor) and

spatial (density) descriptors, among others, turned out to be good indicators for anti-

microbial activity [81]. Jenssen et al. (2007) investigated, whether there is a set of mo-

lecular descriptors, which can be used to optimize antimicrobial activity against P.

aeruginosa [82]. This set encompasses the aforementioned z-descriptors as well as the

contact energy between amino acids, inductive and conventional QSAR descriptors

[82]. Similar descriptors have been evaluated in order to design AMPs in silico [83].

Shu et al. (2013) uses PCA to extract the first six principal components from topo-

logical and structural characteristics to predict antimicrobial activity of synthetic cat-

ionic polypeptides [84]. In contrast, Schneider et al. (2017) utilized molecular

descriptors to train self-organizing maps (SOM) [85]. Afterwards, the continuous SOM

responses are adjusted by means of lateral inhibition and utilized as input for a deep

learning model in order to predict helical AMPs [85].

General structural encodings

Unlike QSAR-based methods, general structural encodings map structure information

derived from the whole peptide, to a numerical representation. The peptide structure is

described by means of their total 3D shape. This is contrary to QSAR, because instead

encoding an amino acid sequence from a molecular viewpoint, the whole peptide struc-

ture is considered (Fig. 5a). For instance, Cui et al. (2008) predicted the secretion of

proteins into the bloodstream [86]. They used features including physicochemical prop-

erties as well as structural information, such as secondary structure, and solvent acces-

sibility. The final prediction has been facilitated by an SVM [86]. Chang et al. (2015)

employed conditional random fields (CRF) for probability prediction of critical regions

along an AMP sequence [87]. CRFs are an algorithm similar to hidden Markov models,

but more variables, such as the surrounding context, can be incorporated. In the

present case, several structural descriptors along with physicochemical properties have

been used for the prediction. The structure-based encodings encompasses the assign-

ment of predicted secondary structure, conserved protein domains, predicted anti-

microbial regions [88] as well as the aggregation tendency [87]. Dybowski et al. (2010)

proposed a stacked classifier model to predict the HIV-1 tropism [89]. To this end, the
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authors trained two independent RFs, whereby the first used hydrophobicity values and

the second used the hulls of the electrostatic potentials of the V3 loop, a short peptidic

sequence of the viral gp120 protein, as descriptors. The electrostatic hull has been de-

termined in order to acknowledge even subtle differences between different co-receptor

tropisms as well as to wrap superimposed shapes of the peptides sub-structure. A third

RF combined the output of the other models for the final class assignment [89]. Due to

high computational effort during the calculation of the electrostatic potential, Heider et

al. (2014) presented an extension of this method [90]. The authors leveraged, that the

current model achieves good performance with a constant dielectric value and ionic

strength, thus simplifying the calculation of the potential to Coulomb’s law. Finally, the

electrostatic potential has been calculated based on the cluster centers. The centroids

are determined by all points within a certain distance to the Cα-atoms of the V3 loop

[90]. As part of another study, the authors increased the prediction power by means of

multiple RFs, combined to an ensemble classifier. The respective classifiers used physi-

cochemical as well as structural properties to predict resistance against a novel HIV-1

maturation inhibitor.

The structural encoding is based on the aforementioned electrostatic potential. In

addition, a genetic algorithm has been implemented to find an optimal subset of the

physicochemical properties [17]. However, Bozek et al. (2013) pointed out, that the

structural encoding of the V3 loop exhibits limitations, since only two physicochemical

properties has been used for description [91]. To this end, they proposed a novel en-

coding, which incorporates structural variations as consequence of sequential rear-

rangements. Thus, based on the template structure, spheres, whose centers are

depicted by reference atoms, are used to enclose spatial related residues of different

loop variants. Afterwards, the averaged physicochemical properties of all residues

within these regions are used to determine HIV-1 co-receptor usage [91]. In contrast,

Sander et al. (2007) introduced an distance distribution approach in order to improve

co-receptor tropism based on V3 loops [92]. This method calculates the euclidean

Fig. 5 Exemplary structure-based encodings for antimicrobial peptide Human Defensin 5 (PDB:2LXZ). a
Solvent accessible surface. Color coding according to hydrophobicity scale (Eisenberg et al., 1984) b
Delaunay triangulation of the same peptide calculated from Cα-atoms. Bose et al. (2011) used the summed
distances between amino acid pairs to encode protein structure
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distances between each atom type. Afterwards, the respective distances are used to ob-

tain the underlying distribution. Finally, the feature vector is obtained by sampling from

this distribution, leading to a final size of each possible combination times samples

[92]. Nevertheless, HIV-1 is a very complex organism and hence, several strategies have

been tackled in order to combat the virus, such as the aforementioned relation between

the V3 loop and tropism as well as between mutations, structure and drug resistance

[93]. To this end, another encoding has been developed to describe protein structure

based on Delaunay triangulation (Fig. 5b). In essence, the Delaunay triangulation states

that, if three points or vertices, respectively, are connected via edges, no further vertex

must be located within the circumcircle of these three vertices. This encoding facilitates

to encode the complete protein shape by finding the optimal edges between representa-

tive points, such as Cα-atoms. Thus, it is able to incorporate information about spatial

close residues, which might be lost by a descriptor based on the primary structure only.

Finally, the feature vector consists of 210 entries, derived from the adjacency matrix of

all amino acid pairs. The respective values are resulting from the averaged distance

among these pairs [94]. Albeit this encoding has been mainly employed in the context

of computational HIV research, it might work as well for antimicrobial peptides, owing

to very good classification results of several studies [95]. To sum up, structural encod-

ings are an appropriate extension to sequence-based encodings since antimicrobial ac-

tivity is determined by the three-dimensional composition of the residues [96] and in

addition, the combination of sequence- and structure-based encodings increases dis-

criminating power [97].

Alternative encodings

There are further encodings, which do not really fit into the proposed categories, i.e.,

sequence or structural encodings. One of these encodings, which are summarized in

Table 3, is the Chaos Game Representation (CGR). In general, the CGR is a visual en-

coding of a sequence, generating a fractal. The sequence can be obtained, e.g., from

random numbers or from biological sequences, such as bases (DNA) and amino acids

(proteins). In the case of the former, numbers from 1 to 3 denoting a vertex of a tri-

angle. The algorithm works as follows: firstly, a starting point s is determined and after-

wards, one of the numbers is randomly selected as the target vertex t. The next point is

located on the half way between s and t. By repeating this procedure, the so called Sier-

pinski triangle will be generated. The Sierpinski triangle is special about its recursively

defined sub-structures, which are also triangles [98]. In the case of the DNA, t is not

selected by chance, but rather by the successive base. Here, adenine (A), thymine (T),

guanine (G) and cytosine (C) are the labels of a square. After conducting the algorithm,

the resulting fractal shows lower order, but still exhibits notably patterns, originated

from the underlying sequence. Moreover, points which are close in the CGR do not

have to be necessarily adjacent in the sequence, which means that the CGR might

introduce novel distance metrics of subsequences [98]. However, with respect to AMPs,

CGR has been applied as part of a variety of studies in order to deal with amino acid

sequences. As such, Basu et al. (1997) classified similar amino acids to 12 different

groups, each representing a target vertex for the CGR algorithm [99]. In addition, the

resulting dodecagon has been divided in 24 grids and the amount of points per grid has
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been used to predict the affiliation to protein families [99]. A further study reduced the

amount of vertices to 8, whereby the grouping happened according to the respective

physicochemical properties [100]. Moreover, He et al. (2016) extended the illustration

to three dimensions, which results in a cube, rather than a planar octagon [100]. The

study investigated how this encoding could be employed for multiple sequence align-

ments. To this end, the authors introduced a method, which computes the euclidean

distance between amino acid pairs of two encoded proteins. Finally, the similarity of

two proteins is denoted by the sum of the distances [100]. Recently, one study used

CGR in a 10D space, using a hypercube for the prediction of anticancer peptides [101]

as well as for protein-protein interactions [102].

Another method, which does not fit into the proposed sections has been introduced by

Loose et al. (2006) in order to design novel AMPs [103]. In this study, the authors consid-

ered AMPs as a corpus of sentences and the goal was to examine, whether antimicrobial

activity is described by a certain grammar. To this end, a linguistic model has been de-

rived from active peptides and successfully employed for the design of AMPs [103].

Models
So far, state of the art encodings have been discussed extensively. The next section will

summarize the utilized learning algorithms. Popular models in antimicrobial peptide

prediction include decision trees [21, 50, 71] and random forests [17, 53, 104, 105], but

also neural networks have been employed in several studies [9, 26, 106]. Moreover,

deep learning, as an extension to ordinary neural networks, has been applied frequently

and thus a more detailed description, along with a summary in Table 4, is provided in

the next section. Support vector machines are a further outstanding model in AMP

prediction and were part of several studies [29, 30, 91]. In fact, there are specific ker-

nels designed for amino acid based proteins/peptides sequences, known as string ker-

nels. To shed some light into this topic, the upcoming section will highlight these

kernels in more detail. In addition, Table 5 summarizes the presented kernels. However,

besides the popular algorithms mentioned above, further methods leveraged partial

least squares [82, 83, 107], hidden Markov models [108], logistic regression [109] and

Bayesian networks [110]. Furthermore, ensembles of several classifiers have been also

successfully implemented, such as in [17] or [21], whereby often one classifier is trained

with a particular sequence or structural encoding. As part of an optimized feature set

construction, genetic algorithms have been employed, by, e.g., Kernytsky et al. (2009)

[111] as well as Veltri et al. (2017) [36]. Moreover, Krause et al. (2018) made use of gen-

etic algorithms to optimize cell-penetrating peptides [43].

Table 4 Different encodings from deep learning models (see Table 1 for details)

Encoding Description Summary Used in Used along with

ProtVec amino acid sequences are encoded as
a distributed representation of k-mers

Density: +
Information: +

[124]

Voxel structures of proteins are encoded as voxels Density: o
Information: +

[125, 126]

Matrix mimicks images by regarding the respective
entries of PSSMs as pixel densities

Density: o
Information: +

[127, 129, 130] PSSM

Autoencoder extracts representative characteristics in order
to reproduce the input as good as possible

Density: +
Information: o

[131]
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String kernel

Support vector machines (SVM) are capable to efficiently distinguish between binary

input data by projecting the data to a higher input space, using kernel techniques

[112]. Moreover, these kernel techniques allow a linear separation of a nonlinear classi-

fication problem, which is also known as the kernel trick [113]. One type of these ker-

nels are string kernels, which are employed to measure sequence similarity [112]. In

essence, the idea of string kernels implies that strings are mapped to a numerical repre-

sentation in order to be used as input for an SVM. Thus, it is basically another encod-

ing of an amino acid sequence, i.e., a method to map the string representation of

peptide sequences to high dimensional feature vectors. Hence, several studies proposed

corresponding methods, such as Leslie et al. (2002), who extended the spectrum kernel,

in order to incorporate sequence variations, to the mismatch kernel [112]. The former

generates all possible subsequences of length k and counts the occurrences of these

k-mers within the query sequences, leading to a similarity metric based on shared

k-mers [112]. This encoding is similar to the k-peptide composition, for instance the di-

peptide composition (k = 2), which has been introduced earlier. The mismatch kernel

on the other hand, considers a certain distance, hence mismatches, between two

k-mers and takes into account, that similar sequences might have similar properties.

Owing to the nature of spectrum kernels, further investigations revealed important and

meaningful motifs. As a case study, the authors predicted homolog proteins [114]. Fur-

thermore, string kernels have been applied to predict tumor suppressors, among others.

Here, small molecules are encoded in their 1D, 2D, and 3D representations. In 1D, mis-

match kernels have been employed to measure the similarity between the atomic se-

quences [115]. Another study investigated the performance of combined as well as

weighted mismatch and structure derived similarity score kernels [116]. For these

Table 5 Different types of string kernels (see Table 1 for further details)

Encoding Description Summary Used in Used along with

Spectrum Kernel generates all possible
subsequences of length
k and counts the occurrences
of these k-mers

Density: -
Information: -

[112]

Mismatch Kernel considers a certain distance,
hence mismatches, between
two k-mers

Density: -
Information: o

[114–116] General Structure

Distant Segment Kernel allows a gap between two
k-mers

Density: -
Information: o

[118]

Local Alignment Kernel obtained from local alignment
scores

Density: +
Information: o

[119] Spectrum Kernel,
Mismatch
Subsequence Kernel

Subsequence Kernel measures sequence similarity,
gaps within k-mers are taken
into account

Density: +
Information: o

[119] Frequency of Amino
Acid Pairs

Frequency of Amino
Acid Pairs

similar to dipeptide
composition

Density: -
Information: o

[119]

String Kernels +
Physicochemical
Properties

optimization of existing
string kernels such that these
involve physicochemical
properties

Density: +
Information: +

[120] Physicochemical
Properties

Generic String Kernel string kernel with physicochemical
properties and penalization of
non adjacent segments

Density: +
Information: +

[121, 122]
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kernels, each entry in the feature vector is obtained from structure alignments between

the input peptide and a peptide database [117]. The encoding incorporates the similar-

ity to further peptides, whereby conserved peptides are depicted with higher scores.

Boisvert et al. (2008) proposed an extension of the string kernel, which allows a gap be-

tween two k-mers [118]. Thus, the distant segment kernel takes into account the

co-occurrence of remote sequence segments. The authors used this kernel in order to

predict HIV-1 co-receptor tropism and achieved higher levels of accuracy compared to

other methods [118]. Moreover, several string kernels have been employed and com-

pared to predict linear B-cell epitopes [119]. These include the already introduced

spectrum and mismatch kernel as well as the local alignment kernel, obtained from

local alignment scores, and the subsequence kernel, which measures sequence similar-

ity, similar to the mismatch kernel, albeit gaps within k-mers are taken into account. A

third kernel measures the frequency of amino acid pairs (see dipeptide composition),

which is due to a bias towards certain dipeptides in B-cell epitopes [119]. Toussaint et

al. (2010) recognized that dealing with the sequence only might result in a loss of infor-

mation [120]. For this reason, the aim of their study was the optimization of existing

string kernels such that these involve physicochemical properties [120]. This kernel has

been used by another study in conjunction with the penalization of non-adjacent seg-

ments, which finally has led to the generic string kernel for small molecules [121]. The

authors applied this kernel in a subsequent study in order to detect antimicrobial pep-

tides. All possible peptides with a specific length have been generated by means of

source-to-sink graphs. In these graphs, all vertices are k-mers and all edges are

weighted according to the antimicrobial activity, computed by means of the generic

spectrum kernel. Finally, the detection of the most active peptide corresponds to the

detection of the longest path within the graph [122].

Deep learning

Machine learning algorithms based on artificial neural networks, especially deep learn-

ing models, have the advantage of incorporating automated encoding, i.e., feature gen-

eration. In general, the encoding results from several, successive connected layers,

which work as filters for particular parts of the input [5]. However, these models re-

quire a large number of training examples in order to generalize well. Fortunately,

owing to advances in next-generation sequencing technologies, biological sequences,

such as peptides and proteins, are publicly available in vast amounts [123]. Several

studies made use of that and showed how deep neural networks perform well on bio-

logical problems. For instance, Asgari et al. (2015) proposed a method called

protein-vectors, which splits a sequence into k-mers to learn the context of these word

representations [124]. Here, amino acid sequences are encoded as a distributed repre-

sentation of k-mers, which were employed for protein family classification or the pre-

diction of disordered proteins. This approach is derived from natural language

processing and uses the context, hence the adjacent residues, for the central k-mers

(“words”) syntactic and semantic description. The realization is carried out through

building a sufficient large training corpus of protein sequences (“sentences”) by break-

ing all available sequences into overlapping k-mers. Afterwards, neural networks are

used to find optimal, numerical representations, i.e., feature vectors, of the input
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sequences by means of the skip-gram model. By using these vectors, the authors

showed that this framework encodes physicochemical properties well and high

levels of accuracy have been achieved in the family classification task [124].

Jiménez et al. (2017) utilized deep learning to predict protein-binding sites [125].

To this end, the structures of proteins are encoded as three-dimensional objects,

whereby a cubic segmentation in so-called voxels, which are 3D pixels, takes place

beforehand. The encoding of each of these cubes is based on the contained atoms.

In order to incorporate physicochemical properties, the input is further upscaled to

8 property channels [125]. A similar approach has been elaborated by Amidi et al.

(2018) to predict enzyme classes [126]. Again, protein structures are encoded as

voxels and are used as input for a convolutional neural network (CNN), but in

contrast to Jiménez et al., the orientation of the protein has been considered. The

authors point out, that the structure orientation in the Protein Data Bank (PDB)

does not capture the dynamic of the protein and consequently used the proteins

barycenter as origin and the first principal components for the orientation of the

coordinate system. Overall, the model achieves good accuracy [126]. Another study

uses position-specific scoring matrices (PSSM) as 2D input for CNNs, hence

mimicking images by regarding the respective substitution probabilities as pixel

densities. The studies goal is the automated partitioning of efflux proteins families

[127]. This class of proteins provide an important tool for multi-resistant patho-

gens, because they allow them to convey molecules out of the cell, thus lowering

the overall concentration of antibiotics [128]. Two further publications deal with

alignment-free comparison of sequences, using CNNs. Both methods encode the

input sequences as two-dimensional one-hot matrices, leveraging the convolutional

layers for unveiling of latent features. Seo et al. (2018) employed this approach in

order to predict protein families [129]. However, Zheng et al. (2018) extended this

approach by training of two identical neural networks (siamese neural networks),

which allows to compare sequences with respect to their dissimilarity [130]. These

two methods, as well as the earlier introduced ProtVec [124], have in common that

they aggregate amino acid sequences of varying lengths to a fixed-length numeric

vector of lower dimension. Since this feature reduction keeps intrinsic properties of

the proteins, these algorithms might serve as potential encodings for AMPs.

Similar to this CNN based dimension reduction are autoencoders. Autoencoders

are applied to learn a dense representation of the input, i.e., to extract representa-

tive characteristics in order to reproduce the input as good as possible. For in-

stance, Wang et al. (2017) employed stacked autoencoders to predict protein-protein

interactions [131].

Databases and packages
Having access to existing data sets is crucial to push computational, antimicrobial pep-

tide prediction further. Thus, several projects aim to enable researchers a public data-

base to active peptides. Consequently, this part introduces established databases and

highlights some characteristics of these web services. Although data access is granted,

there are still a plenty of possible encodings for testing. Fortunately, there are

ready-to-use implementations of many encodings and the subsequent section lists a

choice of these handy packages.
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Databases

Piotto et al. (2012) presented YADAMP (yet another database of antimicrobial pep-

tides) [132]. The authors collected the data sets, i.e., AMPs, from various, published

studies. Potential hits can be limited, e.g., by specifying certain physicochemical proper-

ties and/or target organisms. Respective results provide more details with respect to ac-

tivity and structural properties [132]. CAMP (collection of antimicrobial peptides)

obtains AMP sequences and structures from well-known protein databases, such as

UniProtKB [133]. Active peptides have been filtered out via keyword search. By provid-

ing several links to further web services, CAMP is a comprehensive resource for AMPs

as well as active peptides in general [133, 134]. Wang et al. (2016) published the third

update for the antimicrobial peptide database (APD3) [135]. Besides its focus on nat-

ural occurring AMPs, this database stores various active peptides, e.g., anti-HIV,

spermicidal, and for wound healing. A web form lets the user specify custom query pa-

rameters, such as physicochemical properties [135]. Pirtskhalava et al. (2016) extended

the database of antimicrobial activity and structure of peptides to the second version

(DBAASPv.2) [49]. The service provides, among further details, potency values against

several pathogens, described by inhibition coefficients. Moreover, the authors con-

ducted molecular modeling for unveiling unknown structures of AMPs [49]. Finally, a

comprehensive data repository of antimicrobial peptides (DRAMP) has been set up by

Fan et al. (2016) [136]. They included additional features, hence similarity search, se-

quence alignment, and conserved domain search, besides established tools, which

already have been introduced by other [136]. More information about web services for

AMP retrieval can be found in two recent studies, published by Porto et al. [137] and

Gabere et al. [138].

Packages

As mentioned before, many of the sequence-based encodings have been implemented in

user-friendly packages, using, e.g., R2 or Python.3 Interpol is an R-package for normalizing

peptide sequences to a uniform length, using different interpolation methods and descrip-

tors of the AAindex database [45]. Cao et al. (2013) developed propy, which provides Py-

thon access to methods for amino acid composition, autocorrelation and pseudo-amino

acid composition (PseAAC), among others [139]. In contrast, protr, implemented by Xiao

et al. (2015), provides similar methods for the R programming language [140]. In addition,

all methods can be accessed through a public web server. However, the web interface

lacks the possibility of passing custom method parameters and is hence only recom-

mended for ad-hoc calculations [140]. Ofer et al. (2015) released ProFET, i.e., protein fea-

ture engineering toolkit, a Python-based distribution with a variety of ready-to-use amino

acid encodings [141]. Among default encodings, which have been implemented by others,

this package offers also reduced amino acid alphabet, autocorrelation, amino acid propen-

sities, as well as transformed CTD features [141]. modlAMP is a Python library specific-

ally developed for antimicrobial peptides. Besides a selective choice of encodings, Müller

et al. (2017) added methods for the whole prediction pipeline, i.e., sequence retrieval,

visualization, and machine learning algorithms [142]. Moreover, performant model pa-

rameters can be obtained automatically via a grid search [142]. In contrast, POSSUM

(position-specific scoring matrix-based feature generator for machine learning) is a
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toolkit, which facilitates the representation of amino acids with PSSM derived encodings

[143]. Wang et al. (2017) published POSSUM as a public web server as well as a Perl/

Python-based tool, executable via the command line [143]. PyBioMed is another Python

library foremost aiming cheminformaticians, owing to the fact, that many molecular

encodings are implemented, e.g., topological descriptors, applicable in QSAR studies

[144]. Nevertheless, Dong et al. (2018) rounded out this package with a variety of amino

acid encodings and additional tools, such as sequence and structure retrieval [144]. Re-

cently, Chen et al. (2018) published iFeature, which is accessible as a Python package and

web server [145]. This tool adds functionality in order to encode amino acids based on

AAindex entries as well as structure-based encodings, such as accessible surface area and

main-chain-torsional angles. Moreover, algorithms for clustering, feature selection, and di-

mensionality reduction are available [145].

