Tom McLean, Marc Sabate-Vidales and David Siska I...|_

vega.xyz

WHAT WILL WE
COVER?

What is Vega Protocol?
Case for large-scale agent based simulations
Vega Nullchain and Vega market simulator

= Code: Setting up the Vega market simulator
Scenarios, Agents and Environments

= Code: Building a basic agent
Reinforcement Learning

= Code: Building a smarter agent

WHAT IS VE
PROTOCO

github.com/vegaprotocol/vega

=

A

—G)

.
I

https://github.com/vegaprotocol/vega

INTRODUCTION
TO VEGA
PROTOCOL

» Layer 1 blockchain, PoS, Tendermint for consensus

= Optimised for trading margined products

= Price discovery is through order books (LOBs) and auctions
» Permissionless market creation s

» |If there is an oracle there can be a Vega market “ *
= Bespoke liquidity mechanism for LOBs o "

= Assets bridged from Ethereum O =
-
]

WHY RUN OWN
L17

= No fees on transactions that aren’t trades
Limit orders are liquidity and information - why penalise?

= Atomic closeouts

= “Bare metal” for risk computations

» Fairness: Wendy

= Latency optimisation

=

-

e

L]
ER
[

CASE FOR LARGE-SCALE
AGENT BASED SIMULATIONS

Eeenoermy DeFi needs large agent based modelling (Nature)

https://github.com/vegaprotocol/vega

CASE FOR AGENT
BASED SIMULATIONS

= DeFi protocols are becoming more complex

= Simple rules can lead to complex behaviours “Emergence occurs
) . . - when an entity is
= With complexity, we often lose the ability to observed to have
. ties it tsd
thoroughly understand how a system behaves in L have on theit ow,
every possible situation properties or behaviors
that emerge only when
= There are many parameters set by governance ﬁvh,-i,fra,ffﬁgj’et?’ac“”a
which fine-tune protocol behaviours (Uniswap fees, Wikipedia

Aave liquidation thresholds, Vega network and
market parameters, risk parameters)

» DeFiis interoperable; as protocols connect and
automate complexity will increase

https://en.wikipedia.org/wiki/Emergence

AGENT BASED
MODELLING

“A computational model for simulating
the actions and interactions of
autonomous agents (both individual or
collective entities such as organizations
or groups) in order to understand the
behavior of a system and what governs
its outcomes.”

Wikipedia

https://en.wikipedia.org/wiki/Agent-based_model

TYPES OF AGENTS

Zero intelligence: hard coded actions
based on state, no optimization, no
learning

Optimizing agents: full knowledge of
how environment and others work,
solving control problem / game
theory problems; no learning.

Reinforcement learning agents: State,
Action, Reward, State, Action -
SARSA

state

’| Agent |

reward
R,

g Wiy

7

.

Environment]4—

DUMB ROBOT

action
A,

AGENT BASED SIMULATIONS
WITH VEGA MARKET SIMULATOR

https://github.com/vegaprotocol/vega-market-sim/

https://github.com/vegaprotocol/vega-market-sim/

VEGA MARKET
SIMULATOR

Runs a full Vega stack, but with the
Tendermint layer stripped away

Replaced with a ‘null’ chain, a
consensus layer which accepts
whatever is sent and forwards time
on command

On top of this, an API layer allowing
trading behaviour expression without
(much) concern for the underlying
blockchain

VEGA MARKET
SIMULATOR

» Using this API, build:
= Robust Scenarios covering a
range of environments

= Composable, configurable
agents who can be slotted in or
taken out at will

VEGA MARKET
SIMULATOR

We interact with a Vega instance
through a ‘Service’ class, entered
either in a context or with a .start()
method in a notebook

