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ABSTRACT

There are many ways to play the same note with the finger-
board hand on string instruments such as the violin. Musi-
cians can flexibly adapt their string choice, hand position,
and finger placement to maximise expressivity and playa-
bility when sounding each note. Violin fingerings there-
fore serve as important guides in ensuring effective per-
formance, especially for inexperienced players. However,
fingering annotations are often missing or only partially
available on violin sheet music. Here, we propose a model
based on the variational autoencoder that generates violin
fingering patterns using only pitch and timing information
found on the score. Our model leverages limited exist-
ing fingering data with the possibility to learn in a semi-
supervised manner. Results indicate that fingering annota-
tions generated by our model successfully imitate the style
and preferences of a human performer. We further show its
significantly improved performance with semi-supervised
learning, and demonstrate our model’s ability to match the
state-of-the-art in violin fingering pattern generation when
trained on only half the amount of labelled data. 1

1. INTRODUCTION

Musicians produce different pitches on string instruments
such as the violin and guitar by pressing on a particu-
lar string with their fingerboard hand (typically the left)
to temporarily reduce its length. The string oscillates
at a higher frequency and a higher pitch is consequently
sounded. However, apart from the lowest and highest notes
of the instrument, the mapping between pitch and fingering
(i.e., where along the fingerboard and with which finger to
press) is not unique [1].

For the violin, musicians are faced with the decision
of selecting an appropriate string, hand position, and fin-
ger placement for every note they play [2]. Such deci-
sions depend on the trade-off between artistic expression
and playability [3]. For example, playing a note on the

1 Example code and supplementary information are available at
https://github.com/vkmcheung/violin-ssvae
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Figure 1. Our proposed learning model generates violin
fingerings from pitch and timing information found on the
score (Example: Elgar’s Salut d’amour, bars 1-4).

open string is the easiest as no finger placements are re-
quired [2]. However, its distinctive, brighter timbre is of-
ten undesired as it breaks the consistency in sound quality
over a musical context [3, 4]. Musicians instead tend to
play these notes on a lower string with vibrato to achieve a
warmer and richer tone [5]. Likewise, using the same fin-
ger for different pitches consecutively is often avoided as
this incurs a constant shift in hand position that could lead
to poor intonation or unintended glissandi [1]. Selecting
an effective string, position, and fingering combination to
sound each note is therefore a non-trivial aspect of violin
playing that could shape the outcome of a performance.

The importance of violin fingerings is evinced as they
often appear on the musical score as performance direc-
tions or reminders for the musician [6]. They are also used
as a pedagogical aid for inexperienced violinists [7]. How-
ever, the majority of violin sheet music does not come with
fingering annotations. Sampling from the International
Music Score Library Project (imslp.org), one of the
largest digital repositories of public domain sheet music,
85% of 23,142 scores featuring the violin do not contain
any fingering information 2 . In other words, most annota-
tions are still done by hand by the musician, in a process
that requires experience and is often time-consuming [8].
Therefore, there is a crucial need for a model that not only
generates fingerings, but also requires few labelled data as
prior knowledge.

To this end, we propose a violin fingering generation
model based on the variational autoencoder [9–11]. Our

2 Determined by inspecting the first available violin part of every 400th

entry in the category Scores featuring the violin on 3 May 2021.
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model relies only on pitch and timing information found on
the musical score as inputs, and can be trained in a semi-
supervised manner. This allows our model to capitalise
on the predominantly unlabelled existing data in generat-
ing fingerings that conform to the style and preferences of
violinists.

2. RELATED WORK

Work on fingering generation is not exclusive to the violin
and has previously been explored in other musical instru-
ments such as guitar [8, 12, 13] and piano [14–16]. Nev-
ertheless, despite the popularity of the instrument, there
exist few models on violin fingering generation. Early ap-
proaches have focussed on fingering generation through
heuristic rules and dynamic programming. For example,
Maezawa et al. [1, 3, 17] introduced three ‘consistency
rules’ for their model to ensure that generated fingerings
were consistent in direction and magnitude during pitch
and string changes, as well as during a mordent. Fingering
generation was thus achieved by minimising the transition
cost within a context of two and three notes using a musi-
cal score and an audio recording. However, the multimodal
nature of the input and rigidity of these models mean that
adapting generated fingerings to match individual prefer-
ences or styles is not straightforward.