Encoding selection
It is quite challenging to find a suitable encoding within the variety of possibilities,

thus, this section provides recommendations for the selection process. This might be

helpful for computational biologists, due to the fact, that, as far as we know, no guid-

ance of an appropriate encoding selection has been published until now. Unfortunately,

it is not easy to provide generally applicable processes, which encoding will work for a

particular application, thus we follow the approach from Heider et al. (2014) [90] and

propose the measurement of diversity as a rule of thumb [146], until more sophisti-

cated techniques have been unveiled. In order to calculate the diversity, it is necessary

to train various classifiers on different encoded peptide data sets and combine the out-

puts. In particular, the diversity is based on the decision of single classifiers with their

respective strengths and weaknesses. Thus, we suggest to conduct the encoding selec-

tion in such a way, that the ensemble maximizes the disagreement measure D, which is

the probability of the disagreement between the classifier i and j, which minimizes the

correlation of two classifiers i and j, as well as maintains the overall prediction accuracy

[90]. The disagreement measure D is defined as:

Di; j ¼ 1
n
�
Xk¼1

n

j oik−o j
k j

Here, oi and oj refer to the outputs of classifier i and j. Furthermore, we recommend to

combine sequence and structure based encodings. For more details we refer to [90]. A com-

prehensive introduction into the diversity of classifier ensembles can be found in [146].

Conclusions
The amount of effort that has been expended in the last decades, demonstrates how

important and essential efficient encodings are for detection of peptides with anti-

microbial activity. This is reflected by diverse approaches and methods, which have

been proposed in numerous publications. In the current study, we tried to aggregate

existing, useful encodings and models, specifically for antimicrobial peptide (AMP)

classification for multi-resistant pathogens. But also as part of other protein or peptide

studies, respectively, promising encodings have been developed. In particular, sequence-

and structure-based encodings have been discussed along with their applications. As
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part of sequence representations, major encoding schemes as well as different customi-

zations are introduced. Moreover, structural encodings encompassed molecular as well

as general representations and a particular focus was set again on application

dependent customizations. Finally, a selection of alternative encodings, beyond se-

quence- and structure-based encodings, are presented. The second part highlighted

employed models as well as string kernels as encodings for support vector machines.

Deep learning is a popular machine learning method and requires little or no encoding

for the classification process. Nevertheless, exciting applications in protein research can

be found in literature and thus, have been covered as well. As mentioned at the begin-

ning, this review summarized encodings specifically for AMPs, however, every machine

learning based protein/peptide classification task can be tackled by means of the pro-

posed techniques. Moreover, to enhance research capabilities, several studies already

implemented many of the reviewed encodings and published ready-to-use packages in

commonly used programming languages. Again, this review collected most popular

ones and provides an unified source of these. In order to lower obstacles further, we

added a separate section about existing antimicrobial sequence databases. In conclu-

sion, this review provides a common basis of methodologies in theory as well as prac-

tical tools to promote AMP research. Due to the fact, that we emphasized on

encodings derived from AMP classification tasks, it is not surprising, that a large num-

ber of further techniques for amino acid representation exist, which, for obvious rea-

sons, could not covered in this review. Moreover, additional research is required in

order to incorporate the structure of AMPs and to examine whether the simultaneous

encoding of sequence and structure can increase the prediction performance further.

Nevertheless, many studies showed already at this point very good results. The engin-

eering of amino acid encodings supports not only the detection of novel AMPs and

consequently the battle against multi-resistant pathogens, but could also impact other

major diseases, such as HIV and cancer. Research must be continued in each dir-

ection, in order to leverage the full potential of AMPs. To this end, besides the

aforementioned simultaneous deployment of sequence- and structure based encod-

ings, we propose further approaches. Delaunay triangulation is a promising encod-

ing for peptide structure. By integrating additional information, e.g.,

physicochemical properties, to the graph, one could leverage advantages of both. In

order to ease the access, this, as well as structure encodings in general, might be

provided in a separate library. Moreover, since implementations exist for R and Py-

thon and each language provides a unique set of encodings, it is beneficial to de-

velop a package, which provides those, that are not covered by an existing one.

Finally, a comparative study is necessary to examine the potential of single encod-

ings on a range of independent, biomedical data sets. Thus, encodings could be re-

vealed, which are preferable for a designated application.

Endnotes
1Since QSAR actually refers to the general model, the abbreviation will be used from

now on interchangeable with the molecule property encodings.
2https://www.r-project.org/
3https://www.python.org/
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6.3 A Large­scale Comparative Study on Peptide Encodings for Biomedical
Classification

The selection of effective encodings for categorical data is a particular challenge in the context
of ML. Since most ML algorithms require numerical and fixed­length input, categories must
be translated to continuous values32. Common techniques are one­hot, dummy, and ordinal
descriptors189,51. Regarding a group with n different classes, the one­hot, or binary, encoding
maps each member to a binary vector of length n, where one bit is set, respectively. The
dummy encoding also represents each class as a binary vector, using n − 1 variables. The
n­th type is encoded as the zero­vector. In contrast, the ordinal encoder maps the classes to
integers from 1 to n. Additionally, more complex encodings have been developed over time,
for instance, Helmert n or target encoding51,189.

These encoding schemes reflect the data as numerical values. However, for biological
sequences, the representation is even more complex since information is encoded beyond
individual amino acids251. For instance, interactions of amino acids, potentially non­adjacent
in the primary sequence, stabilize the secondary and tertiary structure251. Consequently,
amino acid sequences hamper encoding since biological information, hence, the sequence’s
function, must be retained. In this light, many peptide encodings have been developed that
describe more complex associations116.

An example for translating physicochemical properties of individual amino acids is the
amino acid index98. This encoding is based on a database providing experimentally derived
physical and chemical effects of individual amino acids, such as the hydrophobicity119,130.
Other encodings condense multiple amino acids to one figure, for instance, by numerically
depicting auto­correlation between recurring residues142. Moreover, researchers applied en­
codings for various biomedical ML tasks, including AMPs classification or the prediction of
cell­penetrating peptides.

The tertiary structure is a crucial for efficient StBEs. For instance, Löchel et al. (2019)
encoded the V3 loop sequence of the human immunodeficiency virus (HIV) using the elec­
trostatic hull146. However, various studies from multiple biomedical areas applied diverse
encoding types7. The great variety raises the question of whether specific encodings are su­
perior for particular domains. Consequently, we collected 48 encoding groups, partly param­
eterized, and 50 datasets from different biomedical disciplines, ultimately resulting in 397,700
encoded datasets.

We demonstrated that the biomedical application and performance are unrelated, and no
encoding is superior in a specific domain. Nevertheless, some encodings are more frequently
top­ranked. Furthermore, the results revealed a high correlation between parameterized de­
scriptors, specifically concerning adjacent configurations. We also observed that SeBEs are
in general superior to StBEs.
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The similarity of the classifier output, comprising diversity128, also reflects the inferiority
of StBEs. We observed that the predicted classes between the two categories only show
sparse consensus. Moreover, encodings inferred from the same type, hence, with varying
parameters, indicated higher similarity. To comply with findable, accessible, interchangeable,
and reproducible (FAIR) standards247, the experiments are implemented as an end­to­end
pipeline using Snakemake126. The datasets and results are hosted in a public repository,
and the results are illustrated in a web­based platform.

We developed the PEPTIDE REACToR, a workflow to evaluate the performance of en­
coded datasets from various biomedical domains. Although we showed that none of the
encodings work particularly well in a specific field, the results enable researchers to select
initial encodings. More precisely, the encoding recommendation pinpoints significant steps
to select encodings for a biomedical classification task at hand. Moreover, the inferiority of
StBEs is insofar surprising since a peptide’s structure mainly defines its function131. How­
ever, StBEs render acceptable performance, which could be due to sequences with known
structures.

Additional research is also required to address the effect of hyper­parameter optimization,
including model selection. Albeit the workflow reduces the several thousand initially encoded
datasets to a few hundred, manual encoding selection is still required. However, the re­
duced number of datasets paves the way for more sophisticated approaches, for instance,
automated ML. In this light, Feurer et al. (2015) demonstrated the good performance and
the ease of use of automated ML69. Research about unsupervised encoding selection is
essential to completely omit manual selection for automatic ML in biomedical classification.
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ABSTRACT

Owing to the great variety of distinct peptide en-
codings, working on a biomedical classification task
at hand is challenging. Researchers have to deter-
mine encodings capable to represent underlying pat-
terns as numerical input for the subsequent machine
learning. A general guideline is lacking in the lit-
erature, thus, we present here the first large-scale
comprehensive study to investigate the performance
of a wide range of encodings on multiple datasets
from different biomedical domains. For the sake of
completeness, we added additional sequence- and
structure-based encodings. In particular, we col-
lected 50 biomedical datasets and defined a fixed
parameter space for 48 encoding groups, leading
to a total of 397 700 encoded datasets. Our results
demonstrate that none of the encodings are supe-
rior for all biomedical domains. Nevertheless, some
encodings often outperform others, thus reducing
the initial encoding selection substantially. Our work
offers researchers to objectively compare novel en-
codings to the state of the art. Our findings pave the
way for a more sophisticated encoding optimization,
for example, as part of automated machine learning
pipelines. The work presented here is implemented
as a large-scale, end-to-end workflow designed for
easy reproducibility and extensibility. All standard-
ized datasets and results are available for download
to comply with FAIR standards.

INTRODUCTION

With the increasing popularity of machine learning meth-
ods, scientists began to use them for a wide range of biomed-
ical applications. A particular application is the prediction
of amino acid (AA) sequence properties, for example, a pep-
tide’s antimicrobial efficiency (1), cell-penetrating (2) and

cell-entry (3) properties, or the classification of T-cell epi-
topes (4). However, the mode of action of a peptide se-
quence depends on a variety of biochemical factors, which
cannot be reflected by the order of the AAs alone (1). More-
over, many machine learning models require a numerical in-
put with a fixed dimension (5). To this end, many descrip-
tors, i.e. sequence-based encodings (SeBEs) have been de-
veloped, aiming to compute adequate numerical represen-
tations of the primary structure. In short, SeBEs are algo-
rithms mapping the AAs to numerical values, but also incor-
porate interactions of non-adjacent residues, for instance,
by autocorrelation techniques (6,7). SeBEs have been suc-
cessfully employed in numerous studies, for example, for
the applications mentioned above, but also to predict an-
tiviral (8) or anticancer peptides (9). In addition, tools such
as iFeature (6) or BioSeq-Analysis2.0 (10), which allow easy
access to SeBEs, have paved the way for a wide range of
biomedical applications.

However, the function of a peptide is not only defined by
its primary structure, but biological meaning will be also
encoded in higher dimensions, i.e. the peptide’s secondary
or tertiary structure. Consequently, structure-based encod-
ings (StBEs) augment SeBEs to maximize the information
gain. StBEs can be divided into two further groups: encod-
ings derived from the secondary structure and those derived
from the tertiary structure. The former includes encodings
describing, for example, the �-helix composition (6), based
on an ab initio secondary structure prediction (11). For the
latter, Bose et al. (2011) utilized the Delaunay triangulation
to encode protein structures as numerical feature vectors
(12). The aim of the study was to predict protein structure
properties and the results showed, that this StBE is capa-
ble to preserve tertiary structure information for machine
learning purposes (12). Furthermore, Löchel et al. (2018)
demonstrated, that using the electrostatic hull of V3-loop of
the gp120 protein, substantially improved the prediction of
co-receptor tropism of the human immunodeficiency virus
1 (13). A comprehensive introduction to encodings, specifi-
cally dealing with the prediction of antimicrobial peptides,
can be found in our recent review (7).
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Nevertheless, several major challenges remain. First of
all, there is no guideline or clear recommendation which en-
codings work well for specific biomedical applications, fac-
ing researchers with the effort of matching the right encod-
ing for the task. Second, even if one or more encodings have
been determined, researchers are very likely challenged with
parameterized ones, further increasing the hyperparameter
search space and thus, actually aggravating the encoding
exploration. Third, many studies confirmed that combin-
ing different encodings to ensemble classifiers, effects the
prediction performance positively (14,15). Specifically, Dy-
bowski et al. (2011) employed stacked generalization on the
predictions of SeBE- and StBE-based classifiers and thus,
improved the resistance prediction to Bevirimat, an an-
tiretroviral drug class (16). Consequently, applying ensem-
ble learning techniques enlarges the hyperparameter search
space further and a structured exploration becomes more
and more difficult.

For this reason, we present here, to the best of our knowl-
edge, the first large-scale comprehensive study on state of
the art peptide encodings on a wide range of datasets from a
wide range of biomedical domains. Our study closes the gap
between the availability of a great variety of encodings and
the important question whether one of them is best suited
for a specific domain application or task. This study builds
upon our recent review on peptide encodings (7), which
allows us to add additional, literature-known sequence-
and structure-based encodings. The goal of the study is to
provide researchers, faced with a biomedical classification
task at hand, general guidelines, which encodings are likely
to be superior on a certain biomedical classification task.
Thus, we investigated the two major encoding types, namely
SeBEs and StEBs, in total leading to 48 encoding groups.
Moreover, we collected 50 datasets from multiple domains,
including antimicrobial, -viral and -cancer as well as cell-
penetrating peptides as already mentioned above, but also
from further fields, such as HIV drug resistance prediction.
By further taking the parameterization of some of the en-
coding groups into account, we generated altogether hun-
dreds of thousands of encoded datasets.

To meet this unique challenge we have developed the
PEPTIDE REACToR, a platform bundling manifold anal-
yses to examine characteristics of the encoded datasets (see
Figure 1). The workflow is designed for high paralleliza-
tion, enabling an efficient evaluation, even in the case of
additional encodings and datasets in the future. Surpris-
ingly, our results point out, that no particular encoding
can be recommended in general. However, there are en-
codings that show increased performance across multiple
datasets, hence, biomedical domains. Contrary, our method
reveals many inferior encoding groups, questioning the ne-
cessity of computing them at all. Thus, our findings pave
the way for automated machine learning approaches, in that
the hyperparameter space is drastically reduced and rele-
vant techniques become computationally feasible. Accord-
ing to the FAIR data principles (findability, accessibility, in-
teroperability and reusability) (17), the results can be inter-
actively accessed at https://peptidereactor.mathematik.uni-
marburg.de/ and all datasets can be downloaded at a central
location. The source code as well as the datasets are avail-
able at https://github.com/spaenigs/peptidereactor.

Figure 1. The general principle of the PEPTIDE REACToR. The empha-
sis is put on a high-throughput processing of an arbitrary amount of in-
put datasets (arrows), followed by the preprocessing, encoding, and post-
processing, generating the final output (top). The preprocessing includes
sanitizing of the input sequences, the filtering and the tertiary structure
approximation (squares). Afterwards, the sequences as well as the accom-
panied structures are used for the encoding (circles). The postprocessing
involves the machine learning and the actual benchmarking including the
visual preparation of the analyses (triangles).

MATERIALS AND METHODS

We collected 50 datasets from a wide range of biomedi-
cal applications. Furthermore, building upon our recent en-
coding review (7), we aggregated in total 48 encodings and
developed a high-throughput approach facilitating a par-
allelized encoding and the subsequent comparison of the
encoded datasets. Every task is part of a large-scale, end-
to-end workflow and will be executed automatically. An
overview of the workflow can be found in Figure 1. We
used Python v3.7.4 (https://www.python.org/) and R v3.5.2
(https://www.r-project.org/) throughout the analysis. The
pipeline itself as well as the algorithms in particular have
been implemented as a modular Snakemake v5.19.0 (18)
pipeline. Moreover, we used Scikit-learn v0.23.1 for the ma-
chine learning algorithms and validation metrics (19).

The following sections describe the applied methodol-
ogy by keeping the actual order of the workflow. Thus,
the dataset collection will be presented at first. The subse-
quent section introduces the tertiary structure approxima-
tion, since it is crucial before the actual encodings and their
properties are presented. Some of the encodings are param-
eterized, thus, leading to thousands of encoded datasets.
Therefore, the next section sheds light on the algorithmic
details of the encoded datasets filtering. Finally, the actual
benchmark methodology will be presented and the method
section concludes with the result visualization description.
Refer to Figure 1 for a visual summary.

Datasets collection

We collected 50 different datasets comprising peptides and
small proteins from various biomedical domains. These
include immunomodulatory and cell-penetrating peptides,
but also peptides specifically targeting cancer, fungi, mi-
crobes, tuberculosis and viruses. Moreover, we added
datasets from HIV research specifically covering resistance
prediction against different drug classes and protease cleav-
age site prediction. A further application refers to the detec-
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tion of neuropeptides as well as a- and b-cell epitopes. More
attributes, for example, origin, size, etc. can be found in the
Supplementary Table S1. Detailed dataset descriptions are
specified in Supplementary Table S3.

The datasets were composed for manifold reasons. They
reflect a broad field of action, including infectious diseases,
for example, HIV, antimicrobial resistance of multi-drug re-
sistant bacteria, and others, to elevate the significance of
the results. If possible, we used several datasets per domain
to also reflect the sequence diversity. In order to cope with
the high-dimensionality of the present study, we limited the
benchmark to two-class problems.

Moreover, the datasets have been applied largely as they
are, in order to stay as close as possible to the original us-
age. That is, the class ratio of the datasets at hand ranges
from well balanced (e.g. ace vaxinpad) to very imbalanced
ones (hiv v3) (see Figure 2). This affects also the size of the
datasets, which ranges from small ones (e.g. amp gonzales)
to relatively large datasets (e.g. amp iamp2l). Refer to Sup-
plementary Tables S1 and S3 for more details. Too large
datasets have been excluded from the study or, if present,
the validation dataset were used instead.

All in all, the datasets are composed of 53 041 sequences
ranging from 3 to 255 amino acids. The mean sequence
length is 55.04 (±67.58) with a median length of 26 amino
acids. Refer to Supplementary Table S2 for a comprehensive
descriptive evaluation on the datasets used in this study. In
particular, let Di be the i-th dataset from a biomedical ap-
plication, i.e. composed of a set of n amino acid sequences
s of length k, denoted as

Di = {s1, s2, . . . , sn−1, sn} (1)

and

si = {a1, a2, . . . , ak−1, ak} (2)

with ai being one of the 20 natural amino acids.

Tertiary structure approximation

Two categories of encodings have been investigated:
sequence- and structure-based encodings (SeBEs and
StBEs, respectively). While the former are derived from the
primary structure, i.e. the amino acid sequence, the compu-
tation of the latter bears on the secondary, if not the tertiary
structure of a peptide or protein, respectively. Even though
algorithms exist for the prediction of secondary structure
properties, for example, SPINE X (20), or the prediction of
the tertiary structure, for instance, RaptorX (21), they are
often computationally expensive, above all, if one aims to
predict hundreds of structures simultaneously.

However, for a large-scale approach, this is not practical,
thus, we developed in addition an algorithm, which approx-
imates the tertiary structure for later usage by StBEs. While
PSI-BLAST (22) is capable of finding more distant relative
sequences, it often suffers from a long run time for long se-
quences. Thus, we applied BLAST (23) v2.9.0 instead. In or-
der to set up a database, we downloaded all available struc-
tures (as of May 2020) from the Protein Data Bank (24)
(PDB, http://www.rcsb.org/), extracted all sequences into a
FASTA file using Biopython v1.7.4 (25,26) and used it as in-
put for the makeblastdb command. By doing so, we ensure,

that the database contains only sequences with a known
structure.

For a sequence si, the structure approximation works as
follows: first, an initial BLAST run tries to find the query
sequence within a PDB entry. For the best match, i.e. the
match with the lowest e-value, the respective PDB file will
be fetched. The algorithm clips the matching part from the
structure and returns the i-th tertiary structure approxima-
tion for a query sequence si. Any si, for which no structure
has been found, is omitted in the later encoding step.

Encodings

Spänig and Heider (2019) conducted an extensive literature
search and collected a wide range of SeBEs and StBEs (7).
We employed the Python package iFeature, which already
provides many encodings (6). Moreover, we also added the
frequency matrix chaos game representation (FCGR), an
adoption of the original CGR, recently developed by our
group (27). However, as part of this study, we contribute the
implementation of 10 additional encodings to the scientific
community, i.e. encodings, which have been used success-
fully in the literature, but where an actual implementation
is lacking. For a comprehensive list of all encodings, refer
to Supplementary Table S4. Supplementary Note S1 pro-
vides the algorithmic details on the additional encodings,
for the remainders, refer to (6) or (7). In addition, we em-
ployed MUSCLE v3.8.1551 (28) in case an encoding, for
instance, the binary encoding, requires a multiple sequence
alignment beforehand. In particular, an encoding is a func-
tion f, mapping an amino acid sequence si to an numerical
vector ŝi :

f : si → ŝi , ŝi ∈ QN (3)

Filtering

Since some of the encodings are parameterized, thus, lead-
ing in total to thousands of encoded datasets, an important
part of the pipeline is the filtering of the d encoded datasets
{D̂1, . . . , D̂d}, hence to reduce the extent of d before the ac-
tual benchmark. For the purpose of a benchmark, we cov-
ered the input parameter space for all encodings as extensive
as possible, thus we generated in total d encoded datasets:

d =
48∑
i

|−−→x1(i ) × · · · × −−→
xn(i )| (4)

Whereby × denotes the Cartesian product and n refers to
the n-th parameter set for the i-th encoding group. Specif-
ically, the amino acid index-based encodings are highly re-
lated owing to an intrinsic correlation of certain amino acid
indices. Moreover, parameterized encodings take the win-
dow length �w of size k for autocorrelation-based encod-
ings, or correlation types �c of size l, tuple sizes �t of size
m, and gap length parameters �g of size n for the pseudo
K-tuple reduced amino acids composition (PseKRAAC)
encoding leading to | �w| + |�c × �t × �g| encoded datasets for
these encodings groups alone. Refer to Supplementary Ta-
ble S4 for the comprehensive list on parameterized encod-
ings and which parameter space have been covered in par-
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Figure 2. Encoding groups performance, sorted by class imbalance and encoding type. Color coding corresponds to the maximum F1-score of the boot-
strapped medians for a group. The x-axis is organized by sequence- and structure-based encodings. The y-axis is sorted by class imbalance (cut-off 0.35).
Groups are separated by white bars. An interactive version of this plot can be found at https://peptidereactor.mathematik.uni-marburg.de/.

ticular. Supplementary Note S4 provides a detailed descrip-
tion of the filter algorithm for the amino acid index as well
as PseKRAAC encodings.

Benchmark

The essential part of this project is the high-throughput
evaluation of all encodings across multiple biomedical
datasets. To this end, several advanced processing as well
as analysis steps are conducted, which are introduced more
detailed hereinafter.