VegaServiceNull

A ‘Nullchain’ instance spun
up locally

VegaServiceNetwork

Connect to an existing
remote network

SETTING UP VEGA MARKET SIM

= Prerequisites:
= make
= Go 119
= Python 3.10
= |deally poetry

= Optional:
= For Ul
= yarn
= nvm
= For learning:
= pytorch

(vega-sim-py3.10) bash-5.1$% python ./examples/nullchain.py
INFO:vega_sim.null_service:Running NullChain from vegahome of /var/folders/67/mj
xp58256y7j83_1x0372gkwr0@0dgn/T/vega-sim-gq_wn7uvo
INFO:vega_sim.null_service:Launching GraphQL node at port 63992
INFO:vega_sim.null_service:Launching Console at port 63998
NARNING:vega_sim.service:Using function with raw data from data-node VegaService
.all_markets. Be wary if prices/positions are not converted from int form

TDAI: bf17bf3410cf85b594f6fef4030b567e273f4474cec3cd669da2b@6d21f5a337
NARNING:vega_sim.service:Using function with raw data from data-node VegaService
.all_markets. Be wary if prices/positions are not converted from int form

Margin levels are: [MarginLevels(maintenance_margin=328.54405, search_level=361.
39844, initial_margin=394.25285, collateral_release_level=854.21451, party_id='0
f5f97fa23f76@babe2c169ed2e9fe@al29f945fd4f16c9fd56c06424f5b1716", market_id="847
20861baf2c4aa3a990162328c76c4a0a4496c64c50778420232d6ad446fd9", asset="bf17bf341
dcf85b594f6fef4030b567e273f4474cec3cd669da2b@6d21f5a337", timestamp=163818546525
J066000)]

INFO:vega_sim.service:Settling market at price 100 for price.BTC.value
(vega-sim-py3.1@) bash-5.1$ [|

= Clone https://github.com/vegaprotocol/vega-market-sim/

= Follow README.md#setup

= Try at least python -m examples.nullchain" if you skipped

"make test_integration”

https://github.com/vegaprotocol/vega-market-sim/
https://github.com/vegaprotocol/vega-market-sim/blob/develop/README.md#setup

VIEWING THE MARKET

. . . VEGA |[Custom v | Trading Portfolio 8- | KEY 1:a7d22c...bdafbs v
= Once the Sim is running, we have three e [z | p—
1 ETH_O v | \ottmebased | 130371 0.000 0.000 | - s USD 0
m a i n ro utes to in S eCt CANDLES DEPTH TICKET INFO ORDERBOOK TRADES
p Interval v | [k3 v | [Overlays v | | studies v Order type Jptos e Askl: —iCunulative vol
3102 29 o 205 01,0074 ML TH L1 30371 01,203.71 g i oo I R
« AP , : o — Do
+380 o 1,328 4.4470 215134
rap ol | | | e e
| ‘ Il size . B -
- | M0 il | ; 1320 80039
I ‘ 1 iy : 0.0001 5| @ ~1303.71USD.0 : el ot~ o
= Always runs, port logged on i TN g e (e e
! Ml | \ L R S ;
777 T B 1,320 0.8979 1.9335
23 Immediate or Cancel (IOC) v @ 1,319 0.7351 1.0356
startup M ow [

PLACE ORDER

= Start VegaServiceNull with
launch graphgl=True tO automatlca”y :Zzz:f;"fmom“s R

Market
aaaaaaa
50,818.62

launch a browser

ETH.O

= Console
. run with console=True fo IaunCh
console + browser

INFO:vega_sim.null_service:Vega Running. Console launched at http://localhost:52647

INFO:vega_sim.null_service:Running NullChain from vegahome of /var/folders/yj/cjht1xn90wldd1hvw51lkxnrc@@00gn/T/vega—-sim-ib8qcaom
INFO:vega_sim.null_service:Launching GraphQL node at port 52641

INFO:vega_sim.null_service:Launching Console at port 52647

INFO:vega_sim.environment.environment:Running wallet at: http://localhost:52638

INFO:vega_sim.environment.environment: Runn1ng graphql at: http://localhost:52641

A L L s L A ey D e T T e e ;A £ L2 __ A oA ..

VIEWING THE MARKET

For a more interesting scenario run:
= python -m vega_sim.scenario.adhoc \
-s historic_shaped_market_maker \
--console \
--graphql \
--pause
GraphQL Docs:

https://docs.vega.xyz/docs/testnet/graphql

VEGA MARKET SIMULATOR -

VEGASERVICENULL

Core

= Process transactions, maintains state,
produces events

Datanode

= A storage layer allowing query of
historic data from a Vega instance,
consumes events

Vegawallet (Optional)

= Signs transactions and web interaction
Console (Optional)

= A frontend web GUI for Vega networks

-l-
-I-
L

*
N

=

.f.;.

