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ABSTRACT

Recent advances in deep learning have expanded pos-
sibilities to generate music, but generating a customizable
full piece of music with consistent long-term structure re-
mains a challenge. This paper introduces MusicFrame-
works, a hierarchical music structure representation and
a multi-step generative process to create a full-length
melody guided by long-term repetitive structure, chord,
melodic contour, and rhythm constraints. We first organize
the full melody with section and phrase-level structure.
To generate melody in each phrase, we generate rhythm
and basic melody using two separate transformer-based
networks, and then generate the melody conditioned on
the basic melody, rhythm and chords in an auto-regressive
manner. By factoring music generation into sub-problems,
our approach allows simpler models and requires less data.
To customize or add variety, one can alter chords, basic
melody, and rhythm structure in the music frameworks, let-
ting our networks generate the melody accordingly. Ad-
ditionally, we introduce new features to encode musical
positional information, rhythm patterns, and melodic con-
tours based on musical domain knowledge. A listening test
reveals that melodies generated by our method are rated
as good as or better than human-composed music in the
POP909 dataset about half the time.

1. INTRODUCTION

Music generation is an important component of computa-
tional and Al creativity, leading to many potential appli-
cations including automatic background music generation
for video, music improvisation in human-computer mu-
sic performance and customizing stylistic music for indi-
vidual music therapy, to name a few. While works such
as MelNet [1] and JukeBox [2] have demonstrated a de-
gree of success in generating music in the audio domain,
the majority of the work is in the symbolic domain, i.e.,
the score, as this is the most fundamental representation
of music composition. Research has tackled this question
from many angles, including monophonic melody genera-
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tion [3], polyphonic performance generation [4] and drum
pattern generation [5]. This paper focuses on melody gen-
eration, a crucial component in music writing practice.

Recently, deep learning has demonstrated success in
capturing implicit rules about music from the data, com-
pared to conventional rule-based and statistical methods [4,
6,7]. However, there are three problems that are difficult
to address: (1) Modeling larger scale music structure and
multiple levels of repetition as seen in popular songs, (2)
Controllability to match music to video or create desired
tempo, styles, and mood, and (3) Scarcity of training data
due to limited curated and machine-readable compositions,
especially in a given style. Since humans can imitate mu-
sic styles with just a few samples, there is reason to believe
there exists a solution that enables music generation with
few samples as well.

We aim to explore automatic melody generation with
multiple levels of structure awareness and controllability.
Our focus is on (1) addressing structural consistency inside
a phrase and on the global scale, and (2) giving explicit
control to users to manipulate melody contour and rhythm
structure directly. Our solution, MusicFrameworks, is
based on the design of hierarchical music representations
we call music frameworks inspired by Hiller and Ames [8].
A music framework is an abstract hierarchical description
of a song, including high-level music structure such as re-
peated sections and phrases, and lower-level representa-
tions such as rhythm structure and melodic contour. The
idea is to represent a piece of music by music frameworks,
and then learn to generate melodies from music frame-
works. Controllability is achieved by editing the music
frameworks at any level (song, section and phrase); we
also present methods that generate these representations
from scratch. MusicFrameworks can create long-term mu-
sic structures, including repetition, by factoring music gen-
eration into sub-problems, allowing simpler models and re-
quiring less data.

Evaluations of the MusicFrameworks approach include
objective measures to show expected behavior and subjec-
tive assessments. We compare human-composed melodies
and melodies generated under various conditions to study
the effectiveness of music frameworks. We summarize our
contributions as follows: (1) devising a hierarchical music
structure representation and approach called MusicFrame-
works capable of capturing repetitive structure at multiple
levels, (2) enabling controllability at multiple levels of ab-
straction through music frameworks, (3) a set of methods
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that analyze a song to derive music frameworks that can
be used in music imitation and subsequent deep learning
processes, (4) a set of neural networks that generate a song
using the MusicFrameworks approach, (5) useful musical
features and encodings to introduce musical inductive bi-
ases into deep learning, (6) comparison of different deep
learning architectures for relatively small amounts of train-
ing data and a sizable listening test evaluating the musical-
ity of our method against human-composed music.