Model training. In order to standardize the analysis, we
used the Random Forest classifier (RFC) (29) with default

parameter settings as the default machine learning model.
RFCs already perform good without hyper-parameter op-
timization, which is contrary to, for example, Support Vec-
tor Machines, which achieve far greater performance with
optimized hyper-parameters compared to the defaults (30).
That is, RFCs are more stable, allowing us to neglect the
influence of hyper-parameter optimization on the encoding
performance. Moreover, we chose this classifier since it ex-
hibits a variety of advantages compared to other prediction
models. It internally picks the most predictive features out
of a set of multiple decision trees, that is, it has a built-in
feature selection method. Moreover, the final prediction is
based on the trees built from the selected features; hence, it
is also an ensemble algorithm. In addition, the feature im-
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portance can be calculated and the RFC is also capable of
reducing overfitting (29).

Cross-validation. In order to generalize the model per-
formance, we applied a repeated, stratified k-fold cross-
validation (CV). In particular, for each validation round, an
encoded dataset D̂i is splitted into k = 5 folds and each CV
is repeated 10 times. For each fold, the intermediate results,
i.e. the vectors of the predicted classes �t, the probabilities �p
and the actual classes �y are stored in the matrices Rp and
Rt, whereby p ∈ {�t, �p} and t ∈ {�y}. Rp, analogous to Rt, is
denoted as shown in Equation 5, with p f oldk,predn being the
n-th predicted probability or class of the k-th fold. In addi-
tion, the number of rows in both matrices corresponds to
the repetitions as well as folds of the CV, hence 50 in the
present case.

Rp =

⎡
⎢⎣

p f old1,pred1 . . . p f old1,predn

...
. . .

...
p f oldk,pred1 . . . p f oldk,predn

⎤
⎥⎦ (5)

Note, that the overall CV is conducted two times: one time
for each D̂i without any restrictions and a second time for
two groups of encodings, for example, for SeBEs and StBEs.
As mentioned above, it might be the case, that a tertiary
structure approximation failed. Consequently, a dataset D̂i ,
based on a StBE, might lack certain sequences, but the two-
group CV needs to ensure equal records in both D̂i ∈ SeBEs
and D̂k ∈ StBEs. Thus, in the case of a two-group CV, we
compute the intersection of the record labels and remove
the additional rows from D̂i prior to the actual CV.

Performance metrics. In order to evaluate the perfor-
mance of the encodings with a single measure, we calculated
the following metrics: F1-score, Matthews Correlation Co-
efficient (MCC), Precision, Recall (Sensitivity) and Speci-
ficity. Each of these measures has particular properties, al-
lowing them to highlight the advantages or disadvantages
of specific encodings concerning the task. Refer to Supple-
mentary Note S2 for the respective formulas. All metrics are
computed on the k-th split of the k-th row from Rp and Rt.

Similarity. The similarity of classifiers, that is, the similar-
ity of the predictions of unknown test examples from the
respective classifiers, trained with the encoded datasets D̂i

and D̂j , could stress specific strengths and weaknesses of
an encoding. To this end, we implemented two similarity
measurements, namely the Phi coefficient (31) (see Supple-
mentary Note S2) and the disagreement measure D (31,32),
with the respective output of the i-th classifier oi

k and of the
j-th classifier oj

k, denoted as:

Di, j = 1
n

n∑
k=1

∣∣oi
k − o j

k
∣∣ (6)

Analogous to the performance metrics, we computed the
particular similarity for the k-th CV split on the k-th row of
the i-th and the j-th classifier outputs Ri

p and R j
p, respec-

tively. Finally, the overall similarity is the average across all

splits. The two-group CV is the basis for the similarity mea-
sures since the output of the classifiers i and j, need to be
traceable to the same sequences.

Critical difference. There are several statistical tests for
evaluating machine learning models trained on multiple
datasets. Depending on the classification task at hand,
Santafé et al. (2015) provided an overview of the recom-
mended procedure (33). In the present case, we considered
the models trained on many encoded datasets as the sta-
tistical comparison of several classifiers trained on several
datasets. In particular, we assume, that using the RFC mod-
els trained on k encoded datasets instead of k algorithms
fulfills the criteria for the Friedman statistic � 2

F, meaning
the models are related, i.e. paired, and each fold is indepen-
dent of each other:

χ2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ (7)

with the the Iman and Davenport correction:

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

(8)

in order to verify, whether one of the models outperforms
another. That is, to reject the null hypothesis, which states,
that there is no difference between the classifiers. In partic-
ular, the Friedman test compares the ranks rj

i of the j-th
model validated on the i-th fold. The average rank is de-
noted as Rj = 1

N

∑
i r j

i calculated on N folds and k trained
classifiers using k − 1 degrees of freedom. Moreover, FF is
F-distributed with k − 1 and (k − 1) (N − 1) degrees of
freedom (34).

The alternative hypothesis states, that there is a statis-
tically significant difference across the models. In the case
of acceptance, the post-hoc analysis using the Nemenyi test
unveils the significantly different models. Hence, the critical
difference CD, denoted as

CD = qα

√
k(k + 1)

(6N)
(9)

is computed using the critical value q�, which is based on the
Studentized range statistic with k(N − 1) degrees of freedom
and a significance level of � = 0.05. Two classifiers perform
significantly different, if |Rj − Rĵ | ≥ CD (34).

The statistical tests are implemented as part of the R-
package scmamp v0.2.55 (35).

Encoding correlation. As already pointed out in a previous
section, many encoded datasets are either intrinsically cor-
related, for instance, the AAI-based encodings or derived
from the same encoding group, but with slightly different
parameters, for example, the window size. Ultimately, we
are dealing with high-dimensional, potentially very similar
datasets of varying dimensions. In order to measure the de-
gree of correlation, we utilized the adjusted RV-coefficient,
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which has been developed for these particular case (36):

RVad j (X, Y) =
∑p

i=1

∑q
j=1 r 2

ad j (xi , yj )√∑p
i, j=1 r 2

ad j (xi , xj )
∑q

i, j=1 r 2
ad j (yi , yj )

(10)

with r2
adj(x, y) being the adjusted Pearson correlation coef-

ficient (see Supplementary Note S4, Equation S10) between
two feature vectors, denoted as:

r 2
ad j (x, y) = 1 − n − 1

n − 2
(1 − r 2(x, y)) (11)

Moreover, X and Y refer to the encoded datasets D̂i with
p and D̂j with q features as well as n encoded sequences,
respectively. The i-th feature vector from X is denoted as
xi and the j-th feature vector from Y is denoted as yj. In-
dahl et al. (2015) implemented the adjusted RV-coefficient
as part of the MatrixCorrelation R-package, which we uti-
lized in version 0.9.4 (37). Since an all versus all calculation
is computationally expensive, we determined the RVadj only
for the top 50 encodings, based on the F1-score.

Encodings across multiple domains

For the comparison of encodings across multiple datasets,
i.e. biomedical domains, we merged the encodings into
groups (see Supplementary Table S4) and considered the
best-performing encoding (average F1-score of the CV re-
sults) as the group representative. Based on these, we ranked
the encoding groups across all datasets in order to un-
cover domain-specific patterns. Moreover, we clustered the
datasets and encoding groups by means of the hierarchi-
cal clustering using the UPGMA (Unweighted Pair Group
Method with Arithmetic mean) method with the euclidean
distance (38). We used the implementation provided by the
SciPy package (39).

Moreover, for each dataset D̂i , encoded via the amino
acid composition encoding, we applied t-SNE with default
settings on the sequences of the positive class as well as
for both classes. Thus, each s+

i and si is embedded in the
same two-dimensional space, allowing insights specifically
regarding the sequence similarity within various biomedical
domains and the diversity of the datasets on the sequence
level.

Data visualizations

The results are visually depicted and summarized by means
of Altair v4.1.0 statistical visualization library (40). In par-
ticular, we plotted the results for analyzing two kinds of cat-
egories (single datasets and summary graphics for all en-
coded datasets). We followed the 10 simple rules on how
to colorize biological data visualizations and applied them
in our workflow (41). Note, that in general the choice of
the top encodings is made due to the corresponding F1-
score. Refer to the Supplementary Note S3 for more de-
tails. Finally, the visualizations are aggregated into an inter-
active report, which can be found at https://peptidereactor.
mathematik.uni-marburg.de/.

RESULTS

Workflow

The PEPTIDE REACToR features high-throughput capa-
bilities and a modular design, allowing the processing of
an arbitrary amount of encodings and datasets. Novel en-
codings and additional datasets can be investigated, mak-
ing it sustainable and future-ready. The benchmark is set
up as a high-throughput, large-scale Snakemake (18) work-
flow. In particular, it is implemented with three important
goals in mind: first, efficient use of the available comput-
ing power, second, a high parallelization and third, make it
findable (F), accessible (A), interchangeable (I) and reusable
(R), according to the FAIR data principles (17). However,
as the different preprocessing, encoding, as well as bench-
mark tasks are very diverse and the implementation as one
large workflow is cumbersome, the workflow has been de-
signed in a way, that multiple meta nodes, responsible for a
specific task or algorithm, are aggregated to a meta work-
flow. Each meta node is a Snakemake pipeline itself, ex-
posing a defined application programming interface (API),
thus, making them interchangeable and reusable. For an
easy setup and high reusability, the meta workflow is exe-
cuted within a Docker v19.03.2 (https://www.docker.com/)
environment using Conda v4.8.3 (https://docs.conda.io/en/
latest/) for package management.

Performance

In general, the performance of the SeBE groups are supe-
rior to the StBE groups (see Figure 2). As an exception, the
qsar encoding works better on some of the hiv datasets. We
also observed an increased performance on datasets with
relatively balanced class sizes, i.e. the more imbalanced a
dataset, the poorer the performance. The hiv v3 dataset is
an exception. Albeit its striking imbalance, i.e. 200 versus
over 1000 sequences for positive and negative class, respec-
tively, the performance of all encodings is good. In addi-
tion, we were not able to observe specific encoding groups
that are more powerful on certain biomedical classification
tasks (see Supplementary Figure S1). The performance does
not seem to follow a specific pattern. For instance, all encod-
ing groups showed average performance on the cpp mlcppue
dataset, although the classification of the remaining cpp
datasets was clearly better.

Ranks. Three groups stood out: the cksaap, the dis-
tance frequency and the qsar-based encodings (see Figure
3). Encodings within these groups were more often among
the top 3, compared to encodings from the remaining ones.
In contrast, the majority of the encoding groups, in partic-
ular StBE groups, were rarely among the best.

Clustering. An automated clustering confirmed our find-
ings mentioned above. One can observe two major clus-
ters for the encoding groups and datasets, respectively (see
Figure 4). The encoding ones include mainly the SeBE
and StBE groups. The former can be further distinguished
in three sub-clusters, ranging from (i) the qsar to the
ctdd, (ii) the ctdt to the fldpc , as well as (iii) the egaac
to the moran encoding groups, although no real pattern
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Figure 3. Ranked encoding groups performance, sorted by class imbalance and encoding type. Color coding corresponds to the ranks of encodings across
datasets. The x-axis is organized by sequence- and structure-based encodings and the y-axis is sorted by class imbalance (cut-off 0.35). Groups are separated
by gray bars. An interactive version of this plot can be found at https://peptidereactor.mathematik.uni-marburg.de/.

emerges within these. An exception are encodings based
on the dipeptide composition, namely the dde, dpc and the
fldpc encoding, as these are all within the second clus-
ter. However, the gdpc encoding can be found in the first
cluster.

Regarding the dataset clusters, the larger of the two
can be divided again into three parts, namely (i) from the
hiv bevirimat to the hiv ddi, (ii) the cpp cellppdmod to the
atb antitbp, and finally (iii) from the cpp kelmcpp to the
hiv sqv datasets. Albeit the latter includes predominantly hiv
related datasets, in general no actual patterns can be ob-
served within the groups. In addition, a two-dimensional
embedding of the sequences of the positive class explains
some of the dataset clusters (see Supplementary Figure S2).
One example is the grouping of the hiv nfv, hiv rtv and

hiv idv datasets. The sequences of these datasets form simi-
lar, compact clusters.

Median performance. A closer examination of the encod-
ings reveals groups where the range spanned between the
worst and the best encoding is noticeable, meaning the best
encodings show similar performance compared to the top
encodings across all groups and vice versa (see Supplemen-
tary Figure S4). In addition, the StBEs show in general
worse performance compared to the SeBEs. This can be ver-
ified by considering the metrics in detail (see Supplemen-
tary Figures S5 and S6). StBEs are mainly located more
to the right, i.e. showing a smaller value of the respective
metric. However, by comparing adjacent encodings in Sup-
plementary Figures S5 and S6, we found no significant dif-
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Figure 4. Encoding groups performance, clustered by biomedical domain and encoding group. Color coding corresponds to the max F1-score of a group.
The x-axis is arranged by clustering datasets, i.e. the biomedical application. The y-axis is organized by clustering sequence- and structure-based encodings.
An interactive version of this plot can be found at https://peptidereactor.mathematik.uni-marburg.de/.

ferences (42). Furthermore, some of the outliers explain
the gap between the best and the worst encodings, men-
tioned above. Overall, encodings from the same group are
frequently among the best encodings, i.e. if two encodings
are derived from the same group, but with different parame-
ters, the performance is similar. By considering the receiver-
operation characteristic (ROC)- and the Precision-Recall
(PR)-curve areas of the overall top 6 encodings as well as
the top 3 SeBEs and the top 3 StBEs, the observations men-
tioned above can be further endorsed (see Supplementary
Figure S7).

Similarity

The similarity of the classifier outputs based on the Phi cor-
relation indicates that encodings within groups and simi-
lar performing ones reveal a higher correlation (see Sup-
plementary Figure S8). This can be verified by specifically
considering SeBEs versus StBEs, which show in general a

lower similarity. Furthermore, the diversity of the predic-
tions, i.e. the disagreement measure of the classifier out-
puts, underpins these observations, since similar encodings
as well as similar outputs leading to a lower diversity, hence
greater similarity (see Supplementary Figure S8).

Class separation. With this respect, considering not only
the diversity but also the probabilities predicted by a partic-
ular encoding combination, one can observe that the clus-
tering quality, i.e. the classification capability of two encod-
ings, measured by the Davis-Bouldin score (DBS), is often
dependent on the diversity. In particular, by combining a
well-performing SeBE and StBE, which show higher diver-
sity compared to the best group-independent encodings, an
increased DBS, hence better class separation, can be ob-
served for the former (see Supplementary Figure S9).

However, this is not always the case (see Supplementary
Figure S10). Albeit the encoding diversity and the DBS of
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the clusters are related, the DBS seems to increase only until
a particular diversity, meaning, that a too diverse classifier
output negatively affects the class separation furthermore.

Critical difference. The observations made by the similar-
ity measurements are further statistically revised by the crit-
ical difference of the respective classifier outputs. The criti-
cal difference unveils a great variety of encodings, which are
not significantly different (see Supplementary Figure S11).
Like above, this can be specifically observed for encodings
from one group, which is in accordance with the previous
experiments. However, the psekraac and the ngram groups
are an exception (see Supplementary Figure S11). In addi-
tion, encodings, which surpass the critical threshold by sev-
eral orders of magnitude, are less present (see Supplemen-
tary Figure S11).

Dataset correlation. Finally, the measured correlations,
solely based on the encoded datasets, verify our observa-
tions made throughout the analyses (see Figure 5). The re-
sults illustrate foremost that encodings, originating from the
same group, are clustered in separate branches. In addition,
considering specifically StBEs, also here a clustering in an
own sub-branch can be observed. This is in agreement with
our findings from above, i.e. similar encodings are jointly
clustered and thus, their predictions are also often related
significantly.

Encoding recommendation

Based on our results elaborated above, we are not able to de-
termine encodings, which can be specifically recommended
for a particular application. However, following our find-
ings a general guideline can be provided:

1. Some of the encoding groups are often among the top
3. Refer to Figure 3 for an overview and to which this
applies in particular. Encodings from these groups are
in general superior and should be preferably applied.

2. SeBEs are faster to compute and show in general a
higher performance; thus, they should be preferred over
the StBEs (see Figure 2 and Supplementary S13). How-
ever, combining SeBEs and StBEs to an ensemble classi-
fier could outperform single SeBEs (see (7) and Supple-
mentary Figure S9).

3. The dataset size should be also considered (see Supple-
mentary Figure S12), i.e. we recommend for larger ones
to carefully deliberate the choice of encodings. Contrary,
for smaller datasets all encodings can be computed with-
out hesitation.

4. A few encodings show better performance on imbal-
anced datasets. Refer to the Figure 3 for an overview and
to which encodings/datasets combination this applies to.

5. Consider the size parameter for autocorrelation-based
encodings (cksaagp, cksaap, socnumber, qsorder, nm-
broto, moran , ksctriad, geary , eaac, apaac , paac,
egaac , and psekraac). Shorter sequences require a
smaller, for example, window size and vice versa.

6. Select solely one particular encoding from a parameter-
ized encoding group. Encodings from the same group of-
ten show a similar performance (see Supplementary Fig-

ures S5, S8, and S11). This is due to highly correlated
encoded datasets (see Supplementary Figure S5).

7. Use ensemble methods and aggregate different encod-
ings to a meta learner in order to improve the perfor-
mance.

8. For encodings that are seemingly relevant for a specific
task, but fail in practice, extend the encoding choice it-
eratively, i.e. be less stringent with respect to the points
mentioned above, in order to find encodings with im-
proved performance.

DISCUSSION

We presented here, to the best of our knowledge, the
first large-scale comprehensive study on peptide encod-
ings. In particular, we aggregated numerous sequence- and
structure-based encodings (SeBEs and StBEs, respectively)
as well as datasets from a wide range of biomedical do-
mains. Albeit proteins and peptides may exhibit multi-
functionality (43), we limited our case study to two-class
classification tasks. Hence, we can exclude that an insuffi-
cient size of the respective classes affects the prediction neg-
atively, ultimately decreasing the complexity of this work
and allowing for more robust conclusions.

The choice of the Random Forest classifier (RFC) as the
default machine learning model also reduces the complex-
ity. A hyper-parameter optimization (HPO) is less impor-
tant as it would be for other models (30). In addition, the
built-in feature selection discards irrelevant features, thus
RFCs standardize the pre-condition for all encodings. This
also reflects applied machine learning, where feature selec-
tion is a standard measure and encodings would be ulti-
mately assessed based on their representative feature sub-
set. Nevertheless, HPO (including the choice of the classi-
fier) has the possibility to impact the encoding performance
slightly. In order to cope with the computational feasibility
we omitted an in-depth HPO. However, further research is
necessary to address the impact of HPO on the encoding
performance.

All in all, our study closes the gap between a broad range
of peptide encodings and the challenge which to use on a
specific biomedical dataset. We observed that no particu-
lar encoding group shows superior performance within a
biomedical domain, i.e. no general pattern emerged from
the respective encoding performance. However, insights are
hereinafter discussed in more detail.

Performance

The encoding performance depends on two main charac-
teristics. First, the class imbalance and second, the type,
i.e. SeBE or StBE. While the former is not surprising, as it
needs more sophisticated measures for coping, the second
is potentially due to the initial tertiary structure approxi-
mation. Thus, in many cases, the structure is probably un-
related with the in vivo one. In contrast, for the database,
we used only sequences with a known structure deposited
at the PDB. This could be the reason, why the general per-
formance of StBEs is lower compared to SeBEs, but the
predictions are still satisfying. We suspect that disordered
regions also affect the prediction negatively, since no con-
formational information can be derived from it.
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Figure 5. Top 50 datasets correlation. Correlation of top 50 encoded datasets based on the adjusted RV-coefficient. Color coding corresponds to the
encoding group. The graphic shows the example of the hiv ddi dataset. The online version of this plot can be found at https://peptidereactor.mathematik.
uni-marburg.de/.

A further reason for a convincing prediction is the se-
quence similarity within and across the positive and the
negative class. Regarding the former, the qsar encodings ex-
traordinary performance for some of the hiv datasets (see
Figure 3) could be due to overfitting, owing to very simi-
lar sequences (see Supplementary Figure S2). With this re-
spect, the hiv v3 dataset verifies this hypothesis further, as
it contains very similar sequences and almost all encodings
demonstrate very high performance on this dataset. In ad-
dition, the sequence embedding, shown in Supplementary
Figure S2, provides a further, visual explanation. Finally, a
low inter class similarity affects the class separation posi-
tively, which can also be observed by considering solely the

performance of the amino composition encoding (see Sup-
plementary Figure S3).

Albeit no real pattern emerges on the performance within
biomedical domains one can still observe slightly similar re-
sults on these datasets (see Supplementary Figure S1), pre-
sumably owing to redundant sequences. We collected the
datasets as they are and many studies build upon each other,
which explains overlapping sequences in some cases.

As mentioned above, the class imbalance as well as the en-
coding type contribute mainly to the encoding performance.
This explains also the result of the clustering, i.e. two ma-
jor clusters for datasets and encoding groups. An exception
refers to the ksctriad encoding, which clusters adjacent to
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StBEs, likely due to missing values (NA, see Figure 4) since
for too short sequences this encoding type cannot be cal-
culated. In addition, despite similar performance, it is not
possible to draw conclusions on a similar function of the
encodings. Far more datasets of the same biomedical appli-
cation would have been necessary.

The similar performance of within-group encodings can
be explained by adjacent parameter configurations, for ex-
ample, a slightly larger gap length or window size (see Sup-
plementary Figure S5), probably leading to only a marginal
information change. Moreover, this observation supports
our conducted psekraac filtering, since it is likely that many
of these encodings would perform similar, which in turn
question the necessity of computing all of them.

Similarity

The parameter configuration space for encodings emerg-
ing from the same group could also explain the similarity
of the classifier outputs. That is, adjacent parameters pro-
vide no further or new insights for the machine learning
model. This is in accordance with Kuncheva et al. (2003),
who stated that diversity is a crucial condition for effective
ensemble learning by mutually compensating weaknesses of
single models (31). Certainly, this would not be possible if
the classifier output is too similar. This is also the reason to
consider SeBEs and StBEs, which show continuously low
similarity (see Supplementary Figure S8) but also satisfying
performance (see Figure 4). However, we observed, that the
diversity cannot be arbitrarily high, since a greater diversity
does not necessarily imply an improved class separation (see
supplementary Figure S9).

The general trend, i.e. encodings from the same group
show similar performance and lead to similar predictions
can be verified by the statistical assessment, ultimately re-
vealing a great variety of non-significant differences (see
Supplementary Figure S11). The dataset correlation sup-
ports these observation impressively (see Supplementary
Figure S5). The exceptions are the pskraac and the ngram
encoding group, which is due to different sub-types, intrin-
sically generating different, within-group encodings.

Time versus performance

The total computing time depends on the dataset size,
i.e. the more sequences, the longer the required computation
(see Supplementary Figure S12). A more detailed look at
the total amount of sequences per dataset indicates that the
computation time depends on the dataset size (see Supple-
mentary Figure S12). However, the mean sequence length
does not necessarily lead to an increased calculation time
(see Supplementary Figure S12).