ENVIRONMENTS, AGENT STATE,
ACTION - STATE STEP

Scenario
Environment Agent 1 Agent 2 Agent N
Number of Steps Initialisation Initialisation Initialisation
Vega Components Action at each step Action at each step Action at each step
Logaing

VEGA SIM -
AGENTS & SCENARIOS

» What is a Scenario?
= Agents
= Take actions at each
= Environment
= Number of steps

= Vega instance config

= Logging

=

e
o .
x..
[

-

VEGA SIM -
AGENTS & SCENARIOS

= Whatis an agent?
Class with three interfaces:
s 1nitialise
= Called at start of a scenario
= step
= Called once each scenario step
= finalise
= Called at end of a scenario
» walt for total catchup

= Keeps things in sync

SIMPLE AGENT:
A WALKTHROUGH

class Agent(ABC):
def step(self, vega: VegaService):
pass

def initialise(self, vega: VegaService):

self.vega = vega

def finalise(self):
pass

A simple agent framework which you can extend with some custom logic.

As—is, this agent will faucet itself some tokens in the setup phase
and then do nothing for the rest of the trading session.

Fill in your own logic into the ‘step’ function to make them trade
however you'd like.

Below, we have a range of building blocks,
copy and paste these into your code to get started

Pull best bid/ask prices
best_bid, best_ask = self.vega.best_prices(self.market_id)

Pull market depth (up to a specified number of levels)
market_depth = self.vega.market_depth(self.market_id, num_levels=5)

class AgentWithwallet(Agent):
def __init_ (
self,
wallet_name: str,
wallet_pass: str,
key_name: Optionall[str] = None,

"""Agent for use in environments as specified in environment.py.
To extend, the crucial function to implement is the step function which will
be called on each timestep in the simulation.

Additionally, the initialise function can be added to. This function is call
once before the main simulation and can be used to creat assets, set up mark
faucet assets to the agent etc.

Args:
wallet_name:
str, The name to use for this agent's wallet
wallet_pass:
str, The password which this agent uses to log in to the wallet
key_name:
str, optional, Name of key in wallet for agent to use. Defaults
to value in the environment variable "VEGA_DEFAULT_KEY_NAME".
super().__init_ ()
self.wallet_name = wallet_name
self.wallet_pass = wallet_pass
self.key _name = key_name

def step(self, vega: VegaService):
pass

def initialise(self, vega: VegaService, create_wallet: bool = True):
super().initialise(vega=vega)
if create_wallet:
self.vega.create_wallet(
name=self.wallet_name,
passphrase=self.wallet_pass,
key_name=self.key_name,
)
else:
self.vega.login(name=self.wallet_name, passphrase=self.wallet_pass)

The agent itself:
° vega sim.reinforcement.agents.simple agent

To run the Scenario

° python -m vega sim.reinforcement.run simple agent

EXISTING
AGENTS

» Market makers: Ideal MM v1
and v2, Curve market maker
(optimising)

= Liquidity taker (no int)
= [nformed trader (no int)

= Momentum traders (no int)

e

ALVARO

AND HIG

: %

= &
)

SEBASTIAN

CARTEA JAIMUNGAL

AR LA
H FREQUENCY
YR,

4 T

2

£

JOSE
PENALVA

Olivier Guéant

The Financial Mathematics
of Market Liquidity

From Optimal Execution to Market Making

Chapman & Hall/CRC FINANCIAL MATHEMATICS SERIES

PARAMETER
SETTING

= Simulations, with agents performing
(mostly) logical, real world actions

= With a stable of agents, and some initial
parameters, investigate the metrics you
care about as the system evolves

= Note: The agents don’t have to actually
make money!

PARAMETER
SETTING

= Agent testing allows the system to be evaluated far
more thoroughly than can ever be done manually

= But we still have limitations:
= What initial conditions do we start from?
= Testarange
= Look at the real world
= What agents do we use?