2. RELATED WORK

Automation of music composition with computers can be
traced back to 1957 [9]. Long before representation learn-
ing, musicians looked for models that explain the gener-
ative process of music [8]. Early music generation sys-
tems often relied on generative rules or constraint satisfac-
tion [8, 10-12]. Subsequent approaches replaced human
learning of rules with machine learning, such as statistical
models [13] and connectionist approaches [14]. Now, deep
learning has emerged as one of the most powerful tools to
encode implicit rules from data [4, 15-18].

One challenge of music modelling is capturing repeti-
tive patterns and long-term dependencies. There are a few
models using rule-based and statistical methods to con-
struct long-term repetitive structure in classical music [19]
and pop music [20, 21]. Machine learning models with
memory and the ability to associate context have also been
popular in this area and include LSTMs and Transformers
[4,6,22,23], which operate by generating music one or a
few notes at a time, based on information from previously
generated notes. These models enable free generation and
motif continuation, but it is difficult to control the gener-
ated content. StructureNet [3], PopMNet [24] and Racch-
maninof [19] are more closely related to our work in that
they introduce explicit models for music structure.

Another thread of work enables a degree of controllabil-
ity by modeling the distribution of music via an interme-
diate representation (embedding). One such approach is
to use Generative Adversarial Networks (GANs) to model
the distribution of music [25-27]. GANs learn a mapping
from a point z sampled from a prior distribution to an in-
stance of generated music x and hence represents the dis-
tribution of music with z. Another method is the Autoen-
coder, consisting of an encoder transforming music x into
embedding 2z and a decoder that reconstructs music x again
from embedding z. The most popular models are Vari-
ational Auto-Encoders (VAE) and their variants [28-33].
These models can be controlled by manipulating the em-
bedding, for example, mix-and-matching embeddings of
different pitch contours and rhythms [29, 30, 34]. How-
ever, a high-dimensional continuous vector has limited in-
terpretability and thus is difficult for a user to control; it
is also difficult to model full-length music with a simple
fixed-length representation. In contrast, our approach uses
a hierarchical music representation (i.e., music framework)
as an “embedding” of music that encodes long-term depen-
dency in a form that is both interpretable and controllable.
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Figure 2. An example music framework.

3. METHOD

We describe a controllable melody generation system that
uses hierarchical music representation to generate full-
length pop song melodies with multi-level repetition and
structure. As shown in Figure 1, a song is input in MIDI
format. We analyze its music framework, which is an ab-
stracted description of the music ideas of the input song.
Then we use the music framework to generate a new song
with deep learning models.

Our work is with pop music because structures are rel-
atively simple and listeners are generally familiar with the
style and thus able to evaluate compositions. We use a Chi-
nese pop song dataset, POP909 [35], and use its cleaned
version [36] (with more labeling and corrections) for train-
ing and testing in this paper. We further transpose all the
major songs’ key signatures into C major. We use integers
1-15 to represent scale degrees in C3—C5, and O to repre-
sent a rest. For rhythm, we use the 16" note as the min-
imum unit. A note in the melody is represented as (p, d),
where p is the pitch number from O to 15, and d is duration
in sixteenths. For chord progressions, we use integers 1-7
to represent seven scale degree chords in the major mode.
(We currently work only with triads, and convert seventh
chords into corresponding triads).

3.1 Music Frameworks Analysis

As shown in Figure 2, a music framework contains two
parts: (1) section and phrase-level structure analysis re-
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Figure 3. An example melody and its basic melody. The
basic rthythm form also appears below the original melody
as “a,0.38 b,0.06, ...” indicating similarity and complexity.
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Figure 4. Generation process from music frameworks
within each phrase.

sults; (2) basic melody and basic rhythm form within each
phrase. A phrase is a small-scale segment that usually
ranges from 4 to 16 measures. Phrases can be repeated
as in AABBB shown in Figure 2. Sections contain multi-
ple phrases, e.g., the illustrated song has an intro, a main
theme section (phrase A as verse and phrase B as chorus),
a bridge section followed by a repeat of the theme, and an
outro section, which is a typical pop song structure. We
extract the section and phrase structure based on finding
approximate repetitions following the work of [36].