Moreover, some of the encodings impact the duration
crucially, above all the StBEs (see Supplementary Figure
S13). One can observe, that the majority of the SeBEs re-
quire less computation time and demonstrate at the same
time a higher performance. We added the elapsed time re-
quired for the tertiary structure approximation to the total
computation time of StBEs; thus, the calculation of the lat-
ter is in general prolonged. In addition, the tertiary struc-
ture approximation and the associated electrostatic hull en-
coding as well as the cgr and fldpc encoding, and finally

the psekraac filtering are main contributors to the total run
time (see Supplementary Figure S13).

Encoding recommendation

The recommendations serve as a general guideline, i.e. re-
searchers have to decide case-wise, which encodings to use
in particular. Some of the encodings seem to be redundant
and usage is not reasonable at the first glance. However, us-
ing ensemble methods could compensate for weaknesses of
single encodings, thus, even those encodings are applicable.
This is also a matter of the dataset size and available re-
sources. Moreover, although some encodings seem to work
on imbalanced datasets, more research is necessary to draw
meaningful conclusions.

CONCLUSION

Our study marks the first comprehensive benchmark on
various peptide encodings and we demonstrated, that in
general, the performance of all encodings is similar and
more or less independent from the biomedical task at hand.
This allows us to reduce the vast number of encodings dra-
matically, paving the way for more sophisticated optimiza-
tion methods in the future. A potential application refers
to automated ensemble classifier configuration or to ex-
tend established automated machine learning methods like
auto-sklearn (44). With this respect, a challenge remains
the continuous search space, which could be tackled with
pre-computed diversity measures to transform categorical
hyperparameters (encodings) into numerical ones. Addi-
tional research is also necessary to verify whether and how
StBEs can exhaust their full potential as part of ensemble
classifiers. However, datasets with many sequences aligning
to disordered regions can decrease the usability of StBEs
clearly.

Our reproducible, parallelized pipeline conducts differ-
ent analyses in order to get an expressive picture of the en-
coding performance across multiple biomedical domains.
The results are aggregated across multiple biomedical do-
mains and revamped as part of a great variety of interac-
tive visualizations. All standardized datasets are available
for download to comply with FAIR standards. The PEP-
TIDE REACToR allows researchers not only comparison
at one glance, but also provides the state of the art for future
encoding benchmarks, bundled in a single platform. With
this respect, an extension is conceivable in order to allow
researchers to upload their own (private) datasets.

DATA AVAILABILITY

The results can be interactively accessed at https:
//peptidereactor.mathematik.uni-marburg.de/. The
source code is available at https://github.com/spaenigs/
peptidereactor. Due to the large size, intermediate data as
well as intermediate results are available upon request.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB online.
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6.4 Unsupervised Encoding Selection through Ensemble Pruning for
Biomedical Classification

Numerous studies dealt with the classification of peptide properties, for instance, immuno­
suppressive89, cell­penetrating154, and antimicrobial efficiency165, or drug resistance pre­
diction146. Researchers must select ML classifiers, for instance, the Naïve Bayes classi­
fier (NBC), Logistic Regression classifier (LRC), or Decision Tree classifier (DTC). Never­
theless, multiple studies demonstrated that merging base classifiers can improve the per­
formance75,86,216. Encodings are of significant relevance since classifiers require numerical
and fixed­length input32. However, many encodings expand hyper­parameter optimization
(HPO). Specifically, researchers are faced with a complex workflow, including encoding se­
lection, optimal model configuration, and evaluation of ensemble fusion methods.

Considering the 20 natural amino acids, millions of active peptides are possible. Thus,
automated approaches are required to screen the vast space of possible combinations. In
addition, pipelines should conduct encoding selection and HPO. To this end, Chen et al.
(2021) introduced an ML tool for nucleic acid and amino acid sequences38. The program
provides a graphical user interface to assemble classification workflows; however, it only
offers manual encoding selection38. Features for full automation, comprising unsupervised
sampling of encodings and ensembles, are lacking.

In the present study, we considered models trained on individual encodings as base clas­
sifiers. We utilized convex hull and Pareto frontier pruning129 which can process even hun­
dreds of encodings. In addition, we investigated the multi­verse optimizer (MVO) as a further
ensemble generator2. The output of the base models, NBC, LRC, and DTC, is fused by
majority vote, averaging, and stacked generalization. Furthermore, the Random Forest clas­
sifier (RFC), effectively an ensemble model, is committed as another base model to examine
its robustness25.

The realized workflow features unsupervised encoding selection and ensemble configura­
tion. The tool is extensible by other base and ensemble methods. All results are collected
and visually depicted, allowing researchers to determine good ensembles readily. The study
demonstrated that the base model and encoding choice affect performance primarily. In con­
trast, the fusion method is seemingly irrelevant.

The Pareto frontier pruning is an efficient strategy for unsupervised encoding selection
and ensemble configuration. In contrast, the MVO produces inferior ensembles, and the
optimization suffers from a long run time. Ensembles using the RFC as a base model revealed
only marginal performance gain compared to the individual model. Ensembles employing
other base models are occasionally superior.

Currently, the pipeline utilizes straightforward ensemble methods. Thus, more research is
necessary to incorporate other ensembles, for instance, boosting, which requires the adap­
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tation of the involved base models266.
In conclusion, the study enables unsupervised encoding selection and ensemble construc­

tion. We leveraged ensemble pruning to deal with potentially hundreds of encoded datasets.
Researchers can readily assess the various encodings, models, and fusion methods by pro­
viding statistics and visualizations. Our work is a significant step towards automated biomed­
ical classification and bridges the gap between many peptide encodings and diverse ML
models.
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Abstract

Background
Owing to the rising levels of multi-resistant pathogens, antimicrobial peptides, an
alternative strategy to classic antibiotics, got more attention. A crucial part is
thereby the costly identification and validation. With the ever-growing amount of
annotated peptides, researchers employed artificial intelligence to circumvent the
cumbersome, wet-lab-based identification and automate the detection of
promising candidates. However, the prediction of a peptide’s function is not
limited to antimicrobial efficiency. To date, multiple studies successfully classified
additional properties, e.g., antiviral or cell-penetrating effects. In this light,
ensemble classifiers are employed to utilize the advantages of peptide encodings;
hence, further improving the prediction. Although we recently presented a
workflow to significantly diminish the initial encoding choice, an entire
unsupervised encoding selection, considering various machine learning models, is
still lacking.

Results
We developed a workflow, automatically selecting encodings and generating
classifier ensembles by employing sophisticated pruning methods. We observed
that the Pareto frontier pruning is a good method to create encoding ensembles
for the datasets at hand. In addition, encodings combined with the Decision Tree
classifier as the base model are often superior. However, our results also
demonstrate that none of the ensemble building techniques is outstanding for all
datasets.

Conclusion
The workflow conducts multiple pruning methods to evaluate ensemble classifiers
composed from a wide range of peptide encodings and base models.
Consequently, researchers can use the workflow for unsupervised encoding
selection and ensemble creation. Ultimately, the extensible workflow can be used
as a plugin for the PEPTIDE REACToR, further establishing it as a versatile tool
in the domain.

Keywords: Biomedical classification; Antimicrobial peptides; Encodings;
Machine Learning; Ensemble Learning

Background
Multi-resistant pathogens are a major threat for modern society [1]. In the last

decades, a rising number of bacterial species developed mechanisms to elude effi-

ciency to widely used antibiotics [1]. The importance of developing and implement-
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ing alternative strategies is further underpinned by a recent study, which detected

a certain baseline resistance in European freshwater lakes [2]. The study confirmed

resistance specifically against four critical drug classes in human and veterinary

health in freshwater, which is typically considered as a pathogen-free environment

[2]. Moreover, already concerning levels of antibiotic resistance in Indian and Chi-

nese lakes emphasize the requirement of alternative biocides [3, 4]. One promising

approach to replace or even support common antibiotics refers to the deployment of

peptides with antimicrobial efficiency [5]. However, identifying and validating active

peptides requires intensive, hence, costly and time-consuming wet-lab work. Thus,

in the pre-artificial intelligence (AI) era, the manual classification and verification

of antimicrobial peptides (AMPs) engaged researchers. Although the in vitro confir-

mation of activity is still necessary, the application of AI, i.e., in particular machine

learning (ML) algorithms, simplifies the identification process drastically and pushes

specific AMPs to the second or third phase of clinical trials [6]. In addition, online

databases provide access to thousands of annotated sequences and pave the way for

AI application in peptide design and classification [7]. For instance, Chung et al.

(2019) developed a method, which demonstrated good performance on classifying

AMPs using a two-step approach, which first predicts efficiency, and afterward the

precise target activity [8]. Another study employed a variational autoencoder to

encode AMPs, mapped the probability of being active to a latent space, and pre-

dicted novel AMPs [9]. Fingerhut et al. (2020) introduced an algorithm to detect

AMPs from genomic data [10]. For more information on computational approaches

for AMP classification, we refer to the recent review of Aronica et al. (2021) [11].

However, the prediction of amino acid sequence features is not limited to AMPs.

In the literature, one can find various applications, e.g., in oncology for predicting

anticancer peptides [12], in pharmacology for the discovery and application of cell-

penetrating peptides as transporters for molecules [13], or in immunotherapy, for

classifying of pro- or antiinflammatory peptides [14, 15]. Other applications include

antiviral peptides [16], or peptides with hemolytic [17] or neuro transmitting activity

[18].

Unequivocally, the success of ML methods for the prediction of AMPs was enabled

by the development and advances of peptide encodings. Encodings are algorithms

mapping the amino acid sequences of different lengths to numerical vectors of an

equal length, hence, fulfilling the requirement of many ML algorithms [19]. More-

over, peptides or proteins can be described by their primary structure, i.e., the amino

acid sequence, and the aggregation in higher dimensions, denoted as the secondary

or tertiary structure. Encodings derived from the primary structure are known as

sequence-, and encodings describing a higher-order folding are structure-based en-

codings. To date, a large number of sequence- and structure-based encodings have

been introduced and employed in various studies [19]. A significant amount of en-

codings has been recently acknowledged by another study, specifically benchmark-

ing these by considering multiple biomedical applications [20]. It turned out that

most encodings show acceptable performance, partly also beyond single biomedical

domains [20]. In addition, Spänig et al. (2021) developed a workflow, which can dra-

matically reduce the number of initial encodings [20]. However, encoding selection

is still challenging, and user-friendly approaches are required.

6 Publications 6.4 Publication 4

109



Spänig et al. Page 3 of 18

Furthermore, hyperparameter optimization is additionally aggravated by the

model choice. Albeit Support Vector Machines (SVM) and Random Forests (RF)

are widely employed in peptide classification [11], the variety of models used in a

broad range of studies is large. For instance, Khatun et al. (2020) utilized several

ML algorithms, including Näıve Bayes, AdaBoost, and a fusion-based ensemble for

the prediction of proinflammatory peptides [21]. The fusion-based model outper-

formed the other ML models significantly for this task [21]. Plisson et al. (2020)

employed Decision Trees (DT) and Gradient Boosting (GB), among others, to clas-

sify non-hemolytic peptides and demonstrated that the GB ensemble has superior

performance [22]. In contrast, Timmons et al. (2020) used Artificial Neural Net-

works to characterize therapeutic peptides with hemolytic activity [23]. Singh et

al. (2021) compared several base classifiers, e.g., Linear Discriminant Analysis and

ensemble methods, e.g., GB and Extra Trees to detect AMPs [24]. They demon-

strated that the GB performed best [24]. These studies clearly show that ensemble

classifiers typically show superior performance than single classifiers, which is based

on the fact that they can compensate for weaknesses of single encodings and base

classifiers [25].

Recently, Chen et al. (2021) introduced a comprehensive tool, which allows less

programming experienced researchers to simply select encodings and base or en-

semble classifiers through a graphical user interface, allowing easy access to the

underlying algorithms [26]. Nevertheless, the approach assumes that the user se-

lects proper settings for the parameterized encodings, which has been previously

shown to affect the classification process significantly [20]. Moreover, the encoding

selection is independent of the classifier settings, meaning that the tool can set up

the classifier automatically; however, the encoding selection is not part of it. Thus,

it remains a challenge to pick good encodings and classifiers for a biomedical classi-

fication task at hand. To this end, we assessed unsupervised encoding selection and

the performance and diversity of multiple ensemble methods. We added different

overproduce-and-select techniques for ensemble pruning, facilitating an automatic

ensemble generation. In addition, we utilized Decision Trees, Logistic Regression,

and Näıve Bayes as base classifiers, owing to their prevalence in the field of biomed-

ical classification due to their explainability [11, 19, 27].

Besides demonstrating the benefit of an unsupervised encoding selection, we also

examined how the RF performs as a base and ensemble classifier, i.e., whether the

RF, an ensemble method per se, is performance-wise already saturated or whether a

subsequent fusion can improve the final predictions. Fusion of RFs has been shown in

other studies to improve overall performance, e.g., for HIV tropism predictions [28,

29]. All in all, we complement our recent large-scale study on peptide encodings [20]

with an automatic encoding selection and a performance analysis of multiple base

and ensemble classifiers. Ultimately, the present research bridges the gap between

many peptide encodings and available machine learning models.

Results
We developed an end-to-end workflow, which automatically generates and assesses

classifier ensembles using different pruning methods and a variety of encoded

datasets from multiple biomedical domains (see Table 4). Data scientists can easily
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Table 1 The table shows the performance comparison (including RF) of classifier ensembles derived
from different pruning methods and the single best classifier. Numbers refer to the mean performance
of a 100-fold Monte Carlo cross-validation. Standard deviation (SD) is added in brackets. Mean and
SD are rounded to 2 decimal places. The top base/ensemble classifier combination is always used (see
Fig. 2). Classifier ensembles are significantly better than the single best classifiers. In particular,
except for one case, the Pareto frontier pruning (pfront) generates the best ensembles. Significance
levels are as follows: ** p ≤ 0.001, * p ≤ 0.01, and . p ≤ 0.05.

best chull mvo pfront rand rand single best single best
acp mlacp 0.73 (±0.06) 0.73 (±0.06) 0.7 (±0.07) 0.74** (±0.06) 0.69 (±0.06) 0.68 (±0.07) 0.69 (±0.07)
aip antiinflam 0.5** (±0.04) 0.5 (±0.04) 0.45 (±0.04) 0.5 (±0.04) 0.48 (±0.04) 0.47 (±0.04) 0.47 (±0.04)
amp antibp2 0.88 (±0.02) 0.89 (±0.02) 0.88 (±0.02) 0.9** (±0.02) 0.87 (±0.02) 0.84 (±0.02) 0.87 (±0.03)
atb antitbp 0.75 (±0.07) 0.76 (±0.08) 0.72 (±0.08) 0.79** (±0.07) 0.7 (±0.06) 0.66 (±0.07) 0.68 (±0.07)
avp amppred 0.79 (±0.03) 0.8 (±0.03) 0.77 (±0.02) 0.81** (±0.03) 0.79 (±0.03) 0.76 (±0.03) 0.76 (±0.03)
cpp mlcpp 0.77 (±0.03) 0.78 (±0.03) 0.78 (±0.03) 0.79** (±0.03) 0.76 (±0.03) 0.74 (±0.03) 0.75 (±0.03)
hem hemopi 0.88 (±0.03) 0.89 (±0.03) 0.87 (±0.03) 0.89** (±0.03) 0.88 (±0.03) 0.86 (±0.03) 0.87 (±0.03)
isp il10pred 0.59 (±0.05) 0.59 (±0.05) 0.6 (±0.06) 0.6** (±0.05) 0.57 (±0.05) 0.58 (±0.04) 0.58 (±0.04)
nep neuropipred 0.79 (±0.03) 0.81 (±0.02) 0.81 (±0.04) 0.81** (±0.03) 0.81 (±0.03) 0.76 (±0.03) 0.78 (±0.03)
pip pipel 0.5 (±0.04) 0.52 (±0.04) 0.5 (±0.05) 0.53** (±0.04) 0.47 (±0.04) 0.41 (±0.04) 0.49 (±0.03)

Table 2 The table shows the performance comparison (excluding RF) of classifier ensembles derived
from different pruning methods and the single best classifier. See Table 1 for more details.

best chull mvo pfront rand rand single best single best
acp mlacp 0.72 (±0.06) 0.73 (±0.06) 0.69 (±0.04) 0.74** (±0.06) 0.69 (±0.06) 0.66 (±0.07) 0.67 (±0.07)
aip antiinflam 0.47 (±0.04) 0.48 (±0.04) 0.44 (±0.05) 0.48** (±0.04) 0.41 (±0.04) 0.36 (±0.04) 0.44 (±0.04)
amp antibp2 0.88 (±0.02) 0.88 (±0.02) 0.87 (±0.02) 0.89** (±0.02) 0.86 (±0.02) 0.84 (±0.02) 0.87 (±0.03)
atb antitbp 0.73 (±0.06) 0.76 (±0.08) 0.67 (±0.04) 0.79** (±0.07) 0.68 (±0.07) 0.65 (±0.08) 0.68 (±0.07)
avp amppred 0.76 (±0.04) 0.77 (±0.04) 0.73 (±0.02) 0.81** (±0.03) 0.74 (±0.04) 0.7 (±0.04) 0.73 (±0.03)
cpp mlcpp 0.74 (±0.03) 0.75 (±0.03) 0.73 (±0.02) 0.78** (±0.03) 0.74 (±0.03) 0.71 (±0.03) 0.71 (±0.03)
hem hemopi 0.87 (±0.03) 0.89 (±0.03) 0.87 (±0.03) 0.89** (±0.03) 0.86 (±0.03) 0.86 (±0.03) 0.86 (±0.03)
isp il10pred 0.59 (±0.05) 0.57 (±0.05) 0.59 (±0.08) 0.6** (±0.05) 0.57 (±0.05) 0.58 (±0.04) 0.58 (±0.04)
nep neuropipred 0.79 (±0.03) 0.79 (±0.03) 0.79 (±0.02) 0.8** (±0.03) 0.74 (±0.03) 0.65 (±0.04) 0.78 (±0.03)
pip pipel 0.48 (±0.04) 0.45 (±0.04) 0.47 (±0.05) 0.48** (±0.04) 0.45 (±0.03) 0.38 (±0.03) 0.38 (±0.03)

extend the workflow with different base and ensemble classifiers, pruning methods,

encodings, and datasets. The results can be reviewed using the provided data vi-

sualizations, and the performance is further revised using multiple statistics. We

demonstrate that the Pareto frontier pruning is a valuable technique to generate

efficient classifier ensembles. However, the utilized base classifiers show compara-

ble performance, with the Decision Tree classifier being the model of choice for

most datasets. We address the results in more detail in the following. We use the

example of the avp amppred dataset throughout the manuscript. The results for

the remaining datasets can be found in the supplement. Moreover, the code is pub-

licly available at https://github.com/spaenigs/ensemble-performance. Note that the

workflow produces interactive versions of all charts.

Pruning methods

All pruning methods generate ensembles, i.e., combined encodings, superior to the

single best classifier, i.e., individual encodings (see Tables 1 and 2). In the case of

the Pareto frontier (pfront) pruning, which is predominantly ranked among the best

pruning methods, we observe a significant (p ≤ 0.001) performance improvement

compared to the single best classifier. We also observed that the pfront pruning gen-

erates larger ensembles than the convex hull (chull) pruning, which can be visually

verified in Fig. 1 (red line). Notably, including the Random Forest (RF) classifier

(see Table 1, pfront) does not, or very slightly, affect the ensemble performance

without RF (see Table 2), although the single best classifier performance is better

with the RF included (see Table 1). Consequently, the RF increases the overall

performance of the ensembles generated by the best encodings pruning. Finally, the

multi-verse optimization (MVO) suffers from high computational demand, i.e., a

long pruning time, and in general, an inferior performance compared to the other

techniques.
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Figure 1 The kappa-error diagram depicts pairs of base classifiers (gray dots) using the kappa
diversity on the x-axis and the average error on the y-axis (top row). Each classifier pair denotes
two particular encodings. The black line indicates the convex hull, and the red line the Pareto
frontier. Ensemble types are represented as symbols. The top row shows the example of the first
fold. The bottom row groups the results of all folds in a 2D histogram. The darker the color, the
more classifier pairs are binned in one group. The gray line in all panels depicts the theoretical
boundary (refer to the method section for more details). The plot shows the example of the
avp amppred dataset.

Ensemble classifiers

The ensemble performance mainly depends on the pruning and the choice of the

base classifiers; hence, the collection of individual encodings. Thus, the performance

differences among the single best (single best) and best random (rand) pruning are

insignificant, which is in contrast to the remaining methods (see Fig. 2). Further-

more, no significant difference can be observed for ensembles with the same base

classifiers, e.g., the RF or Decision Tree (DT). Thus, the fusion method impacts the

overall performance slightly. However, various base classifiers result in significantly

different ensembles, i.e., employing, for instance, the RF, generates significantly

different ensembles compared to the application of other base classifiers (see Fig.

2).

Moreover, it is noticeable that the Näıve Bayes (NB) and the Logistic Regression

(LR) classifiers result in ensembles with higher variance (see Fig. 1). In contrast,

the area covered by RF and DT models is more compact. Therefore, the variables,

i.e., diversity and the pairwise error, are revised by a multivariate analysis of vari-

ance (MANOVA), which revealed a significant difference (p < 0.001). A separate

examination of the variables utilizing variance analysis (ANOVA) followed by a

post-hoc analysis using Tukey’s HSD, demonstrates that all variables are signifi-

cantly different (p < 0.001). Finally, we conducted an ANOVA on the particular

area values, which disproves the initial observation, i.e., all areas are significantly

different (p < 0.001). However, considering the average values for all datasets, the

DT and RF are commonly ranked as the base classifiers with low variance (see

Table 3).

Single classifiers

In general, the performance of the base classifiers, i.e., single encodings, is lower

compared to the classifier ensembles (see Fig. 3). We also observed that the ran-

6 Publications 6.4 Publication 4

112



Spänig et al. Page 6 of 18

Figure 2 The XCD chart shows the difference between pruning methods (x-axis) and ensembles
(y-axis). Entities connected with a bold line are not significant different. The higher the
performance, the darker the color. The plot shows the example of the avp amppred dataset.

domly selected model (rand single best) is inferior to the best model (single best).

In addition, we noticed that the RF is relatively saturated, i.e., using the RF as a

single classifier and as a base model for ensembles does not have a significant ef-

fect on performance improvement. The low-performance variance is in line with the

observation that weak models benefit most from ensemble learning; however, RFs

are ensemble models [30, 31]. In contrast, the performance of other single classifiers

revealed more distinct differences to the ensembles (see Fig. 3).