Later works have remedied this problem with learn-
ing models. For example, hidden Markov models have
been trained on violin textbooks [2] to complement par-
tially annotated fingerings [18]. A recent deep learning
model [7] has also combined a pretrained bidirectional
long short-term memory (BLSTM) neural network with
heuristic rules to generate fingerings with different options.
This enabled musicians to select fingerings according to
their preferences in e.g., staying in a lower position, or to
minimise hand-position shifting. However, the paucity of
violin sheet music with labelled fingerings means that there
might not always be sufficient training data. By contrast,
our semi-supervised approach enables our proposed model
to make use of unlabelled data during training to generate
high-quality fingering annotations even in the context of
limited labelled data.

3. METHODS

Here, we briefly review the background behind semi-
supervised variational autoencoders before introducing our
proposed model and metrics for performance evaluation.

3.1 Variational autoencoders (VAEs)

VAEs [9, 10] are a popular class of deep generative mod-
els that are prized for their ability in estimating com-
plex probability distributions through variational inference
[19]. Let X be some observed data generated by la-
tent variable z. We want to learn parameters θ and φ
that optimise the (log-)likelihood pθ(x|z), parametrised
by θ, and approximate posterior qφ(z|x), parametrised by
φ. This is achieved by maximising the evidence lower
bound (ELBO). If we further assume that p(z)=N (0, I)

and qφ(z|x)=N (z|µφ, diag(σ2
φ)), then we can use a

reparametrisation trick to write samples of z as transfor-
mations of a standard Gaussian random variable, i.e.

zi = µi + σiε (1)

for some ε ∼ N (0, I). This allows us to compute gradients
of the ELBO to optimise θ and φ using neural networks,
for which qφ(z|x) is often referred to as the encoder and
pθ(x|z) the decoder. In practice, a non-negative hyperpa-
rameter β is often added to the ELBO to control the extent
to which the approximate posterior qφ(z|x) resembles the
prior p(z), i.e.

log pθ(x) ≥ Eqφ(z|x)[log pθ(x|z)]
− βDKL(qφ(z|x) ‖ p(z)).

(2)

We have the original VAE formulation when β = 1, whilst
reconstruction is improved at the expense of a more entan-
gled latent representation when 0 < β < 1 [20, 21].

3.2 Semi-supervised VAEs

The intuition behind semi-supervised VAEs [11] is to capi-
talise on its generative ability and to extend the VAE latent
space to include information from a classifier. Reconstruc-
tion errors from the unlabelled data can then be explicitly
used to update the classifier during backpropagation.

Formally, let (X,Y ) be some observed (partially-) la-
belled data generated by a continuous latent variable z.
Suppose p(z)=N (z|0, I) and p(y)=Cat(y|π), where the
latter is a multinomial distribution with distribution π, and
that the likelihood pθ(x|y, z) is parametrised using a neu-
ral network (the decoder). We can again use variational in-
ference to approximate the intractable posterior p(y, z|x)
with qφ(y, z|x).

Now assuming that qφ(y, z|x)=qφ(y|x)qφ(z|x), we
can construct the approximate posterior using a neural
network with two components: a multinomial classifier
qφ(y|x)=Cat(y|π(x)), and a Gaussian encoder with di-
agonal covariance matrix qφ(z|x) = N (z|µφ(x), σ2

φ(x)).
As before, finding suitable values for θ and φ amounts

to optimising the ELBO. For labelled data, that is

log pθ(x, y) ≥ Eqφ(z|x,y)[log pθ(x|y, z)]
− βDKL(qφ(z|x) ‖ p(z)) = L(x, y).