Within each phrase, the basic melody is an abstraction
of melody and contour. Basic melody is a sequence of half
notes representing the most common pitch in each 2-beat
segment of the original phrase (see Figure 3). The basic
rhythm form consists of a per-measure descriptor with two
components: a pattern label based on a rhythm similarity
measure [36] (measures with matching labels are similar)
and a numerical rhythmic complexity, which is simply the
number of notes divided by 16.

With the analysis algorithm, we can process a music
dataset such as POP909 for subsequent machine learning
and music generation. The music frameworks enable con-
trollability via examples in which a user can also mix and
match different music frameworks from multiple songs.
For example, a new song can be generated using the struc-
ture from song A, basic melody from song B, and basic
rhythm form from song C. Users can also edit or directly
create a music framework for even greater control. Alter-
natively, we also created generative algorithms to create
new music frameworks without any user intervention as
described in subsequent sections.

3.2 Generation Using Music Frameworks

At the top level, section and phrase structure can be pro-
vided by a user or simply selected from a library of already
analyzed data. We considered several options for imita-
tion at this top level: (1) copy the first several measures
of melody from the previously generated phrase (teacher
forcing mode) and then complete the current phrase; (2)
use the same or similar basic melody from the previ-
ous phrase to generate an altered melody with a similar
melodic contour; (3) use the same or similar basic rhythm
form of the previous phrase to generate a similar rhythm.
These options leave room for users to customize their per-
sonal preferences. In this study, we forgo all human control
by randomly choosing between the first and second option.

At the phrase level, as shown in Figure 4, we first gen-
erate a basic melody (or a human provides one). Next, we
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generate thythm using the basic rhythm form. Finally, we
generate a new melody given the basic melody, generated
rhythm, and chords copied from the input song.

3.2.1 Basic Melody Generation

We use an auto-regressive approach to generate basic
melodies. The input z; = (pos;,¢;,...) (i € 1,...,n)is a
set of features that guides basic melody generation where
pos, is the positional feature of the i*" note and ¢; repre-
sents contextual chord information (neighboring chords).
We denote p; of the i*" note. Here we fix the duration
of each note in the basic melody to the half-note as in the
analysis algorithm described in Section 3.1. ¢; contains the
previous, current and next chords and their lengths for the
it" note. pos; includes the position of the i*" note in the
current phrase and a long-term positional feature indicat-
ing whether the current phrase is at the end of a section or
not.

3.2.2 Network Architecture

We use an auto-regressive model based on Transformer
and LSTM. The architecture (Figure 5) consists of an en-
coder and a decoder. The encoder has two layers of trans-
formers that learn a feature representation of the inputs
(e.g. positional encodings and chords). The decoder con-
catenates the encoded representation and the last predicted
note as input and passes them through one unidirectional
LSTM followed by two layers of 1D convolutions of ker-
nel size 1. Both the input and the last predicted notes to the
decoder are passed through a projection layer (aka. a dense
layer) respectively before they are processed by the net-
work. The final output is the next note predicted by the de-
coder via categorical distribution Pr(p;| X, p1,...,pi—1)-
We also tried using other deep neural network architec-
tures such as a pre-trained full Transformer with random
masking (described in Section 4.1) for comparison.

3.2.3 Sampling with Dynamic Time Warping Control

In the sampling stage, we tried three ways to autoregres-
sively generate the basic melody sequence: (1) randomly
sample from the estimated posterior distribution of p; at
each step; (2) randomly sample 100 generated sequences
and pick the one with highest overall estimated probabil-
ity; (3) beam search sampling according to the estimated
probability. Apart from the above three sampling methods,
we also want to control the basic melody contour shape
in order to generate similar or repeated phrases. We use a
melody contour rating function (based on Dynamic Time
Warping) [21] to estimate the contour similarity between
two basic melodies. When we want to generate a repeti-
tion phrase that has a similar basic melody compared to
a previous phrase, we estimate the contour similarity rat-
ing between the generated basic melody and the reference
basic melody. We only accept basic melodies with a simi-
larity above a threshold of 0.7.

3.2.4 Realized Rhythm Generation

We now turn to the lower level of music generation that
transforms music frameworks into realized songs. The first
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Figure 5. Transformer-LSTM architecture for melody, ba-
sic melody and rhythmic pattern generation.

step is to determine the note onsets, namely the rhythm.
Instead of generating note onset time one by one, we gen-
erate 2-beat rthythm patterns, which more readily encode
rhythmic patterns and metrical structure. It is also easier
to model (and apparently to learn) similarity using rhythm
patterns than with sequences of individual durations.

