
Tom McLean, Marc Sabate-Vidales and David Siska
vega.xyz

PARAMETER
OPTIMIZATION
AND EMERGENT
BEHAVIOUR IN
DEFI

PARAMETER
OPTIMIZATION
AND EMERGENT
BEHAVIOUR IN
DEFI

WHAT WILL WE
COVER?
▪ What is Vega Protocol?
▪ Case for large-scale agent based simulations
▪ Vega Nullchain and Vega market simulator

▫ Code: Setting up the Vega market simulator
▪ Scenarios, Agents and Environments

▫ Code: Building a basic agent
▪ Reinforcement Learning

▫ Code: Building a smarter agent

WHAT WILL WE
COVER?

github.com/vegaprotocol/vega

WHAT IS VEGA
PROTOCOL

https://github.com/vegaprotocol/vega

▪ Layer 1 blockchain, PoS, Tendermint for consensus

▪ Optimised for trading margined products

▪ Price discovery is through order books (LOBs) and auctions

▪ Permissionless market creation

▪ If there is an oracle there can be a Vega market

▪ Bespoke liquidity mechanism for LOBs

▪ Assets bridged from Ethereum

INTRODUCTION
TO VEGA
PROTOCOL

▪ No fees on transactions that aren’t trades
▫ Limit orders are liquidity and information - why penalise?

▪ Atomic closeouts
▪ “Bare metal” for risk computations
▪ Fairness: Wendy
▪ Latency optimisation

WHY RUN OWN
L1?

CASE FOR LARGE-SCALE
AGENT BASED SIMULATIONS

Economy DeFi needs large agent based modelling (Nature)

https://github.com/vegaprotocol/vega

▪ DeFi protocols are becoming more complex
▪ Simple rules can lead to complex behaviours
▪ With complexity, we often lose the ability to

thoroughly understand how a system behaves in
every possible situation

▪ There are many parameters set by governance
which fine-tune protocol behaviours (Uniswap fees,
Aave liquidation thresholds, Vega network and
market parameters, risk parameters)

▪ DeFi is interoperable; as protocols connect and
automate complexity will increase

CASE FOR AGENT
BASED SIMULATIONS

“Emergence occurs
when an entity is
observed to have
properties its parts do
not have on their own,
properties or behaviors
that emerge only when
the parts interact in a
wider whole.”
Wikipedia

https://en.wikipedia.org/wiki/Emergence

“A computational model for simulating
the actions and interactions of
autonomous agents (both individual or
collective entities such as organizations
or groups) in order to understand the
behavior of a system and what governs
its outcomes.“
Wikipedia

AGENT BASED
MODELLING

https://en.wikipedia.org/wiki/Agent-based_model

TYPES OF AGENTS
▪ Zero intelligence: hard coded actions

based on state, no optimization, no
learning

▪ Optimizing agents: full knowledge of
how environment and others work,
solving control problem / game
theory problems; no learning.

▪ Reinforcement learning agents: State,
Action, Reward, State, Action -
SARSA

https://github.com/vegaprotocol/vega-market-sim/

AGENT BASED SIMULATIONS
WITH VEGA MARKET SIMULATOR

https://github.com/vegaprotocol/vega-market-sim/

VEGA MARKET
SIMULATOR
▪ Runs a full Vega stack, but with the

Tendermint layer stripped away

▪ Replaced with a ‘null’ chain, a
consensus layer which accepts
whatever is sent and forwards time
on command

▪ On top of this, an API layer allowing
trading behaviour expression without
(much) concern for the underlying
blockchain

VEGA MARKET
SIMULATOR
▪ Using this API, build:

▫ Robust Scenarios covering a
range of environments

▫ Composable, configurable
agents who can be slotted in or
taken out at will

VEGA MARKET
SIMULATOR
▪ We interact with a Vega instance

through a ‘Service’ class, entered
either in a context or with a .start()
method in a notebook

▫ VegaServiceNull

⬝ A ‘Nullchain’ instance spun
up locally

▫ VegaServiceNetwork

⬝ Connect to an existing
remote network

▪ Prerequisites:
▫ make
▫ Go 1.19
▫ Python 3.10
▫ Ideally poetry

▪ Optional:
▫ For UI:

⬝ yarn
⬝ nvm

▫ For learning:
⬝ pytorch

▪ Clone https://github.com/vegaprotocol/vega-market-sim/
▪ Follow README.md#setup
▪ Try at least`python -m examples.nullchain` if you skipped