Data visualization

We leveraged two standard visualization techniques, which we adapted and extended

for our particular application. First, we enhanced the kappa-error diagram [25] for

Table 3 The table lists the average area (±SD) covered by the base classifiers across the 100-fold
Monte Carlo cross-validation. The lowest area per dataset is highlighted in bold. The DT classifier
has the lowest area for most of the datasets, i.e., the predictions are more stable. Refer to Fig. 1
(bottom) for the example showing the avp amppred dataset.

bayes dt lr rf
acp mlacp 3.15 (±0.073) 2.6 (±0.08) 2.66 (±0.046) 2.55 (±0.081)
aip antiinflam 2.75 (±0.066) 2.27 (±0.045) 2.41 (±0.033) 2.14 (±0.045)
amp antibp2 3.01 (±0.077) 2.5 (±0.056) 3.07 (±0.122) 2.63 (±0.061)
atb antitbp 3.18 (±0.124) 2.82 (±0.059) 3.16 (±0.094) 2.73 (±0.069)
avp amppred 2.96 (±0.054) 2.38 (±0.05) 3.15 (±0.081) 2.42 (±0.054)
cpp mlcpp-complete 2.9 (±0.086) 2.37 (±0.073) 2.48 (±0.049) 2.42 (±0.079)
hem hemopi 3.2 (±0.06) 2.74 (±0.135) 3.07 (±0.076) 2.79 (±0.122)
isp il10pred 2.96 (±0.059) 2.45 (±0.046) 2.38 (±0.031) 2.39 (±0.047)
nep neuropipred 3.23 (±0.132) 2.61 (±0.081) 3.18 (±0.309) 2.68 (±0.079)
pip pipel 3.18 (±0.053) 2.19 (±0.034) 2.23 (±0.024) 2.3 (±0.069)
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Figure 3 The box plot shows the Matthews correlation coefficients (MCC) distribution using a
100-fold Monte Carlo cross-validation. The columns include the base, i.e., diverse encodings, and
the rows depict the ensemble classifiers. Colors refer to the pruning method. Note that the
distributions of the best single (single best) and best random single models (rand single best) are
independent of the ensemble type. Variations within rand single best are due to the random
selection. Moreover, MVO pruning (mvo) has only been conducted on the first five folds (see
Discussion). The plot shows the example of the avp amppred dataset.

the presentation of multiple folds, i.e., 100 in the current study, by aggregating the

cross-validation results into a two-dimensional histogram (see Fig. 1). The color

code allows the viewer to spot the peak at one glance. Hence, the tendency of

ensembles to use a specific base classifier. Moreover, considering the distribution of

the variables, one can make conclusions about the robustness.

Second, we extended the critical difference (CD) chart [32] with a categorical

heatmap displaying the actual performance. The extension enables viewers to sta-

tistically compare classifiers and review the individual encoding performance, i.e.,

Matthews correlation coefficient in the present case, at one glance. In addition, the

thickness of the vertical and horizontal rules is directly related to the critical dif-

ference, i.e., the thicker the rule, the closer the classifiers to the critical difference.

Thus, the rule thickness provides an additional visual channel to access the CD.

Discussion
We developed a workflow for unsupervised encoding selection and performance as-

sessment of multiple ensembles and base classifiers. Thus, we implemented and

compared several algorithms to facilitate ensemble pruning, including convex hull,

Pareto frontier pruning, and multi-verse optimization (MVO). Our results demon-

strate that the crucial factors are the base classifiers and the individual encodings.

The ensemble technique was not relevant, i.e., we could not observe performance

variations using one of hard or soft voting or stacking. In general, applying the Deci-

sion Tree (DT) as a base classifier yielded good performance across all datasets. The

Pareto frontier pruning selected suitable encodings throughout the experiments.

However, since we used one encoding per base classifier, we restricted the em-

ployed ensemble methods, i.e., majority voting, averaging, and stacking, which do
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not modify the base classifiers. These ensemble types are in contrast to others,

e.g., boosting, where weights are adapted for misclassified training instances in

base classifiers [33]. More research is necessary to investigate how performance and

more sophisticated ensemble methods are associated. The employed ensemble types

are also the reason for the kappa-error point cloud shape solely depending on the

base classifiers. Consequently, computing the kappa-error diagram for all ensem-

ble methods was unnecessary. Our encoding/classifier approach is also contrary to

other studies, e.g., [12], [14], or [16], which concatenated several encoded datasets

to one final dataset (hybrid model) and applied feature selection before training.

In the present study, we solely scaled the datasets to standardize the feature range;

nevertheless, used the encoded datasets largely unprocessed, potentially affecting

the final performance.

As mentioned above, we employed several methods for ensemble pruning compris-

ing best single and random encodings for reference. In general, utilizing the Pareto

frontier pruning generates good ensembles; however, requiring the calculation of the

Cartesian product of all base classifiers; thus, encodings. Although only the (lower)

triangular matrix is necessary, the computation is still CPU-intensive. Furthermore,

considering the performance gain compared to the single best encodings, the diver-

sity contribution is only small, but more research is required in this direction [34].

The results of the MVO also acknowledge the impact of diversity. One can observe

that the MVO generates inferior ensembles (see Fig. 3).

Regarding Fig. 1, which depicts preferable classifier pairs towards the lower-left

corner, one can readily recognize the inferiority of the MVO. The classifier pairs are

distributed across the kappa-error area, i.e., the MVO screens the entire solution

space and adds weak classifiers to the final ensemble. Nevertheless, since we limited

the maximum number of generations to 15, we cannot rule out that more generations

would yield better results. Moreover, due to high resource consumption, we limited

the MVO to 5 folds, which might hamper comparison.

Moreover, the Random Forest (RF) deployment as a single classifier reveals good

performance, which is expected since it is already an ensemble algorithm per se.

With this respect, the other base classifiers are less accurate (see Fig. 3). However,

it could be demonstrated that RFs as base classifiers, i.e., using different encoded

datasets per model, slightly improves the performance. This further highlights the

importance of different encodings, hence the projection of different biological as-

pects, for the classification process.

The implemented methods demonstrate usability on a broad range of datasets

from various biomedical domains. With this respect, we incorporated the MVO ow-

ing to its excellent and promising performance on several benchmark datasets [35].

The comprehensive Monte Carlo cross-validation copes with the variance, ultimately

increasing the robustness of the results. In addition, the Pareto frontier and convex

hull pruning consider simultaneously the performance and the diversity of encodings

and base classifiers; hence, compensating their strength and weaknesses and reveal-

ing their potential not only for ensembles [36], but also in particular for biomedical

classification. Our proposed extension to the critical difference chart allows the

viewer at one glance to grasp significant, i.e., critical, performance differences of

encodings, models, and pruning methods jointly with the actual performance (see

Fig. 2).
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Conclusions
In summary, we employed two overproduce-and-select methods, namely Pareto fron-

tier and convex hull pruning, as well as the multi-verse optimizer for exhaustively

searching the encoding/base classifier space. We employed Logistic Regression, De-

cision Trees, Näıve Bayes, and Random Forest as base models and majority vote,

averaging, and stacked generalization for the fusion. The experiments and visu-

alizations enable the comparison of the respective components; however, further

research is necessary to examine other ensemble classifiers, e.g., boosting. All in

all, we propose an extensible workflow for automated encoding selection through

diverse ensemble pruning methods. Researchers can utilize our workflow to augment

the recently published PEPTIDE REACToR [20] with an unsupervised encoding

selection, ultimately easing the access for non-technical users.

Methods
We developed a high-throughput workflow using Snakemake v6.5.1 [37], Python

v3.9.1, and R v4.1.0. For the machine learning algorithms, we employed scikit-

learn v0.24.2 [38]. The peptide datasets are taken from the PEPTIDE REACToR

[20]. Finally, only encoded datasets with the final sequence- and structure-based

encodings were used for the subsequent analyses.

Note that there are two approaches to harness multiple encodings in a single

model, namely the fusion and the hybrid model [21]. Fusion models train one en-

coding per base classifier and fuse the output for the final prediction. Contrary,

hybrid models use the concatenated features of multiple encodings for single model

training. The concatenation approach is particularly problematic for entropy-based

models such as DT or RF due to the bias in variable selection. Thus, in the present

study, we implemented the fusion design, i.e., each ensemble consists of an arbitrary

amount of base classifiers using one particular encoding, respectively. Finally, the

employed datasets from a wide range of biomedical domains ensure broad applica-

bility and the robustness of our results.

Figure 4 Overview of the workflow. (a) For each fold of the MCCV, the preprocessing is
conducted, i.e., the indices of the train/test splits are determined, and the data is scaled. (b) The
pruning methods, e.g., Pareto frontier and MVO, select the current fold’s encodings and the
number of base classifiers. (c) Different ensembles with various base classifiers are trained and
validated on the test data. (d) The results are collected, statistically validated, and illustrated.
The workflow accepts an arbitrary number of datasets as input (arrows). Refer to the method
section for more details.

The workflow conducts the following steps. First, indices are determined to en-

sure equal samples for the comprehensive cross-validation, and the indices for all

folds are calculated. Second, we standardized the encoded datasets using a min-max
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Table 4 Employed datasets in this study. The function refers to the positive class, i.e., sequences of
class + possess the respective function. The stated MCC refers to the performance reported in the
original study. See the references or [20] for more details.

Name Function MCC Size (+,-) Ref.
acp mlacp Anti-cancer 0.698 581 (185,396) [12]
aip antiinflam Anti-inflammatory 0.45 2124 (863,1261) [14]
amp antibp2 Anti-microbial 0.84 1975 (981,994) [40]
atb antitbp Anti-tubercular 0.52 492 (246,246) [41]
avp amppred Anti-viral 0.8 1476 (738,738) [16]
cpp mlcpp Cell-penetrating 0.793 1901 (737,1164) [13]
hem hemopi Hemolytic 0.52 1013 (522,461) [17]
isp il10pred Immunosuppressive 0.59 1242 (394,848) [42]
nep neuropipred Neuropeptides 0.67 1750 (875,875) [18]
pip pipel Pro-inflammatory 0.454 3228 (833,2395) [15]

normalization between 0 and 1. Afterward, we trained and assessed models for all

encoded datasets and ensemble types using a 100-fold Monte Carlo cross-validation.

We selected the best single and the random best encoding per dataset to compare

the results to single encodings. Finally, we statistically assessed and visualized the

results (see Fig. 4). Significant steps are described in more detail below. We will

use the following definitions throughout the manuscript: the original unprocessed

dataset is denoted as the dataset. One dataset can be encoded in manifold ways,

which we refer to as encoded datasets. Encodings specify particular encoding algo-

rithms.

Note that we used Matthews correlation coefficient (MCC) throughout the study

to handle the imbalance in the datasets [39]:

MCC =
a × d − c × b√

(a + c)(a + b)(d + c)(d + b)
. (1)

a is the number of true positives, d is the number of true negatives, b is the number

of false negatives, and c is the number of false positives.

Datasets

For a comprehensive analysis on peptide encodings, Spänig et al. (2021) gathered a

variety of datasets from multiple biomedical domains [20]. We specifically selected

datasets with low to medium classification performance from this collection, i.e.,

a reported MCC of 0.63 ± 0.15 on the independent test set; additionally, covering

diverse biomedical applications. Moreover, we excluded datasets for which accurate

models have been published to investigate the potential effects of different classifiers

and ensembles. We limited our study to ten datasets to cope with the computational

complexity. The dataset size ranges from 492 to 3,228 sequences with an average

of 1, 580.8± 812.1 sequences. The datasets comprise 15,782 sequences with a mean

length of 21.17±13.23 amino acids. 6,404 sequences belong to the positive and 9,378

to the negative class. The average sequence length is 22.47±15.88 and 20.29±10.97,

respectively. Duplicated sequences have been removed. Refer to Table 4 for more

details.

6 Publications 6.4 Publication 4

117



Spänig et al. Page 11 of 18

Monte Carlo cross-validation

We applied the Monte Carlo cross-validation (MCCV) [43]. The MCCV improves

the generalization and diminishes the variance of the results, i.e., results are more

robust, hence comparable. In addition, we ensured that the n-th fold is identical

across all experiments leading to improved comparability across all base classifiers

and ensembles. Each fold is composed of one split using 80 % of the data for model

training and another utilizing the remaining 20 % for testing. In contrast to k-fold

cross-validation, MCCV follows a sampling with replacement strategy, i.e., splits

can contain identical samples multiple times. However, duplicate samples do not

occur in the train, and the test split [43].

Base classifiers

We used the following base classifiers for our experiments: Näıve Bayes, Logistic Re-

gression, Decision Tree, and Random Forest. Each classifier will be briefly described

hereinafter. We used the implementations provided by the scikit-learn library [38].

Näıve Bayes

The Näıve Bayes (NB) classifier (naively) assumes conditional independence of the

feature vectors and applies the Bayes theorem for prediction [25]. Model training

is enabled via a probability density function (PDF) and the prior probability of a

given class. For simplicity, we assume a Gaussian distribution of the features. Hence,

we applied the Gaussian NB using

p(x|y) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

(2)

as the PDF, whereby σ denotes the standard deviation and µ the mean of features

x given a class y [44].

Logistic Regression

The binary Logistic Regression (LR) is another probability-based classifier, i.e., it

derives the probability of a class y given a feature vector x [45]. The LR predicts

probabilities between 0 and 1 using the logistic function denoted as

p(x) =
eβ0+β1x

1 + eβ0+β1x
(3)

and the maximum likelihood function to estimate the coefficients β, i.e., to train

the model [45].

Decision Tree

The Decision Tree (DT) classifier, precisely the CART (Classification And Regres-

sion Trees) implementation, is a tree-based model, i.e., a tree structure is generated

during training [46]. Each node is based on the most discriminating feature [25].

New splits are created based on the impurity of the remaining data, i.e., if a split is

pure enough, a leaf node is added. Otherwise, intermediate nodes are created [25].
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For prediction, the tree is traced until a leaf node, which states the final class. In

particular, we used the Gini impurity, denoted as

i(t) = 1−
∑
j

P 2
j , (4)

where j ∈ {0, 1} for binary classification and P is the probability of class j at a

node t [25].

Random Forest

The Random Forest (RF) classifier is an ensemble learning technique, which trains

multiple DTs on random samples, i.e., bagging, of the input data [47]. For the final

classification, the majority vote of the trees is used [47]. Note that we use the RF as

a base learner, which allows comparing the performance with DTs and the actual

ensembles techniques in general (see below).

Classifier ensembles

To combine the output specifically of the base classifiers introduced above, we em-

ployed the following ensemble methods: majority vote (hard voting), averaging (soft

voting), and stacked generalization (stacking). In the present study, each base clas-

sifier is trained on one encoded dataset, meaning if for one dataset n encodings

are selected, the size of one ensemble is n. We adapted the implementations of the

scikit-learn library [38], such that not only one dataset but several encoded datasets

can be used for training. For instance, if one passes n encoded datasets, the ensemble

consists of n base classifiers trained on one particular encoded dataset, respectively.

Majority voting The majority voting ensemble (hard voting) combines the output

by ultimately assigning the class, which has been predicted by the majority of

the single base classifiers. We employed the customized version of scikit-learn’s

VotingClassifier class with hard voting enabled.

Averaging The averaging method (soft voting) computes the means of the pre-

dicted class probabilities per base classifier. The maximum value determines the

final class. We used the adjusted VotingClassifier with voting set to soft.

Stacked generalization The stacking approach utilizes the output of the base clas-

sifiers to train a meta-model, i.e., the predicted class probabilities of the base classi-

fiers are used as features [48]. We adapted the StackingClassifier from the scikit-learn

package and employed Logistic Regression as the meta-model.

Ensemble pruning

Selecting the correct number of base classifiers in an ensemble is challenging. Thus,

Kuncheva (2014) suggests several approaches to determine the ensemble size [25].

For instance, sequential forward selection, adding one classifier successively, in case

the additional model improves the ensemble performance [25]. However, in the
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present case, we are dealing with potentially hundreds of encoded datasets, for

which this particular technique is not practical. To this end, we used two selec-

tion methods, namely convex hull and Pareto frontier pruning, circumventing the

limitations mentioned above [25].

Moreover, we implemented the multi-verse optimization algorithm as an auto-

matic encoding selection technique [49]. Finally, we employed best and random en-

codings selection as a baseline reference. The pruning methods are described more

precisely in the following.

Kappa-error diagram

The kappa-error diagram, introduced by Margineantu and Dietterich (1997), is the

basis for the convex hull and Pareto frontier pruning [50]. The graph represents pairs

of classifiers by their average error and diversity, as shown in Fig. 1. The diversity

measures the agreement of classifier outputs, i.e., the better the agreement of the

classifier predictions, the less the diversity [25]. Specifically, the kappa diversity is

denoted as

κ =
2(ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)
. (5)

The κ statistic ranges from −1 to 1, whereby κ = 1 denotes perfect agreement,

κ = 0 random, and κ < 1 worse than random consensus [50]. The error is calculated

using

e = 1− a+ d

a+ b+ c+ d
, (6)

with the subtrahend being the accuracy. However, Kuncheva (2013) pointed out

that diversity concerning the average error can not be arbitrarily low [36]. In fact,

desirable classifier pairs approximate the lower-left corner (see Fig. 1), i.e., approx-

imating a theoretical boundary, which is defined in Eq. 7 [36].

κmin =

1− 1
1−e , if 0 < e ≤ 0.5

1− 1
e , if 0.5 < e < 1

(7)

Note that the classifier pairs are composed using the lower triangular matrix of

the Cartesian product. Afterward, the pruning methods select a subset of pairs, also

likely include duplicated base classifiers. Thus, all pruning methods ensure that the

final ensemble only uses unique classifiers. Hence, base classifiers are trained on

individual encoded datasets.

Convex hull

The kappa-error diagram depicts a set of points, i.e., pairs of base classifiers, in a

two-dimensional space. The kappa diversity is the first, and the pairwise average
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error is the second dimension. We employed the Quickhull algorithm to calculate

the convex hull [51]. Hence, the smallest convex set that contains the classifier pairs

[51]. Thus, no further classifier pairs exist beyond the convex hull. We utilized the

implementation of the Quickhull algorithm provided by the SciPy package in the

ConvexHull module [52].

Since we are only interested in the partial convex hull, that is, pairs approach-

ing the theoretical boundary defined in Eq. 7 and depicted in Fig. 1, we adapted

the pareto n algorithm from Kuncheva (2014), which returns only classifier pairs

fulfilling the criteria [25].

Pareto frontier

The Pareto optimality describes the compromise of multiple properties towards op-

timizing a single objective [53]. For instance, a pair of classifiers is Pareto optimal if

improving the diversity is impossible without simultaneously impairing the average

pairwise error. Analog to the partial convex hull introduced earlier, Pareto optimal

classifier pairs approach the theoretical boundary as stated in Eq. 7, ultimately

defining the Pareto frontier. Again, we used the pareto n algorithm adapted from

Kuncheva (2014) to obtain all classifier pairs determining the Pareto frontier (see

Fig. 1).

Multi-verse optimization

The multi-verse optimization (MVO) algorithm is inspired by the alternative cos-

mological model stating that several big bangs created multiple, parallel existing

universes, which are connected by black and white holes and wormholes [35]. In

terms of an optimization algorithm, black and white holes are used to explore the

search space and wormholes to refine solutions [35]. Moreover, the inflation rate,

i.e., the fitness, of universes is used for the emergence of new holes; thus, to cope

with local minima [49]. For more details, refer to Mirjalili et al. (2016) and Al-

Madi et al. (2019) [35, 49]. We implemented the binary MVO following [49] using

Python. Each solution candidate is represented as a binary vector, where each posi-

tion denotes the path to an encoded dataset, that is, the i-th bit set means that the

i-th encoding is included in the final ensemble (see Fig. 1). We examined different

generations, i.e., 100, 80, 50, 25, and 15. However, we observed that performance

depends mainly on the initialization and count of the universes. Specifically, the

performance gain from the 15th generation is minor but requires much time. Thus,

we set the optimization to a maximum of 15 generations with 32 universes each.

Due to its resource intensity, we executed the MVO only for the first five folds (see

section Monte Carlo cross-validation).

Best encodings

A further pruning method uses only the best classifier pairs. In particular, based

on the kappa-error diagram, the algorithm selects 15 classifier pairs with the lowest

pairwise average error (see Fig. 1).

Random encodings

The last pruning method selects 15 random classifier pairs from the kappa-error

diagram. Note that the selection is only performed one time. That is, the pairs are

the same across all folds.
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Statistics

We examined the areas covered by the respective base classifiers (see Fig. 1). To

this end, we calculated the area for each fold. The area is described by multiple

variables, i.e., the kappa diversity and the average pairwise error. Thus, we ap-

plied the multivariate analysis of variance (MANOVA) to verify if the areas differ

significantly. If this is the case, we subsequently employed an analysis of variance

(ANOVA) to investigate the effect of the diversity and the average error separated.

For post-hoc assessment, Tukey’s HSD has been applied. We used the tests provided

by the R standard library. α was set to 0.05, i.e., p values ≤ 0.05 are considered as

significant.

In addition, we employed the Friedman test with the Iman and Davenport correc-

tion for the statistical comparison of multiple single and ensemble classifiers [54].

In the case at least one model is significantly different, we used the Nemenyi test

for post-hoc analysis [54]. Refer also to Spänig et al. (2021) for more details [20].

The tests were provided by the scmamp R package v0.2.55 [32].

Finally, we examined if the best ensemble has a significant improvement over

the best single classifier using Student’s t-test for repeated measures, i.e., paired

samples. Again, α was defined as 0.05.

Data visualization

All plots are realized using Altair v4.1.0 [55] and described in more detail here-

inafter.

Kappa-error diagram

The kappa-error diagram, suggested by Margineantu and Dietterich (1997) [50],

shows the result of a single split in the top row and a two-dimensional histogram

aggregating all folds in the bottom row (see Fig. 1). The columns show the base

classifiers. Note that the kappa-error shape depends only on the base classifiers (see

Discussion). The top row also visualizes the partial convex hull (black line) and

the Pareto frontier (red line). Symbols refer to the pruning method. Each dot is a

classifier pair trained on two encoded datasets. Note that we display only 1000 dots

per panel (top row). Moreover, we set the bin size to 40 for the binned heatmap

with darker colors depicting more values (bottom row).