We generate 2-beat patterns sequentially under the con-
trol of a basic rthythm form. There are 256 possible rhythm
patterns with a 2-beat length using our smallest subdivi-
sion of sixteenths. For each rhythm pattern r;, the input
of the rhythm generation model is x; = (r;_1, brf;, pos;),
where r;_1 is the previously generated rhythm pattern, brf;
is the index of the first measure similar to it (or the current
measure if there is no previous reference) and the current
measure complexity; pos, contains three positional com-
ponents: (1) the position of the ‘" pattern in the cur-
rent phrase; (2) a long-term positional feature indicating
whether the current phrase is at the end of a section or not;
(3) whether the " rhythm pattern starts at the barline or
not. We also use a Transformer-LSTM architecture (Figure
5), but with different model settings (size). In the sampling
stage, we use beam search.

3.2.5 Realized Melody Generation

We generate melody from a basic melody, a rhythm and
a chord progression using another Transformer-LSTM ar-
chitecture similar to generating basic melody in Figure 5.
In this case, the index 7 represents the i note determined
by the rhythm. The input feature x; also includes the cur-
rent note’s duration, the current chord, the basic melody
pitch, and three positional features for multiple-level struc-
ture guidance: the two positional features for basic melody
generation (Section 3.2.1) and the offset of the current
note within the current measure. We also experimented
with other deep neural network architectures described in
Section 4.1 for comparison. To sample a good sounding
melody, we randomly generate 100 sequences by sampling
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Basic Melody | Rhythm | Melody
Trans-LSTM | 38.7% 50.1% 55.2%
LSTM 39.8% 43.6% 51.2%
Transformer | 30.9% 25.8% 39.3%
No M.E. NA 33.1% 37.4%

Table 1. Validation Accuracy of different model architec-
tures. “No M.F.” means no music frameworks used here.

the autoregressive model. We pick the one with the high-
est overall estimated probability. More details about the
network are in Section 4.1.

4. EXPERIMENT AND EVALUATION
4.1 Model Evaluation and Comparison

As a model-selection study, we compared the ability of
different deep neural network architectures implementing
MusicFrameworks to predict the next element in the se-
quence. Basic Melody Accuracy is the percent of cor-
rect predictions of the next pitch of the basic melody (half
notes). Rhythm Accuracy is the percent of correctly pre-
dicted 2-beat rhythm patterns. Melody Accuracy is the ac-
curacy of next pitch prediction.

We used 4188 phrases from 528 songs in major mode
from the POP909 dataset, using 90% of them as training
data and the other 10% for validation. The first line in Ta-
ble 1 represents the Transformer-LSTM models introduced
in Section 3. In all three networks, the projection size and
feed forward channels are 128; there are 8 heads in the
multi-head encoder attention layer; LSTM hidden size is
64; dropout rate for basic melody and realized melody gen-
eration is 0.2, dropout rate for rhythm generation is 0.1; de-
coder input projection size is 8 for rhythm generation and
17 for others. For learning rate, we used the Adam opti-
mizer with 81 = 0.9, 32 = 0.99, ¢ = 1075, and the same
formula in [22] to vary the learning rate over the course of
training, with 2000 warmup steps.

We compared this model with several alternatives: the
second model is a bi-directional LSTM followed by a uni-
directional LSTM (model size is 64 in both). The third
model is a Transformer with two layers of encoder and
two layers of decoder (with same parameter settings as
Transformer-LSTM), and we first pre-trained the encoder
with 10% of random masking of input (similar to training
in BERT [37]), and then trained the encoder and decoder
together. No music frameworks (the fourth line) means
generate without basic melody or basic rhythm form, us-
ing a Transformer-LSTM model. The results in Table 1
show that the Transformer-LSTM achieved the best accu-
racy. The full Transformer model performed poorly on this
relatively small dataset due to overfitting. Also, in both
rhythm and melody generation, the MusicFrameworks ap-
proach significantly improves the model accuracy.