(3)

For unlabelled data, we can treat the missing label y′ as
an additional categorical latent variable that generates the
observed data and assume that y′, z are marginally inde-
pendent. However, backpropagating through samples from
a multinomial distribution is problematic as the operation
is not differentiable. Fortunately, we can approximate
this sampling operation with the Gumbel-Softmax distri-
bution [22, 23], for which samples can be drawn via the
reparametrisation trick

y′i =
exp((log(πi) + g)/τ)∑L
j=1 exp((log(πj) + g)/τ)

, (4)
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Figure 2. Model architecture. Our VAE-based model supports semi-supervision by treating missing labels from unlabelled
data as an additional latent variable for reconstructing pitch and timing information.

where g ∼ Gumbel(0, 1), L denotes the number of
classes, and τ controls how strongly the distribution ap-
proximates the multinomial distribution.

With the two reparametrisation tricks at hand, the
ELBO is now maximised for unlabelled data as follows:

log pθ(x) ≥ Eqφ(y′,z|x)[log pθ(x|y
′, z)]

− βDKL(qφ(z|x) ‖ p(z))
− βDKL(qφ(y

′|x) ‖ pπ(y′))
= U(x).

(5)

Lastly, a classification loss is introduced to the classifier
qφ(y|x) for labelled data. The overall objective of this
model is thus to maximise

J = EDL [L(x, y) + log qφ(y|x)] + EDU U(x), (6)

where DL and DU denote labelled and unlabelled data,
respectively.

3.3 Model architecture

Our proposed model (Figure 2) consists of four modules:
embedder, encoder, classifier, and decoder. The embedder
accepts a sequence of notes as inputs, where each note is
represented by a numeric vector denoting its MIDI num-
ber, onset, and duration. The sequence is passed through
embedding layers of dimension 16, 8, and 4 for the three
respective features, concatenated, and then fed into a dense
layer of 64 units with a PReLU activation function before
leaving the module through a layer normalisation layer.

Outputs from the embedder are then passed in parallel
onto the encoder and classifier. These go through a bidi-
rectional long short-term memory (BLSTM) layer of 64×2
units in the encoder before being mapped onto a Gaussian
latent space of 16 dimensions as output via a reparametri-
sation trick (Equation 1).

The embedder output is likewise passed through a
BLSTM layer of 128×2 units in the classifier. This is fol-
lowed by a dense layer of Nspf units, where Nspf denotes

the number of possible (string, position, finger) arrange-
ments. By considering fingerings as the joint distribution
of string, position, and finger, we can model dependen-
cies between these three labels. Otherwise, different op-
timal (string, position, fingering) combinations might be
predicted for each label separately if only their marginal
distributions are considered. For labelled data, a softmax
activation function is subsequently applied as output of the
classifier. This provides a probability density estimate for
each fingering combination given the input. For unlabelled
data, logits from the dense layer are mapped onto a latent
Gumbel-softmax distribution as outputs via a reparametri-
sation trick as described in Equation 4.

Finally, outputs from the encoder and classifier are con-
catenated and passed through a 128×2-unit BLSTM layer
in the decoder. This is followed by three softmax-activated
dense layers of NMIDI, Nonset, Nduration units as outputs,
which denote the number of MIDI, onset, and duration
classes, respectively.

3.4 Dataset

We use a recently published dataset of symbolic violin per-
formance for the current study [7]. This dataset is a com-
pilation of 217,690 note-by-note annotations of 14 solo vi-
olin excerpts as performed by 10 professional violinists.
The excerpts are selected from diverse styles, covering
Western classical music from the Baroque, Classical, and
Romantic period, as well as Eastern folk melodies. Sym-
bolic information from the score include pitch class and
height of each note in addition to its onset and duration
within the bar. They are accompanied by the correspond-
ing string selection, hand position, and finger placement
used by each musician when performing the piece. Ad-
ditional descriptors include bar numbers and bowing, but
were not used in our model as they are not always present
in violin sheet music.
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3.5 Implementation

Pitch class and height of each note in the dataset was con-
verted into its corresponding MIDI number as numerical
input into the model with NMIDI = 47 to include all pos-
sible pitches on the violin (with 0 reserved for missing
notes). As timing information in the dataset was based on
subdividing the crotchet into 210=1024 units, we chose to
discretise onsets into Nonset = 26+25=96 categories (56
are present in the dataset) and duration into Nduration = 32
(26 present) to allow for generalisation beyond excerpts in
the dataset.