XCD chart

The extended critical difference (XCD) chart (Fig. 2) is based on the critical dif-

ference chart introduced by Calvo and Santafé (2016) [32]. Classifier groups not

surpassing the critical difference (CD) are connected with black lines. The line

thickness depicts the actual CD, meaning groups associated with thicker lines are

closer to CD. The XCD charts present two classifier groups. The x-axis includes

pruning types, and the y-axis the actual ensembles and the corresponding base

classifier. The main area contains a categorical heatmap showing Matthews corre-

lation coefficient (MCC) in 0.05 steps. The darker, the higher the MCC. The MCC

is the median MCC of the respective group combination and corresponds to the

median from Fig. 3. Note that for the computation of the CD, we concatenated

the MCCs of all cross-validation runs, e.g., 12 * 100 MCCs for pfront, and 6 * 100

MCCs for bayes voting soft.
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32. Calvo, B., Santafé, G.: scmamp: Statistical Comparison of Multiple Algorithms in Multiple Problems. The R

Journal 8(1), 248–256 (2016)

33. Zhu, J., Zou, H., Rosset, S., Hastie, T.: Multi-class AdaBoost. Statistics and Its Interface 2, 349–360 (2009)

34. Kuncheva, L.I.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy.

Machine Learning 51, 181–207 (2003)

35. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-Verse Optimizer: a nature-inspired algorithm for global

optimization. Neural Computing and Applications 27(2), 495–513 (2016). doi:10.1007/s00521-015-1870-7

36. Kuncheva, L.I.: A bound on kappa-error diagrams for analysis of classifier ensembles. IEEE Transactions on

Knowledge and Data Engineering 25(3), 494–501 (2013). doi:10.1109/TKDE.2011.234
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6.5 Multivalent Binding Kinetics Resolved by Fluorescence Proximity Sensing

The interaction of proteins with proteins, peptides, or molecules is key for many biological
processes61. Specifically, protein­protein interaction (PPI) is critical in immune response
since antibodies interact with epitopes, hence, a unique amino acid pattern on the antigen15.
Molecules with strong binding potential with proteins are denoted as ligands and are defined
by mutual biophysical attraction61. According to Du et al. (2016), three PPI mechanisms
are known, namely “lock­and­key”, “induced fit”, and “conformational selection”61. However,
computational prediction remains challenging since PPI also requires well­considered neg­
ative and positive training examples91. Moreover, low binding affinity aggravates reliable
predictions48. In this light, Cunningham et al. (2020) developed an ML pipeline to predict
low­affinity protein­peptide interactions in signaling cascades48. According to the authors,
such a framework enables computational PPI studies on a large scale48. Various further
methods have been developed for computational PPI prediction143.

Experimentally groundwork; thus, generating sufficient large datasets is crucial for ML
and vice versa. High­throughput procedures allow mutual reinforcement. Artificial intelli­
gence benefits from experimental data and laboratory protocols leverage computational ap­
proaches139. In this light, Xue et al. (2017) stressed ML for improving the design of peptide
arrays, which are utilized to screen the activity of dozens of peptides in parallel256. The au­
thors applied a Random Forest regressor (RFR) to predict the signal­to­noise ratio of mass
spectrometry data256. Based on the results, the authors could ultimately improve peptide
array configuration256.

In the present study, we conducted fluorescence proximity sensing (FPS) to quantify the
binding affinities of different peptide architectures experimentally. Since FPS indicates protein­
ligand interaction using a fluorescence marker bound to the solid phase, modification of the
reactants is obsolete. We employed the results as input for an ML model to predict the re­
spective binding rates.

In particular, the binding affinity of three architectures has been examined, including dimeric,
tetrameric, and octameric peptides with varying amino acid compositions. The results under­
pinned the potential of FPS as a crucial technology for high­throughput affinity measuring. We
leveraged the PEPTIDE REACTOR to compare various encodings; thus, addressing the ML
representation of the modified peptides223. We demonstrated that using the best encoding
and a binary description of the architecture leads to efficient models. Specifically, the eval­
uation revealed good accordance between the experimental and predicted binding kinetics,
stressing the future potential of computer­aided peptide design.
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Summary
Multivalent protein interactors are an attractive modality for probing protein function and

exploring novel pharmaceutical strategies. The throughput and precision of state-of-the-art

methodologies and workflows for the effective development of multivalent binders is currently

limited by surface immobilization, fluorescent labelling and sample consumption.

Using the gephyrin protein, the master regulator of the inhibitory synapse, as benchmark, we

exemplify the application of Fluorescence proximity sensing (FPS) for the systematic kinetic

and thermodynamic optimization of multivalent peptide architectures. High throughput

synthesis of +100 peptides with varying combinatorial dimeric, tetrameric, and octameric

architectures combined with direct FPS measurements resolved on-rates, off-rates, and

dissociation constants with high accuracy and low sample consumption compared to three

complementary technologies. The dataset and its machine learning-based analysis

deciphered the relationship of specific architectural features and binding kinetics and thereby

identified binders with unprecedented protein inhibition capacity thus, highlighting the value of

FPS for the rational engineering of multivalent inhibitors.

Keywords (10/10)

Protein-Protein Interaction, High-throughput, Kinetics, Peptide, TRIC, ITC, BLI, FPS,

SwitchSense, Avidity
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Introduction
Protein-protein interactions (PPIs) are of fundamental importance for cellular function and

dysfunction (Pawson and Nash, 2003) with up to 40% of all PPIs involving short, linear motifs

located in intrinsically disordered protein regions (London et al., 2013). Targeting and probing

such PPIs contributes significantly to our understanding of physiology, pathology and

ultimately the identification of novel pharmacological strategies (Lu et al., 2020). The

development of affine and selective PPI modulators is facilitated by biophysical technologies

that enable the determination of binding parameters of large binder libraries with minimal

sample requirements. In particular, multimeric or branched peptides (Brunetti et al., 2018,

Lee et al., 2005, Demmer et al., 2011) provide superior binding specificities and affinities due

to avidity (Erlendsson and Teilum, 2021, Errington et al., 2019) by exploiting protein

homo-oligomerization (Kitov and Bundle, 2003) observed for more than half of all proteins

(Marianayagam et al., 2004), offering enormous potential for the design of multivalent drugs,

including novel drug modalities such as trivalent PROTACs (Imaide et al., 2021), They

commonly exhibit slower off-rates, and thus enhanced residence times, compared to their

monovalent counterparts (Wooldridge et al., 2009). Despite the availability of robust

theoretical mechanistic frameworks (Errington et al., 2019), the accurate prediction of

multivalent binding dynamics based on biophysical properties of the interactors alone

remains challenging. This is especially true for systems where higher valencies and complex,

heterogeneous topologies occur or where structural information is incomplete. Vice versa,

systematic experimental structure-activity relationship studies remain scarce, mainly due to

laborious workflows, commonly relying on sequential synthesis, multimerization and labelling,

necessitating multiple re-purification steps of the often comparably large compounds.

The engineering of multivalent architectures benefits from kinetic methodologies, such as

surface plasmon resonance (SPR) or biolayer interferometry (BLI) (Patching, 2014, Sultana

and Lee, 2015, Walport et al., 2021). However, such surface-based techniques are

vulnerable to artefacts that result from the comparably high affinities and slow off-rates of

multivalent binders, causing re-binding and, depending on immobilisation density,

interference from neighbouring proteins through crosslinking (Errington et al., 2019).

Here we demonstrate the use of Fluorescence Proximity Sensing (FPS) as an alternative

approach to study multivalent peptide-protein interactions in high-throughput (HT) and its

value for effectively decoding higher order multivalent structure-activity relationships and

thereby facilitating the guided engineering of such interactions.
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Results and Discussion
FPS detects the binding of molecules in real-time through changes in the dye’s local

environment (Häußermann et al., 2019). FPS, based on SwitchSENSE technology, relies on

a biochip with covalently attached single stranded anchor DNA for target protein

immobilization at a distance of approximately 30 nm (Knezevic et al., 2012), thereby

potentially precluding re-binding and avidity effects. The peptide (analyte) binding is reported

by a fluorescent reporter close to the immobilized protein of interest (ligand) (Figure 1 A) and

consequently independent of unspecific binding of the analyte to the chip surface.

Importantly, FPS neither requires direct fluorescent labelling of the ligand nor the analytes,

thereby avoiding disturbance of their functional integrity or other dye-mediated artefacts. In

contrast to other recently reported kinetic methods (Stein et al., 2021), FPS allows for the

analysis of slow (<10-4 s-1) off-rates and fast on-rates (>106 M-1s-1).

While the workflow is designed to be applicable to any multivalent system where

combinatorial display is feasible, we here use the neuronal scaffolding protein gephyrin

(Tyagarajan and Fritschy, 2014) (geph) and its structurally resolved (Maric et al., 2014)

interactor, the glycine receptor (GlyR) β subunit. PPIs within receptor protein complexes

(Rosenbaum et al., 2020) and specifically scaffolds of the neuronal synapses are explored

with multivalent chemical probes (Maric et al., 2017, Sainlos et al., 2009, Bach et al., 2012)

and studied in pharmacological context (ClinicalTrials.gov, NCT04689035) (Schulte and

Maric, 2021). Dimeric, tetrameric and octameric binders were synthesized using an

accessible and broadly applicable strategy by combining binding sequences with

Polyethylene glycol (PEG) linkers and L-Lysine cores (Nomizu et al., 1993) as branching

points (Figure 1 A). Using varied geph binding sequences, PEG linkers of variable length and

up to three branching points, we synthesized a total of +100 unique multimeric compounds

(Supplementary Table 1), differing over one magnitude in molecular weight.

For the FPS measurements, the otherwise unlabelled receptor binding geph E-domain

(gephE) was coupled to the ligand strand while a fluorescent reporter was attached to the

dye strand (Figure 1 B). Among six tested dyes, the fluorescence change was highest for the

green dye B (Dynamic Biosensors GmbH, DE) (Supplementary Figure 1) which was

therefore used in all subsequent FPS measurements. The functionality of this setup was

demonstrated by recapitulating the structurally resolved geph-binding site of GlyRβ

(398FSIVG402) (Maric et al., 2014) using a 1 µM library of unmodified, overlapping dimeric

peptides with an offset of one amino acid (Figure 1 C).

4

6 Publications 6.5 Publication 5

130



Figure 1: Multivalent peptide
architectures, FPS setup and PPI
mapping. (A) Architecture of multimeric
geph-binding peptides. An
(Fmoc)-L-Lys(Fmoc) building block
facilitated multimerization of geph-binding
epitopes (e), linked together by PEG
moieties (o1-3). (B) schematic representation
of FPS measurements. The
receptor-binding domain of the neuronal
scaffolding protein gephyrin (gephE) is
immobilized on the ligand strand via an
NHS coupling. The binding of unmodified,
multimeric peptides during the association
phase is detected by a change in
fluorescence of green dye b. (C) Real-time
affinity determination of overlapping, dimeric
GlyR β derived peptides in FPS. Peptides
were used at a concentration of 1 µM. Note
that only peptides with a centred FSIVG
core binding motif exhibited a measurable
affinity.

Comparison of FPS with ITC, BLI and TRIC

Next, we assessed the reliability of apparent KD values determined in FPS by comparing this

setup with commonly used immobilization- and in-solution-based PPI-quantification methods.

Namely, real-time binding quantification using biolayer interferometry (BLI), HT temperature

related intensity change (TRIC) quantification as well as precise calorimetric measurements

(ITC) (Figure 2 A). Compared to ITC measurements, which can be considered the gold

standard as they quantify directly and label-free in solution (Figure 2A), HT quasi label-free

TRIC measurements (Figure 2 B) recapitulate the same trend. The only exception being

compound e=8, o1=0, o2=4, which was outside of the dynamic range. The BLI measurements

(Figure 2 C) necessitated loading densities and ligand concentrations that did for effective

dissociation of tetramers (Supplementary Figure 2) and octamers (Supplementary Figure 3).

Thus, affinities could not be derived from single curves but were instead assessed through
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Figure 2: Comparison of apparent affinities of
dimeric and tetrameric peptides in ITC, TRIC, BLI
and FPS and target protein consumption. Apparent
binding affinities of seven benchmark peptides (four
dimeric and three tetrameric) were measured using ITC
(A), TRIC (B), BLI (C) and FPS (D). For complete
measurements, see supplementary figure 6, 7, 8, and 9
respectively. (E) Amount of target protein consumed for
affinity determination of one peptide in the four methods
tested (FPS: one sensor chip functionalization, BLI:
functionalization of eight sensors, ITC: one run with 16
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injections, TRIC: 16-point dose response in
displacement assay setup).
steady-state BLI measurements using multiple peptide concentrations. The determined KD

values only partly recapitulated the affinities determined in ITC, possibly due to avidity effects

such as re-binding.

Along the same line, BLI overestimated the affinity of the tetramers and further enabled the

measurement of e=5, o=2, a lower affinity dimer. Conversely, the on- and off-rates of dimeric

peptides were resolvable in BLI (Supplementary Figure 4). However, a poor signal-to-noise

ratio (SNR) was observed for small dimeric peptides (Supplementary Figure 4 C and D). In

stark contrast, FPS enabled measurements of dimeric, and tetrameric compounds

independent of compound size (Figure 2 D). The resolved binding hierarchy is in line with ITC

and TRIC, similar so the apparent dynamic range.

Next, we compared the protein sample consumption of the four different biophysical PPI

quantification methods (Figure 2 E). In terms of target protein consumption by weight, FPS

performed second best among the methods employed, consuming 28.5-fold less protein than

BLI measurements for sensor functionalization (0.64 µg for one FPS sensor chip versus

18.25 µg for 8 BLI biosensors), 285-fold less than ITC (182.4 µg for one run) and 2.2-fold

more than TRIC (0.29 µg for a 16-point dose response) (Figure 2 B).

To facilitate the determination of kinetic binding parameters of hundreds of peptides with a

short turnover, we explored the possibility to directly couple FPS to low µM scaled

solid-phase peptide synthesis. Consequently, we determined the intra-synthesis

reproducibility of real-time affinity measurements of multimeric, unmodified peptides in FPS.

KD values and kinetic parameters could be determined with low deviation using independently

synthesized dimers and tetramers (Supplementary Figure 5), indicating that the combined

setup allows for reproducible and precise kinetic interactions studies.

HT determination of protein affinities and kinetics using FPS

Next, we used the established FPS setup to resolve the relationship between multimeric

peptide architecture and binding kinetics. Specifically, an array of dimeric, tetrameric, and

octameric compounds was subjected to FPS measurements at a fixed concentration of 1 µM

to achieve sufficient signal amplitude for weaker binders (Figure 3). In addition to the on- and

off-rates determined from functions fit to the obtained curves, association levels, at which the

measured curves plateaued, were determined for each peptide. Overall, a prominent gain in

affinity could be observed from dimers (Figure 3 A, low µM) to tetramers (Figure 3 B, high

nM) and finally octamers (Figure 3 C, mid/low nM). Indeed, plotting of the obtained on-rates

against the off-rates for each compound in a rate-map (Figure 3 D) reveals that multimer
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affinity primarily depends on the valency. This is in line with previous studies (Errington et al.,

2019) which demonstrated that increased valency also increases the ability to create

additional binding conformations within the configurational network. The second most

important factor is the length of the epitope. This trend recapitulates the changes in binding

strength that have been observed for the respective monovalent counterparts (Maric et al

2015). In the here studied multivalent system, the observed affinity gain is primarily driven by

on-rate effects which vary over two magnitudes, while the off-rates vary only 5-fold across all

tested species. Together, these data confirm the importance of the binding affinity of the

single binding epitopes for higher valency systems, demonstrating the importance of on-rate

effects.

FPS correlates multivalent topology and binding dynamics

To resolve how topological multimeric features determine on- and off-rates, our

measurements included a series of compounds identical in epitope length and number but

systematically varied scaffold arrangement. Plotting the obtained on-rates against the

off-rates for each compound as a rate-map, together with color-coding of the topological

adjustments visualizes a clear trend (Figure 3 E). The octamer with the lowest affinity is

characterized by a multivalent architecture that enables flexible movement of the two sides of

the multimer but sterically restricted movement of the epitopes themselves within the two

tetramers. Vice versa, the multimeric architecture that enabled the greatest flexibility close to

the epitopes while at the same time enforcing pre-orientation of the epitopes through sterical

constrains in the centre displayed the highest affinity. The difference in affinity between both

compounds is primarily driven by on-rate (4.5-fold) but also off-rate effects (1.4-fold).This

dataset resolves the structure-activity relationship of multivalent geph-binders and provides a

framework for the development high-valency, ultra-high affinity interactors in general.
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Figure 3: FPS resolves binding kinetics of dimeric, tetrameric, and octameric peptide binders in HT. (A-C)
FPS curves of all dimers (A, yellow), tetramers (B, red), and octamers (C, purple) tested are displayed next to the
respective association levels. For a complete list of the kinetic parameters of all compounds tested, refer to
supplementary table 1. (D) Rate map of all dimers (yellow), tetramers (red), and octamers (blue) with a
determinable on- and off-rate. Epitope lengths are color-coded. Note the the high dependence of dimer affinity on
epitope length. 10 µM, 1 µM, and 100 nM affinities are indicated as dashed, grey lines. (E) Zoomed-in view of (D)
with octameric binders in focus. Varying architectures are color-coded, and 100 nM affinity is indicated as dashed,
grey line. Note that octamers with highest affinity contain ≥3 PEG building blocks in the outer o1 position.

Prediction of multivalent binding parameters

The 40 successfully measured compounds constitute only a small fraction of the theoretical

possible combinations. To discern whether the obtained dataset allows to predict multimer

properties, we used machine learning. Specifically, we applied the Random Forest Regressor

using the encoded amino acids and analogous building blocks as training input. Here, the

peptide sequences are represented through the amino acid composition (Spänig and Heider,

2019), which demonstrated overall good performance across multiple applications and

provides easy interpretability (Spänig et al., 2021). First we explored whether the observed

on- and off-rates and the resulting KD values can be reliably predicted. To this end, we

applied a leave-one-out cross-validation and found a high correlation between predicted and

observed KD values (Figure 4 A, Supplementary Table 2), off-rates (Figure 4 B) and on-rates

(Figure 4 C) in case of the tetrameric and octameric group. In case of the dimeric peptides, a

positive correlation was only found for the KD values. We additionally examined the

correlation between observed association level and KD, on- and off-rate for each compound.

Here, positive Pearson correlations were found in case of the dimeric group for KD (Figure 4

D) and especially off-rate (Figure 4 E) but not on-rate (Figure 4 F). In stark contrast, no or

even negative correlations were found in the tetramer and octamer group when correlating

the observed association level to the KD values (Figure 4 D), off- (Figure 4 E) and on-rates

(Figure 4 F).

Taken together, these results indicate that for both lower avidity dimers and higher avidity

tetramers and octamers, KD values can be reliably predicted across multivalent species using

the outlined algorithm. In stark contrast, the association level may only be a representative

metric for KD and off-rate for distinct topology classes.

Peptide binders with high avidity potently neutralize native gephyrin

Our FPS studies suggest that higher-order geph-binding multimers possess enhanced

potency as inhibitors compared to their dimeric counterparts. Using a complementary peptide

microarray-based approach (Schulte et al., 2021) with native geph from mouse brain lysates,

we probed the geph neutralizing capacity of dimeric and tetrameric geph binders. Native

geph was pre-incubated with dimeric and tetrameric binders (Figure 4 G) with varying
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architecture at increasing peptide competitor concentrations. Reduction in on-chip peptide

binding by geph thus corresponds to neutralization of geph by competitor binding. Tetrameric

binders exhibited up to two orders of magnitude more potent geph neutralization than the

dimeric binders (Figure 4 H), thereby confirming the outcome of the FPS-based HT screen

and further highlighting the value of the outlined approach for avidity-based binding

optimization.

Figure 4: Multimer binding prediction and inhibition potency. Measured KD values (A), off- (B), and on-rates
(C) are plotted against predicted values in a leave-one-out cross-validation. Note the high correlation between
predicted and obtained KD values. The obtained association levels are plotted against the observed KD values (D),
off- (E), and on-rates (F). Note the low correlation between association levels and other kinetic parameters. (G)
Schematic representation of µSPOT peptide microarrays, harbouring geph-binding peptides as cellulose
conjugates. Native geph from mouse brain lysates was preincubated with multimeric peptides to neutralize
geph-binding to on-chip peptides. (H) Normalized geph binding intensity to GlyR β-derived on-chip peptides in
µSPOT format in the presence of varying competitor concentration. Native geph binding to on-chip peptides was
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resolved by antibody detection and chemiluminescent readout. Note that tetrameric peptides effectively
neutralized geph binding at lower concentrations than dimeric peptides. Data are presented as mean of two
experiments and the corresponding standard deviations.

Discussion
FPS is a versatile technique for measuring binding affinities of binder–ligand systems,

commonly DNA/protein, protein/protein and protein/small molecules. This study employs FPS

in tandem with automated, low µM-scaled solid-phase peptide synthesis to establish a

platform for HT real-time binding affinity determination. This setup was used to systematically

characterize +100 multimeric peptides with varying architecture, binding to the target protein

geph. Contrary to other examples of kinetic studies of multimeric binders (Chi et al., 2010),

we observed an increase in binding affinity of higher-order multimers mainly driven by an

increase in on-rate. Our work confirmed valency and monovalent binding affinity as the

primarily relevant design features that govern the magnitude of avidity enhanced binding. In

the same line, we found that within the complex octameric linker architecture, a high degree

of flexibility close to the geph-binding epitope is preferential for binding affinity as opposed to

high flexibility within the core of the octamer. This observation could be explained by an

improved preorientation and/or access to different binding conformations. Further, we

demonstrate the successful data-based prediction of affinities, otherwise hard to achieve

using biophysical and structural data alone.

Major limitations of contemporary kinetic methods such as BLI are irresolvable off-rates in

case of high avidity compounds (Supplementary Figure 2 and 3). Gratifyingly, the here

presented FPS setup provided insights into the off-rates of these higher-architecture binders,

which could be explained by the higher distance between the immobilized target protein in

the heliX system compared to the distance on Ni-NTA biosensors in BLI, excluding complex

re-binding effects on the biosensor surface. In addition, measurements of smaller and lower

affinity dimeric peptides suffered from a poor SNR in BLI (Supplementary Figure 4), whereas

FPS measurements provided superior SNR largely independent of ligand size. In terms of

resource consumption, FPS was on par with TRIC-based measurements and vastly

outperformed both BLI and ITC. Yet, in our specific system, an inverse dependence of the

observed on-rate on the employed analyte concentration was found (Supplementary Figure

10), indicating that it’s required to probe selected analytes at multiple concentrations before

subjecting an array of varying compounds to a single-concentration screen and validate

selected hits in complementary biophysical methods such as ITC. Another possible limitation

in FPS are low SNRs when screening libraries with small compound size. This could be

addressed by competition FPS setups with displaceable fluorescent compounds to further

boost the signal amplitude (Ponzo et al., 2019).
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Importantly, this study identified novel binders with avidity enhanced inhibition capacity

towards the ex vivo derived native protein. We anticipate that HT FPS measurements in

tandem with automated approaches for ligand synthesis will aid in similar projects advancing

the rational optimization of effectors with unnatural building blocks (Zhang et al., 2022) and

other multimeric effectors, including multivalent protein-carbohydrate interactions (Tsouka et

al., 2021). Such high avidity binders could contribute to advance our understanding of protein

function and localization by expanding the toolbox of versatile chemical biology probes.