= Agents with set logic are a great
starting point, but limit the range
of states we investigate

EFFECT OF RISK METRICS ON
MM PROFITABILITY

LP: Margin Rate // (iteration=avg)

0.0025
0.0020 1
1
5 0.0015
c
e
o
= 0.0010
a.
=]
0.0005
—— market.liquidity.probabilityOfTrading.tau.scaling=1
—— market.liquidity.probabilityOfTrading.tau.scaling=10
0.0000 - —— market.liquidity.probabilityOfTrading.tau.scaling=100
0 5 10 15 20 25
Time
1e6 LP: General Account // (iteration=avg)
9.750 —— market.liquidity.probabilityOfTrading.tau.scaling=1
—— market.liquidity.probabilityOfTrading.tau.scaling=10
— market.liquidity.probabilityOfTrading.tau.scaling=100
9.745
€
5
S
£ 9740
=
]
c
o
O 9.735
&
-
9.730
9.725 T T T T

Time

25

LP: Margin Account

25000 4

20000

15000

10000 -

LP: Position

LP: Margin Account // (iteration=avg)

5000 -

—— market.liquidity.probabilityOfTrading.tau.scaling=1
—— market.liquidity.probabilityOfTrading.tau.scaling=10
~—— market.liquidity.probabilityOfTrading.tau.scaling=100

o 5 10 15 20 25
Time

LP: Position // (iteration=avg)

25

20

15

10

—— market.liquidity.probabilityOfTrading.tau.scaling=1
~—— market.liquidity.probabilityOfTrading.tau.scaling=10
— market.liquidity.probabilityOfTrading.tau.scaling=100

Y

Y,

BUILDING RL
AGENTS

Reinforcement
rning

WHY DO WE WANT RL AGENTS?

Zero intelligence and optimizing agents are “statistically” very
similar even if each run is different

Once you've run an environment 10-100 times you’ve seen it all
RL agents explore and learn, stressing the system in new ways

O © 20pen v 9Closed Author v Label ~

O © panic: Failed to extract orders as not enough volume within price limits) (crasher = (&itical
#6406 opened 18 hours ago by davidsiska-vega CP ® Oregon Trail

0 O panic: settlement balance is not zero) (crasher = (ritical
#6375 opened 2 days ago by davidsiska-vega EP & Oregon Trail

0 © crasher: panic: trade with a potential buy position < to the trade size (X)) (crasher (Ehitical
#6278 by davidsiska-vega was closed 9 days ago 2 % Oregon Trail

Outline

Markov Decision Process (MDP)

Reinforcement Learning
Q-learning
Policy Gradient

Environment Dynamics

Finite MDP consits of:
» Finite sets of states S, actions A.

» Environment dynamics. Let (Q, F,P) be a probability space. Forac A,y,y' € S
we are given p?(y,y’) of a discrete time Markov chain (X%),=0.1,... so that

P(X =YXy =y)=p*(y,y)

» « is the control process. « is measurable with respect to o(X, k < n). In other
words, « can’t look into the future.

Value Function

» Let v € (0,1) be a fixed discount factor
» Let f: S X A— R be a running reward.

» Our aim is to maximize the expected return

ny (an, X))

over all controlled processes, where EX := E[-| X§* = x]

J%(x) = EX

» For all x € S, we define the value function and the optimal value function as

vix) = %), vT(x) = max S (x)

Dynamic Programming for controlled Markov Processes

Theorem (DPP)
Let f be bounded. Then for all x € S we have

V() = max B [£2(x) + 7v" (X])

Corollary

Among all admissible control processes, it is enough to consider the ones that depend
only on the current state.

Policy lteration

Start with initial guess of a%(x;) for i = 1,...,|S|. Let VX(x;),a*(x;) be defined
through the iterative procedure

1. Evaluate the current policy

VI () = £, 0 (x)) + VB VKOG = x]

7

~~

po‘k(xi)(y,y’) needed!
2. Improve the policy

p3(y,y’) needed!