4.2 Objective Evaluation

We use Transformer-LSTM model for all further evalua-
tions. First, we examine whether music frameworks pro-
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Figure 6. This is a generated melody (yellow piano roll)
from our system following the input basic melody (blue
frame piano roll).
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Figure 7. A generated rhythm from our system given the
input basic rhythm form. The analyzed basic rhythm form
of the output is very similar to the input.

mote controllability. We aim to show that given a basic
melody and rhythm form as guidance, the model can gen-
erate a new melody that follows the contour of the basic
melody, and has a similar rhythm form (Figure 6 and 7).

For this “sanity check,” we randomly picked 20 test
songs and generated 500 alternative basic melodies and
rhythm forms. After generating and analyzing 500 phrases,
we found the analyzed basic melodies match the target (in-
put) basic melodies with an accuracy of 92.27%; the ac-
curacy of rhythm similarity labels is 94.63%; the rhythmic
complexity matches the target (within 0.2) 81.79% of the
time. Thus, these aspects of melody are easily controllable.

Previous work [38] has shown that pitch and rhythm
distributions are related to different levels of long-term
structure. We confirmed that our generation exhibits sim-
ilar structure-related distributions to that of the POP909
dataset. For example, the probability of a generated tonic
at end of a phrase is 48.28%, and at the end of a section
is 87.63%, while in the training data the probabilities are
49.01% (phrase-end) and 86.57% (section-end).

4.3 Subjective Evaluation
4.3.1 Design of the listening evaluation

We conducted a listening test to evaluate the generated
songs. To avoid listening fatigue, we presented sections
lasting about 1 minute and containing at least 3 phrases.
We randomly selected 6 sections from different songs in
the validation set as seeds and then generated melodies
based on conditions 1-6 presented in Table 2. To ren-
der audio, each melody is mixed with the original chords
played as simple block triads via a piano synthesizer. For
each section and each condition, we generated at least 2
versions, with 105 generated sections in total.

In each rating session, a listener first enters information
about their music background and then provides ratings for
six pairs of songs. Each pair is generated from the same
input seed song using different generation conditions (see
Table 2). For each pair, the listener answers: (1) whether
they heard the songs before the survey (yes or no); (2) how
much they like the melody of the two songs (integer from
1 to 5); and (3) how similar are the two songs’ melodies
(integer from 1 to 5). We also embedded one validation
test in which a human-composed song and a randomized

song are provided to help filter out careless ratings.

4.3.2 Results and discussion

We distributed the survey on Chinese social media and col-
lected 274 listener reports. We removed invalid answers
following the validation test and a few other criteria. We
ended up with 1212 complete pairs of ratings from 196
unique listeners. The demographics information about the
listeners are as follows:

Gender male: 120, female: 75, other: 1;

Age distribution 0-10: 0, 11-20: 17, 21-30: 149, 31-40:
28, 41-50: 0, 51-60: 2, >60: 0;

Music proficiency levels lowest (listen to music < 1
hour/week): 16, low (listen to music 1-15 hours/week):
62, medium (listen to music > 15 hours/week): 21, high
(studied music for 1-5 years): 52, expert (> 5 years of
music practice): 44;

Nationality Chinese: 180, Others: 16 (note that the
POP909 dataset is primarily Chinese pop songs, and lis-
teners who are more familiar with this style are likely to be
more reliable and discriminating raters.)

Figure 8 shows a distribution of ratings for the seven
paired conditions in Table 2. In each pair, we show two
bar plots with mean and standard deviation overlaid: the
left half shows the distribution of ratings in the first condi-
tion and the right half shows those in the second condition.
The first three pairs compare music generation with and
without a music framework as an intermediate represen-
tation. The first two pairs at the bottom compare music
with an automatically generated basic melody and rhythm
to music using the basic melody and rhythm from a human-
composed song. The last two pairs show the ratings of our
method compared to music in the POP909 dataset. We also
conducted a paired T-test to check the significance against
the hypothesis that the first condition is not preferred over
the second condition, shown under the distribution plot.