String selection ({G,D,A,E}), hand position
({1, . . . , 12}), and finger placement ({0, . . . , 4}) were
combined into a single label consisting of Nspf = 241
classes (with 0 reserved for missing fingerings).

The model was trained on different numbers of excerpts
(see Section 4), but always tested on one, and we report
results following leave-one-out cross-validation. To main-
tain stylistic consistency and for comparison with previous
work [7], we derived training and test data from one vio-
linist (#2 in the dataset). However, it is important to note
that violin fingerings are highly individualised and are de-
pendent on performers’ background and expert ability.

Training was implemented using batch size = 32 and op-
timised using Adam [24] with a learning rate of 0.01. Each
excerpt was divided into sequences of length 32 for train-
ing using a hop size of 16 (i.e., half overlap), and sequences
were right-padded with zeros to maintain the same length.
We trained two separate models for labelled and unlabelled
data simultaneously with shared layers, and oversampled
the smaller dataset size to match the input sizes. Five per-
cent of the training data was reserved for validation, and
training was early-stopped [25] whenever total validation
loss did not improve over 10 epochs, for which the best
weights were retained.

Dense and BLSTM layers were initialised using a Glo-
rot Uniform initialiser [26], whilst embedding layers were
initialised from uniformly distributed samples. L1/L2 reg-
ularisation and L2 regularisation were respectively used
for kernel and bias regularisation in the embedding and
dense layers of the embedder module. In addition to ker-
nel and bias regularisation, L2 recurrent regularisation was
also used in all BLSTM layers. Finally, KL losses were
weighted with β = 0.001 to improve reconstruction qual-
ity, and we set the Gumbel Softmax temperature τ = 0.75.

3.6 Evaluation

We consider a variety of objective measures from informa-
tion retrieval to evaluate model performance. The first is
the F1 score, which we calculate using the model’s most
probable predicted (string, position, finger) combination.
Here, we consider the F1 score as a measure for how well
our model replicates the fingering style of a performer,
since each note can be played with multiple fingerings.

Nevertheless, since our model predicts a probability dis-
tribution of fingerings for each note, we can also examine
the position to which the true label is ranked. This pro-
vides a measure for the quality of predicted fingerings. A

high, if not the highest, ranking should be assigned to the
performer’s chosen fingering. One metric that captures this
intuition is the mean reciprocal rank (MRR) [27], given by

MRR =
1

N

N∑
j=1

1

rank(j)
, (7)

where N is the number of notes in the training excerpt and
rank(j) denotes the rank of which the true string, posi-
tion, or finger first appears for note j. Note that because
we modelled the joint distribution of these three labels,
rank(j) may exceed the number of classes in each label.

Furthermore, given the variation in fingerings used
across violinists, it would be interesting to examine the
preference or relevance of our model’s predicted finger-
ings to other performers. We can capture this with a met-
ric known as the normalised discounted cumulative gain
(nDCG) [28]. First, we derive the relevance score of note
j by calculating the proportion of violinists in the dataset
(i.e., 10) who selected a given string, position, and finger
to play the note. Next, we calculate the discounted cumu-
lative gain (DCG) of j that is given by the sum of revelance
scores for the model’s top K predicted labels weighted by
its log rank, i.e.

DCG(j) =

K∑
i=1

rel
(j)
i

log2(i+ 1)
, (8)

where rel(j)i denotes the relevance score of the ith most
probable predicted label for note j. The idealised DCG
(iDCG) can also be computed by taking the DCG where
the K labels are ranked from highest to lowest relevance.
We can then obtain the normalised discounted cumula-
tive gain (nDCG) at K of note j by dividing DCG(j) by
iDCG(j), for which we take the mean across all notes in
the testing excerpt.