~

oft(x;) € argmax f(x;,a) +vE | VET(X?)|X¢ = x,-}
acA

Outline

Markov Decision Process (MDP)

Reinforcement Learning
Q-learning
Policy Gradient

Remark

In policy iteration, we need to know the transition probabilities p?(y,y')), f and g!
This is not the usual case. The alternative is to learn the policy from data, collected
from interacting with the environment.

'_‘ Agent
state reward action

St Rt At

E Rl+l o
- .
< Environment]4—

Q-learning

Definition (Q-function)
Q%(x,a) := r(x,a) + vE[v* (X{)]
Q*(x,a) := r(x,a) + vE[v" (X7)]
From DPP, we know that, max, Q*(x, a) = v*(x), therefore

Q*(x,a) = r(x,a) + 7EX[max Q*(X{, b)].
beA

Re-arranging,
0=r(x,a) + VEX[TEa; QR™(X{, b)] — Q*(x, a)

Q-learning Algorithm - Stochastic Approximation

Stochastic approximation arises when one wants to find the root 6* of the following
expression

0= C(0) :=Ex~n(c(X,0))

If we have access to unbiased approximations of C(6), namely C(6), then the following
updates

0 0—6,C(0)
with &, € (0, 1) satisfying

Z5n:+oo, Z(S% < +00

will converge to 0*
Going back to Q-learning, we want to find an unbiased approximation of

r(Xv a) ok VEX[maX Q*(Xfa b)] _ Q*(Xv 3)
beA

Q-learning Algorithm

Recall S, A are finite (they can be big). Transition probabilities, running cost and final
cost are unknown, but we can observe tuples (x,, an, fn, Xp+1) from interacting with the
environment.
1. Make initial guess, for Q*(x, a) denoted by Q(x, a) for all x, a.
2. We select and perform an action a (either by following the current policy, or by
doing some sort of exploration).
3. We select the state we landed in, denoting it by y. If it is not terminal, adjust

Q(x.2) ¢ Qlx.2) + 3 (r(x,) + 9 max Q. b) — Qlx.)

Note: we are doing Stochastic Approximation using maxpcaQ(y, b) as an
unbiased approximation of EX[maxpca Q(XT, b)].

4. Go back to (2)

Q-learning Algorithm - Function approximation
In practice, the state space might be very large (or continuous). It is then infeasible to
sample (xp, a, r, x,+1) to explore all the space.
Alternatively, @ can be approximated with a Neural Network with parameters 6.
The optimal policy will be defined as a(x) = maxpca Qg+ (x, a) for some optimal
parameters 0*.
1. Initialise network’s parameters 6.
2. Sample tuples (xn, an, rn, Xnt+1)n=1,...m from the environment, using some
exploration-exploitation heuristics.
3. Find 6* that minimise the Ly-error

2
J(Q) = % Ex,arv,u <Q€(X7 a) - (I’(X, a) + ’YEX rpgz‘(Qe_(Xa b)))

where 1 is the empirical measure of the visited action-states, using gradient
ascent. We use the following approximation of the gradient

Vit = Eg s (Q@(X, a) — (r(x, a) + ~vE~ max Qs(X, b))> VoQy(x, a)

Soft Policies

From DPP it follows that the optimal policy is a deterministic function of the state. In
practice, since the environment and the running cost/reward function are unkown, we
will use soft policies,

7:S — P(A)

where P(A) is the space of probability meaures on A.
| will abuse the notation, and | will indistinctively use 7(:|x) for the distribution, the
probability mass function (or the density) of m(x).

Remark (Relationship between the value function and the Q-function)

v’ (X) — IE:”Ar\/7r(-|x)(p(xa A)

Policy Gradient for Soft Policies |

Consider a soft (random) policy with probability mass function 7y (-|x) parametrised by
some parameters 6. Let p be some initial state distribution.

Instead of finding the optimal policy through the Q-function, we directly maximise the
expected return for all x € S.