Significance (178/300 – common significance statements are around 150-200)

Peptide-based effectors of protein-protein Interactions (PPIs) are an attractive modality for

probing protein function in chemical biology and selective pharmacological targeting of

proteins in disease. Notable advantages are high selectivity and affinity when compared to

small molecules and size when compared to antibodies. Leveraging peptide multimerization

to further boost affinity and specificity via avidity harbours enormous potential to develop

probes and therapeutics with ultra-high potency. Precise biophysical binding studies,

however, remained challenging. Fluorescence proximity sensing (FPS) allowed us to

precisely determine binding kinetics and thermodynamics of diverse multivalent topologies in

highest throughput. A seamless transition from automated peptide synthesis to real-time

affinity determination enabled of the effective engineering of multimeric architectures towards

activity that was confirmed inhibiting the ex-vivo derived native protein. Subjected to machine

learning the dataset enabled the affinity prediction for the here tested multivalent species,

otherwise hard to achieve using conventional approaches. The results illuminate the

structure-activity relationship of multimeric peptide-based effectors, establish FPS as a viable

method for probing PPIs and identify highly potent inhibitors of gephyrin, the master regulator

of inhibitory neuronal transmission.
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Methods
Unless otherwise stated, amino acids and reagents were purchased from either Iris Biotech

or Carl Roth. All solvents were purchased from commercial sources and used without further

purification.

Automated Solid-Phase Peptide Synthesis

µSPOT peptide arrays (Dikmans et al., 2006) were synthesized using a MultiPep RSi robot

(CEM GmbH, Kamp-Lindford, Germany) on in-house produced, acid-labile,

amino-functionalized, cellulose membrane discs containing

9-fluorenylmethyloxycarbonyl-β-alanine (Fmoc-β-Ala) linkers (average loading: 130 nmol/disc

– 4 mm diameter). Synthesis was initiated by Fmoc deprotection using 20% piperidine (pip) in

dimethylformamide (DMF) followed by washing with DMF and ethanol (EtOH). Peptide chain

elongation was achieved using a coupling solution consisting of preactivated amino acids

(aas, 0.5 M) with ethyl 2-cyano-2-(hydroxyimino)acetate (oxyma, 1 M) and

N,N′-diisopropylcarbodiimide (DIC, 1 M) in DMF (1:1:1, aa:oxyma:DIC). Couplings were

carried out for 3×30 min, followed by capping (4% acetic anhydride in DMF) and washes with

DMF and EtOH. Synthesis was finalized by deprotection with 20% pip in DMF (2×4 µL/disc

for 10 min each), followed by washing with DMF and EtOH. Dried discs were transferred to

96 deep-well blocks and treated, while shaking, with sidechain deprotection solution,

consisting of 90% trifluoracetic acid (TFA), 2% dichloromethane (DCM), 5% H2O and 3%

triisopropylsilane (TIPS) (150 µL/well) for 1.5 h at room temperature (rt). Afterwards, the

deprotection solution was removed, and the discs were solubilized overnight (ON) at rt, while

shaking, using a solvation mixture containing 88.5% TFA, 4% trifluoromethanesulfonic acid

(TFMSA), 5% H2O and 2.5% TIPS (250 µL/well). The resulting peptide-cellulose conjugates

(PCCs) were precipitated with ice-cold ether (0.7 mL/well) and spun down at 2000×g for 10

min at 4 °C, followed by two additional washes of the formed pellet with ice-cold ether. The

resulting pellets were dissolved in DMSO (250 µL/well) to give final stocks. PCC solutions

were mixed 2:1 with saline-sodium citrate (SSC) buffer (150 mM NaCl, 15 mM trisodium

citrate, pH 7.0) and transferred to a 384-well plate. For transfer of the PCC solutions to white

coated CelluSpot blank slides (76×26 mm, Intavis AG), a SlideSpotter (CEM GmbH) was

used. After completion of the printing procedure, slides were left to dry ON.

Preparative Peptide Synthesis

Standard solid-phase peptide synthesis with Fmoc chemistry was applied, shortly,

2-chlorotrityl resin (1.6 mmol/g) was swollen in dry DCM with 2 eq. of

N,N-Diisopropylethylamine (DIEA). Then, the desired aa (1eq) and the orthogonally protected
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Boc-Gly-OH (1eq) were loaded. Boc-Gly-OH reduces resin loading in order to prevent

aggregation of the elongating peptide chain. After ON reaction, the resin was capped with

MeOH and washed with DCM and DMF. Deprotection and conjugation cycles followed, where

20% pip solution in DMF was used to deprotect, and after washes, the peptide chain was

elongated by adding aa (4eq.) with oxyma (4eq.) and DIC (4eq.). Coupling efficiency was

monitored by measuring the absorption of the dibenzofulvene–pip adduct after deprotection.

The peptides were cleaved from the resin using a cocktail of 90.5% TFA, 4% H2O, 3% TIPS

5% thioanisole, 2.5% 1,2-Dithiothreitol for 2 h at rt. The peptides were precipitated and

washed twice with ice-cold ether, then purified with high-performance liquid chromatography

(HPLC), and analyzed by liquid chromatography-mass spectrometry (LCMS) (Supplementary

Table 3).

Unmodified peptides synthesized in 2 µmol scale were bought from Intavis Peptide Services

(SKU: 90.215) with a free N-terminal amino end and C-terminal amide group and were used

for FPS and BLI measurements without further purification. Crude peptide purity was

assessed by LC-MS similar to preparatively synthesized peptides (Supplementary Table 4).

Preparation of Mouse Tissue Lysates

Whole mouse brains were obtained from C57BL/6J mice at >4 weeks of age and

immediately flash-frozen in liquid N2. Before lysis, whole mouse brains were weighed and cut

into four pieces along the horizontal and vertical axis. To prepare one lysate, two diagonally

opposite pieces were transferred into a 1.5 mL reaction tube (Sarsted). Lysis was carried out

on ice in 500 µL HEPES lysis buffer (20 mM HEPES, 100 mM KCH3COO,40 mM KCl, 5 mM

MgCl2, 5 mM DTT, 1 mM PMS, 5 mM EDTA, 1% Triton X-100, 1% complete EDTA-free

protease inhibitor cocktail (Roche) (all v/v)), by hand crushing the brain material with a hand

pestle in a 1.5 mL reaction tube. Lysis was completed by 1 min sonification on ice with a

Sartorius Labsonic M Sonificator at 20% amplitude with care to avoid heating the

suspensions. Finally, Lysates were centrifuged for 15 min at 17,200×g and 4 °C. The SN was

subsequently collected, transferred to a new 1.5 mL reaction tube, flash-frozen in liquid N2

and stored at -80 °C until use.

Microarray Binding Assay

µSPOT slides were blocked by incubation with 2.5 mL 5% (w/v) blotting grade milkpowder

(MP, Carl Roth) in PBS for 60 min at ~70 revolutions per minute (rpm) and RT. Afterwards,

slides were incubated with 0.8% (v/v) mouse brain lysate 5% MP in 1 × PBS for 15 min

before slides were washed with 3×2.5 mL 1×PBS for 1 min. To label native geph for
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detection, the slides were incubated with 2.5 mL of a 1:5,000 diluted primary antibody

(anti-gephyrin (3B11, SynapticSystems) in 5% MP in 1×PBS for 15 min, after which the slides

were washed with 3×2.5 mL 1×PBS for 1 min. Afterwards, the slides were incubated with a

secondary HRP-coupled Anti-mouse antibody (31430, Invitrogen) in 5% MP in 1×PBS for 15

min, after which the slides were washed with 3×2.5 mL 1×PBS for 1 min. Peptide binding was

detected through chemiluminescent detection (Lowest Sensitivity, 30s exposure time) after

application of 200 µL of SuperSignal West Femto Maximum Sensitive Substrate (Thermo

Scientific) per slide using a c400 imaging system (Azure).

For on-chip peptide competition, native geph was preincubated with the indicated peptides in

5% MP in PBS for 30 min on ice before being put on an array slide.

Binding intensities were evaluated using FIJI including the Microarray Profile addon

(OptiNav). After background subtraction of the mean greyscale value of the microarray

surface surrounding the spots, raw greyscale intensities for each position were obtained for

the left and right sides of the internal duplicate on each microarray slide. The standard

deviation (STDEV) between both sides was obtained using formula (1).

𝑆𝑇𝐷𝐸𝑉 =
∑(𝑥−𝑥)

𝑛

(1)

with

𝑛 The total number of data points

𝑥 The mean intensity value

Afterwards, the raw intensities of all spots of interest were summed and normalized to the

summed intensity of the condition without competitor peptide.

Protein Expression and Purification

GephE (gephyrin P2 splice variant residues 318–736) was expressed in Escherichia coli and

purified in a two-step purification as described earlier (Kim et al., 2006, Schrader et al.,

2004). Concisely, the protein was purified using via Intein-tag (Chitin beads, New England

BioLabs), and after self-cleavage the protein could be obtained by size-exclusion

chromatography (SEC) column (HiLoad 16/600 Superdex 200pg, GE Healthcare) on an

ÄKTA explorer system (GE Healthcare). His-tagged gephE was produced similarly with the

exception of purification on IMAC coloumns before SEC purification.
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Temperature Related Intensity Change (TRIC) Assays

For the TRIC assay, 16-point affinity measurements with each peptide against a target

complex in duplicates were performed on the Dianthus NT.23PicoDuo. The experiment was

performed in a single Dianthus 384-microwell plate using an assay buffer of 1× PBS, 2 mM

reduced L-Glutathione and 0.1 % Pluronic® F-127, pH 7.4. Target protein and tracer peptide

was diluted to 40 nM gephE and 20 nM NN1D-Cy5 in assay buffer and incubated on ice for

one hour to create the target complex. All peptides were first pre-diluted to 2 mM in assay

buffer and subsequently, a 16 point, 1:1 dilution series of each peptide was performed with

an electronic multichannel pipette to a final volume of 10 µl directly in the Dianthus plate.

Afterward, each dilution was mixed with 10 µl target complex, resulting in 16-point dilutions

series of the peptides with a final concentration from 1 mM to 30.52 nM in the assay with 20

nM gephE and 10 nM NN1D-Cy5. The plate was centrifuged for 30 sec at 1000 ×g and

incubated at 25 °C for 30 min. The final measurement of the plate was performed at 25 °C

where the fluorescence signal of the samples was measured for 1 sec with the IR-laser off

and for 5 sec on, resulting in TRIC traces where the detected fluorescence values are

displayed as the relative fluorescence over time and under influence of the IR-laser induced

heating and normalized to a value of one. For further analysis of the assay, the fluorescent

signal is again normalized by dividing the fluorescence values after IR laser activation with

the fluorescence values prior to the activation giving the normalized fluorescence Fnorm in ‰.

For a competitions assay of this kind, the affinity is evaluated by Ki values which are obtained

by applying a Hill-fit to a plot of Fnorm vs. ligand concentration to determine an EC50 value

(Formula 2 and 3).

The affinity of the tracer peptide to gephE was determined in the same assay buffer as the

TRIC experiments were performed. gephE was diluted to 1000 nM and subsequently a

16-point dilution series of the protein was performed directly in a Dianthus plate in triplicate to

a final volume of 10 µL. The gephE dilutions were mixed directly with 10 µL 2 nM NN1D-Cy5

to a final volume of 20 µL at 1 nM NN1D-Cy5 with protein concentration between 500 and

0.015 nM. The samples were subject to the same Dianthus parameters as above but

analysed with a KD fit for later use in the determination of Ki values.

𝐾
𝑖

=
𝐾

𝐷

2−γ •
𝐸𝐶

50
𝑇[ ]

𝑡

γ −
𝐾

𝐷

2−γ −
𝐶[ ]

𝑡

2

− γ( ) (2)

with
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γ =
𝑇[ ]

𝑡
+ 𝐶[ ]

𝑡
+𝐾

𝐷
− ( 𝑇[ ]

𝑡
+ 𝐶[ ]

𝑡
+𝐾

𝐷
)2−4 𝑇[ ]

𝑡
𝐶[ ]

𝑡

2 𝐶[ ]
𝑡

(3)

and

𝑇[ ]
𝑡

Final concentration of the target protein (gephE)

𝐶[ ]
𝑡

Final concentration of fluorescent tracer peptide (NN1D-Cy5) that is in competition

with unlabelled peptide ligand in the assay

𝐾
𝐷

The determined KD between the fluorescent tracer and the target protein from a

direct binding affinity measurement

𝐸𝐶
50

The EC50 obtained from the above-described competition assay between the

unlabelled peptide ligand with the target complex

Isothermal titration calorimetry (ITC)

ITC measurements were performed using an ITC200 (MicroCal) at 25 °C and 1000 rpm

stirring. PBS pH 7.4 was used as the standard solvent. Specifically, 40 μL of a solution 200

μM of dimeric, or 100 µM of tetrameric compounds was titrated into the 200 μL sample cell

containing 20 μM GephE. In each experiment, a volume of 2.5 μL of ligand was added,

resulting in 15 injections and a final molar ratio between 1:0.5 (tetrameric compounds) and

1:1 (dimeric compounds). The dissociation constant (KD) and stoichiometry (N) were obtained

by data analysis using NITPIC, SEDPHAT, and GUSSI (Brautigam et al., 2016).

Measurements were conducted three times for each probe and are given as mean values

with the resulting standard deviations.

Biolayer interferometry (BLI)

BLI measurements were carried out using the ForteBio Octet RED96 system. The chamber

temperature was kept constant at 25 °C with a plate agitation speed of 1000 rpm. Briefly,

Ni-NTA-coated biosensors were dipped into 200 µL of a 200 nM His-GephE solution (in a

kinetic buffer (KB): 1×PBS with 0.1% (w/v) BSA, 0.05% (v/v) Tween20, 2 mM GSH) for

protein immobilization. The loaded sensors were moved to solutions containing various

concentrations (200 – 0.781 nM) of dimeric, tetrameric and octameric peptides solubilized in

KB to obtain the association curve. After the 180-300s association step, the sensors were

moved to KB to obtain the dissociation curve. A buffer only condition with a loaded biosensor

was used as a reference for background subtraction. The association and dissociation curve
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were fitted with the ForteBio Biosystems Data Analysis HT Software (local fitting algorithm,

1:1 model).

Preparation of Protein-DNA Conjugates

GephE was covalently coupled via its primary amines to the 5’end of ssDNA (cNL-A48,

ligand strand) (coupling kit HK-NHS-1, Dynamic Biosensors, Martinsried, DE). The

protein-DNA conjugate was purified from the free protein and free DNA using the proFIRE®

system (Dynamic Biosensors, Martinsried, DE) (Wiener et al., 2020, Reinking and Stingele,

2021). The purification gives a good first impression of the status of the protein after

conjugation and can be used as quality control of the protein sample to be immobilized onto

the surface (for the chromatogram, see Supplementary Figure 11). The embedded Data

Viewer software provides protein-DNA conjugate purity and concentration based on the

chromatogram. The yield of the gephE-DNA (1:1 ratio) is sufficient for approximately 300 chip

functionalizations, considering a chip density of 100% and a ligand concentration of 100 nM).

After liquid nitrogen freezing, the conjugates were stored at a concentration of 500 nM in

PE40 buffer (10 mM Na2HPO4/NaH2PO4, 40 mM NaCl, 0.05 % Tween20, 50 µM EDTA, 50

µM EGTA) at −80 °C and were freshly thawed before each experiment.

Chip Functionalization

All switchSENSE experiments were performed on a dual-color heliX+ instrument using a

standard heliX Adapter Biochip (ADP-48-2-0, Dynamic Biosensors, Martinsried, DE), in which

single-stranded DNA (anchor strands) are covalently attached to the chip surface. Each chip

is equipped with 2 gold electrodes (or spots), with different DNA anchor strands. Herein, we

used spot 1 as measurement spot with the conjugated target protein (gephE-DNA) and spot

2 as real time referencing (only DNA), in order to monitor possible unspecific binding of the

peptides on the anchor DNA and/or gold electrodes. Firstly, the conjugate gephE-DNA

(ligand strand) was preincubated with the complementary ssDNA carrying the Gb fluorophore

(adapter strand), for 20min at RT upon shacking (600rpm). Secondly, the whole ligand

construct was immobilized on the biochip via hybridization of complementary anchor strand

(for a schematic representation, see Supplementary Figure 12). The chip was regenerated

and freshly functionalized before each measurement series. For chip regeneration, the

double stranded DNA nanolevers were denatured by disrupting the hydrogen bonds between

base pairs using a high-pH regeneration solution (HK-REG-1, Dynamic Biosensors). The

conjugate is washed away while the covalently attached single-stranded nanolevers

remained on the surface and could be reused for a new functionalization step. Using FPS

mode, a DNA-based biochip can be regenerated up to 50 times.
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Fluorescence Proximity Sensing (FPS) Mode – switchSENSE interaction analysis

Interaction analysis was performed in fluorescence proximity sensing (FPS) mode with a

constant voltage of -0.4 V applied, which forces the surface-tethered DNA into a fixed angle.

When the protein analyte binds to the DNA target, it affects the average distance of the

fluorescent label from the fluorescence-quenching gold surface. Besides the change in DNA

orientation, a change in close proximity to the fluorescent dye or direct interaction of the

protein with the fluorescent dye lead to measurable changes in the fluorescence intensity. In

the FPS measurements, the series of peptides were being flushed at specified

concentrations over the two electrodes of the biochip. When the peptide reaches the target

protein (gephE) present in spot 1, we observed an increase in the fluorescence signal on the

timescale of seconds. Hence, the concentration jump itself may be considered instantaneous,

and the time dependence of the fluorescence signal directly reflects the protein-peptide

kinetics. After flushing out the peptide and replacing the bulk solution with pure buffer, only

dissociation can take place. During measurements the sample tray containing the

protein/peptide samples was set to 25°C, as well as the experiment temperature on the

biochip. Peptide samples were diluted and measured in PE140 buffer (10 mM

Na2HPO4/NaH2PO4, 140 mM NaCl, 0.05 % Tween20, 50 µM EDTA, 50 µM EGTA). Flow rate

for association and dissociation reactions was set to 200 μL/min. The green LED power was

set to 4. Experiment design, workflow and data analysis were performed with the heliOS

software from Dynamic Biosensors. The association and dissociation rates (kon and koff),

dissociation constants (KD) and the respective error values were derived from a global single

exponential fit model, upon double referencing correction (blank and real-time).

Machine Learning

We employed Snakemake v6.9.1 using Python v3.8.5 to develop the machine learning

workflow (Köster and Rahmann, 2012). First, we removed all sequences with no available KD

values, on-, or off-rates. Moreover, we used the median values for duplicated sequences, i.e.,

repeated measurements. Afterward, we log-square-transformed KD and koff to retain issues

with floating-point arithmetic. Specifically, we applied the FunctionTransformer from

scikit-learn v1.0 using , with being the natural logarithm (Pedregosa et al., 2011).𝑙𝑜𝑔(𝑥)² 𝑙𝑜𝑔

We encoded the peptides using the amino acid composition (AAC) (Spänig and Heider,

2019) and the linker sequence through the one-hot encoding. Thus, we introduced three

binary representations to transform the linker into a machine-readable format and assigned

the actual linker (J) to and the spacer (O) to . Since the model requires a[1, 0] [0, 1]

fixed-length input, we also introduced gaps, denoted as .[0, 0]
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The AAC encoding counts the number of all amino acids concerning the total sequence

length:

(Chen et al., 2018).𝑓(𝑡) = 𝑁(𝑡)
𝑁

denotes the number of amino acids , refers to the peptide length, and , finally, is𝑁(𝑡) 𝑡 𝑁 𝑓(𝑡)

the composition of (Chen et al., 2018). The resulting matrix contains 79 peptides𝑡 𝑋

represented by 20 proteinogenic amino acids and a binary vector of length 14, thus, 34

features. Note that we removed all AAC features with zero variance before model training.

Afterward, we used the Random Forest Regressor with default arguments. We verified the

model employing leave-one-out cross-validation (LOOCV), i.e., we trained models using𝑘

peptides to predict the -th peptide. For model evaluation, we computed the𝑘 − 1 𝑘

correlation coefficient , which is defined as𝑅²

.𝑅² = 1 − 𝑖=1

𝑛

∑ (𝑦
𝑖
−𝑦

𝑖

^
)²

𝑖=1

𝑛

∑ (𝑦
𝑖
−𝑦)²

Specifically, is the -th observed KD value, on-, or off-rate, is the -th predicted KD value,𝑦
𝑖

𝑖 𝑦
𝑖

^
𝑖

on-, or off-rate, and is the average KD value, on-, or off-rate. To score the correlation𝑦

between the association level and KD values, on- and off-rates, we utilized Pearson's

product-moment correlation coefficient:

.𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑅 = 𝑖=1

𝑛

∑ (𝑥
𝑖
−𝑥)(𝑦

𝑖
−𝑦)

𝑖=1

𝑛

∑ (𝑥
𝑖
−𝑥)²

𝑖=1

𝑛

∑ (𝑦
𝑖
−𝑦)²

We used the implementations provided by the scikit-learn library. Finally, we conducted a

1000-fold bootstrapping for the total and confidence interval (CI) calculation.𝑅²
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7
Discussion

Various aspects of antimicrobial resistance (AMR) have been approached in the present dis­
sertation. In particular, waste­ and freshwater­based monitoring of AMR and prediction of
host­defense peptides (HDPs), specifically antimicrobial peptides (AMPs), have been cov­
ered. An initial introduction on AMR and AMP provided the basics for the remaining parts.
The study’s goal was to illustrate general aspects of AMR, tools to examine the dissemination,
and the role of computational methods to replace conventional antibiotics. To this end, we
conducted a comprehensive literature search to demonstrate the particular topics’ diversity,
results, and challenges. We contributed a survey on European freshwater lakes to point out
the advantages of standardized examination of multi­omic datasets. After shedding light on
the relevance of AMR and its dissemination, the necessity of alternative strategies to tackle
multi­resistant pathogens is evident.