`make test_integration`

SETTING UP VEGA MARKET SIM

https://github.com/vegaprotocol/vega-market-sim/
https://github.com/vegaprotocol/vega-market-sim/blob/develop/README.md#setup

▪ Once the Sim is running, we have three
main routes to inspect
▫ API
▫ GraphQL

⬝ Always runs, port logged on
startup

⬝ Start VegaServiceNull with
launch_graphql=True to automatically
launch a browser

▫ Console
⬝ run_with_console=True to launch

console + browser

VIEWING THE MARKET

▪ For a more interesting scenario run:
▫ python -m vega_sim.scenario.adhoc \

-s historic_shaped_market_maker \
--console \
--graphql \
--pause

▪ GraphQL Docs:
▫ https://docs.vega.xyz/docs/testnet/graphql

VIEWING THE MARKET

https://docs.vega.xyz/docs/testnet/graphql

▪ Core
▫ Process transactions, maintains state,

produces events
▪ Datanode

▫ A storage layer allowing query of
historic data from a Vega instance,
consumes events

▪ Vegawallet (Optional)
▫ Signs transactions and web interaction

▪ Console (Optional)
▫ A frontend web GUI for Vega networks

VEGA MARKET SIMULATOR -
VEGASERVICENULL

ENVIRONMENTS, AGENT STATE,
ACTION -> STATE STEP

▪ What is a Scenario?

▫ Agents

⬝ Take actions at each

▫ Environment

⬝ Number of steps

⬝ Vega instance config

⬝ Logging

VEGA SIM -
AGENTS & SCENARIOS

▪ What is an agent?
▪ Class with three interfaces:

▫ initialise

⬝ Called at start of a scenario
▫ step

⬝ Called once each scenario step
▫ finalise

⬝ Called at end of a scenario
▪ wait_for_total_catchup

▫ Keeps things in sync

VEGA SIM -
AGENTS & SCENARIOS

Starting from a skeleton, we’ll build a basic agent

SIMPLE AGENT:
A WALKTHROUGH

▪ The agent itself:
▫ vega_sim.reinforcement.agents.simple_agent

▪ To run the Scenario
▫ python -m vega_sim.reinforcement.run_simple_agent

EXISTING
AGENTS
▪ Market makers: Ideal MM v1

and v2, Curve market maker
(optimising)

▪ Liquidity taker (no int)

▪ Informed trader (no int)

▪ Momentum traders (no int)

▪ Simulations, with agents performing
(mostly) logical, real world actions

▪ With a stable of agents, and some initial
parameters, investigate the metrics you
care about as the system evolves

▪ Note: The agents don’t have to actually
make money!

PARAMETER
SETTING

▪ Agent testing allows the system to be evaluated far
more thoroughly than can ever be done manually

▪ But we still have limitations:
▫ What initial conditions do we start from?

⬝ Test a range
⬝ Look at the real world

▫ What agents do we use?
⬝ Agents with set logic are a great

starting point, but limit the range
of states we investigate

PARAMETER
SETTING

EFFECT OF RISK METRICS ON
MM PROFITABILITY

BUILDING RL
AGENTS

WHY DO WE WANT RL AGENTS?
▪ Zero intelligence and optimizing agents are “statistically” very

similar even if each run is different
▪ Once you’ve run an environment 10-100 times you’ve seen it all
▪ RL agents explore and learn, stressing the system in new ways

Simple RL Agent - A walkthrough
- Start in ./vega_sim/reinforcement
- run_rl_agent.py --rl-max-it 100
- run_rl_agent.py --evaluate 10

Do:
1. Collect SARSA from policy
2. Update q-function approximation (critic)
3. Update policy (actor)

While: error > threshold

https://github.com/vegaprotocol/vega-market-sim/tree/develop/vega_sim/reinforcement

Collect SARSA data from fixed policy
Policy is fixed (initially random neural network weights)

Collect SARSA data from fixed policy

Improve Q-function estimate

Improve policy

What to expect?

Evaluation

THANK
YOU! vega.xyz

Tom McLean
Vega Protocol

tom@vegaprotocol.io
Twitter: @TomMcLn

David Siska
Vega Protocol

Marc Sabate-Vidales
Simtopia

vega.xyz

marc@simtopia.ai
Twitter: @msabvid

david@vegaprotocol.io
Twitter: @dsiska

simtopia.ai