4. RESULTS AND DISCUSSION

4.1 Style replication

We first consider the fully-supervised case, where our
model was trained on 13 excerpts and tested on one. As
shown in Figure 3 and Supplementary Table 1, our model
generated violin fingerings with an MRR of 0.873 for
string selection, 0.715 for hand position, and 0.721 for
finger placement. These indicate that the true fingerings
as performed by the violinist were predominantly given
by the model’s most probable predictions. Examining the
confusion matrix (Figure 4) more closely, we see that the
model had a tendency towards predictions in first and third
position. This can also be seen when the model predicted
open strings played by the performer as to be played with
the second or fourth finger 32% of the time. Interestingly,
the converse was not true: the model seemed to have learnt
that open strings should be stylistically avoided, as second
and fourth finger placements by the performer were only
respectively predicted as open strings by the model 3.5%
and 6.5% of the time. However, in rare cases, our model
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Figure 3. Examining effects of semi-supervision for different labelled training excerpt sizes. Significantly improved
performance is observed when our model was trained on both labelled and unlabelled data. The fully supervised case is
also shown for comparison. Filled circles and shaded regions denote mean and standard error, respectively.

failed to capture fingerings played in the 11 or 12th po-
sition. Upon inspection, we found that these notes were
especially high (E7), and our model provided a fingering
for the same pitch class but at an octave lower.

Figure 4. Confusion matrix for our fully supervised model
(normalised such that each row sums to 1). Notice the ten-
dency towards predictions in first and third position.

Regarding F1 scores, our model seemed to perform sub-
stantially better for string compared to position or finger.
This is surprising since violin fingerings were modelled
as the joint probability of (string, position, finger) com-
binations. One possible explanation could be due to the
model’s tendency towards predictions in first and third po-
sition. An incorrectly predicted position would have led
to an incorrect finger placement even if the string was
correctly predicted. Nevertheless, compared to previous
work [7], our model showed noticeable improvement in
F1 scores for string, position, and finger, as well as com-
parable performance in MRR when tested on Elgar’s Salut
d’amour 3 (see Table 1 and Figure 1).

3 For comparison with previous work [7], we took the simple mean of
F1 scores across each class instead of their class-size-weighted mean as
in the rest of this paper.

String Position Finger
MRR F1 MRR F1 MRR F1

Our model (semi-supervised)
1L+6U .563 .291 .448 .120 .481 .147
4L+6U .816 .714 .528 .128 .606 .277
7L+6U .903 .834 .716 .214 .758 .500

Our model (fully-supervised)
13L .906 .830 .726 .305 .776 .636

Previous work (Jen et al., 2021 [7])
13L .913 .667 .729 .241 (-) .412

Table 1. Comparing generated fingerings to Elgar’s Salut
d’amour. Our model exceeded previous work when fully
supervised, and achieved comparable performance when
trained on far fewer labelled data under semi-supervision.
L and U respectively denote number of labelled and unla-
belled excerpts used for training.

4.2 Capturing preference across violinists

We next investigated to what extent the generated fin-
gerings were actually performed (and thus regarded as
preferred) by violinists in the dataset. The high mean
nDCG@1 scores (Figure 3 and Supplementary Table 1) for
string, position, and finger indicate that our model’s most
probable fingering predictions matched those performed
by the professionals, and interestingly, also resembled the
MRR scores. This suggests that the fingering patterns
learnt by our model corresponded to those that showed
the least variation amongst the violinists (even though it
was only trained on one). Higher mean nDCG@3 scores
further indicate that the stylistic variation across violinists
could be adequately captured within the model’s top three
fingering predictions. Taken together, our evaluation mea-
sures suggest that the fingerings generated by our model
matches the style and preferences of human performers.
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4.3 Pitch and timing reconstruction

Our model was also able to reconstruct pitch and tim-
ing information with near-perfect MRR scores (all >0.945,
see Supplementary Table 2). To test the extent recon-
struction depended on the classifier, we replaced its out-
put with zeros during testing. Wilcoxon signed-rank tests
revealed significant differences in MRR for pitch and dura-
tion (p = .003 and p = .024, respectively, corrected using
Holm’s method) when information flow from the classifier
to the decoder was blocked. This was associated with a
2% drop in pitch reconstruction performance, as well as a
marginal 0.1% improvement in duration MRR. The former
is consistent with the fact that fingerings have a direct im-
pact on pitch, whilst the latter suggests that physical con-
straints might shape music as performed by humans.