J™(0) = Eapon(-X0) [Z Vr(An, X5) | Xo ~ p

n=0

Assume we know an expression for VyJ™ (next slide). Then arg maxy J™(#) is found
using gradient ascent using a learning rate 7

0 0+7- Vo)™

Policy Gradient for Soft Policies Il

We need to find an expression for VyJ™@. This is given by The Policy Gradient Thm,
Section 13.2 in [Sutton and Barto, 2018]

Theorem (Policy Gradient Theorem)

Vo™ (0) o< Y pu(x) > Vamg(alx)Qn,(x, a)

xeS acA
X Ex,~p []EA,,NM(-|X,,)V0 log (9 (An|Xn)) Qo (Xn, An)]

where 1 is the visitation measure.

Policy Gradient for Deterministic Policies

If we have a deterministic policy with continuous actions a, : S — A, then the
Deterministic Policy Gradient for Reinforcement Learning with continuous actions is
given by Theorem 1 in [Silver et al., 2014]

Theorem

VQJag (9) = EXHNM [VQCYO (X)anag (Xm 049(5))]

Actor-Critic type Algorithms

Policy Gradient theorems include the Q-function. In practice, one can either

» approximate it using Monte Carlo (i.e. by simulating several games starting from

(x, a) and approximate it with the average). This is expensive and might have a
high variance.

» Using a function approximation Qy(x, a) with parameters 1. This motivates
actor-critic algorithms:

1. Policy evaluation: approximate the Q-function (the critic) using for example the
Bellman equation.

6" = argmax 3 Exony (Qu(x,2) = (r(x.2) 4 1Ev;()))°

where we recall that v;(X) = E.wr,(1x)[Qy (X, a)]

2. Policy improvement improve the policy (the actor) with gradient ascent using the
Policy Gradient theorems.

References |

B Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M.
(2014).
Deterministic policy gradient algorithms.
In International conference on machine learning, pages 387-395. PMLR.

B Sutton, R. S. and Barto, A. G. (2018).
Reinforcement learning: An introduction.
MIT press.

Simple RL Agent - A walkthrough

Start in ./vega_sim/reinforcement
run_rl_agent.py --rl-max-it 100
- run_rl_agent.py --evaluate 10

INFO:vega_sim.environment.environment:Running wallet at: http://localhost:49978
INFO:vega_sim.environment.environment:Running graphql at: http://localhost:49981
INFO:vega_sim.service:Settling market at price 999.281 for price.tDAI_49.value
INFO:vega_sim.environment.environment:Run took 8s

100% | I | 10/10 [00:06<00:00, 1.54it/s]
100% | I | 10/10 [00:02<00:00, 3.90it/s]

Do:

1. Collect SARSA from policy

2. Update g-function approximation (critic)
3. Update policy (actor)
While: error > threshold

https://github.com/vegaprotocol/vega-market-sim/tree/develop/vega_sim/reinforcement

Collect SARSA data from fixed policy

Policy is fixed (initially random neural network weights)

learning_agent.move_to_cpu() def step(self, vega_state: VegaState):

_ = run_iteration(learning_state = self.state(self.vega)
self.step_num += 1

self.latest_action = self._step(learning_state)
self.latest_state = learning_state

learning_agent=1learning_agent,
step_tag=it,

vega=vega,
market_name=market_name, if learning_state.full_balance <= 0:
run_with_console=False, return

. if learning_state.market_in_auction:
pause_at_completion=False,
return
if self.latest_action.buy or self.latest_action.sell:
try:
self.vega.submit_market_order(
trading_wallet=self.wallet_name,
market_id=self.market_id,
side="SIDE_BUY" if self.latest_action.buy else "SIDE_SELL",
volume=self.volume,
wait=False,
fill_or_kill=False,
)
except Exception as e:
print(e)

Collect SARSA data from fixed policy

def _step(self, vega_state: LAMarketState) —-> Action:
learned policy def state(self, vega: VegaServiceNull) -> LAMarketState:
state = vega_state.to_array().reshape(1, -1) # addi position = self.vega.positions_by_market(self.wallet_name, self.market_id)
state = torch.from_numpy(state).float() # .to(self.
position = position[@].open_volume if position else @

with torch.no_grad(): account = self.vega.party_account(
¢ = self.sample_action(state=state, sim=True) wallet_name=self.wallet_name,
choice = int(c.item()) asset_id=self.tdai_id,

market_id=self.market_id,
return Action(buy=choice == @, sell=choice == 1))