Standardization is also the primary concern of the machine learning (ML) section. The
great variety of literature­known peptide encodings, models, and applications requires in­
tegrative workflows. Moreover, users should not be bothered with the complexity of such
workflows, such as hyper­parameter optimization. Consequently, we contributed multiple
studies, ranging from peptide encodings and their performance across biomedical domains
to an unsupervised selection and ensemble classifier configuration. As a proof­of­concept,
we applied our methods to predict binding affinities of modified peptides. The easy trans­
formation to other biomedical domains stresses the benefit of an integrative approach and
demonstrates the significance of ML for peptidomics.
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7 Discussion 7.1 Antimicrobial Resistance

The integration of multi­omic datasets, followed by the computational analysis of various
modalities, is only one aspect. AMR, environmental epidemiology (EE), AMPs, and ML are
very complex topics per se. Researchers must consider the nuances when addressing par­
ticular issues. In the following, we discuss critical aspects, highlight potential weaknesses,
and suggest further research directions.

7.1 Antimicrobial Resistance

Several antibiotics are already of critical importance (see Table 2.1), and administration must
comply with prioritization criteria to hamper resistance forming250. The significance of certain
antimicrobial agents is in concert with the tremendous impact resulting from novel insensi­
tivity acquirement of bacteria. Jian et al. (2021) stressed the economic context of AMR by
summarizing associated costs and deaths until 2017, many thereof recurring annually115.
The World Health Organization (WHO) designated various multi­resistant species as criti­
cal pathogens115. Prioritization of antibiotics research is therefore required to mitigate the
consequences of AMR115. High­priority species, such as Acinetobacter baumannii, devel­
oped resistance against carbapenems or third­generation cephalosporins115. An effective
measure to control future AMR dissemination in the environment concerns the inactivation of
biological waste115. Jian et al. (2021) referred to Selvam et al. (2012), who has observed that
simple composting significantly reduced levels of antimicrobial resistance genes (ARGs)207.

The integration of social factors could further support comprehension of AMR spread141. Li
et al. (2021) related ecological conditions, socio­economic factors, and antibiotic consump­
tion with AMR prevalence141. The study examined the infantile intestinal tract and revealed
that significant rates of Escherichia coli in combination with an underdeveloped microbiome
drives AMR of infants141. The authors observed diverse environmental factors affecting the
distribution of ARGs within a child’s gut (α­diversity) and ARG changes between the children
(β­diversity), thereby determining potential AMR drivers118,141.

VanOeffelen et al. (2021) stressed the significance of the large­scale integration of genome
data and related antibiotic sensitivity234. The authors collected 67,000 genomes comprising
more than 100 species and demonstrated the potential of ML guided resistance mechanism
prediction234. VanOeffelen et al. (2021) used, among others, the Comprehensive Antibiotic
Resistance Database (CARD) as a source for ARGs3,188.

To illuminate multiple facets of AMR, researchers should integrate environmental and socio­
economic factors from multi­omic resources, such as metagenome and whole­genome se­
quencing (WGS) data141,234. Relating those studies with public resources on ARGs, such as
the CARD3, the detection of resistance mechanisms can be advanced. The benefit of various
facets on AMR is in accordance with our large­scale study on AMR in European freshwater
lakes221. The integration of 16S rRNA amplicon sequencing data, metagenomes, and statis­
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7 Discussion 7.2 Environmental Epidemiology

tics on socio­economic factors, in particular, surrounding agriculture, enabled quantification
of the current AMR burden and screening of future progression221.

7.2 Environmental Epidemiology

A potential drawback of metagenome­based AMR analysis is the overestimating of ARGs87.
Spänig et al. (2021) argued that based on their data, a distinction between chromosomal­
and plasmid­encoded resistance genes is challenging221. This follows Gupta et al. (2020),
who stressed the importance of reconsidering such findings thoroughly87. First, it is unclear
whether the ARG origin is located on a mobile genetic element (MGE); hence, facilitating
readily dissemination87. Second, the ARG could belong to strain, natural in the examined
environment, ultimately aggravating conclusions about AMR dissemination trajectories87. To
mitigate these issues, Gupta et al. (2020) also provided a standardized workflow to sur­
vey the resistome prospectively, comprising DNA preprocessing, read mapping, and ARG
detection87. The authors suggested integrating long and short metagenomic reads using
OPERA­MS to enable the determination of MGEs17.

Moreover, various tools assess the risk of ARGs by incorporating the clinical relevance
and location87. In this way, intrinsic resistance can be distinguished from putatively acquired
AMR87. To attribute ARGs to the host strain, several studies correlated the genomic context
and AMR determinants87. However, Gupta et al. (2020) referred to potential false­positive
predictions and urged scrutinizing such findings carefully87.

The comparison with other environments by the inclusion of different sampling sites is cru­
cial221. Researchers should integrate additional metagenome datasets from public reposi­
tories to enhance the validity of the results37. Chen et al. (2019) collected and examined
specimens in Lake Tai (China) and additionally integrated metagenome data from different
countries, for instance, Australia37. The comprehensive approach enabled the authors to
determine substantially higher AMR pollution in Lake Tai37.

Qu et al. (2019) highlighted the threat of multi­resistant pathogens in the future, specifically
in China, and referred to it as the “post­antibiotic era”190. The authors pointed out the dramatic
consequences of AMR, ultimately resulting in decreased life expectancy190. The Chinese
government already implemented several measures to mitigate implications, for instance, the
reduction of antibiotic administration in medicine or livestock farming190. In addition, Qu et al.
(2019) suggested incorporating additional multi­modal datasets on a large scale, comprising
WGS and AMR profiles of health care institutions190. According to the authors, such “big
data” approaches could reveal unknown interaction and AMR transmission paths190. Finally,
Qu et al. (2019) recommended a broader application of artificial intelligence for targeted
treatment190.

154



7 Discussion 7.2 Environmental Epidemiology

Arango­Argoty et al. (2018) developed a Deep Learning (DL) model to classify ARGs in
genomic datasets5. In this study, DNA fragments or complete genes have been encoded
using the similarity to known ARGs as features5. The classifier returns the probability of
an input gene being part of the investigated resistance categories5. The model achieved
comparable or even higher performance than a “best hit” approach utilizing database queries;
however, the fast prediction significantly decreases ARG annotation time for future studies5.

The fast evaluation of sequencing data could increase the experimental throughput; thus,
potentially ensuring the topicality of AMR. However, the processed data must also be ac­
cessible and easily understood8. To this end, governmental institutions and research groups
have already developed interactive AMR dashboards. Dashboards provide related overview
graphics and tabular data, allowing multiple views of different aspects. Non­technical users,
such as healthcare stakeholders, can quickly grasp the current threat of AMR.

The dashboard by the European Centre for Disease Prevention and Control (ECDC) vi­
sualizes resistance against various antibiotic drug classes Europe­wide and per country*. In
addition, the Center For Disease Dynamics, Economics & Policy (CDDEP) integrated global
data on AMR from 2000 to 2015123 into the ResistanceMap†. The ResistanceMap features
resistance levels visualizations of pathogens and the progress of insensitivity concerning
diverse antimicrobials. Furthermore, Stedtfeld et al. (2016) collected samples from 43 loca­
tions, associated global data on AMR from public studies, and integrated them all in an in­
teractive dashboard224. The application denoted as the “antimicrobial resistance dashboard”
can be utilized to fetch information about multiple aspects of AMR, including dissemination
and endemic clusters224.

The urgency of successive data generation and integration is evident. Large­scale ex­
amination of AMR, for instance, through standardized sampling and evaluation of various
European freshwater lakes, ensures data integrity221. In addition, such studies enable ret­
rospective tracing of AMR, as conducted by Schar et al. (2021)203. The authors reviewed
multiple studies on AMR and collected the respective data203. Schar et al. (2021) interpo­
lated the locations; thus, enabling continuous AMR prediction for places lacking actual sam­
ples203. As mentioned above, fast screening of genomic data reduces the computational
demand; therefore, speeding up the AMR integration5. Legacy AMR dashboards addition­
ally stress the significance of updated results. According to their manuals, the ECDC relies
on data from 2015 and the CDDEP dashboard from 2017. Thus, emphasizing the demand
for a novel approach for continuous data integration, analysis, and visual processing68.

Up­to­date, readily accessible, visually depicted data on AMR could also support clinicians
in their antibiotics administration. The University of Bern provides the INterface For Empirical

*https://multimedia.efsa.europa.eu/dataviz-2015/index.htm, accessed January 21, 2022
†https://resistancemap.cddep.org/index.php, accessed January 21, 2022
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antimicrobial ChemoTherapy (INFECT) on AMR in Switzerland‡. INFECT provides informa­
tion on various pathogens, including statistics about the ascertained susceptibility and the
number of isolates. Moreover, according to the manual, INFECT is updated monthly. The
data of INFECT is directly acquired from patients§. Thus, similar, steadily updated resources
are required incorporating EE data since infirmary sewage is one of the main drivers for AMR
development20,100,178. Ad­hoc notification of physicians might positively impact their deci­
sions for alternative treatments.

7.3 Host­Defense Peptides

HDPs, specifically AMPs, are a vital drug class and possess broad usability beyond phar­
maceutical application26. In humans, AMPs are expressed in various organs, for instance,
the brain, intestinal tract, or skin239. Metabolites, including amino acids, vitamins, or acids,
improve the therapeutic application of AMPs, fostering alternative therapies for infectious dis­
eases239. Nevertheless, for clinical relevance, pharmacokinetics and efficacy must be greatly
improved70. Thus, Fjell et al. (2012) illustrated limitations of AMP activity studies based on
the primary sequence71. In particular, studies on structure­based peptide­membrane inter­
action, such as molecular docking, benefit from complex interactions of amino acids in higher
dimensions71. Moreover, the optimization of physicochemical properties, peptide length, and
hydrophobic moment for increasing selectivity and reducing toxicity is crucial106. However,
these parameters influence each other, which aggravates a measurement of individual influ­
ences on antimicrobial activity106.

Although resistance to AMPs is unlikely, some species were able to adapt using multiple
AMP defense measures10,71. One countermeasure is chemical alteration of the outer lipid
bi­layer, ultimately mitigating the AMP’s cell wall selectivity10. In particular, modification of
phospholipids, such as acylation, mitigates peptide accumulation10. The affinity of AMPs
can be also reduced by polar proteins inserted in the outer leaflet, such that the interaction
between the polar face of the AMP with the membrane is inhibited10. Some species release
non­polar proteins, which covalently bind to the positive charged AMPs; hence, resulting in
the inactivation of the peptide10. Efflux pumps can be utilized to remove AMPs from the
cell10,117. Finally, intracellular peptide digestion through proteolytic proteins has also been
observed10.

Nevertheless, Wimley et al. (2011) pointed out that different experiments, considering
certain molecular aspects of AMPs, could unveil specific details on the mode of action248.
Consequently, it is uncertain whether an individual effect is observed due to a particular con­
dition or if different modes of action exist248. The significance of translocation is also partially

‡https://infect.info/, accessed January 22, 2022
§https://www.anresis.ch/antibiotic-resistance/laboratories/, accessed January 22, 2022

156

https://infect.info/
https://www.anresis.ch/antibiotic-resistance/laboratories/


7 Discussion 7.4 Machine Learning

understood since it is unclear whether it is a coincidental process owing to a by­product of
membrane lysis or whether intracellular components are indeed the actual target248. More­
over, Lazzaro et al. (2020) indicated the potential involvement of various endogenous factors,
which can be hardly considered experimentally, resulting in an antimicrobial response136.

Besides cationic peptides, anionic AMPs demonstrated potential94. Anionic antimicrobials
are expressed in various species, including vertebrates, invertebrates, and plants94. The
sources for AMPs are numerous, and researchers can adopt a great variety of parameters
for activity and pharmacokinetics. Nevertheless, synthesis remains, considering around 400
$ per gram, expensive50. Albeit biological synthesis, such as insertion of an AMP­encoding
gene in microbial DNA, followed by large­scale breeding and purification of the proteome,
chemical synthesis, including solid­phase synthesis, and premature biological production en­
sued by a chemical synthesis step can be employed, further research is necessary to reduce
the economic impact50. However, the Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) simplified AMP admission for a faster transition into clinical prac­
tice72. Accordingly, Rathinakumar et al. (2009) suggested extending the focus beyond broad­
spectrum peptides to AMPs with targeted activity191.

Lazar et al. (2018) underpinned that parallel administration of AMPs, and conventional
antibiotics could enhance the susceptibility135. The dual strategy reduced resistance devel­
opment since the cell membrane adapted biochemically to the treatment135. In particular, the
findings suggested that on environmental pressure, the gene expression pattern changes, re­
sulting in an altered AMP susceptible phenotype135. Wiesner and Vilcinskas (2010) have also
acknowledged the interaction of conventional antibiotics and AMPs246. The authors noted
that the silenced gene encoding for the human θ­defensin could be reactivated by aminogly­
coside application246. Since θ­defensin possesses antiviral effects, this is highly beneficial
for human immunodeficiency virus (HIV) treatment246. However, if pathogens develop resis­
tance to human­derived AMPs, the innate immune system could be undermined136.

7.4 Machine Learning

Various studies have been published concerning the prediction of multiple peptide charac­
teristics. In these studies, researchers are faced with many encodings, further complicating
the hyper­parameter optimization. Thus, Feurer et al. (2015) highlighted the benefit of auto­
mated ML pipelines, specifically for non­technical users69. Concerning biomedicine, wet­lab
scientists are encouraged to conduct computational experiments autonomously. Fortunately,
several packages already provide ready access to encoding and ML algorithms21,142,210. A
graphical interface is a further step towards user­friendly biomedical ML workflows38. Al­
beit the selection is simplified, the sheer choice of the encodings remains overwhelming and
requires extensive preprocessing work220,223. Our recently published encoding benchmark
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provides semi­automated encoding selection223. This work has been continued by a study
on unsupervised encoding selection, further paving the way for automated solutions in the
biomedical domain. However, more research is necessary to achieve similar automation
levels as, for instance, auto­sklearn69.

Encodings contribute, in addition to the ML model, significantly to the performance223. Ac­
cordingly, we discovered that similar encoding configurations result in a similar performance;
nevertheless, raising the question about the impact of distant values223. Moreover, some
parameters depend on the sequence length; short peptides require a fixed gap or the win­
dow length. Consequently, a variable parameter space, thus, the interaction of non­adjacent
amino acids, resulting in high accuracy, could possess biological meaning. Additional re­
search in this direction might be fruitful.

The diversity of individual models and encodings, accompanied by the mutual compensa­
tion of misclassified instances, remains an open research topic. Although Kuncheva (2014)
pointed out that maximizing the diversity alone is insufficient to compile efficient ensembles,
it is, however, a crucial property129. Moreover, Heider et al. (2014) argued that different
encodings reflect various characteristics of the amino acid sequences; consequently, sug­
gested the diversity as a measure for selecting relevant encodings97,220. However, Spänig
et al. (2021) detected a minor impact of the diversity on the class separability; hence, perfor­
mance223. More research is required to examine to which extent encodings can participate
in the final prediction.

Spänig et al. (2019) suggested the Disagreement Measure D220, which describes the
mean false positive and false negative rates of the base classifiers129. In contrast, Spänig et
al. (2021) employed the Interrater Agreement κ223, including the entire confusion matrix129.
Kuncheva has described additional metrics (2014)129. Thus, the versatility of diversity mea­
sures demands further studies on this topic. Consequently, diversity metrics are conceivable,
which acknowledge the specific requirements of the encoding field, for instance, utilizing pe­
nalization, weights, or the consensus with the true class. More research in this direction
is of utmost significance, as the diversity might unveil biological contributions of individual
encodings.

Furthermore, we demonstrated that sequence­based encodings (SeBEs) and structure­
based encodings (StBEs) achieved good performance, although the former group is in gen­
eral superior223. The inferiority of StBEs is noteworthy since the protein structure determines
its purpose237. According to Spänig et al. (2021), the results can be explained by the low
agreement between estimated and actual structures223. Additional investigations should ad­
dress the accuracy of the structure approximation and the root­mean­square deviation from
model structures.

The structure approximation could also be flawed due to a Basic Local Alignment Search
Tool (BLAST) parameter misinterpretation. We used max_target_seqs to determine the num­
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ber of hits to be returned223. This parameter defines the number of hits exceeding the mini­
mum e­value, which are not necessarily the best matches211.

The long run­time of ab initio structure prediction223 could be evaded by tools, specifically
tackling peptides132. The Collection of Antimicrobial Peptides (CAMP) hosts structures of
several hundred AMPs238. A novel dataset could be constructed utilizing known structures
complemented by negative sequences with confirmed three­dimensional conformations for
future studies. However, according to Section 5.1, scientists must address the intersection
of the classes. Ultimately, such a benchmark dataset could provide an unbiased view of the
relation between SeBEs and StBEs.

Further studies should also consider the structure resolution. Snyder et al. (2005) referred
to the complementary of X­ray crystallography and NMR spectroscopy; thus, the resulting
structure is potentially incomplete, depending on the approach218. As of January 2022, the
CAMP contains 757 AMP structures, thereof approx. 55 % NMR spectroscopy­derived. Thus,
the structure determination technology additionally complicates the creation of a benchmark
dataset. This aspect could also impair the findings of Spänig et al. (2021)223. In summary,
albeit structure approximation is tentatively sufficient223, researchers must consider various
aspects to improve StBEs.

In addition, Burdukiewicz et al. (2021) referred to the issue of inconsistent strategies for
constructing negative test data28. The authors stressed the consequences on benchmark
studies if negative sequences, such as non­AMPs, are randomly selected28. The dataset
disparity also concerns the encoding benchmark of Spänig et al. (2021)223. Since the study
included datasets from the same domain, researchers should address the impact of negative
data sampling in the future.

Moreover, Bourgade et al. (2014) identified antimicrobial activity of β­amyloid peptides23.
A pathological accumulation of these peptides in the human brain leads to Alzheimer’s dis­
ease23. The observed pleiotropy of β­amyloid peptides questions the reliability of negative
datasets fundamentally. If it is unclear whether putative non­AMPs are indeed non­effective,
the model training is heavily impaired.

A countermeasure could be Positive­Unlabeled learning (PUL)14. According to Bekker and
Davis (2020), PUL employs, besides the labeled positive instances, unlabeled data, hence, a
second group, where the class membership is unknown14. In the simplest case, the labeled
positive data is randomly and uniformly gathered from the actual positive data, the classes are
well­separable, and unlabeled instances approximate their real class14. If the preconditions
are fulfilled, users can conduct the training by first assigning “reliable negative examples”,
using, for instance, the k­nearest neighbors algorithm14. For the actual training, Bekker and
Davis (2020) suggested various specialized algorithms14. Nevertheless, putative negative
and positive peptides ultimately require in vitro verification to rule out any uncertainty. With
that being said, several working groups successfully predicted, synthesized, and validated
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HDPs, neglecting the issue of unlabeled data78,177,204.
An increasing emphasis has been also put on the interpretability of ML algorithms60. For

instance, DL models convince with outstanding performance, accompanied with a complex
architecture, which hampers decision­making comprehension60. Specifically for amino acid
sequences, sophisticated methods to evaluate the decision on the amino acid level are lack­
ing. In particular, for complex encodings comprising multiple, non­adjacent amino acids,
more details would be helpful. Interpretable artificial intelligence enables researchers to ver­
ify biological observations or establish novel hypotheses. In this light, Heider et al. (2014)
developed a model which confirmed the 11/25 rule97. The rule states that positively charged
residues at the eleventh and twenty­fifth position influence HIV co­receptor tropism97. The
authors conceded that the respective features solely represent the electrostatic potential
close to the actual amino acids97. Ultimately, the 11/25 rule would remain undiscovered
without prior knowledge since the decision is not attributable to the amino acids.
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8
Conclusion

This dissertation covered four core topics on multiple aspects of antimicrobial resistance
(AMR) based on a comprehensive literature review. The first chapter introduced AMR, specif­
ically microbial resistance mechanisms, the background of dissemination events, and the
characteristics of antibiotic drug classes. Afterward, environmental epidemiology (EE), par­
ticularly the state­of­the­art concerning waste­ and freshwater­based studies, was presented.
As a proof of concept, we examined multiple European freshwater lakes to pave the way for
standardized data integration221. The results revealed baseline levels of AMR221, underpin­
ning the significance of alternative therapies. Thus, the third chapter covered host­defense
peptides (HDPs), specifically, antimicrobial peptides (AMPs). In addition, the working princi­
ples of AMPs are illuminated. The chapter concluded with a survey on multiple applications
and the challenge and the capability of abiotic modification. Years of AMP research gen­
erated numerous amino acid sequences and structures, enabling the application of artificial
intelligence. Thus, the last chapter introduced all aspects of machine learning (ML), includ­
ing data repositories, amino acid encodings, biomedical domains, and concluded with the
respective publications contributed to this dissertation.

AMR, EE, and AMPs are the essential data resources discussed. AMR has been outlined
utilizing the current literature; however, the review demonstrates the importance of genome
sequencing and susceptibility testing. Various studies investigated EE, specifically stressing
metagenome sampling and molecular diagnosis. Antimicrobial peptidomics is the foundation
of ML­based prediction of novel antibiotics. Ultimately, the diversity hampers streamlined
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integration of multi­omic datasets, which is expected due to the different biological descent.
In this light, the thesis revealed the necessity of standardized datasets. Several studies on

AMR in waste­ and freshwaters, already initialized crucial attempts, for instance, Czekalski
et al. (2015)49, Schar et al. (2021)203, and Spänig et al. (2021)223. Undoubtedly, the multi­
modal character of the studies requires the collection of diverse data; thus, completely unified
integration might be practically impossible. However, researchers should globally agree on
a minimum standardization, which allows at least to set the initial baseline level of AMR and
future monitoring.

Concerning AMPs, researchers pointed out that the variety of positive and negative training
data aggravates the comparison of ML models. Thus, it is of utmost importance to define a
gold­standard test dataset. The dataset could be employed to verify the integrity of new
models. An independent consortium could contribute additional AMPs if novel sequences
have been discovered. In perspective, the central repository could follow the principles of
the UCI Machine learning repository by providing standardized peptide datasets to assess
new models62. These datasets would enable researchers an unbiased evaluation beyond
model performance, comprising encoding accuracy and the utility of unsupervised encoding
selection.

A recent study confirmed the tremendous negative impact of AMR on health care176. In
particular, Murray et al. (2022) observed that in 2019 almost two million deaths were due to
ineffective antibiotics176. Major involved pathogens included four ESKAPE species as well as
Escherichia coli and Streptococcus pneumoniae176. Millions of deaths are implicitly related
to AMR176. These figures again stress effective countermeasures in the future, including
prediction, development, and introduction of novel AMPs into clinical practice.
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