Nevertheless, structured representations for pitch height
and pitch class could still be seen in the encoder latent
space when visualised using a uniform manifold approx-
imation and projection (UMAP) [29] for dimension reduc-
tion (Figure 5). By contrast, the encoder latent space did
not seem to separate the different fingerings (here we only
show finger placement) into such clear clusters. That is ex-
pected as label information was only fed into the classifier
and was thus only implicit in the encoder.

Figure 5. Visualising the encoder latent space with UMAP.

4.4 Semi-supervised learning

To investigate the effects of semi-supervised learning, we
trained our model using six randomly selected excerpts
as unlabelled data (i.e., without fingerings) and varied the
number of labelled excerpts from one to seven. As control,
we trained our model on the same labelled excerpts only.
If our model could learn from unlabelled data, we would
expect better generated fingerings. This is indeed what we
found: our model trained on labelled and unlabelled data
showed improved performance in all metrics except for the
hand position F1 score (Figure 3, Supplementary Table 1).
As expected, we also noticed a gradual improvement in
performance as the number of labelled excerpts increased.

We further tested for significant effects of semi-
supervised learning using random-intercept linear mixed
models. The interaction between semi-supervision (la-
belled only vs. labelled and unlabelled) and number of
labelled excerpts, as well as lower order terms were en-
tered as fixed effects. Significant interactions for string
MRR, nDCG@1, and nDCG@3 revealed substantial im-
provements (≈ 11%) under semi-supervision when the ra-
tio between labelled and unlabelled data was 1: 6. That

is helpful, given our sampling (see Section 1) showed that
only 15% of violin sheet music contained fingering infor-
mation. Echoing the above, significant main effects of un-
labelled data (with a mean improvement of around 3-6%)
were also detected in MRR, nDCG@1, and nDCG@3 for
string, position, and finger, as well as F1 scores for string
and position (Table 2).

Finally, we note in Table 1 that our model already ex-
ceeded previous work [7] in string F1 performance when
trained on four labelled plus six unlabelled excerpts, and
achieved comparable performance in other metrics with
seven plus six unlabelled excerpts. This demonstrates our
model’s ability to make use of unlabelled data to improve
fingering generation performance to match the state of the
art model with half the amount of labelled data.

Main effect of semi-supervised learning
F(1,169) p

String 10.05 .00181 **
MRR Position 11.47 .000879 ***

Finger 14.06 .000243 ***
String 6.00 .0153 *

F1 Position 0.28 .597
Finger 11.32 .000948 ***
String 12.45 .000537 ***

nDCG@1 Position 7.15 .00825 **
Finger 12.19 .000614 ***
String 10.76 .00126 **

nDCG@3 Position 13.57 .000309 ***
Finger 16.53 7.34×10−5 ***

Table 2. Linear mixed model analyses revealed significant
performance improvements in all except one metric when
our model was trained under semi-supervision. See Sup-
plementary Table 3 for significance of other factors.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented a semi-supervised model that
generates violin fingerings from the musical score. Our
approach leverages the generative ability of variational au-
toencoders and reframes fingering generation as an addi-
tional latent variable for learning pitch and timing recon-
structions from unlabelled data. We demonstrated that our
model better replicated the fingering style of a human per-
former and generated fingerings that were more preferred
amongst violinists when trained on both labelled and un-
labelled data. Our method can be readily adapted to fin-
gering generation in other instruments such as piano and
guitar, which also suffer from the same lack of labelled
data [8]. Another possibility is to extend our model with
heuristic rules to tailor generated fingerings for different
playing styles or groups (e.g., pedagogy for violinists at
different skill levels) [2,3,7]. Lastly, that pitch reconstruc-
tion depended on fingering information also highlights the
importance of physical constraints and playability in music
performed by humans. Such aspects are often overlooked,
but should be explored in future machine-based music gen-
eration models if a more human-like quality is desired.
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