book_state = self.vega.market_depth(

el i i self.market_id, num_levels=self.num_levels

states: List[Tuple[LAMarketState, AbstractAction]],
inventory_penalty: float = 0.0,
) —> List[Tuple[LAMarketState, AbstractAction, float, LAMarketState, AbstractAction]]:
res = []
for i in range(len(states) - 1):
pres_state = states[i]
next_state = states[i + 1]

if next_state[0].full_balance <= 0:
reward = -1lel2
res.append (
(

pres_state[0],
pres_state[1],
reward,
next_state[0] if next_state is not np.nan else np.nan,
next_state[1] if next_state is not np.nan else np.nan,

break

Improve Q-function estimate

. pred = torch.gather(
def policy_eval(self.q_func(batch_state),
self, dine1
. . ’
batch_size: int, index=batch_action_discrete,
n_epochs: int,)
)
toggle(self.policy_discr, to=False) with torch.no_grad():
toggle(self.q_func, to=True) v = self.v_func(batch_next_state)
target = (
dataloader = self.create_dataloader(batch_size=batch_size) batch_reward
+ (1 - next_state_terminal.float().mean(1, keepdim=True))
pbar = tqdm(total=n_epochs) * self.discount_factor
for epoch in range(n_epochs): * v
for ()
il loss = torch.pow(pred - target, 2).mean()
(loss.backward()
batch_state, self.optimizer_g.step()
batch_action_discrete, self.losses["q"].append(loss.item())
batch_reward, # logging loss
batch_next_state, with open(self.logfile_pol_eval, "a") as f:
), f.write(
) in enumerate(dataloader): “{},{:.2e},{:.2e},{:.2eF\n". format (
next_state_terminal = torch.isnan(epoch + self.lerningIteration * n_epochs,
batch_next_state loss.item(),
).float() # shape (batch_size, dim_state) self.coefH_discr,
batch_next_statel[next_state_terminal.eq(True)] = batch_statel SelifoGErliLEE;
next_state_terminal.eq(True)))
]
e pbar.update(1)
self.optimizer_g.zero_grad() e 0]

Improve policy

def policy_improvement(self, batch_size: int, n_epochs: int):
toggle(self.policy discr, to=True)
toggle(self.q_func, to=False)

*

7.‘-K/IaxEnt; (at |St) =exp (% (Q:oft (St? at) T ‘/soft (St))) .

dataloader = self.create_dataloader(batch_size=batch_size)

pbar = tqdm(total=n_epochs)
for epoch in range(n_epochs):
for i, (batch_state, _, _, _) in enumerate(dataloader):
self.optimizer_pol.zero_grad()
d_kl = self.D_KL(batch_state).mean()
d_k1.backward() Reinforcement Learning with Deep Energy-Based Policies
nn.utils.clip_grad_norm_(self.policy_volume.
self.optimizer_pol.step()
self.losses["d_k1"].append(d_kl.item())
with open(self.logfile_pol_imp, "a") as f: Tuomas Haarnoja®! Haoran Tang “? Pieter Abbeel |34 Sergey Levine!
f.write(
"{},{:.4f}\n".format(
epoch + n_epochs * self.lerningIteration, d_kl.item()

)
pbar.update(1)

What to expect?

Policy improvement Q-function estimation

"
(%]
— (]
o S
5 E
Q9]
> c
= [
= €
= T
£
]
> °
(@)}
e

500 750 1000 1250 1500 1750 2000 500 750 1000 1250 1500 1750 2000
Iteration Iteration

Evaluation

601.6619368484134334e—05 < PnL < 2.1934163854174126e-05

N
o

>
(®)
5
S 30
o}
9]
e
[

N
o

0
—0.0010 —0.0005 0.0000 0.0005 0.0010

PnL

Tom McLean Marc Sabate-Vidales
Vega Protocol Simtopia

vega.xyz simtopia.ai
tom@vegaprotocol.io marc@simtopia.ai
Twitter: @TomMcLn Twitter: @msabvid

. =

David Siska
Vega Protocol

vega.xyz

david@vegaprotocol.io
Twitter: @dsiska