In addition, we derived listener preference based on the
relative ratings, summarized in Figure 9. This visualiza-
tion provides a different view from ratings as it shows how
frequently one condition is preferred over the other or there
is no preference (equal ratings). Based on these two plots,
we point out the following observations:

* Basic melody and basic thythm form improve the qual-
ity of generated melody. Indicated by low p-values and
strong preference in “1 vs 37, “2 vs 3” and “4 vs 5,” gen-
erating basic melody and basic rhythm before melody
generation has higher ratings than generating melody
without these music framework representations.

* Melody generation conditioned on generated basic
melody and basic rthythm has similar ratings to melody
generated from human-composed music’s basic melody
and basic rhythm form. This observation can be de-
rived from similar distribution and near random prefer-
ence distribution in “1 vs 2”” and “1 vs 4,” indicating that
preference for the generated basic melody and rhythm
form are close to those of music in our dataset.

* Although both distribution tests suggest that human-
composed music has higher ratings than generated music
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R.Melody | Basic Melody | Rhythm

0 | copy copy copy

1 | gen copy copy

2 | gen gen copy

3 | gen without copy

4 | gen copy gen with BRF

5 | gen copy gen without BRF
6 | gen gen gen with BRF

Table 2. Seven evaluation conditions. Group 0 is human-
composed. R.Melody: realized melody; gen: generated
from our system; BRF: Basic Rhythm Form; copy: di-
rectly copying that part from the human-composed song;
without: not using music frameworks.

5 First
condition
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Figure 8. Rating distribution comparison for each paired
groups. *For conditions 0 vs 1 and 0 vs 6, we removed the
cases where the listeners indicated having heard the song
before.

in test pairs “0 vs 1” and “0 vs 6” (and this is statistically
significant), the preference test suggests that around half
of the time the generated music is as good as or better
than human-composed music, indicating the usability of
the MusicFrameworks approach.

To understand the gap between our generated music and
human-composed music, we look into the comments writ-
ten by listeners and summarize our findings below:

* Since sampling is used in the generative process, there is
a non-zero chance that a poor note choice may be gen-
erated. Though this does not affect the posterior proba-
bility significantly, it degrades the subjective rating. Re-
peated notes also have an adverse effect on musicality
with a lesser influence on posterior probability.

* MusicFrameworks uses basic melody and rhythm form

to control long-term dependency, i.e., phrases that are

repetitions or imitations share the same or similar music
framework; however, the generated melody has a chance
to sound different due to the sampling process. A human

listener can distinguish a human-composed song from a

machine-generated song by listening for exact repetition.

Basic melody provides more benefit for longer phrases.

For short phrases (4-6 bars), generating melodies from
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prefer first no preference prefer second

lvs3
2vs3
4vs5
1vs2
lvs4
0vs 1*
0 vs 6*

0.0 0.2 0.4 0.6 0.8 1.0

Figure 9. Preference distribution for each paired groups.
*For conditions 0 vs 1 and 0 vs 6, we removed the cases
where the listeners indicated having heard the song before.

scratch is competitive with generating via basic melody.

* The human-composed songs used in this study are from
the most popular ones in Chinese pop history. Even
though raters may think they do not recognize the song,
there is a chance that they have heard it. A large por-
tion of the comments suggest that a lot of the test music
sounds great and it was an enjoyable experience work-
ing on these surveys. However, some listeners point out
that concentrating on relatively long excerpts was not a
natural listening experience.

S. CONCLUSION

MusicFrameworks is a deep melody generation system us-
ing hierarchical music structure representations to enable a
multi-level generative process. The key idea is to adopt an
abstract representation, music frameworks, including long-
term repetitive structures, phrase-level basic melodies and
basic rhythm forms. We introduced analysis algorithms to
obtain music frameworks from songs. We created a neural
network that generates basic melody and additional net-
works to generate melodies. We also designed musical fea-
tures and encodings to better introduce musical inductive
bias into deep learning models.

Both objective and subjective evaluations show the im-
portance of having music frameworks. About 50% of the
generated songs are rated as good as or better than human-
composed songs. Another important feature of the Mu-
sicFrameworks approach is controllability through manip-
ulation of music frameworks, which can be freely edited
and combined to guide compositions.

In the future, we hope to develop more intelligent
ways to analyze music and music frameworks supporting
a richer musical vocabulary, generation of harmony and
polyphonic generation. We believe that hierachical and
structured representations offer a way to capture and im-
itate musical style, offering interesting new research op-
portunities.
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